
 

 

 

CENG 491 

 
D&D SOFTWARE  

 

DETAILED DESIGN 

REPORT 
 

 

 

Prepared by: 

Firat Alpergin  

Dogan Yazar 

Tuncay Namli 

Mehmet R. Dogar 

 
 
 

 

 

 

 



 1 

TABLE OF CONTENTS 
 

1. INTRODUCTION........................................................................... 2 
1.1 PROBLEM DEFINITION.................................................................................. 2 

1.2 GOALS & OBJECTIVES .................................................................................. 2 

1.3 STATEMENT OF SCOPE ................................................................................. 4 

1.4 DESIGN CONSTRAINTS ................................................................................. 4 

1.5 WORK BREAKDOWN STRUCTURE................................................................... 5 

2. ARCHITECTURAL & MODULAR DESIGN .................................. 8 
2.1 DEPLOYMENT VIEW............................................................................................ 8 

2.2 MODULAR VIEW................................................................................................. 10 

3. SYSTEM DESIGN....................................................................... 15 
3.1 USE CASE VIEW .................................................................................................. 15 

3.2 CLASS VIEW......................................................................................................... 26 

3.2.1 CLASSES ........................................................................................................ 26 

3.2.2 CLASS ASSOCIATIONS ............................................................................... 56 

3.3 DYNAMIC VIEW.................................................................................................. 60 
3.4 ACTIVITY VIEW .................................................................................................. 85 

3.5 STATECHART VIEW........................................................................................... 88 

3.6 DATABASE DESIGN............................................................................................ 95 

3.6.1 ER DIAGRAM ................................................................................................ 95 

3.6.2 DATABASE TABLES .................................................................................... 96 

4. INTERFACES ........................................................................... 102 
5. TESTING ISSUES..................................................................... 108 
6. PROJECT SCHEDULE............................................................. 109 

 

 

 

 

 
 
 
 
 
 

 



 2 

1. INTRODUCTION 
 

1.1 PROBLEM DEFINITION 

 

 Due to the importance of a detailed design for this project (DProject), this 

document tries to deduce a final design, step by step, starting with the very basic goals 

and objectives of the project and then presenting the design details in an incremental 

manner. This document will be helpful for the development of all parts of the project, 

including implementation phase, testing phase, debugging phase, and documentation 

phase. 

The resulting product of this development process will be a web-based project 

management tool, DProject. DProject lets its users define new companies in the system, 

manage the projects of a company, perform task management operations, perform user 

operations, perform user time-management operations, perform resource management, 

perform notification operations within the system, create and export/import files & 

statistics, perform meeting arrangement operations,  use project planning facilities, view 

forums and compose forum threads. The clients of the project also have the opportunity 

to view the overall progress of the project they are purchasing. The tool’s ultimate aim is 

to ease the development of a project by all means. 

The main functionalities, goals and objectives of DProject can be found in the 

section that follows. 

1.2 GOALS & OBJECTIVES 

 

 DProject sets its limits to the level where the aim of easing the management of 

projects can be fully satisfied. The main goals and objectives of DProject are as follows: 

 

- To provide easy and secure access to its users. The ease of access is accomplished 

by the web-based nature of DProject. To be able to provide enough security to its 

users, DProject will have additional security issues that will provide the secure 

environment to any of its users. 

 

- To provide consistency into the system among the members. In the real world 

projects, there is hierarchical decomposition among the project team (and 

generally in the company). This should also appear in a project management tool 

and DProject accomplishes that by defining different levels of access rights that 

can simulate the real world hierarchy (e.g. administrator rights, project manager 

rights, ordinary user rights, etc.). 

 

- To provide efficient task management operations. Task management is one of the 

most important features of a project management tool and DProject offers 

advanced task management features to its users. Users, depending on their access 

rights, can create tasks, assign users to tasks, assign reviewers to tasks, can view 



 3 

task history trails, monitor task progress, perform critical path management, work 

on tasks, etc. 

 

- To provide features for efficiently managing meetings. Meeting management is 

one of the most problematic issues of a typical project development process, 

especially in major ones. DProject uses a special system, in which the arranger of 

the meeting provides options for the meeting and notifies them. Then according to 

the feedback from the potential attendants, DProject lets the meeting arranger 

choose the optimum meeting details, also taking the preferences of the arranger 

into account. 

 

- To provide users with a personal time-schedule/calendar, by which they can plan 

their time more efficiently. This calendar will automatically include task-

deadlines, project deadlines, project milestones, and meeting dates; and also the 

user will be able to create her/his items. Also, the user will be able to mark these 

items so that they will be automatically reminded to her/him on time. 

 

- To provide communication means among the users. Communication is very 

important in large scale projects and DProject provides notifications within the 

system to satisfy the communication needs of its users. Another important 

communication feature is forums, which can be used for any purpose among the 

members of a company. 

 

- To provide human management features. Human factor is an important variable 

projects so they are treated separately in DProject. The users working in a project, 

the amount of work done by each member, the payment information of members, 

and many other features can be monitored and controlled in DProject. 

 

- To provide resource management features. Resources of a management are very 

important entities and efficient ways should be developed for handling the 

management of them. In DProject, different resources can be attached to different 

projects (or companies, more generally), their necessary information (e.g. unit 

price, seller address, etc.) are kept, resources can be attached to tasks, budget 

information of a project is kept and updated accordingly, etc. 

 

- To provide features for report & statistics generation and their 

exportation/importation. Reports and statistics are vital for any project 

development because they are useful both within the project and also among 

different projects because they are used for various purposes including efficient 

project planning, user capability analyses, etc. DProject has a number of 

important features for efficient report & statistics operations. These include the 

importation/exportation of reports from/to different formats, the 

importation/exportation of a project as a whole from one system to another, 

statistic generations for specific subset of tasks, for the overall project tasks, for 

user teams, for individual members, for a duration of time, for the whole project 

life span, etc. 



 4 

 

- To provide efficient means of project scheduling. Scheduling is one of the most 

problematic issues of a project development process that can occur in serious 

conflicts between the developer site and the client side. To be able to prevent such 

inconsistencies, DProject offers sophisticated features for project scheduling. The 

users can see task creation times, the estimated hours spent on tasks or the whole 

project, Gantt charts created automatically, etc. 

 

- To provide features for the clients to follow the progress of the project. The 

clients naturally want to view the project they are purchasing, so DProject lets its 

clients see the necessary information for them to understand that whether the 

project is progressing as they wish or not.  

 

1.3 STATEMENT OF SCOPE 

 

 The following general requirements apply to DProject: 

 

- A way to define new company and set up new company information  

- A way to add new users to the system  

- A way to define new projects and set up new project information  

- A way to define tasks, assign users to tasks, assign reviewers to tasks, work on 

tasks, attach resources to tasks, review tasks, confirm/reject tasks, view tasks 

- A way to supply users with time-schedules/calendars which include important 

dates 

- A way to handle critical path management 

- A way to arrange meetings 

- A way to handle communication among users 

- A way to handle human management 

- A way to handle resource management 

- A way to create, import/export statistics & reports 

- A way to perform project planning 

- A way to perform project progress monitoring for clients 

 

1.4 DESIGN CONSTRAINTS 

 

 To be able to work efficiently, satisfying the requirements imposed, DProject 

should be carefully designed. However, there are some design constraints which should 

be taken into account while designing the system. 

 Web-based applications are the ones which decay fastest, due to the changing 

nature of the Web. DProject has to be designed to use the most new technologies in terms 

of web-server, application-server, and database-server integrity; has to be designed to use 

the most new protocols, and standards; giving it the chance to live the longest life it can, 

in this short-living applications world: WWW. 



 5 

 The security issue is another problem that a web-based application must be aware 

of. Since our tool will serve to companies in developing their projects, the protection of 

the information about these projects is a crucial issue. To resist to security attacks 

successfully, three points must be considered. First, the architectural design of DProject 

should be resistant to attacks; and this requires good design. Second, one should be aware 

that these new technologies of web-based applications that DProject promises to use and 

support, are also the ones that create security risks, since they are new and has gone 

through less testing than their older counterparts. This awareness should bring good 

choice of technology, not taking the ‘newest’ one, but taking the ‘newest and most 

secure’ one. And as third point, DProject offer to its customer two modes of use: a 

WWW-based use, or a LAN-based use. Our customers can use DProject on our servers 

via WWW, or can buy the application and install it to their own LAN-server, which 

brings more security. 

 Installation of computer applications had always been a problem for big 

companies when they have hundreds of computers, and when every single computer will 

use the new application. In such a case, the ‘Installation CD’ may need to travel hundreds 

of computers. To prevent such a thing to happen, DProject needs only a browser on the 

client-side of the application; so that an installation only to the server will suffice, no 

matter how many client computers will use it. While this brings more burden to the 

development team in terms of not using the components offered for applications, but 

trying to fix everything so that it will work on a browser, this will prevent our customers 

from much more pain when they are installing DProject to one server but not hundreds of 

machines. 

 DProject is a web-based system and that adds an overhead because of the possible 

problems with the Internet connection. To be able to minimize the effect of this overhead, 

the communication within the system modules should be minimized avoiding the 

unnecessary interactions that can further delay processing.  

 DProject is a system that heavily interacts with the database behind it. Nearly all 

the necessary information for processing is maintained in the database. There is a heavy 

load of fetching/storing data from/to the database. This makes the efficiency of the 

DBMS an important constraint that must be taken into account seriously. An efficient 

DBMS should be used and the database should be carefully designed, preventing any 

unnecessary burden put on the DBMS. Also the queries should be designed efficiently to 

minimize the cost of database operations. By this way, the overhead caused by the DBMS 

can be minimized.  

 

1.5 WORK BREAKDOWN STRUCTURE 

 

 This part of the document presents the work breakdown structure for DProject. 

Note that the work-package definitions for 'implementation' and 'test & debugging' sub-

projects are tentative, and will be revised in each successive document. Also note that in 

the Gantt chart, and responsibility breakdown of work-packages the numbering for the 

work-packages of this section will be used, and work-package names will not be 

rephrased. 

 



 6 

Work Package Name        Numbering 

 

Project: DProject        01-00-00 

   

 Sub-Project: Prototype Production     01-01-00 

  Work-package: Creation of Database Tables   01-01-01 

   (Limited for prototype, including: User Account Tables,   

  Project Tables; Company Tables, Task Tables) 

  Work-package: Database Interface Classes    01-01-02 

  Work-package: Implementation of Visual Classes  01-01-03 

   (Limited for prototype, including: Upper Menu, Right Menu,  

  Header, Footer) 

  Work-package: Implementation of Procedural Classes 01-01-04 

   (Limited for prototype, including: Session class(limited),   

 Initializer class (limited), SqlConnection class, Project    

 class(limited), User class (limited), Task class(limited)) 

  Work-package: Implementation of JSP architecture  01-01-05 

   (Limited for prototype, including: login screen, projects   

  screen, users screen, tasks screen) 

  

 Sub-project: Implementation for Development Snapshot  01-02-00 

  Work-package: Database Implementation   01-02-01 

  Work-package: Project Management Module   01-02-02 

  Work-package: Task Management Module    01-02-03 

  Work-package: Meeting Management Module   01-02-04 

  Work-package: Notifications Module    01-02-05 

  Work-package: Implementation of Visual Classes  01-02-06 

  Work-package: Implementation of JSP pages  01-02-07 

   

 Sub-project: Implementation for Final Product   01-03-00 

  Work-package: Database Implementation Completion 01-03-01 

  Work-package: Calendar Module     01-03-02 

  Work-package: Report Generation Module    01-03-03 

  Work-package: Statistics Generation Module   01-03-04 

  Work-package: Forum Module     01-03-05 

 

 Sub-project: Documentation      01-04-00 

  Work-package: User's manual    01-04-01 

  Work-package: Installation manual    01-04-02 

Work-package: Software Specification & Release Notes  01-04-03 

  Work-package: Help pages     01-04-04 

   

 Sub-project: Testing & Debugging     01-05-00 

  Work-package: Determination of Test-cases for Security 01-05-01 

  Work-package: Determination of Test-cases for Database Integrity  

01-05-02 



 7 

  Work-package: Determination of Test-cases for Architectural Integrity  

01-05-03 

  Work-package: Application of Security Tests  01-05-04 

  Work-package: Application of Database Integrity Tests 01-05-05 

  Work-package: Application of Architectural Integrity Tests 01-05-06 

  Work-package: Debugging     01-05-07 

 

Tentative Responsibility Breakdown For Work-Packages 

 Here is the tentative responsibility breakdown of the work-packages between 

members of our company, D&D software. Each member’s name and the numbers (using 

the numbering of the section Work-Breakdown Structure) of the work-packages he is 

responsible of are listed. 

 

 D&D Software Member Name   Work-Package Numbers 

 Tuncay Namli      01-01-01 01-01-02 

        01-01-03 01-02-01 

        01-02-06 01-02-07 

        01-03-04 01-03-05 

        01-04-03 01-05-03 

        01-05-06 01-05-07 

 

 Dogan Yazar      01-01-01 01-01-02 

        01-01-03 01-02-01 

        01-02-04 01-02-05 

        01-03-01 01-03-05 

        01-04-02 01-05-02 

        01-05-05 01-05-07 

 

 Firat Alpergin      01-01-04 01-01-05 

        01-02-02 01-02-03 

        01-02-04 01-02-05 

        01-03-03 01-04-04 

        01-05-03 01-05-06 

        01-05-07 

 

 Mehmet Remzi Doğar     01-01-04 01-01-05 

        01-02-02 01-02-03 

        01-02-06 01-02-07 

        01-03-02 01-04-04 

        01-05-01 01-05-04 

        01-05-07 

 

  

 

 

 



 8 

 

2. ARCHITECTURAL & MODULAR DESIGN 
 

2.1 DEPLOYMENT VIEW 

 

 The deployment diagram of our system is as follows: 

 

 

 



 9 

DProject consists of 3 main nodes, namely the browser, the application server, and the 

database server. Each node consists of a number of components that declares interfaces 

and the components communicate among themselves by means of the methods in the 

interfaces. 

 

 Browser works on the user side. It communicates with the application server 

through HTTP protocol. It consists of the Session component, which connects to the 

other components working on the application server through the interfaces they declare.  

 

 In the application server, the main components that constitute the functionality of 

DPRoject sit. First, there is the User component, which is responsible for handling the 

operations related to the users in the system. The project component is responsible for the 

Project operations in the system and it further consists of 4 sub-components, which are 

Task, Meeting, Report & Statistics, and Resource Management. These components 

consists of all the classes and methods that implement the task management, meeting 

management, report & statistics management, and the resource management features of 

DProject. Another component is the Communication component which further 

generalizes into 2 components: the Notification component and the Forum component. 

These two components are responsible for the 2 main communication features of 

DProject, which are notification and forum. Each component in the application server 

declares their own interfaces so that the Session component sitting on the browser can use 

the services provided by these components through these interfaces.   

 

 Finally, there is the database server node. There is a JDBC connection between 

the database server and the application server. The database server consists of the 

database portions of DProject. There are specific database components for the specific 

components in the application server. There is the User Database, Project Database, Task 

Database, Resource Database, Notification Database, and Forum Database, which 

consists of the user, project, task, resource, notification, and forum records respectively. 

All these components again declares interfaces, and the appropriate component in the 

application server communicates with these components through the interfaces they 

declare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

2.2 MODULAR VIEW 

 

 The modular decomposition of our system is as follows: 

 

 
 

 

The structural decomposition of DProject consists of the following modules. There are 

separate modules for: 

 

1. User Management 

2. Project Management 

3. Task Management 

4. Resource Management 

5. Communication Management 

      5.1 Notification Management 

      5.2 Forum Management 

6. Report & Statistics Management 

7. Meeting Management 

 

 The explanation of each module is as follows: 

 

2.2.1 User Management Module 

 



 11 

 The user management module handles all the operations related to the users of the 

system. New user accounts can be created and their information is set (and can be 

modified later). While creating new users, long with their basic information like name, 

address, password, etc.; access rights of the users are also set. There are 2 different access 

right types of users: 

 

1 – Global Access Rights: These are specific for a user in the system and shows that 

whether the user has normal access rights or administrator access rights. 

 

2 – Project-Based Access Rights: These can be different for a user in different projects 

and specify what operations the user is allowed to perform in the project. 

 

 Also, there is a client type user in DProject (clients are the individuals who 

finance the project), and these individuals have a different kind of access rights, which let 

them see only the basic things about the project, that show the overall progress of the 

project. 

 

 Another important info about a user is the user’s payment type (weekly, monthly, 

etc.) and the amount of payment. This is required by the Resource Management module 

and used in the automatic updates of the project budget. Also, users have calendars, and 

these calendars can either be modified manually by the user (entering the information in 

the time slots), and automatically by DProject (e.g. when the user is assigned to a task, its 

deadline is marked automatically on the user’s calendar). 

 

2.2.2 Project Management Module 

 

 The project management module handles the operations related to the projects in 

DProject. New projects can be created and their information can be modified in DProject 

(if the user to create the project has enough access rights). The operations like adding 

new users to project (current users can be assigned and also new user accounts can be 

created upon adding the user to the project), adding new tasks to projects, specifying 

project budget & resources, generating reports & statistics about the project are all 

handled by the project management module. 

 

 

2.2.3 Task Management Module 

 

 Task management module consists of all the operations related to the tasks in 

DProject. Tasks are single pieces of work that should be done for a project to be 

complete. Each project has numbers of tasks and they are managed by the task 

management module. 

 

 For a user to create a new task, he should have enough access rights to do so. The 

tasks that are already created can be modified later by the users with enough access 

rights. There is important information about a task that should be kept and is managed by 

our system. First of all, tasks have priorities, which show the relative importance of the 



 12 

task in the project, a priority should be attained to a task. Also there are different task 

types (e.g. development task, accounting task, etc.) and a task can be categorized this 

way. Dependencies among tasks is another important concept and information about the 

task dependency should be present so that DProject automatically generates permissions 

to users when they want to work on a task (e.g. when a user is assigned to a task, which is 

dependant on a former task that is not completed yet, DProject does not let the user start 

working on the task before the other one is completed). Tasks can also be related to the 

milestones of the project and that is necessary for the critical path management features 

of DProject. Upon creation time, task is assigned to users and reviewers (these 

assignments can be modified later - with necessary access rights, of course). The assigned 

users are the ones that should complete the task by working on it. When they complete 

the task, the work done by them is sent to the reviewers and reviewers can either accept 

or reject the work done. If rejected, the assigned users are notified and obliged to do the 

work again. When an assigned user wants to work on a task, he uses the IN/OUT facility. 

The user presses the IN button upon he starts working and closes the IN item by pressing 

the OUT button upon he finishes working on the task. Then the time the user spent 

working on the task is kept in both the task’s history, and the user’s history. Also, 

necessary resources can be assigned to tasks. If a specific amount of a particular project 

resource is assigned to a task, the resource management module of DProject 

automatically updates the project resource information. Also, files can be attached to a 

task, which is necessary in the case that the users assigned to the task should read some 

documents about the task before they start working on it, for example.  

 

2.2.4 Resource Management Module 

 

 The resource management module handles all the operations related to the 

material (including project budget and all the materials used in the project) resources of a 

project. The information about the resources of a project are kept and processed in 

DProject. This information includes resource name, unit price, address to buy, etc. These 

resources can be assigned to tasks, as explained in the task management module. The 

project budget is also managed by DProject.  

 

 The project budget and project resources are updated automatically by DProject 

as follows: 

 

- Project resources are 

 * incremented as new purchases are made 

 * decremented as resources are assigned to tasks 

 

- Project budget is 

 * decremented as employees are paid 

 * decremented as new purchases are made 

 

 Also, the manual update of project resources and budget is always possible, 

provided that the user has the necessary access rights. 

 



 13 

2.2.5 Communication Management Module 

 

 The communication management module handles all the communication issues 

among the users of DProject. It consists of two separate modules, namely the notification 

management module and the forum management module. 

 

a) Notification Management Module 

 

 Notification management module is responsible for handling the notification 

operations in the system. Notifications are the messages that are local to our system. Each 

user can see his notifications in his notification inbox and can send notifications to other 

users. Also, if the user selects that option, an e-mail message can be sent along with the 

notification.  

 

 Also, DProject sends automatic notifications to the users. This occurs when the 

user is: 

 

- assigned to a task 

- assigned as the reviewer of a task 

- required to attend a meeting 

- required to make preferences about a meeting time 

- to be reported on the results of user preferences about a meeting 

 

 The first two operations are already explained in the task management module 

and the last three ones are explained in the meeting management module. 

 

b) Forum Management Module 

 

 A forum is provided for each company in DProject. These forums have all the 

features presented by a typical forum and it can be used by all the members of that 

company.  

 

2.2.6 Report & Statistics Management Module 

 

 The report and statistics management module is related to the generation of all the 

reports and/or statistics of a project for all users (including the project members and 

clients).  

 

 The clients, as explained earlier, can only see basic statistics about a project, 

including the overall progress of the project (which is stated by comparing the total 

person-hours worked up to now with the initially estimated person-hours) an, the 

probability of missing the pre-defined milestones or the project deadline, etc. These 

statistics are presented to the client in a simple style, with additional visual features (e.g. 

pie charts) if needed.  

 



 14 

 The users can generate the overall statistics of a project. These statistics include 

all the information about a project, including the amount of progress, number of 

completed tasks, number of tasks in progress, total person-hours worked, overall 

completion times of tasks (possibly among with different task groups and/or user teams),  

etc. These statistics can also be presented by visual features, if desired. 

 

 The users can also generate reports using filters. Filters provide different options 

to the users while generating the reports. For example, a user can generate filters between 

specific time periods, for specific users, for specific task types, for specific task statuses 

(e.g. completed, in progress, etc,), for specific milestones, etc. The generated filters can 

be saved for later user. When the filter is specified, the report is generated by DProject. 

Also, reports can be imported and exported in different formats (e.g. XML, Excel). Users 

also have the opportunity of creating Gantt charts. 

 

2.2.7 Meeting Management Module 

 

 The meeting management module handles all the operations related to the 

organization of meetings. Basically there are three sides in the arrangement of a meeting: 

arranger side, attendant side, and DProject. The meeting management operations are 

handled as follows. 

 

 When a user wants to arrange a meeting (arranger side), all he has to do is to 

provide necessary meeting information (e,g, duration, place, attached files if necessary, 

etc.), select the potential attendants (attendant side) and provide the different time 

options. Then these time options are automatically sent to the attendants by DProject (by 

means of notifications). Then to potential attendants give priorities to these different 

options, this is all they have to do. Then comes in the role of DProject: depending on the 

priorities of the potential attendants of the user, DProject fixes the best possible meeting 

time and notifies the arranger. If none of the time options is suitable for none of the users, 

then DProject notifies the arranger that no option could be selected (it is the arranger’s 

option then, whether changing the time options, or canceling the meeting). If a meeting 

time is fixed and confirmed by the arranger, automated notifications are sent to all the 

attendants of the meeting, specifying the final meeting details.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

3. SYSTEM DESIGN 

 

3.1 USE CASE VIEW 

 



 16 

 

Flow of events for the Login use case 

Objective To log in the system 

Precondition None 

Main Flow 1 – The user enters his login id 

2-  The user enters his password 

3 – The entered id and password are checked for validity 

4 – The system creates a new session for the user and displays the 

main screen of the new user 

Alternative Flows At 3, if the entered id or password is invalid, the user is prompted to 

enter a new id or password 

Post Condition A new session is created for the user 

 

 

 

Flow of events for the Initialize Company use case 

Objective To set up a new company account in the system 

Precondition The user should have administrator access rights 

Main Flow 1 – The user enters new company information 

2 – The user selects an id and password for the company 

3 – Access rights of the user are checked to see if they are enough 

or not 

4– The entered information is checked for validity (i.e. non-existing 

company name, non-existing company id) 

5 – The main screen of the user is displayed 

Alternative Flows At 2, if the user does not have enough access rights, he is not 

allowed to set up new company account 

At 3, if there is a conflict, the user is prompted to enter valid 

information into the conflicting fields  

Post Condition A new company information is saved in the database 

 

 

 



 17 

 

 

Flow of events for the Initialize New User use case 

Objective To set up a new user account into the system 

Precondition The user setting up the new account should have administrator 

access rights 

Main Flow 1 – The user enters new account information 

2 – The user enters an id and password for the new account 

3 – Access rights of the user is checked whether they are enough or 

not 

4 – The entered information for the new user is checked for validity 

(e.g. non-existing id) 

5 -  The user is assigned to projects, if necessary 

6 – The main screen of the user is displayed 

Alternative Flows At 3, if the access rights of the user are not enough, the user is 

prompted stating that the intended operation can not be carried on 

At 4, if the information for the new user is invalid, the user is 

prompted to enter valid information 

Post Condition A new user account information is saved in the database  

 

 

 

Flow of events for the Create Project use case 

Objective To create a new project 

Precondition A company should be already selected and the user should have 

enough access rights 



 18 

Flow of events for the Create Project use case 

Main Flow 1 – The user sets up the information for the new project 

2 – The access rights of the user is checked to see whether they are 

enough or not 

3 – The entered information is checked for validity (e.g. non-

existing project name)  

4 – Existing users are assigned to the new project, if necessary 

5 – Task groups, task types and task priorities are set up for the new 

project, if necessary 

6 – Resource information is set up for the new project, if necessary 

7 – The main screen of the user is displayed 

Alternative Flows At 2, if the user does not have the necessary access rights, he is 

prompted stating that the operation can not be carried out 

At 3, if the entered information is not valid, the user is prompted to 

enter valid information to the invalid fields 

At 4, if a new user should be assigned to the project, a new user 

account is created 

Post Condition A new project is created and saved in the database 

 

 

Flow of events for the Create Task use case 

Objective To create a new task in a project 

Precondition A project should be selected already and the user should have 

enough access rights 

Main Flow  1 – The user enters information for the new task 

2 – The user assigns reviewers to the new task 

3 – The user assigns user to the new task 

4 – The user assigns resources to the new task, if necessary 

5 – Files are attached to the new task by the user, if necessary 

6 – A unique identifier is created and saved for the new task 

Alternative Flows None 

Post Condition A new task is saved in the database 



 19 

 

 

Flow of events for the Work on Task use case 

Objective To work on a particular task in a project 

Precondition A task should be selected already and the user should be assigned 

to the selected task 

Main Flow 1 – The user opens the IN/OUT item to start working on a task 

2 – The user selects preferences for the current IN/OUT item 

3 – The user adds comments on the work done, if necessary 

4 – The user closes the IN/OUT item when the work is completed 

5 – The user sends the task to reviewers, if necessary 

Alternative Flows None 

Post Condition The new progress status of the task is saved and the task history is 

updated, working history of the user is updated 

 

 

Flow of events for the Review Task use case 

Objective To review the work done on task 

Precondition A task should be already selected, the user should be assigned as 

reviewer to the task and should be notified for review 

Main Flow 1 – The user reviews the work done on task 

2 – The user either accepts or rejects the work done 

3 – The user that sent the task for review is notified on the reaction 

of the reviewer 

Alternative Flows None 

Post Condition Depending on the reaction of the reviewer, the work done is 

accepted or the user is obliged to do the work again, the status of 

the task is updated accordingly  

 

 

Flow of events for the Confirm Task use case 

Objective To confirm the task as completed or not 



 20 

Flow of events for the Confirm Task use case 

Precondition A task should be already selected, the user should be assigned to 

the task as reviewer and should be notified for review 

Main Flow 1 – The user reviews the work done on task 

2 – The user either selects the task as completed or not 

3 – The user that sent the task for review is notified depending on 

the reaction of the reviewer 

Alternative Flows None 

Post Condition Depending on the reaction of the reviewer, the task is marked as 

completed or not, and the status of the task is updated accordingly 

 

 

Flow of events for the Generate Report use case 

Objective To create and view a time report or task report  

Precondition None 

Main Flow 1 – The user selects the type of the report to be created 

2 – The user selects the filter to generate the report 

3 – The user saves the filter, if necessary 

4 – The report is generated depending on the filter 

5 – The report is displayed 

Alternative Flows At 2, if the user makes invalid selections (e.g. non-existing date), 

the user is prompted to change the selections 

At 3, if there is a conflict in saving the filter (e.g. existing filter 

name), the user is prompted to remove the conflict 

Post Condition The report is generated and the filter is saved, if selected 

 

 

Flow of events for the Generate Statistics use case 

Objective To create and view statistics of a project 

Precondition A project should be already selected 



 21 

Flow of events for the Generate Statistics use case 

Main Flow 1 – The user selects the filter to generate the statistics 

2 – The user saves the filter, if necessary 

3 – The statistics are generated depending on the filter 

4 – The statistics are displayed 

Alternative Flows At 1, if the user makes invalid selections (e.g. non-existing date), 

the user is prompted to change the selections 

At 2, if there is a conflict in saving the filter (e.g. existing filter 

name), the user is prompted to remove the conflict 

Post Condition The statistics are generated and the filter is saved, if selected 

 

 

Flow of events for the Save Filter use case 

Objective To save a filter for later use 

Precondition None 

Main Flow 1 – The user makes the selections for the different fields of the 

filter 

2 – The user selects a name for the filter 

3 – The user saves the filter 

Alternative Flows At 1, if the user makes an invalid selection (e.g. non-existing date), 

the user is prompted to change the selection 

At 2, if the user selects and existing date, he is prompted to change 

the name 

Post Condition A filter is saved in the system 

 

 

Flow of events for the Arrange Meeting use case 

Objective To arrange a meeting 

Precondition The user should have necessary access rights to arrange a meeting 



 22 

Flow of events for the Arrange Meeting use case 

Main Flow 1 – The user selects potential dates for the meeting 

2 – The user selects the potential attendants of the meeting 

3 – The user notifies the potential attendants on the potential dates 

4 – Depending on the selections of the potential attendants, the user 

fixes the details of the meeting 

5 – The user notifies the user stating the meeting details and 

attendants 

Alternative Flows None 

Post Condition A new meeting is created and its details are saved 

 

 

Flow of events for the Inform Meeting Preference use case 

Objective To inform the arranger about the selections about a meeting 

Precondition The user should have been notified by the arranger 

Main Flow 1 – The user views the potential dates sent by the arranger 

2 – The user notifies the arranger stating the dates suitable for him 

Alternative Flows None 

Post Condition The user preferences are sent to the arranger for further processing 

 

 

Flow of events for the Export & Import Files use case 

Objective To export & import files from/to the system 

Precondition A project or a report should be already selected 

Main Flow 1 – The user selects whether to import/export a report or a whole 

project 

2 – Depending on the selection of the user, either a report is 

imported/exported in the specified format, or the whole project is 

imported/exported as SQL statements 

Alternative Flows At 2, if the file to be imported/exported is invalid, the user is 

prompted stating that the file is invalid 



 23 

Flow of events for the Export & Import Files use case 

Post Condition Depending on the exported/imported file, either a new report file, 

or a new project is saved/opened 

 

 

Flow of events for the View Forum use case 

Objective To view forum threads 

Precondition None 

Main Flow 1 – The user selects the forum he wants to view 

2 – The user selects the thread to be viewed 

3 – The thread that the user selected is displayed 

Alternative Flows None 

Post Condition A forum thread is displayed 

 

 

Flow of events for the Add Forum Entry use case 

Objective To add a new forum entry 

Precondition None 

Main Flow 1 – The user selects the forum to which he wants to add a new entry 

2 – The user selects the thread under which he wants to add a new 

entry 

3 – The user adds the entry to the forum thread 

4 – The thread is displayed with the new entry added  

Alternative Flows None 

Post Condition A new entry is added to the forum 

 

 

Flow of events for the Add Project Resource use case 

Objective To add a new resource information to a project 



 24 

Flow of events for the Add Project Resource use case 

Precondition A project should be selected and the user should have enough 

access rights 

Main Flow 1 – The user enters the information of the new resource 

2 – The user enters the quantity of the new resource 

3 – The user enters the unit price of the new resource 

Alternative Flows At 1, if one of the fields is conflicting (e.g. existing resource name), 

the user is prompted to change the conflicting field 

Post Condition New resource type and information is saved 

 

 

Flow of events for the Update Project Resource use case 

Objective To update the information & quantity of a resource 

Precondition A project should be selected and the user should have enough 

access rights to make the update 

Main Flow 1 – The user selects the resource to be updated 

2 – The user selects the fields of the resource that are to be updated 

3 – User updates the fields accordingly 

Alternative Flows At 3, if there is an invalid selection (e.g. resource quantity below 

zero), the user is prompted to change the selection 

Post Condition The information of the resource is updated and saved 

 

 

Flow of events for the Send Notification use case 

Objective To send notifications to other users in the system 

Precondition None 



 25 

Flow of events for the Send Notification use case 

Main Flow 1 – The user enters the subject of the notification, if desired 

2 – The user writes the main body of the notification, if desired 

3 – Files are attached to the notification by the user, if desired 

4 – The users selects the users to send the notification 

5 – The user sends the notification 

Alternative Flows At 3, if the user tries to attach an invalid file (e.g. excess file size, 

corrupted file), the user is prompted about the error 

At 4, if the user tries to send the notification to a non-existing user, 

he is prompted about the error 

Post Condition A notification is sent to other users in the system 

 

 

Flow of events for the View Project Status use case 

Objective For a client to see the overall status of the project 

Precondition The client should be logged in to the system 

Main Flow 1 – The client selects the project he wants to view 

2 – System generates the statistics 

3 – The statistics are displayed to the client 

Alternative Flows None 

Post Condition The statistics are displayed on client’s screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26 

3.2 CLASS VIEW 

 

3.2.1 CLASSES 

 
id Component Model

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Session

- date:  float = <current date>

- currentCompany:  Company

- currentUser:  User

- currentProject:  Project

- currentNotifications:  Notification [] = null

- dbConnection:  SqlConnection

- currentMaterial:  Material

- currentTask:  int

- loggedInUser:  User

- currentForumThread:  ForumThread

- currentForumMessage:  ForumMessage

- currentCalendar:  int

+ init() : void

+ destroySession() : void

+ exportProject(int, string) : void

+ importProject(int, string) : void

+ retrieveProject(string) : Project

+ retrieveTask(string) : Task

+ retrieveMeeting(string) : Meeting

+ retrieveNotification(string) : Notification

+ retrieveUser(string) : User

+ retrieveFilter(string) : Filter

+ retrieveForumThreadTitles() : string []

+ retrieveForumMessagesInThread(string) : string []

+ retrieveMaterial(string) : Material

+ retrieveForumMessage(string) : ForumMessage

Company

- companyName:  string

- companyAddress:  string

- weekManagementPolicy:  int [1..3]

- webPageAddress:  string

- emailServerAddress:  string

- phoneNo:  string

- companyLogoPath:  string

+ init(SqlConnection) : void

+ setCompanyName(string) : void

+ getCompanyName() : string

+ setCompanyAddress(string) : void

+ getCompanyAddress() : string

+ setWeekManagementPolicy(int) : void

+ getWeekManagementPolicy() : int

+ setWebPageAddress(string) : void

+ getWebPageAddress() : string

+ setEmailServerAddress(string) : void

+ getEmailServerAddress() : string

+ setPhoneNo(string) : void

+ getPhoneNo() : string

+ setCompanyLogoPath(string) : void

+ getCompanyLogoPath() : string

+ insert() : void

+ update() : void

+ delete() : void

+ getCompanyUserIds() : string []

+ getCompanyAdminIds() : void

Project

- projectName:  string

- projectId:  string

- startDate:  string

- estimatedDuration:  integer

- estimatedPersonMonth:  float

- budget:  double

- clientId:  string

- isProjectManager:  boolean

- canApproveTime:  boolean

- canSeeProjectDetails:  boolean

- taskEditingLevel:  int [1..9]

- taskPriorityTypes:  string []

- taskStatusTypes:  string []

- taskTypes:  string []

- projectPhases:  string []

+ init(SqlConnection) : void

+ setProjectName(string) : void

+ getProjectName() : string

+ setProjectId(string) : void

+ getProjectId() : string

+ setStartDate(string) : void

+ getStartDate() : string

+ setEstimatedDuration(int) : void

+ getEstimatedDuration() : int

+ setBudget(double) : void

+ getBudget() : double

+ setClientId(string) : void

+ getClientId() : string

+ insert() : void

+ update() : void

+ delete() : void

+ assignToUser(string) : void

+ hasMaterial(double, string) : void

+ getProjectResources() : ProjectResource []

+ getProjectTaskIds() : string []

+ getProjectTaskNames() : string []

+ getProjectUserIds() : string []

+ getProjectUserNames() : string []

+ addProjectPhase(ProjectPhase) : void

+ addTaskType(TaskType) : void

+ addTaskPriority(TaskPriority) : void

+ addTaskStatus(TaskStatus) : void

Task

- taskId:  string

- taskName:  string

- taskDescription:  string

- startDate:  date

- dueDate:  date

- finishDate:  date

- priorityId:  int

- typeId:  int

- projectId:  string

- statusId:  int

- percentDone:  int

- reviewerId:  string

- groupId:  int

- attachedFile1:  string

- attachedFile2:  string

- attachedFile3:  string

- attachedFile4:  string

- actualHours:  double

- lastUpdate:  date

- dateCreated:  date

- assignedUserIds:  string []

+ assignToUser(string) : void

+ assignToReviewer(string) : void

+ dependOnTask(int, string) : void

+ needsMaterial(double, string) : void

+ userStartedWorkOn(string) : void

+ userFinishedWorkOn(string) : void

SqlConnection

- dbName:  string

- dbHostname:  int

- dbPassword:  int

- dbUserName:  int

- connection:  Connection

+ connect() : void

+ getConnection() : Connection

+ closeConnection() : void

Initializer

+ beforeLogin() : Session

+ login(Session, string, string) : boolean

+ afterLogin(Session) : void

TaskType

- taskTypeId:  string

- name:  string

- explanation:  string

TaskStatus

- taskStatusId:  string

- name:  string

- explanation:  string

TaskPriority

- taskPriorityId:  string

- name:  string

- explanation:  string

ProjectPhase

- name:  string

- startDate:  date

- endDate:  date

- personMonth:  float

 



 27 

cd comp2

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

- userId:  string

- password:  string

- name:  string

- middleName:  string

- surname:  string

- birthDate:  string

- speciali ty:  string

- address:  string

- sex:  int [1..3]

- emailAddress:  string

- photo:  string

- paymentPolicy:  int [1..3]

- paymentAmount:  double

- emailNotificationForNewTaskPreference:  int [0..1] = 1

- numOfTasksPerPagePreference:  int [1..50] = 10

- numOfMonthsPerPagePrefrence:  int = 4

- numOfWeeksPerPagePreference:  int = 4

- userProjects:  Project []

- canAddProject:  boolean

- userDirectory:  int [1..4]

- globalAccessRight:  int

+ ini t(SqlConnection) : void

+ setUserId(string) : void

+ getUserId() : string

+ setPassword(string) : void

+ getPassword() : string

+ setName(string) : void

+ getName() : string

+ setmiddleName(string) : void

+ getMiddleName() : string

+ setSurname(string) : void

+ getSurname() : string

+ setBirthDate(string) : void

+ getBirthDate() : string

+ setSpeciali ty(string) : void

+ getSpecial ity() : string

+ getAddress(string) : string

+ setSex(int) : void

+ getSex() : int

+ getEmailAddress(string) : string

+ setPhoto(string) : void

+ getPhoto() : string

+ setPaymentPolicy(int) : void

+ getPaymentPolicy() : int

+ setPaymentAmount(double) : void

+ getPaymentAmount() : double

+ setEmailNoti ficationForNewTaskPreference(int) : void

+ getEmailNotificationForNewTaskPreference() : int

+ setNumOfTasksPerPagePreference(int) : void

+ getNumOfTasksPerPagePreference() : int

+ setNumOfWeeksPerPagePreference(int) : void

+ getNumOfWeeksPerPagePreference() : int

+ setNumOfMonthsPerPagePreference(int) : void

+ getNumOfMonthsPerPagePreference() : int

+ setUserProjects(Project []) : void

+ getUserProjects() : Project []

+ insert() : void

+ update() : void

+ delete() : void

+ setAccessRightsOfUser(string, string, int, boolean, boolean) : void

+ createNewProject(int, string, string, string, double, date, date, date, string, string, string) : void

+ createUser(int, double, int, int, int, int, boolean, int, boolean, int, string, string, string, int, date, string, string, string, string, string, string) : void

+ ceateNewTask(string, string, string, string, int, string, int, int, string, int, int, date, date, date, string, string, string) : void

+ createMaterial(string, doule, string, string) : void

+ createMeeting(date, string, string, string, date, date, date, date, date, date, string) : void

+ buysMaterial(double, double, string) : void

+ setUserPrefencesForMeeting(string, int, int, int, int, int) : void

+ approveTask() : void

+ assignToProject(string, boolean, boolean, int) : void

+ createCompany(string, string, int, string, string, string) : void

+ sendNotification(string, string, string, string, string) : void



 28 

  

 
cd Component Model

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Notification

- notificationId:  string

- notificatedUser:  string

- notificationType:  string

- ownerOfAction:  string

- dateOfAction:  date

- attachedFile1:  string

- attachedFile2:  int

- attachedFile3:  string

+ setNotificationId(string) : void

+ getNotificationId() : string

+ setNotificatedUser(string) : void

+ getNotificatedUser() : string

+ setNotificationType(int) : void

+ getNotificationType() : int

+ setOwnerOfAction(string) : void

+ getOwnerOfAction() : string

+ setDateOfAction(date) : void

+ getDateOfAction() : date

+ setAttachedFile1(string) : void

+ getAttachedFile1() : string

+ setAttachedFile2(string) : void

+ getAttachedFile2() : string

+ setAttachedFile3(string) : void

+ getAttachedFile() : string

+ insert() : void

+ update() : void

+ delete() : void

Filter

- fi lterId:  string

- selectedUserId:  string

- selectedProjectId:  string

- selectedStartDate:  date

- selectedFinishDate:  date

- selectedPriorityId:  string

- selectedTypeId:  string

- selectedStatusId:  string

- selectedGroupId:  string

- selectedProjectPhaseId:  string

+ insert() : void

+ update() : void

+ delete() : void

Forum

- forumThreadIds:  string []

+ getForumThreadIds() : string []

+ getForumThreadTitles() : string []

Material

- materialId:  string

- materialName:  string

- materialCost:  double

- materialDescription:  string

- createdDate:  date

- creatorUserId:  string

+ insert() : void

+ update() : void

+ delete() : void

+ getPrice(double) : void

ProjectResource

- materialId:  string

- quantity:  double

- assignedProjectId:  string

+ setMaterialId(string) : void

+ getMaterialId() : string

+ setQuantity(double) : void

+ getQuantity() : double

+ setAssignedProjectId(string) : void

+ getAssignedProjectId() : string

Meeting

- meetingId:  string

- finalMeetingDate:  date

- dateOption1:  date

- dateOption2:  date

- dateOption3:  date

- dateOption4:  date

- dateOption5:  date

- creatorUserId:  string

- creationDate:  date

- attachement1:  string

- attachement2:  string

- attachement3:  string

- lastReplyDate:  date

+ insert() : void

+ update() : void

+ delete() : void

+ isLastReplyDatePassed() : boolean

+ isMeetingSettled() : boolean

ForumThread

- threadId:  string

- title:  string

- forumMessageIds:  string []

+ getForumThreadTitle() : string

+ getForumMessageSubjects() : string []

ForumMessage

- senderId:  string

- subject:  string

- messageBody:  string

+ setSenderId(string) : void

+ getSenderId() : string

+ setSubject(string) : void

+ getSubject() : string

+ setMessageBody(string) : void

Calendar

- items:  CalendarItem []

- ownerId:  string

- periodStart:  date

- periodEnd:  date

+ setReminder(CalendarItem) : void

+ unsetReminder(CalendarItem) : void

+ addCalenderItem(CalenderItem) : void

CalendarItem

- itemId:  string

- itemDate:  date

- text:  string

- willBeReminded:  bool

+ insert() : void

+ update() : void

+ delete() : void

 
  

 

 

 

 

In this section a description of all the classes in DProject is presented. The order is 

hierarchical:  

 

 Firstly, the classes that live all through the lifetime of a DProject session is given:  



 29 

 

• Session,  

• Initializer,  

• and SqlConnection  

classes.   

 

 Then the classes that handle each module’s functionalities and their helper classes 

are given:  

 

• Company class for creation of new companies in DProject;  

• Project class for project management module (with helper class ProjectPhase);  

• Task class for task management module (with helper classes TaskPriority, 

TaskType, TaskStatus);  

• Meeting class for meeting management module; 

• User class for user management module;  

• Calendar class for personal time-scheduling module (with hepler class 

CalendarItem) 

• Notification class for handling notification facility in DProject 

• Forum class for forum module of DProject (with helper classes ForumThread, 

ForumMessage) 

• ProjectResource class for resource management module (with helper class 

Material) 

 

Session  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 12:15:36. Modified on 09.01.2001 

22:20:09.  

 

'Session' class represents a unique session started by a user. It is initialized when the user 

opens a DProject page using the web-browser, and terminated when the user terminates 

the web session. Session class is always active and in association with all other classes. It 

holds pointers to the currently active project objects, task objects, user objects, etc. and 

acts like an interface between the user and the rest of the application.  

 

Session Attributes  

Attribute Type Notes 

 date  private : 

float  

'date' attribute shows the time that the session is 

started  by the user. It is set to the server system 

time initially. 

Initial Value: <current date>;  

 currentCompany  private : 

Company  

'currentCompany' attribute is a pointer to an 

instance of the Company class, which is the logged-



 30 

in user's company.  

 currentUser  private : 

User  

'currentUser' attribute is a pointer to an instance of 

the User class, which is a user being modified, or 

shown to the user.  

 currentProject  private : 

Project  

'currentProject' attribute is a pointer to an instance 

of the Project class, which is the one the user is 

currently working on. It is initially set to null.  

 currentNotifications  private : 

Notification []  

'currentNotifications' attribute is an array of 

instances of the Notification class, which are 

waiting for the currently working user. It is initially 

set to null. 

Initial Value: null;  

 dbConnection  private : 

SqlConnection  

'dbConnection' is an instance of the class 

SqlConnection and is used to connect to the 

database in this session.  

 currentMaterial  private : 

Material  

'currentMaterial' attribute represents the currently 

active material in the session.  

 currentTask  private : 

int  

'currentTask' attribute represents the currently active 

task in the session.  

 loggedInUser  private : 

User  

'loggedInUser' attribute is a pointer to an instance of 

the User class, which is the logged-in user.  

 currentForumThread  private : 

ForumThread  

'currentForumThread' attribute is a pointer to an 

instance of the ForumThread class, which is the 

currently active forum thread.   

 currentForumMessage  private : 

ForumMessage  

'currentForumMessage' attribute is a pointer to an 

instance of the ForumMessage class, which is the 

currently active forum message.   

 currentCalendar  private : 

int  

'currentCalendar' attribute is a pointer to an instance 

of the currentCalendar class, which is the currently 

active calendar.   

 

 

Session Methods  

Method Type Notes 

 init ()   public: void   'init' initializes the Session object for a user session. 

It sets the attributes 'date', 'currentCompany', and 

'loggedInUser', by calling their 'init' functions. In 

this way the system initializes itself hierarchal.  

 destroySession ()   public: void   'destroySession' destroys the current session 

securely, if the user logs-out.  

 exportProject (int, 

string)   

public: void   param: format [ int - in ]   

param: projectId [ string - in ]   

 

'exportProject' exports the specified project using 

the specified format.  

 importProject (int, public: void   param: fileFormat [ int - in ]   



 31 

string)   param: fileName [ string - in ]   

 

'importProject' imports a project using the specified 

file name and the specified file format.  

 retrieveProject (string)   public: Project   param: projectId [ string - in ]   

 

'retrieveProject' returns the Project object that has 

the specified project id. It queries the database with 

the specified project id, creates the Project object, 

and returns it.  

 retrieveTask (string)   public: Task   param: taskId [ string - in ]   

 

'retrieveTask' returns the Task object that has the 

specified task id. It queries the database with the 

specified task id, creates the Task object, and 

returns it.  

 retrieveMeeting 

(string)   

public: Meeting   param: meetingId [ string - in ]   

 

'retrieveMeeting' returns the Meeting object that has 

the specified meeting id. It queries the database 

with the specified meeting id, creates the Meeting 

object, and returns it.  

 retrieveNotification 

(string)   

public: 

Notification   

param: notificationId [ string - in ]   

 

'retrieveNotification' method returns the 

Notification object that has the specified 

notification id. It queries the database with the 

specified notification id, creates the Notification 

object, and returns it.  

 retrieveUser (string)   public: User   param: userId [ string - in ]   

 

'retrieveUser' method returns the User object that 

has the specified user id. It queries the database 

with the specified user id, creates the User object, 

and returns it.  

 retrieveFilter (string)   public: Filter   param: filterId [ string - in ]   

 

'retrieveFilter' method returns the Filter object that 

has the specified filter id. It queries the database 

with the specified filter id, creates the Filter object, 

and returns it.  

 

retrieveForumThreadTi

tles ()   

public: string []  'retrieveForumThreadTitles' returns the titles of the 

threads in the forum. It queries the database to get 

the titles of ForumThread objects, and returns them 

in a string array.  

 public: string []  param: threadId [ string - in ]   



 32 

retrieveForumMessage

sInThread (string)   

 

'retrieveForumMessagesInThread' method returns 

the subject attributes of the forum messages in the 

specified forum thread with the threadId. It queries 

the database with this id and returns the subject 

attributes of the forum messages in a string array.  

 retrieveMaterial 

(string)   

public: 

Material   

param: materialId [ string - in ]   

 

'retrieveMaterial' method returns the Material object 

that has the specified material id. It queries the 

database with the specified material id, creates the 

Material object, and returns it.  

 retrieveForumMessage 

(string)   

public: 

ForumMessage   

param: messageId [ string - in ]   

 

'retrieveForumMessage' returns the forum message 

object with the specified messageId. It queries the 

database with the messageId, creates the 

ForumMessage class and returns it.  

 

 

SqlConnection  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 20:00:28. Modified on 07.01.2005 

02:19:15.  

 

SqlConnection class holds the attributes needed to connect to the database and acts as a 

wrapper class for connecting to the database. It is used throughout a DProject session, to 

handle database connections. 

 

SqlConnection Attributes  

Attribute Type Notes 

 dbName  private : 

string  

'dbName' attribute represents the name of the 

database. It is needed to connect to the database.  

 dbHostname  private : 

int  

'dbHostName' represents the database host name. It 

is needed to connect to the database.  

 dbPassword  private : 

int  

'dbPassword' attribute represents the database 

password, for the database host and user. It is 

required to get a connection to the database.  

 dbUserName  private : 

int  

'dbUserName' attribute represents the database user 

name. It is required to get a connection to the 

database.  

 connection  private : 

Connection  

'connection' is the actual database connection that is 

established by the SqlConnection class. Its type 



 33 

depends on the programming language that will be 

used. In our case it will most probably be of type 

java.sql.Connection.  

 

 

SqlConnection Methods  

Method Type Notes 

 connect ()   public: void   'connect' connects to the database using dbName, 

dbHostName, dbPassword, and dbUsername 

attributes of SqlConnection class and initializes the 

connection variable.  

 getConnection ()   public: 

Connection   

'getConnection' returns the connection variable 

which was connected to the database.  

 closeConnection ()   public: void   'closeConnection' closes the database connection.   

 

 

 

Initializer  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 20:25:31. Modified on 07.01.2005 

02:19:15.  

 

'Initializer' class is a helper class for logging in and initializing the session. It initializes 

the environment before the login takes place, handles the login process, and initializes the 

environment after login. 

 

Initializer Methods  

Method Type Notes 

 beforeLogin ()   public: Session   'beforeLogin' is called when a user opens DProject 

page with but before he/she logs in. It handles all 

the work done before the login takes place; like 

showing the login screen, setting-up the visual 

environment, etc.  

 login (Session, string, 

string)   

public: boolean   param: session [ Session - in ]   

param: userPassword [ string - in ]   

param: userName [ string - in ]   

 

'login' takes the password and loginId and checks to 

see if the id and password is valid and consistent. 

Returns 'true' if consistent, 'false' if inconsistent or 

invalid.  

 afterLogin (Session)   public: void   param: session [ Session - in ]   

 



 34 

'afterLogin' is called after 'login' method returns as 

'true' and it initializes all required attributes of the 

current session for a logged in user.  

 

 

Company  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 12:58:53. Modified on 07.01.2005 

02:45:58.  

 

'Company' class represents the company that the current logged-in user is a member of. If 

the user has the required access rights, he/she can create, modify, and delete companies in 

DProject. 

 

Company Attributes  

Attribute Type Notes 

 companyName  private : 

string  

'companyName' is the name of this Company 

instance.  

 companyAddress  private : 

string  

'companyAddress' is the actual address of this 

Company instance.  

 

weekManagementPolic

y  

private  

Range:1 to 3: 

int  

'weekManagementPolicy' attribute holds integer 

values corresponding to the preference of the 

company on how to arrange working days of a 

week. That integer values have the range 1-3. The 

relations are 1:Monday-to-Friday, 2:Monday-to-

Saturday, 3:Monday-to-Sunday  

 webPageAddress  private : 

string  

'webPageAddress' attribute holds the string 

representing the company's web page address.  

 emailServerAddress  private : 

string  

'emailServerAddress' holds the mail-server address 

of the company that will be used to send e-mails 

using the company's server.  

 phoneNo  private : 

string  

'phoneNo' is the telephone number of this Company 

instance.  

 companyLogoPath  private : 

string  

'companyLogoPath' attribute holds the path to the 

image file that the company had submitted. This is 

used to show the company logo when it is a session 

of this company's users.  

 

 

Company Methods  

Method Type Notes 

 init (SqlConnection)   public: void   param: dbConnection [ SqlConnection - in ]   

 



 35 

 insert ()   public: void   'insert' method writes the information in this 

'Company' class instance to the database, creating a 

new entry in the database table.  

 update ()   public: void   'update' method updates the record of this company 

in the database, using the current values of the 

attributes.  

 delete ()   public: void   'delete' method deletes the record of this company 

from the database.  

 getCompanyUserIds ()   public: string []  'getCompanyUserIds' returns the user ids who are 

members of this company.  

 getCompanyAdminIds 

()   

public: void   'getCompanyAdminIds' returns ids of the 

administrators of this company.  

 

Project  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:06:28. Modified on 09.01.2001 

21:16:41.  

 

'Project' class represents a project in DProject. An instance of this class is created and 

manipulated when a user is creating, modifying, or inspecting a DProject project. 

 

Project Attributes  

Attribute Type Notes 

 projectName  private : 

string  

'name' is the project's name in real life.  

 projectId  private : 

string  

'projectId' is the unique id that a project gets in 

DProject.  

 startDate  private : 

string  

'startDate' is the start date of the project.  

 estimatedDuration  private : 

integer  

'estimatedDuration' attribute specifies the project's 

estimated duration.  

 estimatedPersonMonth  private : 

float  

'estimatedPersonMonth' is the value specified by the 

creator of the project for the estimated value of the 

work required for the projects in terms of person-

months.  

 budget  private : 

double  

'budget' attribute holds the project's budget.  

 clientId  private : 

string  

'clientId' attribute specifies this project's client.  

 isProjectManager  private : 

boolean  

'isProjectManager' specifies if the current user is a 

manager of this project. 'true' means he/she is a 

manager, 'false' means he/she is not.  

 canApproveTime  private : 'canApproveTime' specifies if the current user can 



 36 

boolean  approve users' timesheets in this project. 'true' 

means he/she can, 'false' means he/she can not.  

 canSeeProjectDetails  private : 

boolean  

'canSeeProjectDetails' specifies whether the current 

user can see all tasks and meeetings in the project, 

or can see only the ones that he/she is assigned to. 

'true' means he/she can see all, 'false' means he/she 

can not.  

 taskEditingLevel  private  

Range:1 to 9: 

int  

'taskEditingLevel' specifies user2s permissions 

about task editing. 1 means read-only permission, 2 

means limited task editing, 3 means limited task 

editing and file attachement creation/deletion, 4 

means partial task editing, 5 means partial task 

editing and deleting the tasks that he/she created, 6 

means full control task editing, 7 means full control 

task editing and deleting the tasks that he/she 

created, 8 means full controol task editing and 

creating tasks and deleting his/her own tasks, 9 

means full control task editing and creating deleting 

all tasks.  

 taskPriorityTypes  private : 

string []  

'taskPriorityTypes' is the list of the task priority 

types specified for this project.  

 taskStatusTypes  private : 

string []  

'taskStatusTypes' is the list of the task status types 

specified for this project.  

 taskTypes  private : 

string []  

'taskTypes' is the list of the task types specified for 

this project.  

 projectPhases  private : 

string []  

'projectPhases' is the list of the task project phases 

specified for this project.  

 

 

Project Methods  

Method Type Notes 

 init (SqlConnection)   public: void   param: dbConnection [ SqlConnection - in ]   

 

'init' method is called to initialize a Project object. 

Using the project id database is queried, and fields 

of the object are filled.  

 setProjectName 

(string)   

public: void   param: name [ string - in ]   

 

 getProjectName ()   public: string     

 setProjectId (string)   public: void   param: id [ string - in ]   

 

 getProjectId ()   public: string     

 setStartDate (string)   public: void   param: startDate [ string - in ]   

 

 getStartDate ()   public: string     

 setEstimatedDuration public: void   param: duration [ int - in ]   



 37 

(int)    

 getEstimatedDuration 

()   

public: int     

 setBudget (double)   public: void   param: budget [ double - in ]   

 

 getBudget ()   public: double     

 setClientId (string)   public: void   param: id [ string - in ]   

 

 getClientId ()   public: string     

 insert ()   public: void   'insert' method writes the information in this 

'Project' class instance to the database, creating a 

new entry in the database table.  

 update ()   public: void   'update' method updates the record of this project in 

the database, using the current values of the 

attributes.  

 delete ()   public: void   'delete' method deletes the record of this project 

from the database.  

 assignToUser (string)   public: void   param: userId [ string - in ]   

 

'assignToUser' method add the relation to the 

database so that the user specified with the userId 

becomes a member of this project.  

 hasMaterial (double, 

string)   

public: void   param: quantity [ double - in ]   

param: materialId [ string - in ]   

 

'hasMaterial' method marks the database so that this 

project has specified quantity of the specified 

material.  

 getProjectResources ()   public: 

ProjectResourc

e []   

'getProjectResources' method queries this projects 

resources from the database and returns them.  

 getProjectTaskIds ()   public: string []  'getProjectTaskIds' returns the project's task ids.  

 getProjectTaskNames 

()   

public: string []  'getProjectTaskNames' returns the project's task 

names.  

 getProjectUserIds ()   public: string []  'getProjectUserIds' returns the users' ids who are 

assigned to the project.  

 getProjectUserNames 

()   

public: string []  'getProjectUserNames' returns the users' names 

assigned to this project.  

 addProjectPhase 

(ProjectPhase)   

public: void   param: phase [ ProjectPhase - in ]   

 

'addProjectPhase' method adds the specified 

ProjectPhase to this project as a phase.  

 addTaskType 

(TaskType)   

public: void   param: type [ TaskType - in ]   

 

'addTaskType' method adds the specified TaskType 

to this project as a type.  



 38 

 addTaskPriority 

(TaskPriority)   

public: void   param: priority [ TaskPriority - in ]   

 

'addTaskPriority' adds the specified TaskPriority to 

this project as a phase.  

 addTaskStatus 

(TaskStatus)   

public: void   param: status [ TaskStatus - in ]   

 

'addTaskStatus' adds the specified TaskStatus to this 

project as a phase.  

 

 

ProjectPhase  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2001 22:00:41. Modified on 09.01.2001 

22:14:20.  

 

'ProjectPhase' class represents phases for a specific project, so that a milestone for this 

phase can be specified and new tasks can be specified as belonging to this category. 

 

ProjectPhase Attributes  

Attribute Type Notes 

 name  private : 

string  

'name' is the name of this project phase, as specified 

by the creator of the project.  

 startDate  private : 

date  

'startDate' is the date that this project phase must 

start.  

 endDate  private : 

date  

'endDate' is the date that this project phase must 

end.  

 personMonth  private : 

float  

'personMonth' specifies the effort estimation for this 

project phase in terms of personMonths.  

 

 

 

Task  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 18:58:10. Modified on 09.01.2001 

21:16:52.  

 

'Task' class represents a task in DProject. It is created during a session when the user 

creates, modifies, or simply inspects a specific task. It provides the methods for task 

management. 

 



 39 

Task Attributes  

Attribute Type Notes 

 taskId  private : 

string  

'taskId' is the unique id a task gets in a DProject 

system. This also represents the primary key value 

of this task in the Tasks table of the database.  

 taskName  private : 

string  

'taskName' is the name of the task, supplied by the 

creator of the task.  

 taskDescription  private : 

string  

'taskDescription' is the general information about 

the task supplied by the creator of the task.  

 startDate  private : 

date  

'startDate' is the date that a user can start working 

on the task.  

 dueDate  private : 

date  

'dueDate' is the date by which this task should be 

complete.  

 finishDate  private : 

date  

'finishDate' is the actual date that this task was 

completed. If finishDate is before dueDate, then 

that means the task was completed before deadline; 

if finishDate is after dueDate that means the task 

was completed late.  

 priorityId  private : 

int  

'priorityId' is the priority level of this task. Since 

different priority levels can be created in DProject, 

they are represented by an id.  

 typeId  private : 

int  

'typeId' is the type of this task. Since different types 

can be created in DProject, they are represented by 

an id.  

 projectId  private : 

string  

'projectId' is the id of the project that this task 

belongs to.  

 statusId  private : 

int  

'statusId' shows the status of this task. Since 

different status levels can be created in DProject, 

they are represented by an id.  

 percentDone  private : 

int  

'percentDone' shows what portion of the task is 

completed, in terms of percentages.  

 reviewerId  private : 

string  

'reviewrId' is the id of the user who is the reviewer 

of this task.  

 groupId  private : 

int  

'groupId' is the id of the user group that this task is 

assigned.  

 attachedFile1  private : 

string  

'attachedFile1' represents the path of the file that is 

attached to this task.  

 attachedFile2  private : 

string  

'attachedFile2' represents the path of the file that is 

attached to this task.  

 attachedFile3  private : 

string  

'attachedFile3' represents the path of the file that is 

attached to this task.  

 attachedFile4  private : 

string  

'attachedFile4' represents the path of the file that is 

attached to this task.  

 actualHours  private : 

double  

'actualHours' represents the total hours that has been 

spent on this task, by all users.  

 lastUpdate  private : 'lastUpdate' is the date that this task is modified last.  



 40 

date  

 dateCreated  private : 

date  

'dateCreated' is the date that this task was created.  

 assignedUserIds  private : 

string []  

'assignedUserIds' is an array of user ids, who are 

assigned to this task.  

 

 

Task Methods  

Method Type Notes 

 assignToUser (string)   public: void   param: userId [ string - in ]   

 

'assignToUser' method is used to assign this task to 

a user specified by the user-id parameter.  

 assignToReviewer 

(string)   

public: void   param: reviewerId [ string - in ]   

 

'assignToReviewer' method is used to assign this 

task to the reviewer specified by the reviewerid 

parameter.  

 dependOnTask (int, 

string)   

public: void   param: dependencyType [ int - in ]   

param: taskId [ string - in ]   

 

'dependOnTask' method marks the database so that 

this task will depend on the task specified by the 

taskId, by the relation specified by the 

dependencyType.  

 needsMaterial (double, 

string)   

public: void   param: quantity [ double - in ]   

param: materialId [ string - in ]   

 

'needsMaterial' assigns the specified quantity of the 

specified material to this task. The corresponding 

price will be decreased from the project budget.  

 userStartedWorkOn 

(string)   

public: void   param: userId [ string - in ]   

 

'userStartedWorkOn' method marks the database 

showing that the specified user started working on 

this task.  

 userFinishedWorkOn 

(string)   

public: void   param: userId [ string - in ]   

 

'userFinishedWorkOn' method marks the database 

showing that the specified user finished working on 

this task.  

 

 

TaskPriority  

Type:  public Class  



 41 

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2001 21:52:59. Modified on 09.01.2001 

22:15:02.  

 

'TaskPriority' class represents a priority category for the tasks. When creating a project a 

project manager can specify new task priority types, so that the priorities of new tasks can 

be specified. 

 

TaskPriority Attributes  

Attribute Type Notes 

 taskPriorityId  private : 

string  

'taskPriorityId' is the unique id given to this 

taskPriority object in DProject. This is also the 

primary key value used for this task priority in the 

database.  

 name  private : 

string  

'name' is the name of this task status type as given 

by the creator of this task status.  

 explanation  private : 

string  

'explanation' is the explanation for this task priority 

as specified by its creator.  

 

 

TaskStatus  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2001 21:42:29. Modified on 09.01.2001 

23:56:26.  

 

'TaskStatus' class represents a status category for the tasks. When creating a project a 

project manager can specify new task statuses, so that task statuses can be changed as the 

work on task progresses. 

 

TaskStatus Attributes  

Attribute Type Notes 

 taskStatusId  private : 

string  

'taskStatusId' is the unique id given to this 

taskStatus object in DProject. This is also the 

primary key value used for this task status in the 

database.  

 name  private : 

string  

'name' is the name of this task status type as given 

by the creator of this task status.  

 explanation  private : 

string  

'explanation' is the explanation for this task status as 

specified by its creator.  

 

 



 42 

TaskType  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2001 21:34:53. Modified on 09.01.2001 

21:54:08.  

 

'TaskType' class represents a category for the tasks. When creating a project a project 

manager can specify new task types, so that new tasks can be put under this category. 

 

TaskType Attributes  

Attribute Type Notes 

 taskTypeId  private : 

string  

'taskTypeId' is the unique id given to this taskType 

object in DProject. This is also the primary key 

value used for this task type in the database.  

 name  private : 

string  

'name' is the name of this task type as given by the 

creator of this task type.  

 explanation  private : 

string  

'explanation' is the explanation for this task type as 

specified by its creator.  

 

 

 

Meeting  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 18:58:22. Modified on 09.01.2001 

21:16:52.  

 

'Meeting' class represents a scheduled or completed meeting of a project. A user with 

enough access rights can create, modify, delete meetings; choose other users as 

attendants, specify date options. Meeting object is created when a user is modifying, 

creating or inspecting a meeting in DProject. 

 

Meeting Attributes  

Attribute Type Notes 

 meetingId  private : 

string  

'meetingId' is the unique id a meeting gets in 

DProject. It is also the primary key value used in 

the database table for this meetimg.  

 finalMeetingDate  private : 

date  

'finalMeetingDate' is the actual date that the 

meeting took/will take place.  

 dateOption1  private : 

date  

'dateOption1' is one of the date options specified by 

the arranger of the meeting. The potential attendants 

of the meetings make choices between these 

options.  



 43 

 dateOption2  private : 

date  

'dateOption2' is one of the date options specified by 

the arranger of the meeting. The potential attendants 

of the meetings make choices between these 

options.  

 dateOption3  private : 

date  

'dateOption3' is one of the date options specified by 

the arranger of the meeting. The potential attendants 

of the meetings make choices between these 

options.  

 dateOption4  private : 

date  

'dateOption4' is one of the date options specified by 

the arranger of the meeting. The potential attendants 

of the meetings make choices between these 

options.  

 dateOption5  private : 

date  

'dateOption5' is one of the date options specified by 

the arranger of the meeting. The potential attendants 

of the meetings make choices between these 

options.  

 creatorUserId  private : 

string  

'creatorUserId' is the id of the user who arranged the 

meeting.  

 creationDate  private : 

date  

'creationDate' is the actual date that this meeting 

object was created in the Dproject system by the 

arranger of the meeting.  

 attachement1  private : 

string  

'attachedFile1' represents the path of the file that is 

attached to this meeting object.  

 attachement2  private : 

string  

'attachedFile2' represents the path of the file that is 

attached to this meeting object.  

 attachement3  private : 

string  

'attachedFile3' represents the path of the file that is 

attached to this meeting object.  

 lastReplyDate  private : 

date  

'lastReplyDate' is the deadline for the potential 

attendants of the meeting to make their choiceds 

between the time options.  

 

 

Meeting Methods  

Method Type Notes 

 insert ()   public: void   'insert' method inserts the meeting information to 

the database creating a new entry.  

 update ()   public: void   'update' method updates the database record of this 

meeting, using the new attribute values.  

 delete ()   public: void   'delete' method deletes the database record of this 

meeting.  

 

isLastReplyDatePassed 

()   

public: boolean   'isLastReplyDatePassed' returns true if the last 

reply/decision date for the meeting has passed; false 

otherwise.  

 isMeetingSettled ()   public: boolean   'isMeetingSettled' returns true if the date of this 

meeting had been decided and settled by all 

attendants; false otherwise.  



 44 

 

 

 

User  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:06:20. Modified on 07.01.2005 

00:52:43.  

 

'User' class represents a user of DProject. In a DProject session, after the user log-in there 

is always an active user class which represents the currently logged-in user, and holds 

his/her information. Another use of the User class is to represent a user whose 

information is being inspected, modified or created by the logged-in user. 

 

User Attributes  

Attribute Type Notes 

 userId  private : 

string  

'userId' attribute holds the id that is used as a unique 

key to specify a user. This attribute is also used as a 

login-id.  

 password  private : 

string  

'password' attribute holds the user's password.  

 name  private : 

string  

'name' attribute holds the user's real life name.  

 middleName  private : 

string  

'middleName' attribute holds the user's real life 

middle name.  

 surname  private : 

string  

'surname' attribute holds the user's real life surname.  

 birthDate  private : 

string  

'birthDate' attribute holds the user's real life birth 

date.  

 speciality  private : 

string  

'speciality' attribute represents what the user is 

specialized in as an employee.  

 address  private : 

string  

'address' attribute holds he user's real life address.  

 sex  private  

Range:1 to 3: 

int  

'sex' represents the user's sexual gender. It can only 

have three values; 1:male, 2:female, 3:other  

 emailAddress  private : 

string  

'emailAddress' attribute holds the user's e-ail 

address.  

 photo  private : 

string  

'photo' attribute holds te path to the image file 

which includes the user's photo if submitted.  

 paymentPolicy  private  

Range:1 to 3: 

int  

'paymentPolicy' field holds integer values ranging 

from 1 to 3, representing three different payment 

policies. These are 1, if the user is paid monthly; 2, 

if the user is paid weekly; 3, if the user is paid on an 



 45 

hourly basis.  

 paymentAmount  private : 

double  

'paymentAmount' attribute holds the amount that is 

paid to the user, for a month (if payment policy is 

monthly), for a week (if payment policy is weekly), 

for an hour (if the user is paid for hourly work).  

 

emailNotificationForN

ewTaskPreference  

private  

Range:0 to 1: 

int  

If 'emailNotificationForNewTaskPreference' 

attribute has the value 1, the user is notified via e-

mail whenever a task is assigned to him/her; if this 

attribute has the value 0 he/she is not notified. 

Initial Value: 1;  

 

numOfTasksPerPagePr

eference  

private  

Range:1 to 50: 

int  

'numOfTasksPerPagePreference' attribute specifies 

the user's preference so that, when he/she views the 

tasks of a project, they are shown in groups of this 

quantity. Initially it is set to 10 so that in a page at 

most ten tasks are shown. 

Initial Value: 10;  

 

numOfMonthsPerPage

Prefrence  

private : 

int  

'numOfMonthsPerPage' attribute specifies the user's 

preference so that, when he/she views a monthly 

gantt chart, at most this much month will be shown 

in a page. Initially this will be set to 4, so that in a 

monthly gantt chart, 4 months at a page will be 

shown. 

Initial Value: 4;  

 

numOfWeeksPerPageP

reference  

private : 

int  

'numOfWeeksPerPage' attribute specifies the user's 

preference so that, when he/she views a gantt chart 

in weekly mode, at most this much week will be 

shown in a page. Initially this will be set to 4, so 

that in a weekly gantt chart, 4 weeks at a page will 

be shown. 

Initial Value: 4;  

 userProjects  private : 

Project []  

'userProjects' array holds instances for all the 

projects that this user is a member of. This field is 

set only if this user is the current user of the session.  

 canAddProject  private : 

boolean  

'canAddProject' attribute specifies if the user has the 

permission to create a new project for his/her 

company.  

 userDirectory  private  

Range:1 to 4: 

int  

'userDirectory' attribute specifies what a user can 

see in his/her user directory. 1 means user can see 

all other users in the same company; 2 means user 

can see all other users in the same project; 3 means 

user can see only the administrators; 4 means user 

can not see anyone so does not have a user 

directory.  

 globalAccessRight  private : 

int  

'globalAccessRight' attribute specifies this user's 

global permissions in the system. A value of '1' 

means the user is a client of a project not an 



 46 

employee; '2' means the user is an administrator and 

have all the global rights; '3' means the user is a 

normal user and his/her permissions are further 

specifiedy other attributes.  

 

 

User Methods  

Method Type Notes 

 init (SqlConnection)   public: void   param: dbConnection [ SqlConnection - in ]   

 

After a user login to DProject, 'init' method of the 

Session class calls this init method of User class, so 

the the User class attributes are set to correct values. 

Init class queries the database using the user's login 

id, and using the information coming form the 

database, fills in the fielda of the User object.  

 insert ()   public: void   'insert' method writes the information in this 'User' 

class instance to the database, creating a new entry 

in the database table.  

 update ()   public: void   'update' method updates the record of this user in 

the database, using the current values of the 

attributes.  

 delete ()   public: void   'delete' method deletes the record of this user from 

the database.  

 

setAccessRightsOfUser 

(string, string, int, 

boolean, boolean)   

public: void   param: userId [ string - in ]   

param: projectId [ string - in ]   

param: editTaskLevel [ int - in ]   

param: canApproveTime [ boolean - in ]   

param: isProjectManager [ boolean - in ]   

 

'setAccessightsOfUser' sets access rights of the user 

with the specified id to the specified access rights. It 

updates the corresponding database tables to do this.  

 createNewProject (int, 

string, string, string, 

double, date, date, 

date, string, string, 

string)   

public: void   param: projectTypeId [ int - in ]   

param: contactEmail [ string - in ]   

param: contactPhone [ string - in ]   

param: contactName [ string - in ]   

param: budget [ double - in ]   

param: dueDate [ date - in ]   

param: finishDate [ date - in ]   

param: startDate [ date - in ]   

param: projectDescription [ string - in ]   

param: projectName [ string - in ]   

param: projectId [ string - in ]   

 

'createNewProject' method creates a new project 



 47 

with the specified attributes. It updates the 

corresponding database tables to do this.  

 createUser (int, 

double, int, int, int, int, 

boolean, int, boolean, 

int, string, string, 

string, int, date, string, 

string, string, string, 

string, string)   

public: void   param: userDepartmentId [ int - in ]   

param: paymentAmount [ double - in ]   

param: paymentPolicy [ int - in ]   

param: numOfWeeksPerPage [ int - in ]   

param: NumOfMonthsPerPage [ int - in ]   

param: NumOfTasksPerPage [ int - in ]   

param: emailNotificationForNewTask [ boolean - in 

]   

param: userDirectory [ int - in ]   

param: canAddProject [ boolean - in ]   

param: globalAccessRight [ int - in ]   

param: address [ string - in ]   

param: photo [ string - in ]   

param: speciality [ string - in ]   

param: gender [ int - in ]   

param: birthDate [ date - in ]   

param: email [ string - in ]   

param: phone [ string - in ]   

param: lastName [ string - in ]   

param: firstName [ string - in ]   

param: password [ string - in ]   

param: userId [ string - in ]   

 

'createUser' method creates a new user with the 

specified attributes. It updates the corresponding 

database tables to do this.  

 ceateNewTask (string, 

string, string, string, 

int, string, int, int, 

string, int, int, date, 

date, date, string, 

string, string)   

public: void   param: atachedFile4 [ string - in ]   

param: attachedFile3 [ string - in ]   

param: attachedFile2 [ string - in ]   

param: attachedFile1 [ string - in ]   

param: groupId [ int - in ]   

param: reviewerId [ string - in ]   

param: percentDone [ int - in ]   

param: statusId [ int - in ]   

param: projectId [ string - in ]   

param: priorityId [ int - in ]   

param: typeId [ int - in ]   

param: dueDate [ date - in ]   

param: finishDate [ date - in ]   

param: startDate [ date - in ]   

param: taskDescription [ string - in ]   

param: taskName [ string - in ]   

param: taskId [ string - in ]   

 



 48 

'createNewTask' method creates a new task with the 

specified attributes. It updates the corresponding 

database tables to do this.  

 createMaterial (string, 

doule, string, string)   

public: void   param: materialDescription [ string - in ]   

param: materialCost [ doule - in ]   

param: materiaName [ string - in ]   

param: materialId [ string - in ]   

 

'createMaterial' method is used to create new 

materials with the specified attributes. It updates the 

corresponding database tables to do this.  

 createMeeting (date, 

string, string, string, 

date, date, date, date, 

date, date, string)   

public: void   param: lastReplyDate [ date - in ]   

param: attachement3 [ string - in ]   

param: attachement2 [ string - in ]   

param: attachement1 [ string - in ]   

param: dateOption5 [ date - in ]   

param: dateOption4 [ date - in ]   

param: dateOption3 [ date - in ]   

param: dateOption2 [ date - in ]   

param: dateOption1 [ date - in ]   

param: finalMeetingDate [ date - in ]   

param: meetingId [ string - in ]   

 

'createMeeting' method is used to create a new 

meeting with the specified attributes. It updates the 

corresponding database tables to do this.  

 buysMaterial (double, 

double, string)   

public: void   param: unitPrice [ double - in ]   

param: quantity [ double - in ]   

param: materialId [ string - in ]   

 

'buysMaterial' method marks the database so that 

the purchase information is recorded.   

 

setUserPrefencesForM

eeting (string, int, int, 

int, int, int)   

public: void   param: meetingId [ string - in ]   

param: option5 [ int - in ]   

param: option4 [ int - in ]   

param: option3 [ int - in ]   

param: option2 [ int - in ]   

param: option1 [ int - in ]   

 

'setUserPreferencesForMeeting' method marks the 

database according to the preferences made by this 

user for a meeting he/she was assigned to.  

 approveTask ()   public: void   'approveTask' method is called when the reviewer 

approves a task of another user. The database tables 

are marked accordingly.  

 assignToProject public: void   param: projectId [ string - in ]   



 49 

(string, boolean, 

boolean, int)   

param: isProjectManager [ boolean - in ]   

param: isTimeApprover [ boolean - in ]   

param: taskEditLevel [ int - in ]   

 

'assignToProject' method marks the database so that 

this user is assigned to the specified project with the 

projectId.  

 createCompany 

(string, string, int, 

string, string, string)   

public: void   param: companyName [ string - in ]   

param: companyAddress [ string - in ]   

param: weekManagementPolicy [ int - in ]   

param: webPageAddress [ string - in ]   

param: phoneNo [ string - in ]   

param: companyLogoPath [ string - in ]   

 

'createCompany' method is called when this user 

wants to create a new company. If the user has the 

required access rights, a new entry for the company 

is created in the database.  

 sendNotification 

(string, string, string, 

string, string)   

public: void   param: notificationId [ string - in ]   

param: notificatedUser [ string - in ]   

param: attachedFile1 [ string - in ]   

param: attachedFile2 [ string - in ]   

param: attachedFile3 [ string - in ]   

 

'sendNotification' method is called, if this user 

wants to send a notification to another user. The 

database tables are marked accordingly, so that 

when the to-be-notificated user logs-in to the 

system the next time she/he will see the notification.  

 

Calendar  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2005 14:41:20. Modified on 09.01.2001 

23:53:22.  

 

'Calendar' class represents a calendar of a specific user in DProject. It will be presented 

through a calendar-like visual interface. The user will be able to see calendar items 

(which also constitutes a class in DProject) which are either created automatically by the 

system or manually by the user. This class will also handle the items that are to be 

reminded on a specific date. 

 

Calendar Attributes  

Attribute Type Notes 



 50 

 items  private : 

CalendarItem 

[]  

'items' are the collection of CalendarItem instances 

in this calendar. These are the items belonging to 

the owner of the calendar.  

 ownerId  private : 

string  

'ownerId' is the id of the user that owns this 

calendar.  

 periodStart  private : 

date  

'periodStart' is the start date of the period for which 

the calendar information are held.  

 periodEnd  private : 

date  

'periodEnd' is the end date of the period for which 

the calendar information are held.  

 

 

Calendar Methods  

Method Type Notes 

 setReminder 

(CalendarItem)   

public: void   param: item [ CalendarItem - in ]   

 

'setReminder' method marks the database table of 

the specified calendarItem object, so that the user 

will be reminded when on the date of the 

calendarItem.  

 unsetReminder 

(CalendarItem)   

public: void   param: item [ CalendarItem - in ]   

 

'unsetReminder' method marks the database so that 

a formerly set reminder item is unset.  

 addCalenderItem 

(CalenderItem)   

public: void   param: item [ CalenderItem - in ]   

 

This method adds a new calender Item to calender  

 

 

CalendarItem  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 09.01.2005 15:04:14. Modified on 09.01.2001 

23:56:26.  

 

'CalendarItem' class represents a single item in the calendar of a user. It may be created 

automatically by the DProject system in cases of task deadlines, project deadlines and 

meeting dates. Or it may be created manually by the user for any purpose. 

 

CalendarItem Attributes  

Attribute Type Notes 

 itemId  private : 

string  

'itemId' is the unique id of the CalendarItem object 

in DProject. It is also the primary key used in the 

database for this CalendatItem record.  

 itemDate  private : 'itemDate' is the date of this calendarItem object.  



 51 

date  

 text  private : 

string  

'text' is the text which will be displayed in the 

calendar, in place of this calendarItem.  

 willBeReminded  private : 

bool  

'willBeReminded' specifies if this calendarItem 

should be automatically reminded to the user when 

its time comes. The value 'true' means the item will 

be reminded, 'false' means the item will not be 

reminded.  

 

 

CalendarItem Methods  

Method Type Notes 

 insert ()   public: void   'insert' method writes the information in this 

'CalendarItem' class instance to the database, 

creating a new entry in the database table.  

 update ()   public: void   'update' method updates the record of this 

'CalendarItem' in the database, using the current 

values of the attributes.  

 delete ()   public: void   'delete' method deletes the record of this 

CalendarItem from the database.  

 

 

Notification  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:06:47. Modified on 09.01.2001 

21:16:52.  

 

'Notification' class represents a means of communication between users of DProject. A 

notification can be sent to a user by another user, or by the system automatically. 

'Notification' class is created, modified, and deleted accordingly. 

 

Notification Attributes  

Attribute Type Notes 

 notificationId  private : 

string  

'notificationId' is the unique id a notification gets in 

DProject. This is also the primary key used in the 

database entry for notifications.  

 notificatedUser  private : 

string  

'notificatedUser' is the id of the user this notification 

is aiming at.  

 notificationType  private : 

string  

'notificationType' is the type of this notification. It 

can be a meeting notification, a task notification, or 

a message notification.  



 52 

 ownerOfAction  private : 

string  

'ownerOfAction' is the user who creates the reason 

of this notification being sent. If it is a meeting 

notification, this is the arranger of the meeting; if it 

is a task notification, it is the creator of the task; if it 

is a message notification, it is the sender of the 

message.  

 dateOfAction  private : 

date  

'dateOfAction' is the date of the event that caused 

this notification to be sent.  

 attachedFile1  private : 

string  

'attachedFile1' represents the path of the file that is 

attached to this notification.  

 attachedFile2  private : 

int  

'attachedFile2' represents the path of the file that is 

attached to this notification.  

 attachedFile3  private : 

string  

'attachedFile3' represents the path of the file that is 

attached to this notification.  

 

 

Notification Methods  

Method Type Notes 

 insert ()   public: void   'insert' method writes the information in this 

'Notification' class instance to the database, creating 

a new entry in the database table.  

 update ()   public: void   'update' method updates the record of this 

'Notification' in the database, using the current 

values of the attributes.  

 delete ()   public: void   'delete' method deletes the record of this 

Notification from the database.  

 

Forum  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:07:04. Modified on 07.01.2005 

03:30:57.  

 

'Forum' class represents a forum that presents a means of communication between the 

users of the same company. A forum object is created in DProject whenever a user wants 

to inspect the Forum messages, or compose one. 

 

Forum Attributes  

Attribute Type Notes 

 forumThreadIds  private : 

string []  

'forumThreadIds' is an array of strings, that are the 

ids of the ForumThread objects, in this specific 

Forum.  

 

 



 53 

Forum Methods  

Method Type Notes 

 getForumThreadIds ()   public: string []  'getForumThreadIds' returns the ForumThread 

object ids that belong to this Forum.  

 getForumThreadTitles 

()   

public: string []  'getForumThreadTitles' returns the titles of the 

threads of this Forum in a string array. This method 

is called whenever user wants to see the thread titles 

in the forum.  

 

 

ForumMessage  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 06.12.2004 20:35:57. Modified on 07.01.2005 

03:29:16.  

 

'ForumMessage' class is the class that represents a single forum message in DProject. The 

ForumMessage class is created in DProject whenever a user wants to create a forum 

message, or inspect an existing one. 

 

ForumMessage Attributes  

Attribute Type Notes 

 senderId  private : 

string  

'senderId' is the id of the user that sent the message.  

 subject  private : 

string  

'subject' is the subject of the message supplied by 

the creator of the message.  

 messageBody  private : 

string  

'messageBody' is the actual message sent by the 

user.  

 

 

ForumMessage Methods  

Method Type Notes 

 setMessageBody 

(string)   

public: void   param: messageBody [ string - in ]   

 

 

 

ForumThread  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 06.12.2004 20:35:47. Modified on 07.01.2005 

03:25:20.  

 



 54 

'ForumThread' is a collection of Forum messages in a forum. It has a specific title, and 

constitutes a categorization between forum messages. A ForumThread object is created in 

DProject whenever a user wants to inspect or create a new thread. 

 

ForumThread Attributes  

Attribute Type Notes 

 threadId  private : 

string  

'threadId' is the unique id a forum thread objectr 

gets in DProject. It is also the primary key value of 

the database entry of this object.  

 title  private : 

string  

'title' is the title of the ForumThread object.  

 forumMessageIds  private : 

string []  

'forumMessageIds' is the array of ids of the forum 

messages belonging to this thread.  

 

 

ForumThread Methods  

Method Type Notes 

 getForumThreadTitle 

()   

public: string   Returns the ForumThread's title.  

 

getForumMessageSubj

ects ()   

public: string []  'getForumMessageSubjects' returns the subjects of 

the messages that belongs to this thread.  

 

 

ProjectResource  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:07:30. Modified on 09.01.2001 

21:16:52.  

 

'ProjectResource' is a quantity of some material that is dedicated to a specific project. For 

a material to be a ProjectResource, it first has to be purchased. During the purchase, the 

cost of this resource is calculated and decreased from the project budget. A 

ProjectResource instance is created in DProject, when a user purchases a material for 

some project. 

 

ProjectResource Attributes  

Attribute Type Notes 

 materialId  private : 

string  

'materialId' specifies what type of material is 

included in this project resourcce.  

 quantity  private : 

double  

'quantity' specifies the quantity of the material.  

 assignedProjectId  private : 

string  

'assignedProjectId' specifies which project this 

resource belongs to.  



 55 

 

 

ProjectResource Methods  

Method Type Notes 

 setMaterialId (string)   public: void   param: materialId [ string - in ]   

 

Sets the materialId field to the specified value.  

 getMaterialId ()   public: string   returns the material id of this projectResource.  

 setQuantity (double)   public: void   param: quantity [ double - in ]   

 

Sets the quantity field to the specified value.  

 getQuantity ()   public: double   Returns the value in the quantity field.  

 setAssignedProjectId 

(string)   

public: void   param: projectId [ string - in ]   

 

'setAssignedProjectId' method sets the 

assignedProjectId field of this resource, which 

specifies the project that this resource belongs to.  

 getAssignedProjectId 

()   

public: string   Returns the value of the assignedProjectId field.  

 

Material  

Type:  public Class  

Status:  Proposed.  Version 1.0.  Phase 1.0.  

Package: Component Model 

Details:   Created on 04.12.2004 14:07:22. Modified on 07.01.2005 

03:30:57.  

 

'Material' class represents a specific material type that has been created to be used in 

projects. A material can be created in DProject for use in several projects of a company. 

For a material to be a projectResource, it first has to be purchased. This purchase is done 

according to the information held in Material object. 

 

Material Attributes  

Attribute Type Notes 

 materialId  private : 

string  

'materialId' is the unique id a material object gets in 

DProject. This is also the primary key value used in 

the database table for this material.  

 materialName  private : 

string  

'materialName' is the name of the material specified 

by the creator of the material.  

 materialCost  private : 

double  

'materialCost' is the current unit price of this 

material in the market. This attribute is used when a 

purchase of this material is being done.  

 materialDescription  private : 

string  

'materialDescription' is information supplied by the 

creator of the material about the material.  



 56 

 createdDate  private : 

date  

'createdDate' is the date that the material was 

created in DProject system.  

 creatorUserId  private : 

string  

'creatorUserId' is the id of the user who is the 

creator of this material type.  

 

 

3.2.2 CLASS ASSOCIATIONS 

 

 
 

 

The associations between the classes are shown on the diagram above. The class 

names are used without the attributes and operations of the classes to create a clearer 

diagram. The associations described here are only the static associations between classes, 

in terms of aggregation, inclusion and inheritance. The dynamic relations between classes 

are presented in the sequence diagram. 

 



 57 

Session 'hasActive' Company 

 

 For every session that is started for a user, we will hold an instance of the 

Company class which represents the company of the logged-in user. 

 

Session 'hasLoggedIn' User 

 

 For every session, we will hold an instance of the User class which represents the 

logged-in user. 

 

Session 'hasActive' User 

 

 During a session, if the user wants to create a new user, or wants to modify/delete 

the records of an existing user, then the user whose records are being modified (or 

created) will be held as the 'currentUser' in the session. This determines the 'hasActive' 

relationship. 

  

Session 'hasActive' Project 

 

 During a session, if the user wants to create a new project, or wants to 

modify/delete the records of an existing project, then the project whose records are being 

modified (or created) will be held as the 'currentProject' in the session. This determines 

the 'hasActive' relationship. 

 

Session 'hasActive' Task 

 

 During a session, if the user wants to create a new task, or wants to modify/delete 

the records of an existing task, then the task whose records are being modified (or 

created) will be held as the 'currentTask' in the session. This determines the 'hasActive' 

relationship. 

  

Session 'hasActive' Meeting 

 

 During a session, if the user wants to create a new meeting, or wants to 

modify/delete the records of an existing meeting, then the meeting whose records are 

being modified (or created) will be held as the 'currentMeeting' in the session. This 

determines the 'hasActive' relationship. 

  

Session 'hasActive' ForumThread 

 

 During a session, if the user wants to view the contents of a forum thread, then the 

forum thread whose records are being viewed will be held as the 'currentForumThread' in 

the session. This determines the 'hasActive' relationship. 

 

Session 'hasActive' ForumMessage 

 



 58 

 During a session, if the user wants to create a new forum message, or wants to 

view an existing message, then the message whose records are being created (or viewed) 

will be held as the 'currentForumMessage' in the session. This determines the 'hasActive' 

relationship. 

 

Session 'hasActive' Material 

 

 During a session, if the user wants to create a new type of material, or wants to 

modify/delete the records of an existing material, then the material whose records are 

being modified (or created) will be held as the 'currentMaterial' in the session. This 

determines the 'hasActive' relationship. 

  

Session 'hasActive' Notification 

 

 During a session, if the user wants to create a new notification, or wants to view 

those notifications (which may be more than one), then, the notifications whose records 

are being created or being viewed will be held as the 'currentNotifications' in the session. 

This determines the 'hasActive' relationship. 

  

Initializer 'initializes' Session 

 

 For every session that is started for a user, an Initializer class is held to handle the 

initializations both before and after the login. This determines the 'initializes' relationship. 

  

SqlConnection 'connects' Session 

 

 For every session that is started for a user, a SqlConnection class is held to handle 

the database connections both before and after the login. This determines the 'connects' 

relationship. 

  

Project 'includes' Task 

 

 For every project there are zero or more tasks that belong to the project.  

  

Forum 'consistsOf' ForumThread 

 

 In a Forum, there may be zero or more ForumThreads. That is; a forum consists 

of threads. This also determines the aggregation character of the association. 

  

ForumThread 'consistsOf' ForumMessages 

 

 In a ForumThread, there may be one or more ForumMessages. That is; a forum 

thread consists of messages. This also determines the aggregation character of the 

association. 

  

ProjectResource 'consistsOf' Material 



 59 

 

 Every project resource consists of some material. There may be only one material 

type in a project resource. 

 

Calendar ‘is composed of’ CalendarItem 

  

 Every Calendar consists of zero or more CalendarItem. 

 

Task ‘has TaskType in’ Project 

 

 Every Task has a specified TaskType in a Project. This constitutes a 

categorization of tasks in a project. 

 

Task ‘has TaskPriority in’ Project 

 

 Every Task has a specified TaskPriority in a Project. This constitutes a 

categorization of tasks in a project in terms of priority. 

 

Task ‘has TaskStatus in’ Project 

 

 Every Task has a specified TaskStatus in a Project. This constitutes a 

categorization of tasks in a project in terms of the progress of the task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

3.3 DYNAMIC VIEW 

 

 The sequence diagrams of our system are as follows: 

 

1) Diagram: Login  

 
sd Login

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

LoginPage

:Session :SqlConnection«servlet»

LoginDoServ let

:Initializer «JSP page»

ErrorPage

«JSP page»

Proejct

Login

doPost(response,request)

Session:= beforeLogin()

Session:= Session()

SqlConnection:= getDBConnection

connect()

Connection:= getConnection()

boolean:= login(session,userPassword,userName)

boolean:= validateUser

afterLogin(session)

init()

[boolean=false]: redirect

[boolean=true]: redirect

 
 

This diagram specifies the session initialization and login procedure in DProject 

for every user. User starts with the page ‘Login.jsp’ and after entering  his 

'company_name', 'user_id' and 'password', the page calls the doPost method of the 

‘LoginServlet’. Servlet calls the ‘beforeLogin()’ operation of the ‘Initializer’ class. This 

operation constructs a session and creates connection for database by using the 

SQLConnection class. Session object is set as ‘HtmlSession’ attribute and obtained from 

there for every page so its lifetime is entire session. Then servlet calls the 

‘Initializer.login()’ operation of the ‘Initializer’ that checks the user login and password 

and returns whether user is authorized or not in which an error page is shown by the 

system. After that, authorization servlet calls the ‘afterLogin’ operation and this makes 

the necessary initialization for the Session variables. We show this initialization part at 



 61 

Session Initialization diagram. Finally, the page is redirected to some jsp page which is 

optional for users. 

 

 

2) Diagram: SessionInit  

 
sd SessionInit
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

:Session

Initializer

currentCompany

:Company

currentProject

:Project

currentUser :User currentNotification

:Notification

:Project

init()

init(dbConnection)

init(dbConnection)

init(dbConnection)

*init(dbConnection)

ini t(dbConnection)

 
 

This diagram shows the initialization process of the DProject. ‘Session.init()’ calls 

its variables' ‘init()’ operations so  all session variables that will be used in process are 

initialized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

3) Diagram: InitializeCompany  

 

sd InitializeCompany
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Admin

«JSP page»

InitializeCompany

«servlet»

InitializeCompanyServ let

«JSP page»

Login 

New Company Request()

redirect

Enter and Save(Input)

doPost(response,request)

createCompany()

 
 

Company initialization starts from the ‘Login.jsp’ page when user requests to 

initialize his company for the first time. He starts this action with the given company 

login and password for first login. When he enters this information, login page is 

redirected to the company initialization page. User gives the necessary input and save the 

input. Then input is send to ‘InitializeCompanyServlet’ servlet which will generate the 

company database and all tables in it. Then user is redirected to main page.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

4) Diagram: NewUser  

 

sd NewUser
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

«JSP page»

CreateUser

:Session

This form takes the general user

information about the user

«servlet»

CreateUserServ let

User

currentUser

:User

:User

New User(Input)

Save()

doPost(response,request)

User:= getCurrentUser()

User:=

createUser(Input)

User:= User(Input)

insert()

setEditedUser(User)

 
 

Like above, this diagram shows the complete process of creating a user which 

also includes the assignation of the created user to some projects. The general 

information is used for creating the user by the operation ‘createUser’ of the 

‘currentUser’ object. This operation creates the user object and calls its insert method to 

insert the user into database and sets the ‘editedUser’ to this user. In the second phase 

‘AssignNewUserServlet’ takes the ‘editeUser’ from session and calls the 

‘assignToProject’ operation of this object.  

 

 

 

 

 

 

 

 

 

 

 

 



 64 

5) Diagram: AssignProjectsToUser  

 
sd AssignProjectsToUser

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

assigner

«JSP page»

AssignedProjects

«JSP page»

AssignProjectToUser

«servlet»

AssignProjectToUserServ let

:Session :User

Assign Request

redirect

Select project to assign and enter

access rights(Input)

doPost(response,request)

User:= getEditedUser

assignProject(Input)

 
 

 User can see projects that are assigned to some user on ‘AssignedProjects.jsp’ 

page. When he assign a new project to user all information is sent to 

AssignedProjectToUsersServlet. Servlet takes the ‘editedUser’ object from the session 

and calls ‘assignProject()’ method of this object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65 

6) Diagram: Project  

 

sd NewProject
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

«JSP page»

CreateProject

currentUser

:User

:Session

User

«servlet»

CreateProjectServ let

«JSP page»

AllProjects

:Project

Add ProjectRequest()

redirect

Enter project input and Save(Input)

doPost(response,request)

User:= getCurrentUser()

project:=

createNewProject(Input)

Project:= Project(Input)

insert()

setCurrentProject(project)

 
 

 User requests to add project from 'projects.jsp' page which shows all projects in 

company. Then 'CreateProject.jsp' is redirected. User enters general information about 

project and pressed save button to create this project.(See the interface and project class 

for the entered information) Then page sends this input to 'CreateprojectServlet' for 

necessary actions by the doPost method. Servlet takes the current user from the session 

object. (Current user is the user who now creates the project) Then servlet calls the 

‘createNewProject()’ method of the currentUser object. This method create a project 

object by the given input and returns this object. Then servlet sets the ‘currentProject’ 

object of ‘session’ by returned project.  

 

 

 

 

 

 

 



 66 

7) Diagram: AssignEmployeesToProject  

 
sd AssignEmployeesToProject

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

AssignUserToProject

«servlet»

AssignUsersToProjectServ let

:Session currentProject

:Project

«JSP page»

AssignedUserstoProject

Assign new user request

Select user to assign and his access rights and

Save(user ids)

doPost(response,request)

Project:= getCurrentProject()

assignToUser(Input)

 
 

 User can be redirected ‘AssignedUsers.jsp’ from ‘Project.jsp’ which shows the 

selected project information.  ‘AssignedUsers.jsp’ shows the currently assigned users for 

that project. When the user request to assign a new user to project page redirects to 

‘AssignUserToProject.jsp’. User select a user and his project specific rights and save this 

information. Then page send this input to  AssignUserToProjectServlet by doPost method 

of the servlet. Servlet takes the ‘currentProject’ object of ‘session’ and calls the 

‘assignToUser()’ method of this object to save information in database. 

 

 

8) Diagram: AddTaskTypes  

 
sd AddTaskTypes
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

currentProject

:Project

«JSP page»

TaskTypes

«JSP page»

AddTaskType

«servlet»

AddTaskTypeServ let

:Session

Add task type request

redirect

Enter task type attributes and Save(Input)

doPost(response,request)

Project:= getCurrentProject()

addTaskType(Input)

 
 



 67 

User can be redirected to ‘TaskTypes.jsp’ from ‘Project.jsp’ by pressing the tab. 

‘TaskTypes.jsp’ shows the task types that project currently have. When user requests to 

define new task type for the project page is redirected to ‘AddTaskType.jsp’. User enters 

the information for the new task type and save it. Then page sends this information to 

‘AddTaskTypeServlet’ servlet for the actions. Servlet takes the ‘currentProject’ object 

from the ‘session’ object and calls ‘addTaskType()’ method of this object which saves 

the new task type to database.  

 

 

 

9) Diagram: Add Phases  

 
sd Add Phases
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

ProjectPhases

«JSP page»

AddProjectPhase

«servlet»

AddProjectPhaseServ let

:Session currentProject

:Project

Add phase request

redirect

Enter phase and other information for phase

doPost(response,request)

Project:= getCurrentProject()

addPhase(Input)

 
 

User can be redirected to ‘TaskPhases.jsp’ from ‘Project.jsp’ by pressing the tab. 

Since the sequence of actions are very similar to ‘Add Task Types’ sequence we do not 

need to explain again.(See Add Task Types sequence) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 68 

10) Diagram: AddTaskPriorities  

 
sd AddTaskPriorities
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

TaskPriorities

«JSP page»

AddTaskPriorities

«servlet»

AddTaskPrioritiesServ let

:Session :Project

Add priority request

redirect

Enter priority attributes and Save(Input)

doPost(response,request)

getCurrentProject(Project)

addTaskPriority(Input)

 
 

User can be redirected to ‘Taskpriorities.jsp’ from ‘Project.jsp’ by pressing the 

tab. 

Since the sequence of actions are very similar to ‘Add Task Types’ sequence we do not 

need to explain again.(See Add Task Types sequence) 

 

 

 

11) Diagram: AddTaskStatuses  

 
sd AddTaskStatuses
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

TaskStatuses

«JSP page»

AddTaskStatus

«servlet»

AddTaskStatusServ let

:Session currentProject

:Project

Add task status request

redirect

Enter status information and Save(Input)

doPost(response,request)

Project:= getCurrentProject

addTaskStatus(Input)

 
 



 69 

User can be redirected to ‘TaskStatuses.jsp’ from ‘Project.jsp’ by pressing the tab. 

Since the sequence of actions are very similar to ‘Add Task Types’ sequence we do not 

need to explain again.(See Add Task Types sequence) 

 

 

  12) Diagram: NewTask  

 

sd NewTask
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Tasks

«JSP page»

AddTask

«servlet»

AddTaskServ let

:Session currentUser :User

:Task

Add Task Request()

redirect

Enter and Save(Input)

doPost(response,request)

User:= getCurrentUser()

createNewTask(Input)

Task:= Task(Input)

insert

setCurrentTask(Task)

 
 

User can request add a new task from the ‘Tasks.jsp’ which shows the tasks of the 

opened project. Then page is redirected to ‘AddTask.jsp’ page to take the input about 

general information for the task. When user save the information page sends the input to 

‘AddTaskServlet’ servlet by doPost method. Servlet get the ‘currentUser’ object from the 

‘session’ object. Then servlet calls the ‘createNewTask()’ method of the ‘currentUser’ 

object. This method create a new ‘Task’ object by the input and calls the insert method of 

this object to save to the database. Then method returns the created object to servlet. 

Servlet sets the ‘currentTask’ object of session to this returned object. 

 

 

 

 

 

 

 



 70 

13) Diagram: AssignTaskToUsers  

 
sd AssignTaskToUsers

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Assigner

«JSP page»

Task

«JSP page»

AssignTask

«servlet»

AssignTaskServ let

:Session :Task

assign request

redirect

Select users to assign and Save(user ids)

doPost(response,request)

Task:= getCurrentTask

*assignToUser(userid)

 
 

User can request to assign task to users from ‘Task.jsp’ which shows the selected 

task information. Then page is redirected to ‘AssignTask.jsp’. User can select the users to 

assign and save the information. Then page sends this input to ‘AssignTaskServlet’ by 

doPost method. Servlet take the ‘currentTask’ object from the ‘session’.Then it calls 

’assignToUser()’ method iterated way for all users so method saves this information to 

database. 

 

 

14) Diagram: AddAttachmentToTask  

 

sd AddAttachmentToTask
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

TaskAttachments

«servlet»

AddTaskAttachmentsServ let

:Session :Task

Enter attached fi le name and Save

doPost(response,request)

Task:= getCurrentTask

addAttachment(attachedfi le uri)

 
 



 71 

User can see the currently attached files on ‘TaskAttachments.jsp’.When he wants 

to add a new attachment he enters the necessary input and pressed to add button. Then 

input is send to ‘AddTaskAttachmentsServlet’ servlet. Servlet takes the ‘currentTask’ 

object from session and calls ‘addAttachment()’ method of the object. Method saves the 

filename of attachment to database and read the attached file and copy it to the file 

system of the system.  

 

 

15) Diagram: AssignResourceToTask  

 
sd AssignResourceToTask
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

TaskResources

«JSP page»

AddResourceToTask

«servlet»

AddResourceToTaskServ let

:Session :Task

Add resource request

redirect

Select resource and amount to add(Input)

doPost(response,request)

Task:= getCurrentTask()

addResource(Input)

 
 

User can request to bind some resource to task from ‘Task.jsp’ that is used while 

doing this task. By this request page is redirected to ’AddResourceToTask.jsp’. User 

select a material which exists in project currently and amount of the material and add to 

task. Then input is send to ‘AddResourceToTaskServlet’ servlet. Servlet takes the 

‘currentTask’ object from session and calls addResource() method of the object. Method 

decrease the amount of material in project resource and add it to task by changing 

database. 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

16) Diagram: Work On Task  

 

sd Work On Task
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Tasks

«JSP page»

Task

«servlet»

TaskServ let

:Session currentTask :Task

Open Task(Input)

retrieveTask(taskid)

setCurrentTask(Task)

redirect

Edit and Save(Input)

doPost(response,request)

Task:=

getCurrentTask()

update()

 
 

Users can open the task from the ‘Tasks.jsp’ page which is assigned to them. 

Then ‘Task.jsp’ page is shown which shows the information for that task. User can edit 

some fields which he is allowed to and save the changes. Then all input is send to 

‘TaskServlet’ servlet. Servlet takes the ‘currentTask’ object from the session and calls 

‘update()’ method to save the changes to database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

17) Diagram: In/OutControl  

 
sd In/OutControl

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

assigned user

«JSP page»

Task

«servlet»

OpenInServ let

:Session currentTask :Task«servlet»

OutServ let

Open In request

doPost(response,request)

Task:= getCurrentTask

startWorkedIn(Input)

Out request

doPost(response,request)

Task:= getCurrentTask

finishWorkedIn(Input)

 
 

When working on the tasks user must open ‘IN’ option so the working time is 

calculated for the user. User can open IN from ‘Task.jsp’  which sends the input 

‘OpenInServlet’ servlet. It takes the ‘currentTask’ object from the session and calls 

startWorkedIn() method to save the start time to database. Then after working he presses 

the ‘OUT’ button from  ‘Task.jsp’. Then page sends tyhe input to ‘OutServlet’ servlet. 

Servlet takes the currentTask object and calls finishWorkedIn() method to save the 

information to database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 74 

18) Diagram: ReviewTask  

 
sd Rev iewTask
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Reviewer

«JSP page»

Tasks

«JSP page»

Rev iewTheTask

«servlet»

Rev iewTheTaskServ let

currentUser :User:Session

Select Task to Review()

redirect

Review(boolean)

doPost(response,request)

User:= getCurrentUser()

approveTask(taskid,boolean)

redirect

 
 

This diagram shows the process of reviewing the works of users on tasks and 

rejecting or accepting them. Page calls the servlet's doPost method after reviewer selects  

the task to review. Servlet calls the session's ‘retrieveTask()’ method which returns a 

‘Task’ object to take the related Task from database. Then it takes the currentUser object 

from the session and calls its ‘approveTask()’ method to save the decision of the reviewer 

into the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

19) Diagram: ArrangeMeeting  

 
sd ArrangeMeeting

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Meeting Arranger

«JSP page»

Meetings

«JSP page»

ArrangeNewMeeting

«servlet»

ArrangeNewMeetingServ let

currentUser :User:Session

Arrange Meeting()

redirect

Enter and Save(Input)

doPost(response,request)

User:= getCurrentUser()

createMeeting(Input)

redirect

 
 

User can see his meetings and their information on ‘Meetings.jsp’. When user 

requests to arrange a new meeting page is redirected to ‘ArrangeNewMeeting.jsp’ page. 

User specifes the information for the meeting and save them. Then input is sent to 

‘ArrangeNewMeetingServlet‘ servlet which will get the ‘currentUser’ object from the 

session. Then servlet calls the ‘createMeeting()’ method of the ‘currentUser’ object to 

create the meeting in database. 

 

 

20) Diagram: CallParticipantToMeeting  

 
sd CallParticipantToMeeting
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Arranger

«JSP page»

Participants

«JSP page»

CallParticipant

«servlet»

CallParticipantServ let

currentMeeting

:Meeting

:Session

Add Participant request

redirect

Select participant and information(Input)

doPost(response,request)

Meeting:= getCurrentMeeting()

cal lParticipant(Input)

 



 76 

 

User can g oto ‘Participants.jsp’ page from ‘Meeting.jsp’ page. This page shows 

the participants of the meeting. When user requests to call a new participant, user is 

redirected to ‘CallParticipant.jsp’ page. User selects the user and other information for 

the participant and saves the information. Then page sends the input to the 

‘CallPaticipantServlet’ servlet by the doPost method. Servlet gets the ‘currentMeeting’ 

object from the session and calls callParticipant() method of this object which will save 

the information to database. 

 

 

21) Diagram: FinalizeMeeting  

 
sd FinalizeMeeting

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

Arranger

«JSP page»

Meeting

«servlet»

FinalizeMeetingServ let

currentMeeting

:Meeting

«JSP page»

:ArrangeNewMeeting

:Session

Accept system calculated option

doPost(response,request)

Meeting:= getCurrentMeeting()

final ize(Input)

choose another day

doPost(response,request)

Meeting:= getCurrentMeeting()

final ize(Input)

arrange the meeting again

redirect

 
 

Meeting arranger can view the participant’s selections and system selection for 

meeting date. Then he can accept this date or arrange new day for meeting. Servlet takes 

the ‘currentMeeting’ object and calls its finalize() method.  

 

 

 

 

 

 

 

 



 77 

22) Diagram: InformMeetingPreferences  

 
sd InformMeetingPreferences

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Meetings

«JSP page»

ArrangedMeeting

«servlet»

ArrangedMeetingServ let

currentUser :User:Session

Select Meeting(meetingId)

redirect

Select Preferences()

doPost(response,request)

User:= getCurrentUser()

setUserPrefencesForMeeting(Input)

redirect

 
 

A user can go to the ‘ArrangedMeeting.jsp’ page from ‘Meetings.jsp’ if he has 

necessary right and he is called to meeting as participant. Then user selects his date 

preferences and save this information. Then page send  the input to the 

‘ArrangedMeetingServlet’ by doPost method. Servlet takes ‘currentUser’ object from the 

session and calls the ‘setUserPrefencesForMeeting()’ method to save the information to 

database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

23) Diagram: AddAttachmentToMeeting  

 

sd AddAttachmentToMeeting
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

MeetingAttachments

«servlet»

AddAttachmentToMeeting

currentMeeting

:Meeting

:Session

Add attachment request and enter fi le uri

doPost(response,request)

Meeting:= getCurrentMeeting()

addAttachment(Input)

 
 

User can view meeting attachments from ‘MeetingAttachments.jsp’ page. When 

user requests to add new attachment to meeting he gives the file uri as input. Then input 

is send to ‘AddAttachmentToMeetingServlet’ servlet that will get ‘currentMeeting’ 

object from session and calls ‘addAttachment()’ method. This method save the filename 

to database and copy file to system’s file directory.  

 

24) Diagram: CreateMaterial  

 
sd CreateMaterial

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

ProjectAdmin

«JSP page»

Resources

«JSP page»

CreateMaterial

«servlet»

CreateMaterialServ let

currentUser :User:Session

Create Material Request()

redirect

Enter and Save(Input)

doPost(response,request)

User:= getCurrentUser()

createMaterial(Input)

redirect

 
 



 79 

This diagram shows the sequence of the processes for defining a new material for 

company. From the Resources page user can request to define new material which will 

redirect him to ‘CreateMaterial.jsp’. In this page user specifies the information about the 

material and submits to create the material which calls the servlet's doPost method. 

Servlet gets the ‘currentUser’ object from the session and calls the ‘createMaterial()’ 

method of this object. This method creates a ‘Material’ object and calls its ‘insert()’ 

method to create the material in database. 

 

 

25) Diagram: BuyMaterial  

 
sd BuyMaterial

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

ProjectAdmin

«JSP page»

Resources

«JSP page»

Material

«JSP page»

BuyMaterial

«servlet»

BuyMaterialServ let

currentUser :User currentProject

:Project

:Session

Select Material to Buy(materialId)

redirect

Buy Material Request()

redirect

Select Amount and Buy()

doPost(response,request)

User:= getCurrentUser()

buysMaterial(uni tPrice,quantity,materialId)

ProjectResource []:= getProjectResources()

redirect

 
 

This diagram shows the process of purchasing some quantity of specified material 

to project. In the Resources page user can see the project resources and defined materials. 

If he select a material page redirects to ‘Material.jsp’ which shows the materials 

properties. Then user request to purchase some quantity of this material type which 

redirects to page ‘BuyMaterail.jsp’. After specfiying amount of material that is bought 

page calls the  ‘BuyMaterialServlet’ servlets doPost method. Servlet gets the 

‘currentUser’ object from the session and calls the ‘buysMaterial()’ method of this object. 

This method get the ‘ProjectResources’ of the ‘currentProject’ object and call the 

‘setQuantity()’ to set the new quantity to database and to object. 

 

 

 

 

 

 

 



 80 

26) Diagram: Calender  

 
sd Calender
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

some Page

«JSP page»

Calender

«servlet»

CalenderServ let

«JSP page»

AddCalenderItem

:CalenderItem

:Session currentCalender

:Calender

redirect

Add Calender Item Request

redirect

Enter input for item(Input)

doPost(response,request)

Calender:= getCurrentCalender()

CalenderItem:= CalenderItem()

insert()

addCalenderItem(CalenderItem)

 
 

User can view the calendar and his items on the ‘Calender.jsp’ page. When user 

requests to add a calendar item to calendar page is redirected to ‘AddCalenderItem.jsp’ 

page. User enters the information and input is send to the servlet. Servlet gets the 

‘currentCalender’ object from session and create a CalenderItem object from the input. 

Then this object is added to ‘currentCalender’ object by ‘addCalenderItem()’ method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

27)  Diagram: Export Report  

 

sd Export Report
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

ExportReport

«servlet»

ExportReportServ let

«JSP page»

GenerateReport

Generate report with Export

redirect

Enter fi le name and file type to

export(Input)

doPost(response,request)

export(Input)

 
 

When user is in ‘GenerateReport.jsp’ he can select generating report with export 

option. Then ExportReport.jsp page is redirected and after user gives the file uri and 

export type the input is given to ‘ExportReportServlet’ servlet. This servlet generates the 

report in specified format and redirect back. 

 

28) Diagram: Import Project Template   

sd Import Project Template 
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

CreateProject

«JSP page»

ImportProject

«servlet»

ImportProjectServ let

Create project from template

redirect

Browse fi le to import

doPost(response,request)

import(Input)

redirect

 



 82 

 

29) Diagram: Export Project Template  

 

sd Export Project Template
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Project

«JSP page»

ExportProject

«servlet»

ExportProjectServ let

export request

redirect

Enter filename (Input)

doPost(reponse,request)

exportProject(Input)

 
 

While creating project user can select creating project from a template. Then 

‘ImportProject.jsp’ is redirected and after specifying the filename to import all 

information is passed to ‘ImportProjectServlet” servlet. This servlet takes the file and 

generate necessary things in database. Sequence is same for export project.  

 



 83 

30) Diagram: Reports 

sd Reports
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Reports

«JSP page»

TaskReport

«servlet»

TaskReportServ let

Select Task or Time Report(id)

[id=Task Report]: redirect

Select the Fil ter()

Execute  and Savethe Fil ter(fil tername)

doPost(response,request)

generateReport(Fi lter)

 
 

This diagram only shows the process of creating a report from selected filter. User 

selects the filter and submits his request to generate report. Servlet's doPost method is 

called and this method generates the report from the information in the database. If the 

user also wants to save this filter by giving a name to it, servlet creates a ‘Filter’ object 

and calls its ‘insert()’ method to create the Filter in the database. 

 



 84 

31) Diagram: SendNotification 

sd SendNotification
EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

EA 4.50 Unregistered Trial Version   EA 4.50 Unregistered Trial Version   

User

«JSP page»

Notifications

«JSP page»

SendNotification

«servlet»

SendNotificationServ let

Send Notification Request()

redirect

Enter and Send(Input)

doPost(response,request)

redirect

 
 

This diagram shows the process of sending a notification to another user. Servlet 

gets the ‘currentUser’ object from session and calls the ‘sendNotification()’ method for 

creating the notification in the database. This method create the notification and calls its 

‘insert()’ method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 85 

 

3.4 ACTIVITY VIEW 

 

 The activity diagram of our system is presented on a A3 page layout in the 

Appendis since it does not fit on a A4 paper. 

 

 The explanation of the activity diagram is below: 

 

 The activities are started by displaying the login screen. 

  

- The user will fill in with his/her id and password, after the user enters his/her 

id and password these information will be compared with the one that will be 

retrieved from the database. If the password turns out to be valid then the 

main screen will be displayed, if the password entered by the user turns out to 

be invalid then we return to the initial screen. 

 

First of all, some information isn’t shown in this activity diagram for the sake of 

simplicity. The omission is; after main screen is displayed, the user can select display 

main screen link or logout link any time s/he wants. 

 

In the main screen the user has the following options: 

 

- If the user selects ‘Send Notification’ link then the notification form will be 

displayed. And the user will fill in. Then the user will click send button and 

the notification will be sent to the specified users. (As I mentioned in the 

beginning, in any of the stages, the user can select the ‘Main Screen’ link so 

that the notification process will be canceled and system will return to the 

Main screen. Also the user can select ‘Logout’ in any stage so that the system 

will terminate the session. These possible activities won’t be specified in any 

other option.)  

- If the user selects ‘Create new filter’ link then the new filter creation form will 

be displayed. And the user will fill in. Then the user will click save button and 

the filter will be stored in database.  

- If the user selects ‘Edit Preferences’ link then the ‘Preferences Screen’ will be 

displayed. And the user will edit his/her preferences. Then the user will click 

save button and the preferences will be stored in database.  

- If the user selects ‘Generate Statistics Link’ link, then s/he will select the 

filters to be applied. After that the statistics will be generated and displayed 

depending on the filters selected by the user.  

- If the user selects ‘Help’ link then the ‘Help Screen’ will be displayed. And 

the user will enter the topic that s/he wants to get information about. Then the 

system will display the information about the topic if there is any record about 

that topic in the database. 

- If the user selects ‘Forum’ link then the ‘Forum Screen’ will be displayed. 

After that user can either read a message or write a new message. If s/he wants 



 86 

to read a message, s/he will simply select the thread and the message will be 

displayed. If the user wants to write a new message, s/he will select the thread 

under which s/he wants to write new message and then will write the body of 

the message and click the send button after that the message will be stored in 

database.   

- If the user selects ‘Reports’ link then the ‘Reports Screen’ will be displayed. 

After that user has two other options :  

o If the user selects ‘Import Report’ link, the report will be fetched from 

user’s computer and will be viewed. 

o If the user selects ‘Generate Report’ link, s/he will specify the type of 

the report and the filters to be applied and after that system will 

generate the report based on this selections and display it. In this stage 

user can select to export the report into his/her computer or go back to 

the main reports screen. 

- If the user selects ‘Administration’ link then the access rights of the user will 

be checked. If the user doesn’t have the necessary rights, s/he won’t be able to 

do any administration operation and ‘Main Screen’ will be displayed. Else if 

the user has admin rights ‘Administration Screen’ will be displayed. And the 

user can either select to create a new user account to the system or create a 

new company account. In either case, admin will enter the necessary 

information, then select the save button and the records will be saved in 

database.  

- If the user selects ‘Arrange Meeting’ link then the access rights of the user 

will be checked. If the user doesn’t have the necessary rights, s/he won’t be 

able to arrange any meeting and ‘Main Screen’ will be displayed. Else if the 

user has enough rights user will specify the potential dates and the attendants 

of the meeting. After the potential attendants of the meeting stated their 

choices, user will fix the details of the meeting depending on these choices. 

And then user will select the save button and the records will be saved in 

database.  

- If the user selects ‘Projects’ link then the ‘Projects Main Screen’ will be 

displayed. In this stage, user has following options: 

o User can view the details of a project by selecting ‘View Project’ link. 

After this selection the system will display the project details and now 

user has another two options: 

� If the user selects ‘Export Project’ link, the project will be 

saved in a file into the user’s computer. 

� If the user selects ‘Task creation’ link, then the access rights of 

the user will be checked. If the user doesn’t have the enough 

rights, s/he won’t be able to create any task and ‘Projects Main 

Screen’ will be displayed. Else if the user has enough rights, 

s/he will enter the necessary information to create a new task 

(task name, assigned users, etc) and hit the save button. After 

that new task will be saved in the database. 

o User can select ‘Create New Project’ link. Of course, first of all the 

access rights of the user are fetched from the database to see whether 



 87 

s/he has the necessary access rights to create a project and if not user 

won’t be able to create the project and ‘Projects Screen’ will be 

displayed. Else if the user has enough access rights, s/he will specify 

the creation type (from template or from scratch). To create project 

from template, the project file is fetched forum user’s computer and 

for the other case a blank project is created and the user enters the 

necessary information about the new project (name, tasks, assigned 

users, etc). After that system saves the project in database. 

- If the user selects ‘Tasks’ link then the ‘Tasks Main Screen’ will be displayed. 

In this stage, user has following options: 

� User can select ‘View Tasks’ link. In this case, the access 

rights of the user will be checked. If the user doesn’t have the 

enough rights, s/he won’t be able to view any task and ‘Tasks 

Main Screen’ will be displayed. Else if the user has enough 

rights, task will be displayed. Now, user can either choose to 

send the finished tasks to the reviewer or work on a task. If the 

user selects to work on a task, it will be checked that whether 

the task is assigned to the user. If it’s not, the user won’t be 

able to open in/out and ‘Main Tasks Screen’ will be displayed. 

Else in/out will be opened, the user will work on the task and 

in/out will be closed. 

� User can select ‘Review Tasks’ link. In this case, the user will 

select from the finished tasks which are sent for reviewing and 

if the reviewer of the task is assigned to be the user, s/he will 

be able to review the task and either accept or reject the work 

done. In either case, a notification is sent to the user who did 

the task and if reviewer rejected the work done, task will be 

marked as undone and the assigned user will have to do it 

again. 

- If the user selects ‘Logout’ in any stage then the system terminates the 

session. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88 

 

 

3.5 STATECHART VIEW 

 

 
 

Figure 1: Session class state diagram 

 

 When the user opens the address of the project management tool in his browser, a 

session is created and its beginLogin method is called, triggering a translation from the 

initial state to the Waiting for login state. When the user enters his id and password 

correctly, the new state is Waiting for command state, in which requests of the user are 

being waited to be handled.  



 89 

 

 There are a number of possible translations from the Waiting for command state. 

The state changes to: 

 

- Handling task operations state, if the user makes a task operation request 

- Handling project operations state, if the user makes a project operation request 

- Handling notification operations state, if the user makes a notification operation 

request 

- Handling meeting operations state, if the user makes a meeting operation request 

- Handling report&statistics operations state, if the user makes a report&statistics 

operation request 

- Handling forum operations state, if the user makes a forum operation request 

 

 
Figure 2: Task class state diagram 

 

When the user makes a view tasks request, a transition occurs from the initial state to the 

Displaying current tasks state.  

 



 90 

 When the user wants to create a new task, a transition occurs from the Displaying 

currents tasks state to the Creating new task state. This state has three sub-states, namely 

the Setting up task information state, Assigning users state, and the Assigning reviewers 

state. In the Setting up task information sub-state, the necessary information for the 

creation of a task is entered. When this necessary information is provided, a translation 

occurs to the Assigning users state, in which the task is assigned to users. When the 

assignation is done properly, a transition occurs to the Assigning reviewers state, in 

which reviewers are assigned to the task.  

 

 When the user wants to review a task, a transition occurs from the Displaying 

current tasks state to the Reviewing task state. This state has three sub-states, namely the 

Reviewing work done state, Rejecting work done state, and the Accepting work done 

state. The user reviews the task in the Reviewing work done state. Depending on the 

decision of the reviewer, a transition occur either to the Rejecting work done state (the 

work done is rejected), or to the Accepting work done state (the work done is accepted).  

 

 When the user wants work on a task, a work on task request causes a transition 

from the Displaying current tasks state to the Working on task state.  

 

 When the user wants to view the details of a task, requesting the details of the task 

causes a transition from the Displaying current tasks state to the Viewing task details 

state.  

 



 91 

 
Figure 3: Project class state diagram 

 

When the user makes a view project request, a transition occurs from the initial 

state to the Viewing project state. 

 

 When the user wants to perform human management operations, a transition 

occurs from the Viewing project state to the Handling human management state. This 

state has three sub-states, namely the Viewing human resources state, Assigning users 

state, and the Creating users state. The user views that human resources of the project in 

the Viewing human resources state. If the user wants to assign a user to the project, a 

transition occurs to the Assigning user state. If the user wants to create a new user, a 

transition occurs to the Creating users state. If the user wants to assign the newly created 

users to the project, a transition occurs to the Assigning users state. 

 



 92 

 When the user wants to perform Resource management operations, a transition 

occurs from the Viewing project state to the Handling resource management state. This 

state has four sub-states, namely the Viewing project resources state, Assigning resources 

to project tasks state, Updating project budget state, and the Adding new resource to 

project state. The user can view the project resources in the Viewing project resources 

state. If the user wants to add a new resource to the project, a transition occurs to the 

Adding new resource to project state. If the user wants to update the budget of the 

project, a transition occurs to the Updating project budget state.  If the user wants to 

assign resources to any of the project tasks, a transition occurs to the Assigning resources 

to project state. 

 

 When the user wants to create a new project, a transition occurs from the Viewing 

project state to the Creating new project state. 

 

 When the user wants to view the details of a project, a transition occurs from the 

Viewing project state to the Viewing project details state. 

 

 
Figure 4: Notification class state diagram 

 

When the user makes a send notification request, the transition occurs from the 

initial state to the Sending notification state. This state has three sub-states, namely the 

Composing notification state, Setting receivers state, and the Attaching files state. The 

user composes the notification in the Composing notification state. When the notification 

is composed, a transition occurs to the Setting receivers state, in which the receivers of 

the notification are set. When the receivers are set successfully, a transition occurs to the 

Attaching files state, in which the files (if exists) of the notification are attached to it. 

After this state, the notification is ready to be sent. 



 93 

 

 When the user wants to view his notifications, a transition occurs from the initial 

state to the viewing notification state. If the user makes a download attachments request 

at this state, a transition occurs to the Downloading attachments state. 

 

 

 
Figure 5: Forum class state diagram 

 

  When the user wants to view the forum a view forum request causes a 

transition from the initial state to the Viewing forum state. If the user wants to view a 

thread in the forum, a view thread request causes a transition to the Viewing forum thread 

state.  

 

 When the user wants to compose a forum thread, a compose forum thread request 

causes a transition from the initial state to the Sending forum thread state. 

 



 94 

 
Figure 6: Meeting class state diagram 

 

 When the user wants to arrange a meeting, a transition occurs from the initial state 

to the Arranging meeting state. This state has four sub-states, namely the Setting new 

meeting details state, Sending notifications to potential attendants state, Fixing meeting 

details state, and Sending notifications to attendants state. In the Setting new meeting 

details state, the user specifies options for meeting details (e.g. meeting place, date). 

When these are set, a transition occurs to the Sending notifications to potential attendants 

state, in which the potential attendants are notified of the meeting options. When the 

potential attendants notify the arranger of their preferences, a transition occurs to the 

Fixing meeting details state, in which all the details of the meeting are fixed. Then the 

exact details of the meeting are sent to the attendants in the Sending notifications to 

attendants state. 

 

 When the user is a potential attendant of a meeting and wants notify the arranger 

of his choices, a transition occurs to the Setting meeting preferences state. This state has 



 95 

two sub-states, namely the Viewing possible meeting details state and the Setting meeting 

preferences state. The user views the possible meeting options in the Viewing possible 

meeting details state. When he wants to set his preferences for that meeting, a transition 

occurs to the Setting meting preferences state. 

 

 

3.6 DATABASE DESIGN 

 

3.6.1 ER DIAGRAM 

 

 



 96 

3.6.2 DATABASE TABLES 

 

USER 

 user_id    

 password  

 date_created 

 last_visit_time 

 first_name 

 last_name 

 phone 

 email 

 birth_date 

 gender  

 speciality 

 photo 

 address     

 global_access_right       

 can_add_project    

 user_directory     

 num_of_tasks_per_page  

 num_of_months_per_page 

 num_of_weeks_per_page 

 payment_policy   

 payment_amount    

 user_group_id 

 PRIMARY KEY(user_id)   

  

 

COMPANY 

 company_id   

 company_name 

 company_address 

 contact_info 

 logo 

 email_server 

 webpage 

 timezone_format 

 PRIMARY KEY(company_id) 

  

 

TASK    

 task_id 

 task_name 

 task_description 

 start_date 

 due_date 



 97 

 finish_date 

 priority_id FOREIGN KEY(priority_table:priority_id ) 

 type_id  FOREIGN KEY(task_type_table:task_type_id ) 

 project_id FOREIGN KEY(project:project_id) 

 status_id FOREIGN KEY(status:status_id) 

 percent_done 

 reviewer_id FOREIGN KEY(user:user_id) 

 group_id  FOREIGN KEY(group_table:group_id) 

 attached_file1  

 attached_file2 

 attached_file3 

 attached_file4 

 actual_hours 

 last_update 

 date_created 

 last_reviewed_percent_done 

 PRIMARY KEY(task_id) 

 

 

CALENDAR_ITEMS 

 calendar_item_id  

 user_id  FOREIGN KEY(user:user_id) 

 date 

 text 

 is_to_be_reminded 

PRIMARY KEY(calendar_item_id) 

  

  

HISTORY_TRAIL_ITEM 

 history_trail_id  

 task_id FOREIGN KEY(task:task_id) 

 user_id FOREIGN KEY(user:user_id) 

 modification_type  

 old_value   

 new_value   

PRIMARY KEY(history_trail_id) 

  

PROJECT 

 project_id   

 project_name 

 project_description 

 project_creator FOREIGN KEY(user:user_id) 

 create_date 

 start_date 

 finish_date 

 due_date 



 98 

 budget  

 contact_name 

 contact_phone 

 contact_email 

 project_type_id FOREIGN KEY(project_type_table:project_type_id)  

 PRIMARY KEY(project_id)     

  

FILTER 

 filter_id 

 selected_user_id 

 selected_project_id 

 selected_priority_id  

 selected_type_id   

 selected_status_id  

 selected_group_id  

 selected_startdate 

 selected_finishdate 

 PRIMARY KEY(filter_id) 

  

 

MEETING 

 meeting_id    

 final_meeting_date 

 date_option1  

 date_option2 

 date_option3 

 date_option4 

 date_option5 

 creator_userid  FOREIGN KEY(user:user_id) 

 create_date 

 attachment1 

 attachment2 

 attachment3 

 last_reply_date 

 PRIMARY KEY(meeting_id) 

   

NOTIFICATION 

 notification_id   

 notificated_user FOREIGN KEY(user:user_id) 

 notification_type 

 notification_text    

 owner_of_action FOREIGN KEY(user:user_id)  

 date_of_action 

 attached_file1 

 attached_file2 

 attached_file3 



 99 

 PRIMARY KEY(notification_id) 

  

  

Task_Depends_On 

 task_id1 FOREIGN KEY(task:task_id) 

 task_id2 FOREIGN KEY(task:task_id) 

 dependency_type 

 PRIMARY KEY(task_id1, task_id2) 

  

  

User_Has_Meeting 

 user_id FOREIGN KEY(user:user_id) 

 meeting_id FOREIGN KEY(meeting:meeting_id) 

 condition 

 user_selected_option1  

 user_selected_option2 

 user_selected_option3 

 user_selected_option4 

 user_selected_option5 

 PRIMARY KEY(user_id, meeting_id) 

  

  

MATERIAL 

 material_id   

 material_name 

 material_description 

 created_date 

 creator_user_id FOREIGN KEY(user:user_id)  

PRIMARY KEY(material_id) 

  

 

TASK_NEEDS_MATERIAL 

 task_id FOREIGN KEY(task:task_id) 

 material_id FOREIGN KEY(material:material_id) 

 quantity 

 date 

 PRIMARY KEY(task_id, material_id, date) 

  

  

PROJECT_HAS_MATERIAL 

 project_id FOREIGN KEY(project:project_id) 

 material_id FOREIGN KEY(material:material_id) 

 quantity 

 PRIMARY KEY(project_id, material_id) 

  

  



 100 

User_Buys_Material 

 purchaser_id FOREIGN KEY(user:user_id) 

 material_id FOREIGN KEY(material:material_id) 

 project_id FOREIGN KEY(project:project_id) 

 quantity 

 unit_price 

 supplier_id    FOREIGN KEY(supplier:supplier_id) 

 date    

 PRIMARY KEY(purchaser_id, material_id, date) 

  

 

SUPPLIER 

 supplier_id   

 supplier_name 

 contact_info 

 PRIMARY KEY(supplier_id) 

  

  

TASK_ASSIGNED_TO  

 user_id FOREIGN KEY(user:user_id) 

 task_id FOREIGN KEY(task:task_id) 

 date 

 assigner_id   FOREIGN KEY(user:user_id) 

 PRIMARY KEY(user_id, task_id) 

  

 

WORKS_ON  

 user_id   FOREIGN KEY(user:user_id) 

 task_id   FOREIGN KEY(task:task_id) 

 start_date   

 finish_date  

 is_approved  

 PRIMARY KEY(user_id, task_id, start_date) 

 

   

HAS_ACCESS_RIGHT 

 user_id FOREIGN KEY(user:user_id)  

 project_id FOREIGN KEY(project:project_id)  

 is_project_manager  

 can_approve_time 

 can_open_project 

 can_arrange_meeting 

 level 

 PRIMARY KEY(user_id, project_id)   

 

    



 101 

TASK_TYPE_TABLE 

 task_type_id   

 task_type 

 PRIMARY KEY(task_type_id) 

  

PRIORITY_TABLE 

 priority_id   

 priority_name 

 PRIMARY KEY(priority_id) 

  

  

STATUS_TABLE 

 status_id   

 status_name 

 PRIMARY KEY(status_id) 

 

   

GROUP_TABLE   

 group_id   

 group_name 

 group_logo 

 PRIMARY KEY(group_id) 

  

 

PROJECT_TYPE_TABLE 

 project_type_id  

 project_type 

 PRIMARY KEY(project_type_id) 

  

  

FORUM_MESSAGES  

 message_id      

 thread_id 

 reply_to   

 message 

 subject 

 creator_name 

 creator_email 

 creation_date   

 PRIMARY KEY(message_id, thread_id) 

 

 

 

 

 

 



 102 

4. INTERFACES 
Here are some tentative visual interfaces from Dproject. 

 

New User Interface 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 103 

Assigned Projects Interface 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

New Task Interface 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 105 

Assigned Users Interface

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 106 

New Meeting Inteface 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 107 

Meeting Options Interface 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 108 

Notification Interface 

 

5. TESTING ISSUES 
 

 

 DProject is a web-based multi-user system containing of different modules each 

specialized for performing a different group of operations. Therefore, the testing issues 

can be divided into 3 main categories: 

 

1) Testing Security Issues 

 

 The web-based nature of DProject makes security one of the most important 

aspects of it. Therefore, a specific testing module is devoted to security issues. Mainly 

black-box testing will be used to determine the flaws in the encryption and decryption of 

data. Specialized testing modules can be prepared if different cryptography techniques is 

decided to be used. 

 



 109 

2) Testing Database Integrity 

 

 DProject makes heavy use of the database in means of the data flowing from/to 

the database. This heavy interaction makes database integrity testing worth considering as 

a specific test module. First thing to be tested is the connection to the database. The 

interaction between the modules and the database will be used along with the 

architectural integrity testing. The interaction between each module and the database will 

be tested by specific cases included in these testing modules, which will be white-box 

mainly. 

 

3) Testing Architectural Integrity 

 

 As specified earlier, DProject shows a high compartmentalization in means of 

specific modules for different system capabilities. These modules will be in high 

interaction among themselves and also with the database. The modules for testing 

architectural integrity are combined with the modules for testing database integrity. Each 

module will be tested by a different white-box testing case to see the problematic issues, 

if exists.  

 

6. PROJECT SCHEDULE 
 

 Project schedule can be found in the Appendix since it does not fit in an ordinary 

A4 page. 

 

 

 

 


