

CENG 491

D&D SOFTWARE

INITIAL DESIGN REPORT

Prepared by:

Firat Alpergin

Dogan Yazar

Tuncay Namli

Mehmet R. Dogar

 1

TABLE OF CONTENTS

1. INTRODUCTION... 2
1.1 PROBLEM DEFINITION ... 2

1.2 GOALS & OBJECTIVES.. 2

1.3 STATEMENT OF SCOPE... 3

1.4 DESIGN CONSTRAINTS... 4

1.5 WORK BREAKDOWN STRUCTURE .. 4

2. MODELING .. 6
2.1 USE-CASE DIAGRAM... 6

2.2 CLASS DIAGRAM ... 16

2.2.1 CLASSES.. 16

2.2.2 CLASS ASSOCIATIONS... 41

2.3 SEQUENCE DIAGRAMS... 44

2.4 ACTIVITY DIAGRAM... 58

2.5 STATE DIAGRAM ... 61

2.6 DATABASE DESIGN... 67

2.6.1 ER DIAGRAM.. 67

2.6.2 DATABASE TABLES ... 67

3. PROJECT SCHEDULE ... 72

 2

1. INTRODUCTION

1.1 PROBLEM DEFINITION

 The resulting product of this development process is a web-based project management

tool (DProject). Dproject lets its users define new companies in the system, manage the

projects of a company, perform task management operations, perform user operations,

perform resource management, perform notification operations within the system, create and

export/import files & statistics, perform meeting arrangement operations, use project

planning facilities, view forums and compose forum threads. The clients of the project also

have the opportunity to view the overall progress of the project they are purchasing. The

tool’s ultimate aim is to ease the development of a project by all means.

The main functionalities, goals and objectives of DProject can be found in the section

that follows.

1.2 GOALS & OBJECTIVES

 DProject sets its limits to the level where the aim of easing the management of

projects can be fully satisfied. The main goals and objectives of DProject are as follows:

- To provide easy and secure access to its users. The ease of access is accomplished by

the web-based nature of DProject. To be able to provide enough security to its users,

DProject will have additional security issues that will provide the secure environment

to any of its users.

- To provide consistency into the system among the members. In the real world projects,

there is hierarchical decomposition among the project team (and generally in the

company). This should also appear in a project management tool and DProject

accomplishes that by defining different levels of access rights that can simulate the

real world hierarchy (e.g. administrator rights, project manager rights, ordinary user

rights, etc.).

- To provide efficient task management operations. Task management is one of the most

important features of a project management tool and DProject offers advanced task

management features to its users. Users, depending on their access rights, can create

tasks, assign users to tasks, assign reviewers to tasks, can view task history trails,

monitor task progress, perform critical path management, work on tasks, etc.

- To provide features for efficiently managing meetings. Meeting management is one of

the most problematic issues of a typical project development process, especially in

major ones. DProject uses a special system, in which the arranger of the meeting

provides options for the meeting and notifies them. Then according to the feedback

from the potential attendants, DProject lets the meeting arranger choose the optimum

meeting details, also taking the preferences of the arranger into account.

- To provide communication means among the users. Communication is very important

in large scale projects and DProject provides notifications within the system to satisfy

 3

the communication needs of its users. Another important communication feature is

forums, which can be used for any purpose among the members of a company.

- To provide human management features. Human factor is an important variable

projects so they are treated separately in DProject. The users working in a project, the

amount of work done by each member, the payment information of members, and

many other features can be monitored and controlled in DProject.

- To provide resource management features. Resources of a management are very

important entities and efficient ways should be developed for handling the

management of them. In DProject, different resources can be attached to different

projects (or companies, more generally), their necessary information (e.g. unit price,

seller address, etc.) are kept, resources can be attached to tasks, budget information of

a project is kept and updated accordingly, etc.

- To provide features for report & statistics generation and their exportation/importation.

Reports and statistics are vital for any project development because they are useful

both within the project and also among different projects because they are used for

various purposes including efficient project planning, user capability analyses, etc.

DProject has a number of important features for efficient report & statistics operations.

These include the importation/exportation of reports from/to different formats, the

importation/exportation of a project as a whole from one system to another, statistic

generations for specific subset of tasks, for the overall project tasks, for user teams, for

individual members, for a duration of time, for the whole project life span, etc.

- To provide efficient means of project scheduling. Scheduling is one of the most

problematic issues of a project development process that can occur in serious conflicts

between the developer site and the client side. To be able to prevent such

inconsistencies, DProject offers sophisticated features for project scheduling. The

users can see task creation times, the estimated hours spent on tasks or the whole

project, Gantt charts created automatically, etc.

- To provide features for the clients to follow the progress of the project. The clients

naturally want to view the project they are purchasing, so DProject lets its clients see

the necessary information for them to understand that whether the project is

progressing as they wish or not.

1.3 STATEMENT OF SCOPE

 The following general requirements apply to DProject:

- A way to define new company and set up new company information

- A way to add new users to the system

- A way to define new projects and set up new project information

- A way to define tasks, assign users to tasks, assign reviewers to tasks, work on tasks,

attach resources to tasks, review tasks, confirm/reject tasks, view tasks

- A way to handle critical path management

- A way to arrange meetings

- A way to handle communication among users

 4

- A way to handle human management

- A way to handle resource management

- A way to create, import/export statistics & reports

- A way to perform project planning

- A way to perform project progress monitoring for clients

1.4 DESIGN CONSTRAINTS

 To be able to work efficiently, satisfying the requirements imposed, DProject should

be carefully designed. However, there are some design constraints which should be taken into

account while designing the system.

 DProject is a web-based system and that adds an overhead because of the possible

problems with the Internet connection. To be able to minimize the effect of this overhead, the

communication within the system modules should be minimized avoiding the unnecessary

interactions that can further delay processing.

 DProject is a system that heavily interacts with the database behind it. Nearly all the

necessary information for processing is maintained in the database. There is a heavy load of

fetching/storing data from/to the database. This makes the efficiency of the DBMS an

important constraint that must be taken into account seriously. An efficient DBMS should be

used and the database should be carefully designed, preventing any unnecessary burden put

on the DBMS. Also the queries should be designed efficiently to minimize the cost of

database operations. By this way, the overhead caused by the DBMS can be minimized.

1.5 WORK BREAKDOWN STRUCTURE

 The work breakdown structure for DProject is as follows. Note that the work-package

definitions for 'implementation' and 'test & debugging' sub-projects are preliminary, and will

be revised in each successive document. Also note that in the Gannt chart, the corresponding

numbering for the work-packages will be used, and work-package names will not be

rephrased.

Work Package Name Numbering

Project: DProject 01-00-00

 Sub-project: Detailed Design 01-01-00

 Work-package: Database Tables Design 01-01-01

 Work-package: Design of Database Interface Classes 01-01-02

 Work-package: Design of Procedural Classes 01-01-03

 Work-package: Design of Control Architecture 01-01-04

 Work-package: Design of JSP Architecture 01-01-05

 Work-package: Design of Visual Interface 01-01-06

 Work-package: Design of Visual Classes 01-01-07

 Sub-Project: Prototype Production 01-02-00

 Work-package: Creation of Database Tables 01-02-01

 (Limited for prototype, including: User Account Tables,

 Project Tables; Company Tables, Task Tables)

 5

 Work-package: Implementation of Database Interface Classes 01-02-02

 Work-package: Implementation of Visual Classes 01-02-03

 (Limited for prototype, including: Upper Menu, Right Menu,

 Header, Footer)

 Work-package: Implementation of Procedural Classes 01-02-04

 (Limited for prototype, including: Session class(limited),

 Initializer class (limited), SqlConnection class, Project

 class(limited), User class (limited), Task class(limited))

 Work-package: Implementation of JSP architecture 01-02-05

 (Limited for prototype, including: login screen, projects

 screen, users screen, tasks screen)

 Sub-project: Implementation 01-03-00

 Work-package: Implementation of Database 01-03-01

 Work-package: Implementation for First Phase 01-03-02

 (including Project, Task and Meeting Management)

 Work-package: Implementation for Second Phase 01-03-03

 (including Notifications, Reports, Statistics, and Forum)

 Work-package: Implementation of Visual Classes 01-03-04

 Work-package: Implementation of JSP pages 01-03-05

 Sub-project: Documentation 01-04-00

 Work-package: Preparation of User's manual 01-04-01

 Work-package: Preparation of Help pages 01-04-02

 Sub-project: Testing & Debugging 01-05-00

 Work-package: Determination of Test-cases 01-05-01

 Work-package: Application of Test-cases 01-05-02

 Work-package: Debugging 01-05-03

 6

2. MODELING

2.1 USE-CASE DIAGRAM

 7

Flow of events for the Login use case

Objective To log in the system

Precondition None

Main Flow 1 – The user enters his login id

2- The user enters his password

3 – The entered id and password are checked for validity

3 – The system creates a new session for the user and displays the

main screen of the new user

Alternative Flows At 3, if the entered id or password is invalid, the user is prompted to

enter a new id or password

Post Condition A new session is created for the user

Flow of events for the Initialize Company use case

Objective To set up a new company account in the system

Precondition The user should have administrator access rights

Main Flow 1 – The user enters new company information

2 – The user selects an id and password for the company

3 – Access rights of the user are checked to see if they are enough

or not

4– The entered information is checked for validity (i.e. non-existing

company name, non-existing company id)

5 – The main screen of the user is displayed

Alternative Flows At 2, if the user does not have enough access rights, he is not

allowed to set up new company account

At 3, if there is a conflict, the user is prompted to enter valid

information into the conflicting fields

Post Condition A new company information is saved in the database

Flow of events for the Initialize New User use case

 8

Flow of events for the Initialize New User use case

Objective To set up a new user account into the system

Precondition The user setting up the new account should have administrator

access rights

Main Flow 1 – The user enters new account information

2 – The user enters an id and password for the new account

3 – Access rights of the user is checked whether they are enough or

not

4 – The entered information for the new user is checked for validity

(e.g. non-existing id)

5 - The user is assigned to projects, if necessary

6 – The main screen of the user is displayed

Alternative Flows At 3, if the access rights of the user are not enough, the user is

prompted stating that the intended operation can not be carried on

At 4, if the information for the new user is invalid, the user is

prompted to enter valid information

Post Condition A new user account information is saved in the database

Flow of events for the Create Project use case

Objective To create a new project

Precondition A company should be already selected and the user should have

enough access rights

Main Flow 1 – The user sets up the information for the new project

2 – The access rights of the user is checked to see whether they are

enough or not

3 – The entered information is checked for validity (e.g. non-

existing project name)

4 – Existing users are assigned to the new project, if necessary

5 – Task groups, task types and task priorities are set up for the new

project, if necessary

6 – Resource information is set up for the new project, if necessary

7 – The main screen of the user is displayed

 9

Flow of events for the Create Project use case

Alternative Flows At 2, if the user does not have the necessary access rights, he is

prompted stating that the operation can not be carried out

At 3, if the entered information is not valid, the user is prompted to

enter valid information to the invalid fields

At 4, if a new user should be assigned to the project, a new user

account is created

Post Condition A new project is created and saved in the database

Flow of events for the Create Task use case

Objective To create a new task in a project

Precondition A project should be selected already and the user should have

enough access rights

Main Flow 1 – The user enters information for the new task

2 – The user assigns reviewers to the new task

3 – The user assigns user to the new task

4 – The user assigns resources to the new task, if necessary

5 – Files are attached to the new task by the user, if necessary

4 – A unique identifier is created and saved for the new task

Alternative Flows None

Post Condition A new task is saved in the database

Flow of events for the Work on Task use case

Objective To work on a particular task in a project

Precondition A task should be selected already and the user should be assigned

to the selected task

Main Flow 1 – The user opens the IN/OUT item to start working on a task

2 – The user selects preferences for the current IN/OUT item

3 – The user adds comments on the work done, if necessary

4 – The user closes the IN/OUT item when the work is completed

5 – The user sends the task to reviewers, if necessary

Alternative Flows None

 10

Flow of events for the Work on Task use case

Post Condition The new progress status of the task is saved and the task history is

updated, working history of the user is updated

Flow of events for the Review Task use case

Objective To review the work done on task

Precondition A task should be already selected, the user should be assigned as

reviewer to the task and should be notified for review

Main Flow 1 – The user reviews the work done on task

2 – The user either accepts or rejects the work done

3 – The user that sent the task for review is notified on the reaction

of the reviewer

Alternative Flows None

Post Condition Depending on the reaction of the reviewer, the work done is

accepted or the user is obliged to do the work again, the status of

the task is updated accordingly

Flow of events for the Confirm Task use case

Objective To confirm the task as completed or not

Precondition A task should be already selected, the user should be assigned to

the task as reviewer and should be notified for review

Main Flow 1 – The user reviews the work done on task

2 – The user either selects the task as completed or not

3 – The user that sent the task for review is notified depending on

the reaction of the reviewer

Alternative Flows None

Post Condition Depending on the reaction of the reviewer, the task is marked as

completed or not, and the status of the task is updated accordingly

Flow of events for the Generate Report use case

Objective To create and view a time report or task report

 11

Flow of events for the Generate Report use case

Precondition None

Main Flow 1 – The user selects the type of the report to be created

2 – The user selects the filter to generate the report

3 – The user saves the filter, if necessary

4 – The report is generated depending on the filter

5 – The report is displayed

Alternative Flows At 2, if the user makes invalid selections (e.g. non-existing date),

the user is prompted to change the selections

At 3, if there is a conflict in saving the filter (e.g. existing filter

name), the user is prompted to remove the conflict

Post Condition The report is generated and the filter is saved, if selected

Flow of events for the Generate Statistics use case

Objective To create and view statistics of a project

Precondition A project should be already selected

Main Flow 1 – The user selects the filter to generate the statistics

2 – The user saves the filter, if necessary

3 – The statistics are generated depending on the filter

4 – The statistics are displayed

Alternative Flows At 1, if the user makes invalid selections (e.g. non-existing date),

the user is prompted to change the selections

At 2, if there is a conflict in saving the filter (e.g. existing filter

name), the user is prompted to remove the conflict

Post Condition The statistics are generated and the filter is saved, if selected

Flow of events for the Save Filter use case

Objective To save a filter for later use

Precondition None

 12

Flow of events for the Save Filter use case

Main Flow 1 – The user makes the selections for the different fields of the

filter

2 – The user selects a name for the filter

3 – The user saves the filter

Alternative Flows At 1, if the user makes an invalid selection (e.g. non-existing date),

the user is prompted to change the selection

At 2, if the user selects and existing date, he is prompted to change

the name

Post Condition A filter is saved in the system

Flow of events for the Arrange Meeting use case

Objective To arrange a meeting

Precondition The user should have necessary access rights to arrange a meeting

Main Flow 1 – The user selects potential dates for the meeting

2 – The user selects the potential attendants of the meeting

3 – The user notifies the potential attendants on the potential dates

4 – Depending on the selections of the potential attendants, the user

fixes the details of the meeting

5 – The user notifies the user stating the meeting details and

attendants

Alternative Flows None

Post Condition A new meeting is created and its details are saved

Flow of events for the Inform Meeting Preference use case

Objective To inform the arranger about the selections about a meeting

Precondition The user should have been notified by the arranger

Main Flow 1 – The user views the potential dates sent by the arranger

2 – The user notifies the arranger stating the dates suitable for him

Alternative Flows None

Post Condition The user preferences are sent to the arranger for further processing

 13

Flow of events for the Export & Import Files use case

Objective To export & import files from/to the system

Precondition A project or a report should be already selected

Main Flow 1 – The user selects whether to import/export a report or a whole

project

2 – Depending on the selection of the user, either a report is

imported/exported in the specified format, or the whole project is

imported/exported as SQL statements

Alternative Flows At 2, if the file to be imported/exported is invalid, the user is

prompted stating that the file is invalid

Post Condition Depending on the exported/imported file, either a new report file,

or a new project is saved/opened

Flow of events for the View Forum use case

Objective To view forum threads

Precondition None

Main Flow 1 – The user selects the forum he wants to view

2 – The user selects the thread to be viewed

3 – The thread that the user selected is displayed

Alternative Flows None

Post Condition A forum thread is displayed

Flow of events for the Add Forum Entry use case

Objective To add a new forum entry

Precondition None

Main Flow 1 – The user selects the forum to which he wants to add a new entry

2 – The user selects the thread under which he wants to add a new

entry

3 – The user adds the entry to the forum thread

4 – The thread is displayed with the new entry added

 14

Flow of events for the Add Forum Entry use case

Alternative Flows None

Post Condition A new entry is added to the forum

Flow of events for the Add Project Resource use case

Objective To add a new resource information to a project

Precondition A project should be selected and the user should have enough

access rights

Main Flow 1 – The user enters the information of the new resource

2 – The user enters the quantity of the new resource

3 – The user enters the unit price of the new resource

Alternative Flows At 1, if one of the fields is conflicting (e.g. existing resource name),

the user is prompted to change the conflicting field

Post Condition New resource type and information is saved

Flow of events for the Update Project Resource use case

Objective To update the information & quantity of a resource

Precondition A project should be selected and the user should have enough

access rights to make the update

Main Flow 1 – The user selects the resource to be updated

2 – The user selects the fields of the resource that are to be updated

3 – User updates the fields accordingly

Alternative Flows At 3, if there is an invalid selection (e.g. resource quantity below

zero), the user is prompted to change the selection

Post Condition The information of the resource is updated and saved

Flow of events for the Send Notification use case

Objective To send notifications to other users in the system

Precondition None

 15

Flow of events for the Send Notification use case

Main Flow 1 – The user enters the subject of the notification, if desired

2 – The user writes the main body of the notification, if desired

3 – Files are attached to the notification by the user, if desired

4 – The users selects the users to send the notification

5 – The user sends the notification

Alternative Flows At 3, if the user tries to attach an invalid file (e.g. excess file size,

corrupted file), the user is prompted about the error

At 4, if the user tries to send the notification to a non-existing user,

he is prompted about the error

Post Condition A notification is sent to other users in the system

 16

2.2 CLASS DIAGRAM

2.2.1 CLASSES

 17

 18

 19

AccessRights

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 6:23:50 PM. Modified on 12/6/2004 2:58:21 PM.

AccessRights Attributes

Attribute Type Notes

 canAddProject private :

int

'canAddProject' attribute specifies whether a

user can create a new project; 1 means user

can create a project, 0 means user can not

create a project

 userDirectory private :

int

'userDirectory' attribute specifies what a user

can see in his/her user directory. 1 means

user can see all other users in the same

company; 2 means user can see all other

users in the same project; 3 means user can

see only the dministrators; 4 means user can

not see anyone so does not have a user

directory.

Company

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 12:58:53 PM. Modified on 12/6/2004 10:26:50

PM.

'Company' class represents the company that the current logged-in user is a member of.

Company Attributes

Attribute Type Notes

 companyName private :

string

 companyAddress private :

string

weekManagementPol

icy

private

Range:1 to 3:

int

'weekManagementPolicy' attribute holds

integer values corresponding to the

preference of the company on how to arrange

working days of a week. That integer values

have the range 1-3. The relations are

1:Monday-to-Friday, 2:Monday-to-Saturday,

 20

3:Monday-to-Sunday

 webPageAddress private :

string

'webPageAddress' attribute holds the string

representing the company's web page

address.

 emailServerAddress private :

string

'emailServerAddress' holds the mail-server

address of the company that will be used to

send e-mails using the company's server.

 phoneNo private :

string

 companyLogoPath private :

string

'companyLogoPath' attribute holds the path

to the image file that the company had

submitted. This is used to show the company

logo when it is a session of this company's

users.

Company Methods

Method Type Notes

 init (SqlConnection) public: void param: dbConnection [SqlConnection - in]

 insert () public: void 'insert' method writes the information in this

'Company' class instance to the database,

creating a new entry in the database table.

 update () public: void 'update' method updates the record of this

company in the database, using the current

values of the attributes.

 delete () public: void 'delete' method deletes the record of this

company from the database.

 getCompanyUserIds

()

public: string [] 'getCompanyUserIds' returns the user ids

who are members of this company.

getCompanyAdminId

s ()

public: void 'getCompanyAdminIds' returns ids of the

administrators of this company.

Filter

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:58 PM. Modified on 12/6/2004 9:10:25 PM.

Filter Attributes

Attribute Type

 filterId private :

string

 21

 selectedUserId private :

string

 selectedProjectId private :

string

 selectedPaymentPolicyId private :

string

selectedSalaryCompariso

n

private

Range:0 to

3:

int

 selectedSalaryQuantity private :

double

 selectedAgeComparison private :

int

 selectedAge private :

int

 selectedGender private :

int

 selectedGlobalProfile private :

int

 selectedTimeEntryMode private :

int

selectedStartDateCompar

ison

private :

int

 selectedStartDate private :

date

 selectedFinishDateComp private :

int

 selectedFinishDate private :

date

 selectedDueDateComp private :

int

 selectedDueDate private :

date

 selectedPriorityId private :

string

 selectedTypeId private :

string

 selectedStatusId private :

string

selectedPercentDoneCom

p

private :

int

selectedPercentDoneQua

ntity

private :

double

 selectedReviewerId private :

string

 22

 selectedGroupId private :

string

selectedActualHoursCom

parison

private :

int

 selectedActualHours private :

int

selectedProjectStartDate

Comparison

private :

int

 selectedProjectStartDate private :

date

selectedProjectFinishDat

eComparison

private :

int

selectedProjectFinishDat

e

private :

date

selectedProjectDueDateC

omparison

private :

int

 selectedPojectDueDate private :

date

selectedProjectManagerI

d

private :

string

Filter Methods

Method Type Notes

 insert () public: void 'insert' method inserts the filter information to

the database creating a new entry.

 update () public: void 'update' method upates the database record of

this filter, using the new attribute values.

 delete () public: void 'delete' method deletes the database record of

this filter.

Forum

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:07:04 PM. Modified on 12/7/2004 6:30:49 PM.

Forum Attributes

 23

Attribute Type Notes

 forumThreadIds private :

string []

Forum Methods

Method Type Notes

 getForumThreadIds () public: string

[]

 getForumThreadTitles () public: string

[]

ForumMessage

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/6/2004 8:35:57 PM. Modified on 12/7/2004 6:30:49 PM.

ForumMessage Attributes

Attribute Type Notes

 senderId private :

string

 subject private :

string

 messageBody private :

string

ForumMessage Methods

Method Type Notes

 setSenderId (string) public: void param: sender [string - in]

 getSenderId () public: string

 setSubject (string) public: void param: subject [string - in]

 getSubject () public: string

 setMessageBody (string) public: void param: messageBody [string - in]

ForumThread

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

 24

Package: Component Model

Details: Created on 12/6/2004 8:35:47 PM. Modified on 12/8/2004 1:25:23 PM.

ForumThread Attributes

Attribute Type Notes

 title private :

string

 forumMessageIds private :

string []

ForumThread Methods

Method Type Notes

 getForumThreadTitle () public: string

getForumMessageSubject

s ()

public: string

[]

Initializer

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 8:25:31 PM. Modified on 12/6/2004 10:28:38 PM.

'Initializer' class is a helper class for logging in and initializing the session variable.

Initializer Methods

Method Type Notes

 beforeLogin () public:

Session

'beforeLogin' is called when a login screen

is showed to the user but before he/she logs

in.

 login (Session, string,

string)

public:

boolean

param: session [Session - in]

param: userPassword [string - in]

param: userName [string - in]

'login' takes the password and loginId and

checks to see if the id and password is

valid and consistent. Reeturns 'true' if

consistent, 'false' if inconsistent or invalid.

 afterLogin (Session) public: void param: session [Session - in]

'afterLogin' is called after 'login' method

returns as 'true' and it initializes all rquired

attributes of the current session for a

logged in user.

 25

Material

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:07:22 PM. Modified on 12/7/2004 6:30:49 PM.

'Material' class represents a specific material type that has been created to be used in projects.

Material Attributes

Attribute Type Notes

 materialId private :

string

 materialName private :

string

 materialCost private :

double

 materialDescription private :

string

 createdDate private :

date

 creatorUserId private :

string

Material Methods

Method Type Notes

 insert () public: void 'insert' method inserts the material

information to the database creating a new

entry.

 update () public: void 'update' method upates the database record

of this material, using the new attribute

values.

 delete () public: void 'delete' method deletes the database record

of this material.

 getPrice (double) public: void param: quantity [double - in]

'getPrice' method returns the price of this

material for the specified quantity using the

formula quantity*materialCost.

Meeting

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

 26

Details: Created on 12/4/2004 6:58:22 PM. Modified on 12/7/2004 6:30:49 PM.

Meeting Attributes

Attribute Type Notes

 meetingId private :

string

 finalMeetingDate private :

date

 dateOption1 private :

date

 dateOption2 private :

date

 dateOption3 private :

date

 dateOption4 private :

date

 dateOption5 private :

date

 creatorUserId private :

string

 creationDate private :

date

 attachement1 private :

string

 attachement2 private :

string

 attachement3 private :

string

 lastReplyDate private :

date

Meeting Methods

Method Type Notes

 insert () public: void 'insert' method inserts the meeting

information to the database creating a new

entry.

 update () public: void 'update' method upates the database record

of this meeting, using the new attribute

values.

 delete () public: void 'delete' method deletes the database record

of this meeting.

 isLastReplyDatePassed

()

public:

boolean

'isLastReplyDatePassed' returns true if the

last reply/decision date for the meeting has

passed; false otherwise.

 isMeetingSettled () public:

boolean

'isMeetingSettled' returns true if the date of

this meeting had been decided and settled

 27

by all attendants; false otherwise.

Notification

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:47 PM. Modified on 12/6/2004 10:04:54 PM.

Notification Attributes

Attribute Type Notes

 notificationId private :

string

 notificatedUser private :

string

 notificationType private :

string

 ownerOfAction private :

string

 dateOfAction private :

date

 attachedFile1 private :

string

 attachedFile2 private :

int

 attachedFile3 private :

string

Project

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:28 PM. Modified on 12/8/2004 1:56:14 PM.

Project Attributes

Attribute Type Notes

 projectName private :

string

'name' is the project's name in real life.

 projectId private :

 28

string

 startDate private :

string

'startDate'

 estimatedDuration private :

integer

'estimatedDuration' attribute specifies the

project's estimated duration.

 budget private :

double

'budget' attribute holds the project's budget.

 clientId private :

string

'clientId' attribute specifies this project's

client.

 isProjectManager private :

boolean

'isProjectManager' specifies if the current

user is a manager of this project. 'true'

means he/she is a manager, 'false' means

he/she is not.

 canApproveTime private :

boolean

'canApproveTime' specifies if the current

user can approve users' timesheets in this

project. 'true' means he/she can, 'false'

means he/she can not.

 canSeeProjectDetails private :

boolean

'canSeeProjectDetails' specifies whether

the current user can see all tasks and

meeetings in the project, or can see only

the ones that he/she is assigned to. 'true'

means he/she can see all, 'false' means

he/she can not.

 taskEditingLevel private

Range:1 to 9:

int

'taskEditingLevel' specifies users’

permissions about task editing. 1 means

read-only permission, 2 means limited task

editing, 3 means limited task editing and

file attachement creation/deletion, 4 means

partial task editing, 5 means partial task

editing and deleting the tasks that he/she

created, 6 means full control task editing, 7

means full control task editing and deleting

the tasks that he/she created, 8 means full

controol task editing and creating tasks and

deleting his/her own tasks, 9 means full

control task editing and creating deleting

all tasks.

Project Methods

Method Type Notes

 init (SqlConnection) public: void param: dbConnection [SqlConnection -

in]

 insert () public: void 'insert' method writes the information in

this 'Project' class instance to the database,

creating a new entry in the database table.

 update () public: void 'update' method updates the record of this

project in the database, using the current

values of the attributes.

 29

 delete () public: void 'delete' method deletes the record of this

project from the database.

 assignToUser (string) public: void param: userId [string - in]

'assignToUser' method add the relation to

the database so that the user specified with

the userId becomes a member of this

project.

 hasMaterial (double,

string)

public: void param: quantity [double - in]

param: materialId [string - in]

'hasMaterial' method marks the database so

that this project has specified quantity of

the specified material.

 getProjectResources () public:

ProjectResour

ce []

'getProjectResources' method queries this

projects resources from the database and

returns them.

 getProjectTaskIds () public: string

[]

'getProjectTaskIds' returns the poject's task

ids.

 getProjectTaskNames () public: string

[]

'getProjectTaskNames' returns the project's

task names.

 getProjectUserIds () public: string

[]

'getProjectUserIds' returns the users' ids

who are assigned to the project.

 getProjectUserNames () public: string

[]

'getProjectUserNames' returns the users'

names assigned to this project.

 addTaskType (String) public: void param: tasktype [String - in]

'addTaskType' method is used to add newly

defined task types to this project.

 addTaskPriority (String) public: void param: taskptiority [String - in]

'addTaskPriority' method is used to add

newly defined priority types to this project.

 addTaskSatatus (String) public: void param: taskstatus [String - in]

'addTaskStatus' method is used to add

newly defined status types to this project.

ProjectResource

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:07:30 PM. Modified on 12/7/2004 6:30:49 PM.

 30

ProjectResource Attributes

Attribute Type Notes

 materialId private :

string

'materialId' specifies what type of material

is included in this project resourcce.

 quantity private :

double

'quantity' specifies the quantity of the

material.

 assignedProjectId private :

string

'assignedProjectId' specifies which project

this resource belongs to.

ProjectResource Methods

Method Type Notes

 setMaterialId (string) public: void param: materialId [string - in]

 getMaterialId () public: string

 setQuantity (double) public: void param: quantity [double - in]

 getQuantity () public: double

 setAssignedProjectId

(string)

public: void param: projectId [string - in]

 getAssignedProjectId () public: string

Session

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 12:15:36 PM. Modified on 12/8/2004 7:48:55 PM.

'Session' class represents a unique session started by a user. This class is always active and in

association with all other classes. Session class is terminated when the user terminates the

web session.

Session Attributes

Attribute Type Notes

 date private :

float

'date' attribute shows the time that the

session is started by the user. It is set to

the server system time initially.

Initial Value: <current date>;

 currentCompany private :

Company

'currentCompany' attribute is a pointer to

an instance of the Company class, which is

the logged-in user's company.

 currentUser private :

User

'currentUser' attribute is a pointer to an

instance of the User class, which is a user

being modified, or shown to the user.

 currentProject private : 'currentProject' attribute is a pointer to an

 31

Project instance of the Project class, which is the

one the user is currently working on. It is

initially set to null.

 currentNotifications private :

Notification []

'currentNotifications' attribute is an array

of instances of the Notification class,

which are waiting for the currenly working

user. It is initially set to null.

Initial Value: null;

 dbConnection private :

SqlConnectio

n

'dbConnection' is an instance of the class

SqlConnection and is used to connect tothe

database in this session.

 currentMaterial private :

Material

'currentMaterial' attribute represents the

currently active material in the session.

 currentTask private :

int

'currentTask' attribute represents the

currently active task in the session.

 loggedInUser private :

User

'loggedInUser' attribute is a pointer to an

instance of the User class, which is the

logged-in user.

 currentForumThread private :

ForumThread

 currentForumMessage private :

ForumMessag

e

Session Methods

Method Type Notes

 init () public: void

 setDate (float) public: void param: date [float - in]

 getDate () public: float

 setCurrentCompany

(Company)

public: void param: currentCompany [Company - in]

 getCurrentCompany () public:

Company

 setCurrentUser (User) public: void param: currentUser [User - in]

 getCurrentUser () public: User

 destroySession () public: void 'destroySession' destroys the current

session if the user logs-out.

 exportProject (int,

string)

public: void param: format [int - in]

param: projectId [string - in]

'exportProject' exports the specified project

using the specified format.

 importProject (int,

string)

public: void param: fileFormat [int - in]

param: fileName [string - in]

'importProject' imports a project using the

 32

specified file name and the specified file

format.

 retrieveProject (string) public:

Project

param: projectId [string - in]

'retrieveProject' returns the Project object

that has the specified project id.

 retrieveTask (string) public: Task param: taskId [string - in]

'retrieveTask' returns the Task object that

has the specified task id.

 retrieveMeeting (string) public:

Meeting

param: meetingId [string - in]

'retrieveMeeting' returns the Meeting

object that has the specified meeting id.

 retrieveNotification

(string)

public:

Notification

param: notificationId [string - in]

'retrieveNotification' mehod returns the

Notification object that has the specified

notification id.

 retrieveUser (string) public: User param: userId [string - in]

'retrieveUser' mehod returns the User

object that has the specified user id.

 retrieveFilter (string) public: Filter param: filterId [string - in]

'retrieveFilter' mehod returns the Filter

object that has the specified filter id.

retrieveForumThreadTitl

es ()

public: string

[]

'retrieveNotification' mehod returns the

Notification object that has the specified

notification id.

retrieveForumMessagesI

nThread (string)

public: string

[]

param: messageId [string - in]

'retrieveForumMessage' mehod returns the

ForumMessage object that has the

specified forum message id.

 retrieveMaterial (string) public:

Material

param: materialId [string - in]

'retrieveMaterial' mehod returns the

Material object that has the specified

material id.

SqlConnection

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 8:00:28 PM. Modified on 12/6/2004 10:28:38 PM.

 33

SqlConnection class holds the attributes needed that are to connect to the database and acts as

a wrapper class for connecting to the database.

SqlConnection Attributes

Attribute Type Notes

 dbName private :

string

 dbHostname private :

int

 dbPassword private :

int

 dbUserName private :

int

 connection private :

Connection

'connection' is the actual database

connection that is established by the

SqlConnection class. Its type depends on

the programmig language that will be used.

In our case it will most probably be of type

java.sql.Connection.

SqlConnection Methods

Method Type Notes

 connect () public: void 'connect' connects to the database using

dbName, dbHostName, dbPassword, and

dbUsername attributes of SqlConnection

class and initializes the connection

variable.

 getConnection () public:

Connection

'getConnection' returns the connection

variable which was connected to the

database.

 closeConnection () public: void 'closeConnection' closes the database

connection.

Task

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 6:58:10 PM. Modified on 12/8/2004 1:29:58 PM.

Task Attributes

Attribute Type Notes

 taskId private :

 34

string

 taskName private :

string

 taskDescription private :

string

 startDate private :

date

 dueDate private :

date

 finishDate private :

date

 priorityId private :

int

 typeId private :

int

 projectId private :

string

 statusId private :

int

 percentDone private :

int

 reviewerId private :

string

 groupId private :

int

 attachedFile1 private :

string

 attachedFile2 private :

string

 attachedFile3 private :

string

 attachedFile4 private :

string

 actualHours private :

double

 lastUpdate private :

date

 dateCreated private :

date

Task Methods

Method Type Notes

 assignToUser (string) public: void param: userId [string - in]

'assignToUser' method is used to assign

this task to a user specified by the user-id

parameter.

 assignToReviewer public: void param: reviewerId [string - in]

 35

(string)

'assignToReviewer' method is used to

assign this task to the reviewer specified by

the reviewerid parameter.

 dependOnTask (int,

string)

public: void param: dependencyType [int - in]

param: taskId [string - in]

'dependOnTask' method marks the

database so that this task will depend on

the task specified by the taskId, by the

relation specified by the dependencyType.

 needsMaterial (double,

string)

public: void param: quantity [double - in]

param: materialId [string - in]

'needsMaterial' assigns the specified

quantity of the specified material to this

task. The corresponding price will be

decreased from the project budget.

 userStartedWorkOn

(string)

public: void param: userId [string - in]

'userStartedWorkOn' method marks the

database showing that the specified user

started working on this task.

 userFinishedWorkOn

(string)

public: void param: userId [string - in]

'userFinishedWorkOn' method marks the

database showing that the specified user

finished working on this task.

 delete () public: void

 insert () public: void

 update () public: void

 addAttachment (String) public: void param: filepath [String - in]

User

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:20 PM. Modified on 12/8/2004 7:53:59 PM.

User Attributes

Attribute Type Notes

 userId private :

string

'userId' attribute holds the id that is used as

a unique key to specify a user. this attribute

is also used as a login-id.

 password private : 'password' attribute holds the user's

 36

string password.

 name private :

string

'name' attribute holds the user's real life

name.

 middleName private :

string

'middleName' attribute holds the user's real

life middle name.

 surname private :

string

'surname' attribute holds the user's real life

surname.

 birthDate private :

string

'birthDate' attribute holds the user's real life

birth date.

 speciality private :

string

'speciality' attribute represents what the

user is specialized in as an employee.

 address private :

string

'address' attribute holds he user's real life

address.

 sex private

Range:1 to 3:

int

'sex' represents the user's sexual gender. It

can only have three values; 1:male,

2:female, 3:other

 emailAddress private :

string

'emailAddress' attribute holds the user's e-

ail address.

 photo private :

string

'photo' attribute holds te path to the image

file which includes the user's photo if

submitted.

 paymentPolicy private

Range:1 to 3:

int

'paymentPolicy' field holds integer values

ranging from 1 to 3, representing three

different payment policies. These are 1, if

the user is paid monthly; 2, if the user is

paid weekly; 3, if the user is paid on an

hourly basis.

 paymentAmount private :

double

'paymentAmount' attribute holds the

amount that is paid to the user, for a month

(if payment policy is monthly), for a week

(if payment policy is weekly), for an hour

(if the user is paid for hourly work).

emailNotificationForNew

TaskPreference

private

Range:0 to 1:

int

If

'emailNotificationForNewTaskPreference'

attribute has the value 1, the user is notified

via e-mail whenever a task is assigned to

him/her; if this attribute has the value 0

he/she is not notified.

Initial Value: 1;

numOfTasksPerPagePref

erence

private

Range:1 to

50:

int

'numOfTasksPerPagePreference' attribute

specifies the user's preference so that,

when he/she views the tasks of a project,

they are shown in groups of this quantity.

Initially it is set to 10 so that in a page at

most ten tasks are shown.

Initial Value: 10;

numOfMonthsPerPagePr

efrence

private :

int

'numOfMonthsPerPage' attribute specifies

the user's preference so that, when he/she

views a monthly gantt chart, at most this

much month will be shown in a page.

 37

Initially this will be set to 4, so that in a

monthly gantt chart, 4 months at a page

will be shown.

Initial Value: 4;

numOfWeeksPerPagePre

ference

private :

int

'numOfWeeksPerPage' attribute specifies

the user's preference so that, when he/she

views a gantt chart in weekly mode, at

most this much week will be shown in a

page. Initially this will be set to 4, so that

in a weekly gantt chart, 4 weeks at a page

will be shown.

Initial Value: 4;

 userProjects private :

Project []

'userProjects' array holds instances for all

the projects that this user is a member of.

This field is set only if this user is the

current user of the session.

 canAddProject private :

boolean

'canAddProject' attribute specifies if the

user has the permission to create a new

project for his/her company.

 userDirectory private

Range:1 to 4:

int

'userDirectory' attribute specifies what a

user can see in his/her user directory. 1

means user can see all other users in the

same company; 2 means user can see all

other users in the same project; 3 means

user can see only the administrators; 4

means user can not see anyone so does not

have a user directory.

 globalAccessRight private :

int

'globalAccessRight' attribute specifies this

user's global permissions in the system. A

value of '1' means the user is a client of a

project not an employee; '2' means the user

is an administrator and have all the global

rights; '3' means the user is a normal user

and his/her permissions are further

specifiedy other attributes.

User Methods

Method Type Notes

 init (SqlConnection) public: void param: dbConnection [SqlConnection -

in]

 setUserProjects (Project

[])

public: void param: projects [Project [] - in]

 getUserProjects () public:

Project []

 insert () public: void 'insert' method writes the information in

this 'User' class instance to the database,

creating a new entry in the database table.

 update () public: void 'update' method updates the record of this

 38

user in the database, using the current

values of the attributes.

 delete () public: void 'delete' method deletes the record of this

user from the database.

 setAccessRightsOfUser

(string, string, int,

boolean, boolean)

public: void param: userId [string - in]

param: projectId [string - in]

param: editTaskLevel [int - in]

param: canApproveTime [boolean - in]

param: isProjectManager [boolean - in]

'setAccessightsOfUser' sets access rights of

the user with the specified id to the

specified access rights.

 createNewProject (int,

string, string, string,

double, date, date, date,

string, string, string)

public: void param: projectTypeId [int - in]

param: contactEmail [string - in]

param: contactPhone [string - in]

param: contactName [string - in]

param: budget [double - in]

param: dueDate [date - in]

param: finishDate [date - in]

param: startDate [date - in]

param: projectDescription [string - in]

param: projectName [string - in]

param: projectId [string - in]

'createNewProject' method creates a new

project by the spcified attributes.

 createUser (int, double,

int, int, int, int, boolean,

int, boolean, int, string,

string, string, int, date,

string, string, string,

string, string, string)

public: void param: userDepartmentId [int - in]

param: paymentAmount [double - in]

param: paymentPolicy [int - in]

param: numOfWeeksPerPage [int - in]

param: NumOfMonthsPerPage [int - in]

param: NumOfTasksPerPage [int - in]

param: emailNotificationForNewTask

[boolean - in]

param: userDirectory [int - in]

param: canAddProject [boolean - in]

param: globalAccessRight [int - in]

param: address [string - in]

param: photo [string - in]

param: speciality [string - in]

param: gender [int - in]

param: birthDate [date - in]

param: email [string - in]

param: phone [string - in]

param: lastName [string - in]

param: firstName [string - in]

param: password [string - in]

param: userId [string - in]

 39

'createUser' method creates a new user with

the specified attribbutes.

 ceateNewTask (string,

string, string, string, int,

string, int, int, string, int,

int, date, date, date,

string, string, string)

public: void param: atachedFile4 [string - in]

param: attachedFile3 [string - in]

param: attachedFile2 [string - in]

param: attachedFile1 [string - in]

param: groupId [int - in]

param: reviewerId [string - in]

param: percentDone [int - in]

param: statusId [int - in]

param: projectId [string - in]

param: priorityId [int - in]

param: typeId [int - in]

param: dueDate [date - in]

param: finishDate [date - in]

param: startDate [date - in]

param: taskDescription [string - in]

param: taskName [string - in]

param: taskId [string - in]

 createMaterial (string,

doule, string, string)

public: void param: materialDescription [string - in]

param: materialCost [doule - in]

param: materiaName [string - in]

param: materialId [string - in]

'createMaterial' methood is used to create

new materials with the specified attributes.

 createMeeting (date,

string, string, string,

date, date, date, date,

date, date, string)

public: void param: lastReplyDate [date - in]

param: attachement3 [string - in]

param: attachement2 [string - in]

param: attachement1 [string - in]

param: dateOption5 [date - in]

param: dateOption4 [date - in]

param: dateOption3 [date - in]

param: dateOption2 [date - in]

param: dateOption1 [date - in]

param: finalMeetingDate [date - in]

param: meetingId [string - in]

'createMeeting' method is used to create a

new meeting with the specified attributes.

 buysMaterial (double,

double, string)

public: void param: unitPrice [double - in]

param: quantity [double - in]

param: materialId [string - in]

'buysMaterial' method marks the database

so that the purchase information is

recorded.

setUserPrefencesForMeet

public: void param: meetingId [string - in]

param: option5 [int - in]

 40

ing (string, int, int, int,

int, int)

param: option4 [int - in]

param: option3 [int - in]

param: option2 [int - in]

param: option1 [int - in]

'setUserPreferencesForMeeting' method

marks the database according to the

preferences made by this user for a

meeting he/she was assigned to.

 approveTask () public: void 'approveTask' method is called when the

reviewer approves a task of another user.

 assignToProject (int,

boolean, boolean, String)

public: void param: taskeditlevel [int - in]

param: istimeapprover [boolean - in]

param: isprojectmanager [boolean - in]

param: projectid [String - in]

 createCompany (string,

string, string, int, string,

string)

public: void param: companyLogoPath [string - in]

param: phoneno [string - in]

param: webPageAddress [string - in]

param: weekManagementPolicy [int - in]

param: companyAddress [string - in]

param: compayName [string - in]

 sendNotification (string,

string, string, string,

string)

public: void param: attachedfile3 [string - in]

param: attachedfile2 [string - in]

param: attachedfile1 [string - in]

param: notificatedUser [string - in]

param: notificationId [string - in]

 41

2.2.2 CLASS ASSOCIATIONS

The associations between the classes are shown on the diagram above. The class

names are used without the attributes and operations of the classes to create a clearer diagram.

The associations described here are only the static associations between classes, in terms of

aggregation, inclusion and inheritance. The dynamic relations between classes are presented

in the sequence diagram.

Session 'hasActive' Company

 For every session that is started for a user, we will hold an instance of the Company

class which represents the company of the logged-in user.

Session 'hasLoggedIn' User

 For every session, we will hold an instance of the User class which represents the

logged-in user.

 42

Session 'hasActive' User

 During a session, if the user wants to create a new user, or wants to modify/delete the

records of an existing user, then the user whose records are being modified (or created) will

be held as the 'currentUser' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Project

 During a session, if the user wants to create a new project, or wants to modify/delete

the records of an existing project, then the project whose records are being modified (or

created) will be held as the 'currentProject' in the session. This determines the 'hasActive'

relationship.

Session 'hasActive' Task

 During a session, if the user wants to create a new task, or wants to modify/delete the

records of an existing task, then the task whose records are being modified (or created) will be

held as the 'currentTask' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Meeting

 During a session, if the user wants to create a new meeting, or wants to modify/delete

the records of an existing meeting, then the meeting whose records are being modified (or

created) will be held as the 'currentMeeting' in the session. This determines the 'hasActive'

relationship.

Session 'hasActive' ForumThread

 During a session, if the user wants to view the contents of a forum thread, then the

forum thread whose records are being viewed will be held as the 'currentForumThread' in the

session. This determines the 'hasActive' relationship.

Session 'hasActive' ForumMessage

 During a session, if the user wants to create a new forum message, or wants to view an

existing message, then the message whose records are being created (or viewed) will be held

as the 'currentForumMessage' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Material

 During a session, if the user wants to create a new type of material, or wants to

modify/delete the records of an existing material, then the material whose records are being

modified (or created) will be held as the 'currentMaterial' in the session. This determines the

'hasActive' relationship.

Session 'hasActive' Notification

 During a session, if the user wants to create a new notification, or wants to view those

notifications (which may be more than one), then the notifications whose records are being

 43

created or being viewed will be held as the 'currentNotifications' in the session. This

determines the 'hasActive' relationship.

Initializer 'initializes' Session

 For every session that is started for a user, an Initializer class is held to handle the

initializations both before and after the login. This determines the 'initializes' relationship.

SqlConnection 'connects' Session

 For every session that is started for a user, a SqlConnection class is held to handle the

database connections both before and after the login. This determines the 'connects'

relationship.

Project 'includes' Task

 For every project there are zero or more tasks that belong to the project.

Forum 'consistsOf' ForumThread

 In a Forum, there may be zero or more ForumThreads. That is; a forum consists of

threads. This also determines the aggregation character of the association.

ForumThread 'consistsOf' ForumMessages

 In a ForumThread, there may be one or more ForumMessages. That is; a forum thread

consists of messages. This also determines the aggregation character of the association.

ProjectResource 'consistsOf' Material

 Every project resource consists of some material. There may be only one material type

in a project resource.

 44

2.3 SEQUENCE DIAGRAMS

Figure 1 : Login

 45

Figure 2 : NewProject

 46

Figure 3: NewTask

 47

Figure 4 : NewUser

 48

Figure 5 : SessionInit

 49

Figure 6 : WorkedOnTask

 50

Figure 7 : ArrangeMeeting

Figure 8 : BuyMaterial

 51

Figure 9 : CreateMaterial

Figure 10 : Import/Export

 52

Figure 11 : InformMeetingPreferences

 53

Figure 12 : InitializeCompany

 54

Figure 13 : Reports

 Figure 14: ReviewTask

 55

 Figure 15: SendNotification

Login Messages

 This diagram specifies the session initialization and login procedure in DProject for

every user. User starts with the page ‘Login.jsp’ and after entering his 'company_name',

'user_id' and 'password', the page calls the doPost method of the ‘LoginServlet’. Servlet calls

the beforeLogin operation of the Initializer class. This operation constructs a session and

creates connection for database by using the SQLConnection class. Then servlet calls the

‘Initializer.login’ operation of the ‘Initializer’ that checks the user login and password and

returns whether user is authorized or not in which an error page is shown by the system. After

that, authorization servlet calls the ‘afterLogin’ operation and this makes the necessary

initialization for the Session variables. We show this initialization part at SessionInitialization

diagram. Finally, the page is redirected to ‘Main.jsp’.

NewProject Messages

This diagram shows the complete process of creating a new project. User can only

create the project and leave the process but diagram shows the whole creation scneario for the

user. Firstly, a new project is created using the general information about the project by the

operation ‘User.createNewProject()’. This operation creates a Project by calling the

constructor of Project with the necessary input as argument and calls the ‘insert()’ operation

to create the project in the database. After creating project, it sets the currentProject to this

new project. Then ‘EditProject.jsp’ page is redirected which enables the user to edit general

information in the created project. After that, user decides to assign the users to project which

redirects the page to AssignedUsersForProject. This page shows the assigned users for this

project which is empty since it is a new project. When ‘Assign a User’ request comes from

user the page is redirected to ‘AssignUserToProject.jsp’. After specifying the user and his/her

access rights for the project, page calls doPost method of the associated servlet. This servlet

takes the currentProject object from the session and calls its ‘assignToUser’

 56

operation which makes the neccesary addition to database. The third stage is the adding ‘task

types’, ‘task priorities’, ‘task statuses’ to the project. In this diagram only ‘adding task type’ is

shown. For these processes, associated servlets take the ‘currentProject’ from session and call

the related operation of the ‘currentProject’ object.

NewTask Messages

 This diagram shows the process of creating a new task for specified project. When

user requests to add task to project the page redirects to the ‘AddTask.jsp’. Then user

specifies the information about the task and submits to create a task. Then page call the

servlets ‘doPost’ method which gets the currentUser object from session and calls the

‘createNewTask()’ method of this object. Then servlet sets the currentTask to this task and

calls the ‘insert()’ method of the ‘currentTask’ object. After creating the task the assignation

and adding attachment phases are done which are very similar to this phase.

NewUser Messages

Like above, this diagram shows the complete process of creating a user which also

includes the assignation of the created user to some projects. The general information is used

for creating the user by the operation ‘createUser’ of the ‘currentUser’ object. This operation

creates the user object and calls its insert method to insert the user into database and sets the

editedUser to this user. In the second phase ‘AssignNewUserServlet’ takes the ‘editeUser’

from session and calls the ‘assignToProject’ operation of this object.

SessionInit Messages

 This diagram shows the intialization process of the DProject. ‘Session.init()’ calls its

variables' ‘init()’ operations. The currentCompany, currentUser objects won’t change during

the session. The currentProject object will show the the project that is open during the session.

We also initialize the users' projects for later usage.

WorkedOnTask Messages

 This diagram shows how the user can edit his work for a specified task. Editing the

information and opening the In/Out processes shoud be treated as seperate processes but we

show them together here one after the other. User selects one of his/her tasks to edit which in

turn calls the Session.retrieveTask(taskid) operation and this operation returns the Task object.

Then this page sets the currentTask to this task and redirects to ‘Task.jsp’. Edited information

is passed to Servlet by doPost method and servlet takes the currentTask from the session and

call ‘update()’ operation of the ‘currentTask’ object.

 The other phase is opening or closing the In/Out option. When user requests this

operation, the ‘TasksInOutServlet’ takes the currentTask object from session and calls

userStartWork() or userFinishWork() operations. These operations make the necessary

changes on database.

ArrangeMeeting Messages

 In the Meetings page, if user requests to arrange a meeting, page is redirected to

‘ArrangeNewMeeting.jsp’. User specifies the necessary information and submits the meeting.

 57

Then the page calls the doPost method of the related servlet. Servlet gets the ‘currentUser’

object from the session and calls the ‘createMeeting()’ operation of this object. This operation

creates a Meeting object and calls the ‘insert()’ method of this object which builds the

meeting in the database.

BuyMaterial Messages

 This diagram shows the process of purchasing some quantity of specified material to

project. In the Resources page user can see the project resources and defined materials. If he

select a material page redirects to ‘Material.jsp’ which shows the materials properties. Then

user request to purchase some quantity of this material type which redirects to page

‘BuyMaterail.jsp’. After specfiying amount of material that is bought page calls the servlets

doPost method. Servlet gets the currentUser object from the session and calls the

buysMaterial() method of this object. This method get the ‘ProjectResources’ of the

‘currentProject’ object and call the setQuantity() to set the new quantity to database and to

object.

CreateMaterial Messages

 This diagram shows the sequence of the processes for defining a new material for

company. From the Resources page user can request to define new material which will

redirect him to ‘CreateMaterial.jsp’. In this page user specifies the information about the

material and submits to create the material which calls the servlet's doPost method. Servlet

gets the currentUser object from the session and calls the createMaterial() method of this

object. This method creates a Material object and calls its insert() method to create the

material in database.

Import/Export Messages

 This diagram shows the process of importing and exporting files for specified project.

We show the processes as one after another but these processes are seperate. For the import

phase, user write the file to import and submit this request. Then page calls the related

servlet's doPost method which in turn calls its Import() method to import the information to

database. Second phase includes exporting a project to a file. User selects a project and a

filename and submits its request to export for the project. Then the servlet is called and it

creates the file using the information in the database.

InformMeetingPreferences Messages

 This diagram shows the process of specifying the date options for the potential

meeting which are stated by the potential attendant of the meeting. User selects a meeting that

he will participate and this redirects the page to ‘ArrangedMeeting.jsp’. This page calls the

servlet's method after getting information from the user. Then servlet gets the currentUser

object from the session and calls the setUserPreferencesForMeeting() method to save the

information into database.

 58

InitializeCompany Messages

 This diagram shows the creation of new company process in Dproject. This process is

used only once for the company by the admin of it. In the login page, if the user requests a

Create Company operation, page redirects to the ‘InitializeCompany.jsp’. User specifies the

information for the company and page calls the doPost method of the servlet. Servlet creates

an object of Company and calls insert() operation of this object which creates a new database

(with the name of the company) in DBMS.

Reports Messages

 This diagram only shows the process of creating a new task report which is very

similar to time reports. User selects the filter and submits his request to generate report.

Servlet's doPost method is called and this method generates the report from the information in

the database. If the user also wants to save this filter by giving a name to it, servlet creates a

‘Filter’ object and calls its ‘insert()’ method to create the Filter in the database.

ReviewTask Messages

 This diagram shows the process of reviewing the works of users on tasks and rejecting

or accepting them. Page calls the servlet's doPost method after reviewer selects the task to

review. Servlet calls the session's retrieveTask() method which returns a Task object to take

the related Task from database. Then it takes the currentUser object from the session and calls

its approveTask() method to save the decision of the reviewer into the database.

SendNotification Messages

 This diagram shows the process of sending a notification to another user. Servlet gets

the ‘currentUser’ object from session and calls the sendNotification() method for creating the

notification in the database. This method create the notification and calls its ‘insert()’ method.

2.4 ACTIVITY DIAGRAM

 Activity diagram can be found in the Appendix since it does not fit on an ordinary A4

page.

 The explanation of the activity diagram is below:

 The activities are started by displaying the login screen.

- The user will fill in with his/her id and password, after the user enters his/her id

and password these information will be compared with the one that will be

retrieved from the database. If the password turns out to be valid then the main

screen will be displayed, if the password entered by the user turns out to be invalid

then we return to the initial screen.

 59

First of all, some information isn’t shown in this activity diagram for the sake of

simplicity. The omission is; after main screen is displayed, the user can select display main

screen link or logout link any time s/he wants.

In the main screen the user has the following options:

- If the user selects ‘Send Notification’ link then the notification form will be

displayed. And the user will fill in. Then the user will click send button and the

notification will be sent to the specified users. (As I mentioned in the beginning, in

any of the stages, the user can select the ‘Main Screen’ link so that the notification

process will be canceled and system will return to the Main screen. Also the user

can select ‘Logout’ in any stage so that the system will terminate the session.

These possible activities won’t be specified in any other option.)

- If the user selects ‘Create new filter’ link then the new filter creation form will be

displayed. And the user will fill in. Then the user will click save button and the

filter will be stored in database.

- If the user selects ‘Edit Preferences’ link then the ‘Preferences Screen’ will be

displayed. And the user will edit his/her preferences. Then the user will click save

button and the preferences will be stored in database.

- If the user selects ‘Generate Statistics Link’ link, then s/he will select the filters to

be applied. After that the statistics will be generated and displayed depending on

the filters selected by the user.

- If the user selects ‘Help’ link then the ‘Help Screen’ will be displayed. And the

user will enter the topic that s/he wants to get information about. Then the system

will display the information about the topic if there is any record about that topic

in the database.

- If the user selects ‘Forum’ link then the ‘Forum Screen’ will be displayed. After

that user can either read a message or write a new message. If s/he wants to read a

message, s/he will simply select the thread and the message will be displayed. If

the user wants to write a new message, s/he will select the thread under which s/he

wants to write new message and then will write the body of the message and click

the send button after that the message will be stored in database.

- If the user selects ‘Reports’ link then the ‘Reports Screen’ will be displayed. After

that user has two other options :

o If the user selects ‘Import Report’ link, the report will be fetched from

user’s computer and will be viewed.

o If the user selects ‘Generate Report’ link, s/he will specify the type of the

report and the filters to be applied and after that system will generate the

report based on this selections and display it. In this stage user can select to

export the report into his/her computer or go back to the main reports

screen.

- If the user selects ‘Administration’ link then the access rights of the user will be

checked. If the user doesn’t have the necessary rights, s/he won’t be able to do any

administration operation and ‘Main Screen’ will be displayed. Else if the user has

admin rights ‘Administration Screen’ will be displayed. And the user can either

select to create a new user account to the system or create a new company account.

In either case, admin will enter the necessary information, then select the save

button and the records will be saved in database.

- If the user selects ‘Arrange Meeting’ link then the access rights of the user will be

checked. If the user doesn’t have the necessary rights, s/he won’t be able to

 60

arrange any meeting and ‘Main Screen’ will be displayed. Else if the user has

enough rights user will specify the potential dates and the attendants of the

meeting. After the potential attendants of the meeting stated their choices, user will

fix the details of the meeting depending on these choices. And then user will select

the save button and the records will be saved in database.

- If the user selects ‘Projects’ link then the ‘Projects Main Screen’ will be displayed.

In this stage, user has following options:

o User can view the details of a project by selecting ‘View Project’ link.

After this selection the system will display the project details and now user

has another two options:

� If the user selects ‘Export Project’ link, the project will be saved in

a file into the user’s computer.

� If the user selects ‘Task creation’ link, then the access rights of the

user will be checked. If the user doesn’t have the enough rights,

s/he won’t be able to create any task and ‘Projects Main Screen’

will be displayed. Else if the user has enough rights, s/he will enter

the necessary information to create a new task (task name, assigned

users, etc) and hit the save button. After that new task will be saved

in the database.

o User can select ‘Create New Project’ link. Of course, first of all the access

rights of the user are fetched from the database to see whether s/he has the

necessary access rights to create a project and if not user won’t be able to

create the project and ‘Projects Screen’ will be displayed. Else if the user

has enough access rights, s/he will specify the creation type (from template

or from scratch). To create project from template, the project file is fetched

forum user’s computer and for the other case a blank project is created and

the user enters the necessary information about the new project (name,

tasks, assigned users, etc). After that system saves the project in database.

- If the user selects ‘Tasks’ link then the ‘Tasks Main Screen’ will be displayed. In

this stage, user has following options:

� User can select ‘View Tasks’ link. In this case, the access rights of

the user will be checked. If the user doesn’t have the enough rights,

s/he won’t be able to view any task and ‘Tasks Main Screen’ will

be displayed. Else if the user has enough rights, task will be

displayed. Now, user can either choose to send the finished tasks to

the reviewer or work on a task. If the user selects to work on a task,

it will be checked that whether the task is assigned to the user. If

it’s not, the user won’t be able to open in/out and ‘Main Tasks

Screen’ will be displayed. Else in/out will be opened, the user will

work on the task and in/out will be closed.

� User can select ‘Review Tasks’ link. In this case, the user will

select from the finished tasks which are sent for reviewing and if

the reviewer of the task is assigned to be the user, s/he will be able

to review the task and either accept or reject the work done. In

either case, a notification is sent to the user who did the task and if

reviewer rejected the work done, task will be marked as undone and

the assigned user will have to do it again.

- If the user selects ‘Logout’ in any stage then the system terminates the session.

 61

2.5 STATE DIAGRAM

Figure 1: Session class state diagram

 When the user opens the address of the project management tool in his browser, a

session is created and its beginLogin method is called, triggering a translation from the initial

state to the Waiting for login state. When the user enters his id and password correctly, the

new state is Waiting for command state, in which requests of the user are being waited to be

handled.

 There are a number of possible translations from the Waiting for command state. The

state changes to:

- Handling task operations state, if the user makes a task operation request

- Handling project operations state, if the user makes a project operation request

- Handling notification operations state, if the user makes a notification operation

request

 62

- Handling meeting operations state, if the user makes a meeting operation request

- Handling report&statistics operations state, if the user makes a report&statistics

operation request

- Handling forum operations state, if the user makes a forum operation request

Figure 2: Task class state diagram

When the user makes a view tasks request, a transition occurs from the initial state to the

Displaying current tasks state.

 When the user wants to create a new task, a transition occurs from the Displaying

currents tasks state to the Creating new task state. This state has three sub-states, namely the

Setting up task information state, Assigning users state, and the Assigning reviewers state. In

the Setting up task information sub-state, the necessary information for the creation of a task

is entered. When this necessary information is provided, a translation occurs to the Assigning

users state, in which the task is assigned to users. When the assignation is done properly, a

transition occurs to the Assigning reviewers state, in which reviewers are assigned to the task.

 When the user wants to review a task, a transition occurs from the Displaying current

tasks state to the Reviewing task state. This state has three sub-states, namely the Reviewing

work done state, Rejecting work done state, and the Accepting work done state. The user

 63

reviews the task in the Reviewing work done state. Depending on the decision of the reviewer,

a transition occur either to the Rejecting work done state (the work done is rejected), or to the

Accepting work done state (the work done is accepted).

 When the user wants work on a task, a work on task request causes a transition from

the Displaying current tasks state to the Working on task state.

 When the user wants to view the details of a task, requesting the details of the task

causes a transition from the Displaying current tasks state to the Viewing task details state.

Figure 3: Project class state diagram

When the user makes a view project request, a transition occurs from the initial state to

the Viewing project state.

 When the user wants to perform human management operations, a transition occurs

from the Viewing project state to the Handling human management state. This state has three

sub-states, namely the Viewing human resources state, Assigning users state, and the Creating

 64

users state. The user views that human resources of the project in the Viewing human

resources state. If the user wants to assign a user to the project, a transition occurs to the

Assigning user state. If the user wants to create a new user, a transition occurs to the Creating

users state. If the user wants to assign the newly created users to the project, a transition

occurs to the Assigning users state.

 When the user wants to perform Resource management operations, a transition occurs

from the Viewing project state to the Handling resource management state. This state has four

sub-states, namely the Viewing project resources state, Assigning resources to project tasks

state, Updating project budget state, and the Adding new resource to project state. The user

can view the project resources in the Viewing project resources state. If the user wants to add

a new resource to the project, a transition occurs to the Adding new resource to project state.

If the user wants to update the budget of the project, a transition occurs to the Updating

project budget state. If the user wants to assign resources to any of the project tasks, a

transition occurs to the Assigning resources to project state.

 When the user wants to create a new project, a transition occurs from the Viewing

project state to the Creating new project state.

 When the user wants to view the details of a project, a transition occurs from the

Viewing project state to the Viewing project details state.

Figure 4: Notification class state diagram

When the user makes a send notification request, the transition occurs from the initial

state to the Sending notification state. This state has three sub-states, namely the Composing

notification state, Setting receivers state, and the Attaching files state. The user composes the

notification in the Composing notification state. When the notification is composed, a

transition occurs to the Setting receivers state, in which the receivers of the notification are set.

When the receivers are set successfully, a transition occurs to the Attaching files state, in

 65

which the files (if exists) of the notification are attached to it. After this state, the notification

is ready to be sent.

 When the user wants to view his notifications, a transition occurs from the initial state

to the viewing notification state. If the user makes a download attachments request at this

state, a transition occurs to the Downloading attachments state.

Figure 5: Forum class state diagram

 When the user wants to view the forum a view forum request causes a

transition from the initial state to the Viewing forum state. If the user wants to view a thread

in the forum, a view thread request causes a transition to the Viewing forum thread state.

 When the user wants to compose a forum thread, a compose forum thread request

causes a transition from the initial state to the Sending forum thread state.

 66

Figure 6: Meeting class state diagram

 When the user wants to arrange a meeting, a transition occurs from the initial state to

the Arranging meeting state. This state has four sub-states, namely the Setting new meeting

details state, Sending notifications to potential attendants state, Fixing meeting details state,

and Sending notifications to attendants state. In the Setting new meeting details state, the user

specifies options for meeting details (e.g. meeting place, date). When these are set, a transition

occurs to the Sending notifications to potential attendants state, in which the potential

attendants are notified of the meeting options. When the potential attendants notify the

arranger of their preferences, a transition occurs to the Fixing meeting details state, in which

all the details of the meeting are fixed. Then the exact details of the meeting are sent to the

attendants in the Sending notifications to attendants state.

 When the user is a potential attendant of a meeting and wants notify the arranger of his

choices, a transition occurs to the Setting meeting preferences state. This state has two sub-

states, namely the Viewing possible meeting details state and the Setting meeting preferences

state. The user views the possible meeting options in the Viewing possible meeting details

state. When he wants to set his preferences for that meeting, a transition occurs to the Setting

meting preferences state.

 67

2.6 DATABASE DESIGN

2.6.1 ER DIAGRAM

2.6.2 DATABASE TABLES

USER

 userid PRIMARY KEY

 password

 date_created

 last_visit_time

 first_name

 68

 last_name

 phone

 email

 birth_date

 gender

 speciality

 photo

 address

 global_access_right

 can_add_project

 user_directory

 email_notification_NewTask

 num_of_tasks_per_page

 num_of_months_per_page

 num_of_weeks_per_page

 payment_policy

 payment_amount

 user_group_id

COMPANY

 company_id PRIMARY KEY

 company_name

 company_address

 contact_info

 logo

 email_server

 webpage

 timezone_format

 forum_id

TASK

 task_id PRIMARY KEY

 task_name

 task_description

 start_date

 due_date

 finish_date

 priority_id

 type_id

 project_id

 status_id

 percent_done

 reviewer_id

 group_id

 attached_file1

 attached_file2

 attached_file3

 attached_file4

 actual_hours

 last_update

 69

 date_created

 last_reviewed_percent_done int

HISTORY_TRAIL_ITEM

 history_trail_id PRIMARY KEY

 task_id

 user_id

 modification_type

 old_value

 new_value

MATERIAL

 material_id PRIMARY KEY

 material_name

 material_cost

 material_description

 created_date

 creator_user_id

PROJECT

 project_id PRIMARY KEY

 project_name

 project_description

 project_creator

 create_date

 start_date

 finish_date

 due_date

 budget

 contact_name

 contact_phone

 contact_email

 project_type_id

FILTER

 filter_id PRIMARY KEY

 selected_user_id

 selected_project_id

 selected_paymentpolicy_id

 selected_salary_comparison

 selected_salary_quantity

 selected_age_comparison

 selected_age

 selected_gender

 selected_global_profil

 selected_time_entry_mod

 selected_start_date_comp

 selected_finish_date_comp

 selected_finish_date

 selected_due_date_comp

 70

 selected_due_date

 selected_priority_id

 selected_type_id

 selected_status_id

 selected_percent_done_comp

 selected_percent_done_quant

 selected_reviewer_id

 selected_group_id

 selected_actualhours_comparison

 selected_actualhours

 selected_projectstartdate_comp

 selected_projectstartdate

 selected_projectfinishdate_comp

 selected_projectfinishdate

 selected_projectduedate_comp

 selected_projectduedate

 selected_projectmanager_id

FILTER_MEETING

 filter_id PRIMARY KEY

 selected_creator_id

 selected_final_meeting_date_comp

 selected_final_meeting_date

MEETING

 meeting_id PRIMARY KEY

 final_meeting_date

 date_option1

 date_option2

 date_option3

 date_option4

 date_option5

 creator_userid FOREIGN KEY(user)

 create_date

 attachment1

 attachment2

 attachment3

 last_reply_date

NOTIFICATION

 notification_id PRIMARY KEY

 notificated_user FOREIGN KEY(user:user_id)

 notification_type

 owner_of_action FOREIGN KEY(user:user_id)

 date_of_action

 attached_file1

 attached_file2

 attached_file3

 71

Task_Depends_On

 task_id1 PRIMARY KEY

 task_id2 PRIMARY KEY

 dependency_type

User_Has_Meeting

 user_id PRIMARY KEY FOREIGN KEY

 meeting_id PRIMARY KEY FOREIGN KEY

 user_selected_option1

 user_selected_option2

 user_selected_option3

 user_selected_option4

 user_selected_option5

Task_Needs_Material

 task_id PRIMARY KEY FOREIGN KEY

 material_id PRIMARY KEY FOREIGN KEY

 quantity

Project_Has_Material

 project_id PRIMARY KEY FOREIGN KEY

 material_id PRIMARY KEY FOREIGN KEY

 quantity

User_Buys_Material

 purchaser_id PRIMARY KEY FOREIGN KEY

 material_id PRIMARY KEY FOREIGN KEY

 project_id PRIMARY KEY

 quantity

 unit_price

 date PRIMARY KEY

Task_Assigned_To

 user_id PRIMARY KEY

 task_id PRIMARY KEY

 date

 assigner_id

Works_On

 user_id PRIMARY KEY

 task_id PRIMARY KEY

 start_date PRIMARY KEY

 finish_date

 is_approved

Has_Access_Right

 user_id PRIMARY KEY

 project_id PRIMARY KEY

 is_project_manager

 can_approve_time

 72

 can_open_project

 can_arrange_meeting

 level

PRIORITY_TABLE

 priority_id PRIMARY KEY

 priority_name

TASK_TYPE_TABLE

 task_type_id PRIMARY KEY

 task_type

PRIORITY_TABLE

 priority_id PRIMARY KEY

 priority_name

STATUS_TABLE

 status_id PRIMARY KEY

 status_name

 status_image

GROUP_TABLE

 group_id PRIMARY KEY

 group_name

 group_logo

PROJECT_TYPE_TABLE

 prpject_type_id PRIMARY KEY

 project_type

FORUM

 threadid PRIMARY KEY

 subject

 creator

 date_created

MESSAGES

 messageid PRIMARY KEY

 threadid PRIMARY KEY

 message

 title

 message_owner

 date

3. PROJECT SCHEDULE
 Project schedule is found in the Appendix since it does not fit in an ordinary A4 page.

