CENG 491

D&D SOFTWARE

INITIAL DESIGN REPORT

Prepared by:
Firat Alpergin
Dogan Yazar

Tuncay Namli
Mehmet R. Dogar

TABLE OF CONTENTS

1. INTRODUCTIONcconuirrinsnessaessansssesssnssassssesssesssssssssssssssssssasssssssassssssssssssas 2
1.1 PROBLEM DEFINITIONcciiiiiiiiiiiiiiiiiiiieicecreeceeee e 2
1.2 GOALS & OBJECTIVES ... 2
1.3 STATEMENT OF SCOPE.......cccocoiiiiiiiiiiiiiciiieeeeeee e 3
1.4 DESIGN CONSTRAINTSoiieeee ettt 4
1.5 WORK BREAKDOWN STRUCTUREccccocuiiiiiiiiiiiiiiiiiiceccee 4

2. MODELING ...cuutiiininnicnsnnecssnneecssssnesssssessssssesssssesssssssessssssssssssssssssssssssssssssssass 6
2.1 USE-CASE DIAGRAM.....ccooiiiiie e 6
2.2 CLASS DIAGRAM ...ooiiiiiiiiiiieee ettt 16

2.2 1 CLASSES et 16
2.2.2 CLASS ASSOCIATIONSooiiiiiiiiet e 41

2.3 SEQUENCE DIAGRAMS ... 44
2.4 ACTIVITY DIAGRAMooiiiiiiiiic et 58
2.5 STATE DIAGRAMooiiiiiie ettt s 61
2.6 DATABASE DESIGNcociiiiiiiiiiiiiciiec et 67
2.6.1 ER DIAGRAMoioiiiie ittt st 67
2.6.2 DATABASE TABLEScoiiiiieeee et 67

3. PROJECT SCHEDULLEiiiiinirinsnniccsnneicssneecsssseesssssncsssssassssssssssssassses 72

1. INTRODUCTION

1.1 PROBLEM DEFINITION

The resulting product of this development process is a web-based project management
tool (DProject). Dproject lets its users define new companies in the system, manage the
projects of a company, perform task management operations, perform user operations,
perform resource management, perform notification operations within the system, create and
export/import files & statistics, perform meeting arrangement operations, use project
planning facilities, view forums and compose forum threads. The clients of the project also
have the opportunity to view the overall progress of the project they are purchasing. The
tool’s ultimate aim is to ease the development of a project by all means.

The main functionalities, goals and objectives of DProject can be found in the section
that follows.

1.2 GOALS & OBJECTIVES

DProject sets its limits to the level where the aim of easing the management of
projects can be fully satisfied. The main goals and objectives of DProject are as follows:

- To provide easy and secure access to its users. The ease of access is accomplished by
the web-based nature of DProject. To be able to provide enough security to its users,
DProject will have additional security issues that will provide the secure environment
to any of its users.

- To provide consistency into the system among the members. In the real world projects,
there is hierarchical decomposition among the project team (and generally in the
company). This should also appear in a project management tool and DProject
accomplishes that by defining different levels of access rights that can simulate the
real world hierarchy (e.g. administrator rights, project manager rights, ordinary user
rights, etc.).

- To provide efficient task management operations. Task management is one of the most
important features of a project management tool and DProject offers advanced task
management features to its users. Users, depending on their access rights, can create
tasks, assign users to tasks, assign reviewers to tasks, can view task history trails,
monitor task progress, perform critical path management, work on tasks, etc.

- To provide features for efficiently managing meetings. Meeting management is one of
the most problematic issues of a typical project development process, especially in
major ones. DProject uses a special system, in which the arranger of the meeting
provides options for the meeting and notifies them. Then according to the feedback
from the potential attendants, DProject lets the meeting arranger choose the optimum
meeting details, also taking the preferences of the arranger into account.

- To provide communication means among the users. Communication is very important
in large scale projects and DProject provides notifications within the system to satisfy

the communication needs of its users. Another important communication feature is
forums, which can be used for any purpose among the members of a company.

- To provide human management features. Human factor is an important variable
projects so they are treated separately in DProject. The users working in a project, the
amount of work done by each member, the payment information of members, and
many other features can be monitored and controlled in DProject.

- To provide resource management features. Resources of a management are very
important entities and efficient ways should be developed for handling the
management of them. In DProject, different resources can be attached to different
projects (or companies, more generally), their necessary information (e.g. unit price,
seller address, etc.) are kept, resources can be attached to tasks, budget information of
a project is kept and updated accordingly, etc.

- To provide features for report & statistics generation and their exportation/importation.
Reports and statistics are vital for any project development because they are useful
both within the project and also among different projects because they are used for
various purposes including efficient project planning, user capability analyses, etc.
DProject has a number of important features for efficient report & statistics operations.
These include the importation/exportation of reports from/to different formats, the
importation/exportation of a project as a whole from one system to another, statistic
generations for specific subset of tasks, for the overall project tasks, for user teams, for
individual members, for a duration of time, for the whole project life span, etc.

- To provide efficient means of project scheduling. Scheduling is one of the most
problematic issues of a project development process that can occur in serious conflicts
between the developer site and the client side. To be able to prevent such
inconsistencies, DProject offers sophisticated features for project scheduling. The
users can see task creation times, the estimated hours spent on tasks or the whole
project, Gantt charts created automatically, etc.

- To provide features for the clients to follow the progress of the project. The clients
naturally want to view the project they are purchasing, so DProject lets its clients see
the necessary information for them to understand that whether the project is
progressing as they wish or not.

1.3 STATEMENT OF SCOPE

The following general requirements apply to DProject:

- A way to define new company and set up new company information

- A way to add new users to the system

- A way to define new projects and set up new project information

- A way to define tasks, assign users to tasks, assign reviewers to tasks, work on tasks,
attach resources to tasks, review tasks, confirm/reject tasks, view tasks

- A way to handle critical path management

- A way to arrange meetings

- A way to handle communication among users

- A way to handle human management

- A way to handle resource management

- A way to create, import/export statistics & reports

- A way to perform project planning

- A way to perform project progress monitoring for clients

1.4 DESIGN CONSTRAINTS

To be able to work efficiently, satisfying the requirements imposed, DProject should
be carefully designed. However, there are some design constraints which should be taken into
account while designing the system.

DProject is a web-based system and that adds an overhead because of the possible
problems with the Internet connection. To be able to minimize the effect of this overhead, the
communication within the system modules should be minimized avoiding the unnecessary
interactions that can further delay processing.

DProject is a system that heavily interacts with the database behind it. Nearly all the
necessary information for processing is maintained in the database. There is a heavy load of
fetching/storing data from/to the database. This makes the efficiency of the DBMS an
important constraint that must be taken into account seriously. An efficient DBMS should be
used and the database should be carefully designed, preventing any unnecessary burden put
on the DBMS. Also the queries should be designed efficiently to minimize the cost of
database operations. By this way, the overhead caused by the DBMS can be minimized.

1.5 WORK BREAKDOWN STRUCTURE

The work breakdown structure for DProject is as follows. Note that the work-package
definitions for 'implementation’ and 'test & debugging' sub-projects are preliminary, and will
be revised in each successive document. Also note that in the Gannt chart, the corresponding
numbering for the work-packages will be used, and work-package names will not be
rephrased.

Work Package Name Numbering
Project: DProject 01-00-00
Sub-project: Detailed Design 01-01-00
Work-package: Database Tables Design 01-01-01
Work-package: Design of Database Interface Classes 01-01-02
Work-package: Design of Procedural Classes 01-01-03
Work-package: Design of Control Architecture 01-01-04
Work-package: Design of JSP Architecture 01-01-05
Work-package: Design of Visual Interface 01-01-06
Work-package: Design of Visual Classes 01-01-07
Sub-Project: Prototype Production 01-02-00
Work-package: Creation of Database Tables 01-02-01

(Limited for prototype, including: User Account Tables,
Project Tables; Company Tables, Task Tables)

Work-package: Implementation of Database Interface Classes ~ 01-02-02
Work-package: Implementation of Visual Classes 01-02-03
(Limited for prototype, including: Upper Menu, Right Menu,
Header, Footer)
Work-package: Implementation of Procedural Classes 01-02-04
(Limited for prototype, including: Session class(limited),
Initializer class (limited), SqlConnection class, Project
class(limited), User class (limited), Task class(limited))
Work-package: Implementation of JSP architecture 01-02-05
(Limited for prototype, including: login screen, projects
screen, users screen, tasks screen)

Sub-project: Implementation 01-03-00
Work-package: Implementation of Database 01-03-01
Work-package: Implementation for First Phase 01-03-02

(including Project, Task and Meeting Management)
Work-package: Implementation for Second Phase 01-03-03

(including Notifications, Reports, Statistics, and Forum)
Work-package: Implementation of Visual Classes 01-03-04
Work-package: Implementation of JSP pages 01-03-05

Sub-project: Documentation 01-04-00
Work-package: Preparation of User's manual 01-04-01
Work-package: Preparation of Help pages 01-04-02

Sub-project: Testing & Debugging 01-05-00
Work-package: Determination of Test-cases 01-05-01
Work-package: Application of Test-cases 01-05-02
Work-package: Debugging 01-05-03

2. MODELING
2.1 USE-CASE DIAGRAM

ud Use Case Model -

Initialize New User

Initialize -
Company

Add Project
Resource

Create Project

Update Rescurce

Gruantity

-7 wincludes
Create Task

sincludas

.
] sincludes Inform Meeting
Review Task e Preferences
«EKIEEC'»‘__‘_
User Arrange Meeting
Generate Report =

Generate Statistics

User

Add Ferum Entry

Export&import g
Files s

Flow of events for the Login use case

Objective To log in the system
Precondition None
Main Flow 1 — The user enters his login id

2- The user enters his password
3 — The entered id and password are checked for validity

3 — The system creates a new session for the user and displays the
main screen of the new user

Alternative Flows

At 3, if the entered id or password is invalid, the user is prompted to
enter a new id or password

Post Condition

A new session is created for the user

Flow of events for the Initialize Company use case

Objective To set up a new company account in the system
Precondition The user should have administrator access rights
Main Flow 1 — The user enters new company information

2 — The user selects an id and password for the company

3 — Access rights of the user are checked to see if they are enough
or not

4— The entered information is checked for validity (i.e. non-existing
company name, non-existing company id)

5 — The main screen of the user is displayed

Alternative Flows

At 2, if the user does not have enough access rights, he is not
allowed to set up new company account

At 3, if there is a conflict, the user is prompted to enter valid
information into the conflicting fields

Post Condition

A new company information is saved in the database

Flow of events for the Initialize New User use case

Flow of events for the Initialize New User use case

Objective To set up a new user account into the system

Precondition The user setting up the new account should have administrator
access rights

Main Flow 1 — The user enters new account information
2 — The user enters an id and password for the new account

3 — Access rights of the user is checked whether they are enough or
not

4 — The entered information for the new user is checked for validity
(e.g. non-existing id)

5 - The user is assigned to projects, if necessary

6 — The main screen of the user is displayed

Alternative Flows At 3, if the access rights of the user are not enough, the user is
prompted stating that the intended operation can not be carried on

At 4, if the information for the new user is invalid, the user is
prompted to enter valid information

Post Condition A new user account information is saved in the database

Flow of events for the Create Project use case

Objective To create a new project

Precondition A company should be already selected and the user should have
enough access rights

Main Flow 1 — The user sets up the information for the new project

2 — The access rights of the user is checked to see whether they are
enough or not

3 — The entered information is checked for validity (e.g. non-
existing project name)

4 — Existing users are assigned to the new project, if necessary

5 — Task groups, task types and task priorities are set up for the new
project, if necessary

6 — Resource information is set up for the new project, if necessary

7 — The main screen of the user is displayed

Flow of events for the Create Project use case

Alternative Flows

At 2, if the user does not have the necessary access rights, he is
prompted stating that the operation can not be carried out

At 3, if the entered information is not valid, the user is prompted to
enter valid information to the invalid fields

At 4, if a new user should be assigned to the project, a new user
account is created

Post Condition

A new project is created and saved in the database

Flow of events for the Create Task use case

Objective To create a new task in a project

Precondition A project should be selected already and the user should have
enough access rights

Main Flow 1 — The user enters information for the new task

2 — The user assigns reviewers to the new task

3 — The user assigns user to the new task

4 — The user assigns resources to the new task, if necessary

5 — Files are attached to the new task by the user, if necessary

4 — A unique identifier is created and saved for the new task

Alternative Flows

None

Post Condition

A new task is saved in the database

Flow of events for the Work on Task use case

Objective To work on a particular task in a project

Precondition A task should be selected already and the user should be assigned
to the selected task

Main Flow 1 — The user opens the IN/OUT item to start working on a task

2 — The user selects preferences for the current IN/OUT item
3 — The user adds comments on the work done, if necessary
4 — The user closes the IN/OUT item when the work is completed

5 — The user sends the task to reviewers, if necessary

Alternative Flows

None

Flow of events for the Work on Task use case

Post Condition

The new progress status of the task is saved and the task history is
updated, working history of the user is updated

Flow of events for the Review Task use case

Objective To review the work done on task

Precondition A task should be already selected, the user should be assigned as
reviewer to the task and should be notified for review

Main Flow 1 — The user reviews the work done on task

2 — The user either accepts or rejects the work done

3 — The user that sent the task for review is notified on the reaction
of the reviewer

Alternative Flows

None

Post Condition

Depending on the reaction of the reviewer, the work done is
accepted or the user is obliged to do the work again, the status of
the task is updated accordingly

Flow of events for the Confirm Task use case

Objective To confirm the task as completed or not

Precondition A task should be already selected, the user should be assigned to
the task as reviewer and should be notified for review

Main Flow 1 — The user reviews the work done on task

2 — The user either selects the task as completed or not

3 — The user that sent the task for review is notified depending on
the reaction of the reviewer

Alternative Flows

None

Post Condition

Depending on the reaction of the reviewer, the task is marked as
completed or not, and the status of the task is updated accordingly

Flow of events for the Generate Report use case

Objective

To create and view a time report or task report

10

Flow of events for the Generate Report use case

Precondition None

Main Flow 1 — The user selects the type of the report to be created
2 — The user selects the filter to generate the report

3 — The user saves the filter, if necessary

4 — The report is generated depending on the filter

5 — The report is displayed

Alternative Flows | At 2, if the user makes invalid selections (e.g. non-existing date),
the user is prompted to change the selections

At 3, if there is a conflict in saving the filter (e.g. existing filter
name), the user is prompted to remove the conflict

Post Condition The report is generated and the filter is saved, if selected

Flow of events for the Generate Statistics use case

Objective To create and view statistics of a project
Precondition A project should be already selected
Main Flow 1 — The user selects the filter to generate the statistics

2 — The user saves the filter, if necessary
3 — The statistics are generated depending on the filter

4 — The statistics are displayed

Alternative Flows At 1, if the user makes invalid selections (e.g. non-existing date),
the user is prompted to change the selections

At 2, if there is a conflict in saving the filter (e.g. existing filter
name), the user is prompted to remove the conflict

Post Condition The statistics are generated and the filter is saved, if selected

Flow of events for the Save Filter use case

Objective To save a filter for later use

Precondition None

11

Flow of events for the Save Filter use case

Main Flow

1 — The user makes the selections for the different fields of the
filter

2 — The user selects a name for the filter

3 — The user saves the filter

Alternative Flows

At 1, if the user makes an invalid selection (e.g. non-existing date),
the user is prompted to change the selection

At 2, if the user selects and existing date, he is prompted to change
the name

Post Condition

A filter is saved in the system

Flow of events for the Arrange Meeting use case

Objective To arrange a meeting
Precondition The user should have necessary access rights to arrange a meeting
Main Flow 1 — The user selects potential dates for the meeting

2 — The user selects the potential attendants of the meeting
3 — The user notifies the potential attendants on the potential dates

4 — Depending on the selections of the potential attendants, the user
fixes the details of the meeting

5 — The user notifies the user stating the meeting details and
attendants

Alternative Flows

None

Post Condition

A new meeting is created and its details are saved

Flow of events for the Inform Meeting Preference use case

Objective To inform the arranger about the selections about a meeting
Precondition The user should have been notified by the arranger
Main Flow 1 — The user views the potential dates sent by the arranger

2 — The user notifies the arranger stating the dates suitable for him

Alternative Flows

None

Post Condition

The user preferences are sent to the arranger for further processing

12

Flow of events for the Export & Import Files use case

Objective To export & import files from/to the system

Precondition A project or a report should be already selected

Main Flow 1 — The user selects whether to import/export a report or a whole
project

2 — Depending on the selection of the user, either a report is
imported/exported in the specified format, or the whole project is
imported/exported as SQL statements

Alternative Flows At 2, if the file to be imported/exported is invalid, the user is
prompted stating that the file is invalid

Post Condition Depending on the exported/imported file, either a new report file,
or a new project is saved/opened

Flow of events for the View Forum use case

Objective To view forum threads
Precondition None
Main Flow 1 — The user selects the forum he wants to view

2 — The user selects the thread to be viewed

3 — The thread that the user selected is displayed

Alternative Flows | None

Post Condition A forum thread is displayed

Flow of events for the Add Forum Entry use case

Objective To add a new forum entry
Precondition None
Main Flow 1 — The user selects the forum to which he wants to add a new entry

2 — The user selects the thread under which he wants to add a new
entry
3 — The user adds the entry to the forum thread

4 — The thread is displayed with the new entry added

13

Flow of events for the Add Forum Entry use case

Alternative Flows

None

Post Condition

A new entry is added to the forum

Flow of events for the Add Project Resource use case

Objective To add a new resource information to a project

Precondition A project should be selected and the user should have enough
access rights

Main Flow 1 — The user enters the information of the new resource

2 — The user enters the quantity of the new resource

3 — The user enters the unit price of the new resource

Alternative Flows

At 1, if one of the fields is conflicting (e.g. existing resource name),
the user is prompted to change the conflicting field

Post Condition

New resource type and information is saved

Flow of events for the Update Project Resource use case

Objective To update the information & quantity of a resource

Precondition A project should be selected and the user should have enough
access rights to make the update

Main Flow 1 — The user selects the resource to be updated

2 — The user selects the fields of the resource that are to be updated

3 — User updates the fields accordingly

Alternative Flows

At 3, if there is an invalid selection (e.g. resource quantity below
zero), the user is prompted to change the selection

Post Condition

The information of the resource is updated and saved

Flow of events for the Send Notification use case

Objective

To send notifications to other users in the system

Precondition

None

14

Flow of events for the Send Notification use case

Main Flow 1 — The user enters the subject of the notification, if desired

2 — The user writes the main body of the notification, if desired
3 — Files are attached to the notification by the user, if desired
4 — The users selects the users to send the notification

5 — The user sends the notification

Alternative Flows At 3, if the user tries to attach an invalid file (e.g. excess file size,
corrupted file), the user is prompted about the error

At 4, if the user tries to send the notification to a non-existing user,
he is prompted about the error

Post Condition A notification is sent to other users in the system

15

2.2 CLASS DIAGRAM
2.2.1 CLASSES

User

- userld; string

- paessword: string

- neme: string

- middleMame: string

- surmame! skring

- bidhDate: sking

- specislity: string

- Bddress! siring

- zex int{1.3}

- =mailAddress! sking

- photo: string

- peymentPolicy: int]1..31

- paymentdmount: doubls

- amailMotificationForNewTakPraference: int[0.1] =1
- numIfTask=PerFagePrefersnce: int [1..50] =10
- numTfiionthsPerPeagePrefrence; int=#£
- numfVeslsParPegsPrefarsnoe int=4
- userProjects: Project [

- canfAddProject: boolesn

ussrDirectony: int[1. 4]
globalAcoe=Right: int

imit{SalConnedion) : void

s=tllzarld(string) * void

getllserldl) - string

s=tPassword{string) | void

getPassword]] : string

s=thiame(string) | void

getiamse]) | string

satmiddleMams|string) ; void

gethliddleMame{) | string

setSumame(string) ; void

getSurnams{) | sring

s=tBirthGate{string) : void

getBirthDete]) : string

s=tSpecislitylstring) | void

+ getSpeciality() - sting

pethddress(string) | sting

s=tSex(int) | void

getSex) ; int

getEmsilAddress{string) | string

setPhotoi{string) © void

getPhotod) ; string

==tPaym=ntPolicy{int] * void

getPaymentPolicy) ;int

satPaymentAmount{double) : void

getPaymentAmount{) | double
s=tEmasilNotificaticnForNew T assPreferance{int) ; void
g=tEmsailMatificationForMew T askFreference]) | int
setNumOf T esksPerFagePreferencelint) | void
gethumCfTasksParFagePraference]) @ int
z=thumOfiVesksPerPagePrefersnoe(int) . void
gethumChilesksPerP agePrafersnce() | int
saetMumCihonthsPerPagePreference(int) | void
gethumOfiionthsPerPagePreference]) | int
s=tUserProjects{Project [) © void

getUserProjecs{) | Project [}

insert{) . void

updetal) ; void

delete{) | void

setAcoessRight=Cflisernstring, string, int, bool=sn, boolean) @ void
oeateMNewProject{int, string, string, string, double, date, dete, dat=, string, string, string} | vold
oeatells=tint, double, int, int, int, int, boolzan, int, boolesn, int, string, string, string, int, date, string, string. string, string, string, sting}
c=ateiew T ask(string, string, string, string, int, string, int, int, skring, int, int, date, dete, date, string, string, string} : void
cresteMsaterisl{string, doule, string, string) : void
oestehestingidets, string, string, string, dats, date, dete, date, dats, aste, string) | void
buyshaterial{double, double; string) : void

et sarPrefencesForhlesting(string, int, int, int, int, intj @ void

+ approveTask) | void

assignToProject{int, boolesn, boolean, String) © void
oeateCompany{string, string, string, int, string, string) . void
s=ndMotification{string, string, string, string, string)) ; woid

W

SH

o4 b

O e e . L

"

R Cnes

—

void

16

Task

taskld: string
t=skMName. string
teskDesmiption: string
starillats: dete
duzDatz dsi=
finishDete: dete
priorityld: int
typeld. int
projectld; string
stetusld: int
percentDons: int
reviswsrld: string
groupld: int
attechedFilel; sting
attechedFileZ: =tring
sttschedFiled: stfing
sttechedFile4: string
actuslHours: double
lestUpdsts: dsts
deteCrestea: dets

Company

compenyMeme: siring
companyAddress: siring
weekllanagesmentPolicy, int[1.2]
webFPagsiddress: shing
emailServerfddress; string
phonsto string
companylLogoPath: sting

Forumblessage

senderld: string
sunject: string
messageBody. string

assign ToUses(string): void
as=ignToRaviewsrstring) © woid
dependOnTazk{int, string) | woid
nesdshleterisl{doukle, string) | woid
userStartedWorkOn{string) | void
userFinishediWokOnistring) : void
a=lets]) - void

insert]) | void

update() | woid
sgdAttachment|{String) : void

bk ok ke e ek

PR

init{SqlConnedion) vaid
setCompanyMams{string) ; void
getCompenyMame(] | string
s=tCompanyAddressisiring) | void
getCompanyAddress|) | string
s=tiWeskhisnegementPolicylint) | woid
getWeskMansgementPolicy]) | int
setiWenPsgefddress/stnng) | void
getiWsbPagefddress() - string
setEmail Serverfddress{string) | void
getEmailSenerfddress() * string
s=tPhoneiolstring) | void
getFhonehiol) : string
s=tCompanylLogoPeth{string) : void
getCompanylLogoPath{) - string
insert() ; void

update{) : void

delete() : void
getCompenylserids]) « string []
getCompanyAdminlds() | woid

+ 4+ +

+

=etSenderid{string) : veid
getSenderld() : string
==tSubjectstring) : void
getSubjedt) : skring
zsethtesssgeBody|string) | void

ProjectResource

matesialld: string
guantity: doubls
assignedPraojectld siring

[T

+

sethtatanalldistring) | void
gethlsterelld]) | siring
sstQuantity{doutls) | void
getQuantity() : double
satAssignedProjectidistring) | void
gethzsignedProjectd() - string

Forum

forum Threedids: string []

4+

+

getForum Thread|ds() © string []
getForumThiesd Titles() : string I

Initializer

+ beforelogind) | Session

+ login{Session, string, string} - boclean

+ sfterlogin(Session) | void

17

SqlConnection

dbMame: siing
dbHostname: int
dbPessword; int
dbolssrNames: int
cannaction: ‘Connection

connect]) ; void
getConnection{) | Connection
closeConnection{) | void

ForumThread

title: string
forumhiess=gelds: sfing]

getForumThreadTitle]) : string
getForumMessageSubjeds() : string []

Material

materialld: string
materialMamse: string
materialCost double
materia|Desoription: siring
oeatzdlasts dets
creatorlserld: string

e

Insert() : void

update]) : void
delete(} | void
petPrice{doubles) | void

Project

Session

projectMame: string

projedld: sting

stariDats: string
estimatedDuration: integer
budgst: double

clientld: string
isFrojscthansger boolzen
canApproveTime, boolean
canSesProjectDetails: boolzan
taskEditingLevel: ‘int {1..8]

ok

O Rk I R

4+ o+ &

LR Rk R R T R

initiSglConnection) ; void
setProjecttam

setProjectldistring) : veid
getProjectldl) : string
setStartlate{string) | woid
getSterdDate]) - string
setEstimatedDurstion{int) : void
getEstimatedDuration() @ int
setBudget{double) | void
getBudget(y : double
setClientla{string) : void
getClientid() : string

insert(} : woid

update() . void

deletel): void

s=sign T ollsarsting) : void
hashiaterial{dauble, string) : void
getProjectResources(} | ProjectResource]
getProjectTasklds() : string [}
getProjectTaskMNames() | string [}
getProjecti fserids]) : string []
getProjectUserNames!) © string [1
addTekType(Shing) | void
=ddTaskFrictity{String) ; void
addTaskSetatus(String) | void

date:: float = <cument date>
cumrentCompany: Company
cumentlises: - User

cumentProject Project
cumrantiotifications: Notification ['=null
dbConnecticn: SglConnedicn
cumenthlaterisl: MMaterisl

currntTask: “int

loggedinlser Ussr

cumrentForurn Thread: ForumThread
cumeniForumhlessags: Foumilsssags

Fikter

+

P S S S S T S

R

]

+

nit{j: woid

setDate{float) : woid

getDatel) : float
setCumentCompanyCompany) :
getCurentCompany():: Company
setCurrentliserliser) © void

getCurrentlfzerf) : Usar

destroySession() | void

exportProjediint, string) : void

importProject{int, string) : void
retrizvePraject(string) - Project

retrieve Taskistring) . Task
retrieveMesting(string) . Mesting
retrigveMotification{string) : MNotification
retrievellsen{string} : User

retrieveFiltes{string) ; Filter

retrieveForum Thread Titles() © string [J
retrieveForumbiesssgesinThresd{string) siring 1
retrizvelisterisl{stiing) : Materizl

oid

Meeting

- mestingld: sting

- finalMestlinghate: date
- dsteDptioni: date
- dateDptiond: date
- detelgtion: date
- dstelptiond: dste
= dateDptionE: date
- oreatoriizerld: string
- oestionDate: date
- gitachementi: string
- sttachsmentZ. string
-+ attachement3: shing
- lastReplyDats: dats

+ insert{}: void

+ updste() : void

+ delets(): void

+ islestReplyDateFassed]) : beclean
+ ishMestingSettled|) ; boolzan

Netification

- notificationld: sting

- notificatedUser: siring

- notificstionType: string

- ownerCfAction: string

- deteOfAction. date
attachedFilet: sting

- attachedFile2: ini

- sitachedFile?: sking

setMotificationld{sting) : veoid
getMotificatian!d]); string
setMotificated User{string) - void
getiotificatedUses() | string

+ setMotificationTypelint): void
gethotificstionTypel) © int

+ setCwnerCfACtion{string) : void
getOwnerCfaction() | string
setDateCfAGtion{dste) : void
getDateOfAction]) | date

+ setAftachedFilet{string) : void
+ getAttachedFilel]} : string

+ setAttachedFile2{string): void
+ getAttachedFile2{) ; shing

+ sethttachedFile3{string} : void
+ getAttachedFile]) : string

AW

18

filterld: string

salectedUsarld: sting
selactedProjectid: string
selectedPaymentPaolicyld: sting
selectedSelaryComparizon: int {0..3]
s=lectedSalaryQuantity. doutls
s=lectedAgeComparison: int
z=lectedAge: int

selectedGender: int

selected GlobalProfile: int

selected TimsEninylMede. int
selectedStartDateComparizon: int
selectedStartDate; date
selectedFinishDateComp: " int
selectedFinishDate; date
selectedDuslateComp: int
sslectedDuslate: dete
selectedPricrityld; string

szlzcted Typsld: sting
szlectedStatusld: sking
selectedPeroentDonelomp: int
s=lectedPercentDonelivantity, double
selectedReviewssld: string
selectedGroupld: string
selectedActusiHoursComparison: int
selectedActualHours: int
selectedProjectSianDateComparisan: int
select=dProjectStartDate: date
selectedProjectFinishDateComparison: int
s=lectedProjedFinishData: dsts
selectedProjectiDuslsteComperison: int
zelectedPojectDuslate: dais
szlactedProjectiianagerld: string

insert(} | void
updatel}: void
delste]) ; void

AccessRights

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 6:23:50 PM. Modified on 12/6/2004 2:58:21 PM.

AccessRights Attributes

Attribute Type Notes
canAddProject private : '‘canAddProject' attribute specifies whether a
int user can create a new project; 1 means user

can create a project, 0 means user can not
create a project

userDirectory private : 'userDirectory' attribute specifies what a user
int can see in his/her user directory. 1 means
user can see all other users in the same
company; 2 means user can see all other
users in the same project; 3 means user can
see only the dministrators; 4 means user can
not see anyone so does not have a user

directory.
Company
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/4/2004 12:58:53 PM. Modified on 12/6/2004 10:26:50
PM.

'Company' class represents the company that the current logged-in user is a member of.

Company Attributes
Attribute Type Notes
companyName private :
string
companyAddress private :
string
private 'weekManagementPolicy' attribute holds
weekManagementPol | Range:1 to 3: integer values corresponding to the
icy int preference of the company on how to arrange
working days of a week. That integer values
have the range 1-3. The relations are
1:Monday-to-Friday, 2:Monday-to-Saturday,

19

3:Monday-to-Sunday

webPageAddress private : 'webPageAddress' attribute holds the string
string representing the company's web page
address.
emailServerAddress | private : 'emailServerAddress' holds the mail-server
string address of the company that will be used to
send e-mails using the company's server.
phoneNo private :
string
companyLogoPath private : '‘companyLogoPath' attribute holds the path
string to the image file that the company had
submitted. This is used to show the company
logo when it is a session of this company's
users.
Company Methods
Method Type Notes
init (Sq/Connection) | public: void param: dbConnection [SqlConnection - in |
insert () public: void 'insert' method writes the information in this

'Company’ class instance to the database,
creating a new entry in the database table.

update () public: void 'update' method updates the record of this
company in the database, using the current
values of the attributes.

delete () public: void 'delete' method deletes the record of this
company from the database.

getCompanyUserlds | public: string [] | 'getCompanyUserlds' returns the user ids

0 who are members of this company.
public: void 'getCompanyAdminlds' returns ids of the
getCompanyAdminld administrators of this company.
s
Filter
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/4/2004 2:06:58 PM. Modified on 12/6/2004 9:10:25 PM.
Filter Attributes
Attribute Type
filterld private :
string

20

selectedUserld private :
string
selectedProjectld private :
string
selectedPaymentPolicyld | private :
string
private
selectedSalaryCompariso | Range:0 to
n 3:
int
selectedSalaryQuantity | private :
double
selectedAgeComparison | private :
int
selectedAge private :
int
selectedGender private :
int
selectedGlobalProfile private :
int
selectedTimeEntryMode | private :
int
private :
selectedStartDateCompar | int
ison
selectedStartDate private :
date
selectedFinishDateComp | private :
int
selectedFinishDate private :
date
selectedDueDateComp private :
int
selectedDueDate private :
date
selectedPriorityld private :
string
selectedTypeld private :
string
selectedStatusld private :
string
private :
selectedPercentDoneCom | int
p .
private :
selectedPercentDoneQua | double
ntity
selectedReviewerld private :
string

21

selectedGroupld private :
string
private :
selectedActualHoursCom | int
parison
selectedActualHours private :
int
private :
selectedProjectStartDate | int
Comparison
selectedProjectStartDate | private :
date
private :
selectedProjectFinishDat | int
eComparison
private :
selectedProjectFinishDat | date
e
private :
selectedProjectDueDateC | int
omparison
selectedPojectDueDate private :
date
private :
selectedProjectManagerl | string
d
Filter Methods
Method Type Notes
insert () public: void | 'insert' method inserts the filter information to
the database creating a new entry.
update () public: void | 'update' method upates the database record of
this filter, using the new attribute values.
delete () public: void | 'delete' method deletes the database record of
this filter.
Forum
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/4/2004 2:07:04 PM. Modified on 12/7/2004 6:30:49 PM.

Forum Attributes

22

Attribute Type Notes

forumThreadlds private :
string []
Forum Methods
Method Type Notes
getForumThreadlds () public: string
[]
getForumThreadTitles () | public: string
[]
ForumMessage
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/6/2004 8:35:57 PM. Modified on 12/7/2004 6:30:49 PM.

ForumMessage Attributes

Attribute Type Notes
senderld private :
string
subject private :
string
messageBody private :
string
ForumMessage Methods
Method Type Notes
setSenderld (string) public: void param: sender [string - in |
getSenderld () public: string
setSubject (string) public: void param: subject [string - in]
getSubject () public: string
setMessageBody (string) | public: void param: messageBody [string - in]

ForumThread
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.

23

Package:
Details:

ForumThread Attributes

Component Model
Created on 12/6/2004 8:35:47 PM. Modified on 12/8/2004 1:25:23 PM.

Attribute Type Notes
title private :

string
forumMessagelds private :

string []
ForumThread Methods
Method Type Notes
getForumThreadTitle () | public: string

getForumMessageSubject

5O

public: string

]

Initializer

Type: public Class
Status:

Package: Component Model
Details:

Proposed. Version 1.0. Phase 1.0.

Created on 12/4/2004 8:25:31 PM. Modified on 12/6/2004 10:28:38 PM.

'Initializer' class is a helper class for logging in and initializing the session variable.

Initializer Methods
Method Type Notes
beforeLogin () public: 'beforeLogin' is called when a login screen
Session is showed to the user but before he/she logs
in.
login (Session, string, public: param: session [Session - in |
string) boolean param: userPassword [string - in |

param: userName [string - in]

'login' takes the password and loginld and
checks to see if the id and password is
valid and consistent. Reeturns 'true’ if
consistent, 'false' if inconsistent or invalid.

afterLogin (Session)

public: void

param: session [Session - in |

'afterLogin' is called after 'login' method
returns as 'true' and it initializes all rquired
attributes of the current session for a
logged in user.

24

Material

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:07:22 PM. Modified on 12/7/2004 6:30:49 PM.

'Material' class represents a specific material type that has been created to be used in projects.

Material Attributes
Attribute Type Notes
materialld private :
string
materialName private :
string
materialCost private :
double
materialDescription private :
string
createdDate private :
date
creatorUserld private :
string
Material Methods
Method Type Notes
insert () public: void 'insert' method inserts the material
information to the database creating a new
entry.
update () public: void 'update' method upates the database record
of this material, using the new attribute
values.
delete () public: void 'delete' method deletes the database record
of this material.
getPrice (double) public: void param: quantity [double - in]
'getPrice' method returns the price of this
material for the specified quantity using the
formula quantity*materialCost.
Meeting
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

25

Details:

Created on 12/4/2004 6:58:22 PM. Modified on 12/7/2004 6:30:49 PM.

Meeting Attributes
Attribute Type Notes
meetingld private :
string
finalMeetingDate private :
date
dateOption1 private :
date
dateOption2 private :
date
dateOption3 private :
date
dateOption4 private :
date
dateOption5 private :
date
creatorUserld private :
string
creationDate private :
date
attachement1 private :
string
attachement2 private :
string
attachement3 private :
string
lastReplyDate private :
date
Meeting Methods
Method Type Notes
insert () public: void "insert' method inserts the meeting
information to the database creating a new
entry.
update () public: void 'update' method upates the database record
of this meeting, using the new attribute
values.
delete () public: void 'delete' method deletes the database record

of this meeting.

isLastReplyDatePassed | public: 'isLastReplyDatePassed' returns true if the
0 boolean last reply/decision date for the meeting has
passed; false otherwise.
isMeetingSettled () public: 'isMeetingSettled' returns true if the date of
boolean this meeting had been decided and settled

26

| by all attendants; false otherwise.

Notification

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:47 PM. Modified on 12/6/2004 10:04:54 PM.

Notification Attributes

Attribute Type Notes
notificationld private :
string
notificatedUser private :
string
notificationType private :
string
ownerOfAction private :
string
dateOfAction private :
date
attachedFilel private :
string
attachedFile2 private :
int
attachedFile3 private :
string
Project
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/4/2004 2:06:28 PM. Modified on 12/8/2004 1:56:14 PM.
Project Attributes
Attribute Type Notes
projectName private : 'name' is the project's name in real life.
string
projectld private :

27

string

startDate private : 'startDate’
string
estimatedDuration private : 'estimatedDuration' attribute specifies the
integer project's estimated duration.
budget private : 'budget' attribute holds the project's budget.
double
clientld private : 'clientld' attribute specifies this project's
string client.
isProjectManager private : 'isProjectManager’ specifies if the current
boolean user is a manager of this project. 'true’'
means he/she is a manager, 'false' means
he/she is not.
canApproveTime private : '‘canApproveTime' specifies if the current
boolean user can approve users' timesheets in this
project. 'true' means he/she can, 'false'
means he/she can not.
canSeeProjectDetails private : 'canSeeProjectDetails' specifies whether
boolean the current user can see all tasks and
meeetings in the project, or can see only
the ones that he/she is assigned to. 'true’'
means he/she can see all, 'false' means
he/she can not.
taskEditingLevel private 'taskEditingLevel' specifies users’
Range:1 to 9: | permissions about task editing. 1 means
int read-only permission, 2 means limited task
editing, 3 means limited task editing and
file attachement creation/deletion, 4 means
partial task editing, 5 means partial task
editing and deleting the tasks that he/she
created, 6 means full control task editing, 7
means full control task editing and deleting
the tasks that he/she created, 8 means full
controol task editing and creating tasks and
deleting his/her own tasks, 9 means full
control task editing and creating deleting
all tasks.
Project Methods
Method Type Notes

nit (Sq/Connection)

public: void

param: dbConnection [SqlConnection -
in]

insert () public: void 'insert' method writes the information in
this 'Project’ class instance to the database,
creating a new entry in the database table.

update () public: void 'update' method updates the record of this

project in the database, using the current
values of the attributes.

28

delete () public: void 'delete’ method deletes the record of this
project from the database.

assignToUser (string) public: void param: userld [string - in |

'assignToUser' method add the relation to
the database so that the user specified with
the userld becomes a member of this

project.
hasMaterial (double, public: void param: quantity [double - in]
string) param: materialld [string - in]

'hasMaterial' method marks the database so
that this project has specified quantity of
the specified material.

getProjectResources () public: 'getProjectResources' method queries this
ProjectResour | projects resources from the database and
ce[] returns them.

getProjectTasklIds () public: string | 'getProjectTasklds' returns the poject's task
[] ids.

getProjectTaskNames () | public: string | 'getProjectTaskNames' returns the project's
[] task names.

getProjectUserlds () public: string | 'getProjectUserlds' returns the users' ids
[] who are assigned to the project.

getProjectUserNames () | public: string | 'getProjectUserNames' returns the users'
[] names assigned to this project.

addTaskType (String) public: void param: tasktype [String - in]

'addTaskType' method is used to add newly
defined task types to this project.

addTaskPriority (String) | public: void param: taskptiority [String - in]

'addTaskPriority' method is used to add
newly defined priority types to this project.

addTaskSatatus (String) | public: void param: taskstatus [String - in]

'addTaskStatus' method is used to add
newly defined status types to this project.

ProjectResource

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:07:30 PM. Modified on 12/7/2004 6:30:49 PM.

29

ProjectResource Attributes

Attribute Type Notes
materialld private : 'materialld' specifies what type of material
string is included in this project resourcce.
quantity private : 'quantity' specifies the quantity of the
double material.
assignedProjectld private : 'assignedProjectld' specifies which project
string this resource belongs to.
ProjectResource Methods
Method Type Notes
setMaterialld (string) public: void param: materialld [string - in |
getMaterialld () public: string
setQuantity (double) public: void param: quantity [double - in]
getQuantity () public: double
setAssignedProjectld public: void param: projectld [string - in]
(string)
getAssignedProjectld () | public: string

Session

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 12:15:36 PM. Modified on 12/8/2004 7:48:55 PM.

'Session' class represents a unique session started by a user. This class is always active and in
association with all other classes. Session class is terminated when the user terminates the

web session.

Session Attributes

Attribute Type Notes
date private : 'date' attribute shows the time that the
float session is started by the user. It is set to
the server system time initially.
Initial Value: <current date>;
currentCompany private : 'currentCompany' attribute is a pointer to
Company an instance of the Company class, which is
the logged-in user's company.
currentUser private : 'currentUser' attribute is a pointer to an
User instance of the User class, which is a user
being modified, or shown to the user.
currentProject private : 'currentProject’ attribute is a pointer to an

30

Project instance of the Project class, which is the
one the user is currently working on. It is
initially set to null.

currentNotifications private : 'currentNotifications' attribute is an array

Notification [] | of instances of the Notification class,
which are waiting for the currenly working
user. It is initially set to null.

Initial Value: null;
dbConnection private : 'dbConnection' is an instance of the class
SqlConnectio | SqlConnection and is used to connect tothe
n database in this session.
currentMaterial private : 'currentMaterial' attribute represents the

Material currently active material in the session.

currentTask private : 'currentTask' attribute represents the

int currently active task in the session.

loggedInUser private : 'loggedInUser" attribute is a pointer to an

User instance of the User class, which is the
logged-in user.

currentForumThread private :

ForumThread

currentForumMessage private :

ForumMessag

e

Session Methods
Method Type Notes
init () public: void

setDate (floaf)

public: void

param: date [float - in]

getDate () public: float
setCurrentCompany public: void param: currentCompany [Company - in |
(Company)
getCurrentCompany () public:
Company

setCurrentUser (User)

public: void

param: currentUser [User - in |

getCurrentUser ()

public: User

destroySession ()

public: void

'destroySession' destroys the current
session if the user logs-out.

exportProject (int,
string)

public: void

param: format [int - in |
param: projectld [string - in]

'exportProject' exports the specified project
using the specified format.

importProject (int,
string)

public: void

param: fileFormat [int - in]
param: fileName [string - in]

'importProject' imports a project using the

31

specified file name and the specified file
format.

retrieveProject (string)

public:
Project

param: projectld [string - in]

'retrieveProject' returns the Project object
that has the specified project id.

retrieveTask (string)

public: Task

param: taskld [string - in]

'retrieveTask' returns the Task object that
has the specified task id.

retrieveMeeting (string) | public: param: meetingld [string - in]
Meeting
'retrieveMeeting' returns the Meeting
object that has the specified meeting id.
retrieveNotification public: param: notificationld [string - in |
(string) Notification

'retrieveNotification' mehod returns the
Notification object that has the specified
notification id.

retrieveUser (string)

public: User

param: userld [string - in]

'retrieveUser' mehod returns the User
object that has the specified user id.

retrieveFilter (string)

public: Filter

param: filterld [string - in]

'retrieveFilter' mehod returns the Filter
object that has the specified filter id.

retrieveForumThreadTitl

es ()

public: string

[

'retrieveNotification' mehod returns the
Notification object that has the specified
notification id.

retrieveForumMessagesl
nThread (string)

public: string

]

param: messageld [string - in]

'retrieveForumMessage' mehod returns the
ForumMessage object that has the
specified forum message id.

retrieveMaterial (string) | public: param: materialld [string - in |
Material

'retrieveMaterial' mehod returns the

Material object that has the specified

material id.
SqglConnection
Type: public Class
Status: Proposed. Version 1.0. Phase 1.0.
Package: Component Model
Details: Created on 12/4/2004 8:00:28 PM. Modified on 12/6/2004 10:28:38 PM.

32

SqlConnection class holds the attributes needed that are to connect to the database and acts as

a wrapper class for connecting to the database.

SqlConnection Attributes

Attribute Type Notes
dbName private :
string
dbHostname private :
int
dbPassword private :
int
dbUserName private :
int
connection private : 'connection' is the actual database
Connection connection that is established by the
SqlConnection class. Its type depends on
the programmig language that will be used.
In our case it will most probably be of type
java.sql.Connection.
SqlConnection Methods
Method Type Notes
connect () public: void 'connect' connects to the database using

dbName, dbHostName, dbPassword, and
dbUsername attributes of SqlConnection
class and initializes the connection
variable.

getConnection ()

public:
Connection

'getConnection' returns the connection
variable which was connected to the
database.

closeConnection ()

public: void

'closeConnection’' closes the database
connection.

Task

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 6:58:10 PM. Modified on 12/8/2004 1:29:58 PM.
Task Attributes

Attribute Type Notes

taskld private :

33

string

taskName private :
string
taskDescription private :
string
startDate private :
date
dueDate private :
date
finishDate private :
date
priorityld private :
int
typeld private :
int
projectld private :
string
statusld private :
int
percentDone private :
int
reviewerld private :
string
groupld private :
int
attachedFilel private :
string
attachedFile2 private :
string
attachedFile3 private :
string
attachedFile4 private :
string
actualHours private :
double
lastUpdate private :
date
dateCreated private :
date
Task Methods
Method Type Notes
assignToUser (string) public: void param: userld [string - in |
'assignToUser' method is used to assign
this task to a user specified by the user-id
parameter.
assignToReviewer public: void param: reviewerld [string - in |

34

(string)
'assignToReviewer' method is used to

assign this task to the reviewer specified by
the reviewerid parameter.

dependOnTask (int, public: void param: dependencyType [int - in |
string) param: taskld [string - in |

'dependOnTask' method marks the
database so that this task will depend on
the task specified by the taskld, by the
relation specified by the dependencyType.

needsMaterial (double, public: void param: quantity [double - in]
string) param: materialld [string - in |

'needsMaterial' assigns the specified
quantity of the specified material to this
task. The corresponding price will be
decreased from the project budget.

userStartedWorkOn public: void param: userld [string - in |
(string)
'userStartedWorkOn' method marks the
database showing that the specified user
started working on this task.

userFinishedWorkOn public: void param: userld [string - in]
(string)
'userFinishedWorkOn' method marks the
database showing that the specified user
finished working on this task.

delete () public: void
insert () public: void
update () public: void

addAttachment (String) | public: void param: filepath [String - in]

User

Type: public Class

Status: Proposed. Version 1.0. Phase 1.0.

Package: Component Model

Details: Created on 12/4/2004 2:06:20 PM. Modified on 12/8/2004 7:53:59 PM.

User Attributes

Attribute Type Notes

userld private : 'userld' attribute holds the id that is used as
string a unique key to specify a user. this attribute

is also used as a login-id.
password private : 'password' attribute holds the user's

35

string password.
name private : 'name' attribute holds the user's real life
string name.
middleName private : 'middleName' attribute holds the user's real
string life middle name.
surname private : 'surname’ attribute holds the user's real life
string surname.
birthDate private : 'birthDate' attribute holds the user's real life
string birth date.
speciality private : 'speciality’ attribute represents what the
string user is specialized in as an employee.
address private : 'address' attribute holds he user's real life
string address.
sex private 'sex' represents the user's sexual gender. It
Range:1 to 3: | can only have three values; 1:male,
int 2:female, 3:other
emailAddress private : 'email Address' attribute holds the user's e-
string ail address.
photo private : 'photo’ attribute holds te path to the image
string file which includes the user's photo if
submitted.
paymentPolicy private '‘paymentPolicy’ field holds integer values
Range:1 to 3: | ranging from 1 to 3, representing three
int different payment policies. These are 1, if
the user is paid monthly; 2, if the user is
paid weekly; 3, if the user is paid on an
hourly basis.
paymentAmount private : 'paymentAmount' attribute holds the
double amount that is paid to the user, for a month
(if payment policy is monthly), for a week
(if payment policy is weekly), for an hour
(if the user is paid for hourly work).
private If
emailNotificationForNew | Range:0 to 1: | 'emailNotificationForNewTaskPreference'
TaskPreference int attribute has the value 1, the user is notified
via e-mail whenever a task is assigned to
him/her; if this attribute has the value 0
he/she is not notified.
Initial Value: 1;
private 'numOfTasksPerPagePreference' attribute
numOfTasksPerPagePref | Range:1 to specifies the user's preference so that,
erence 50: when he/she views the tasks of a project,
int they are shown in groups of this quantity.
Initially it is set to 10 so that in a page at
most ten tasks are shown.
Initial Value: 10;
private : '"numOfMonthsPerPage' attribute specifies
numOfMonthsPerPagePr | int the user's preference so that, when he/she
efrence views a monthly gantt chart, at most this

much month will be shown in a page.

36

Initially this will be set to 4, so that in a
monthly gantt chart, 4 months at a page
will be shown.

Initial Value: 4;

numOfWeeksPerPagePre
ference

private :
int

'numOfWeeksPerPage' attribute specifies
the user's preference so that, when he/she
views a gantt chart in weekly mode, at
most this much week will be shown in a
page. Initially this will be set to 4, so that
in a weekly gantt chart, 4 weeks at a page
will be shown.

Initial Value: 4;

userProjects

private :
Project []

'userProjects' array holds instances for all
the projects that this user is a member of.
This field is set only if this user is the
current user of the session.

canAddProject

private :
boolean

'canAddProject' attribute specifies if the
user has the permission to create a new
project for his/her company.

userDirectory

private

Range:1 to 4:

int

'userDirectory' attribute specifies what a
user can see in his/her user directory. 1
means user can see all other users in the
same company; 2 means user can see all
other users in the same project; 3 means
user can see only the administrators; 4
means user can not see anyone so does not
have a user directory.

globalAccessRight

private :
int

'global AccessRight' attribute specifies this
user's global permissions in the system. A
value of '1' means the user is a client of a
project not an employee; '2' means the user
is an administrator and have all the global
rights; '3' means the user is a normal user
and his/her permissions are further
specifiedy other attributes.

User Methods

Method

Type

Notes

init (Sq/Connection)

public: void

param: dbConnection [SqlConnection -
in]

setUserProjects (Project

D

public: void

param: projects [Project [] - in]

getUserProjects () public:
Project []
insert () public: void 'insert' method writes the information in
this 'User’ class instance to the database,
creating a new entry in the database table.
update () public: void 'update' method updates the record of this

37

user in the database, using the current
values of the attributes.

delete () public: void 'delete' method deletes the record of this
user from the database.
setAccessRightsOfUser | public: void param: userld [string - in |

(string, string, int,
boolean, boolean)

param: projectld [string - in]

param: editTaskLevel [int - in]

param: canApproveTime [boolean - in]
param: isProjectManager [boolean - in]

'setAccessightsOfUser' sets access rights of
the user with the specified id to the
specified access rights.

createNewProject (int,
string, string, string,
double, date, date, date,
string, string, string)

public: void

param: projectTypeld [int - in]
param: contactEmail [string - in]
param: contactPhone [string - in |
param: contactName [string - in]
param: budget [double - in]
param: dueDate [date - in]
param: finishDate [date - in]
param: startDate [date - in]
param: projectDescription [string - in]
param: projectName [string - in |
param: projectld [string - in]

'createNewProject' method creates a new
project by the spcified attributes.

createUser (int, double,
int, int, int, int, boolean,
int, boolean, int, string,
string, string, int, date,
string, string, string,
string, string, string)

public: void

param: userDepartmentld [int - in]
param: paymentAmount [double - in]
param: paymentPolicy [int - in]
param: numOfWeeksPerPage [int - in]
param: NumOfMonthsPerPage [int - in]
param: NumOfTasksPerPage [int - in]
param: emailNotificationForNewTask
[boolean - in]

param: userDirectory [int - in |

param: canAddProject [boolean - in |
param: globalAccessRight [int - in]
param: address [string - in]

param: photo [string - in |

param: speciality [string - in |

param: gender [int - in]

param: birthDate [date - in]

param: email [string - in]

param: phone [string - in]

param: lastName [string - in]

param: firstName [string - in |

param: password [string - in]

param: userld [string - in |

38

'createUser' method creates a new user with
the specified attribbutes.

ceateNewTask (string,
string, string, string, int,
string, int, int, string, int,
int, date, date, date,
string, string, String)

public: void

param: atachedFile4 [string - in]
param: attachedFile3 [string - in]
param: attachedFile2 [string - in |
param: attachedFilel [string - in]
param: groupld [int - in]

param: reviewerld [string - in]
param: percentDone [int - in]
param: statusld [int - in]

param: projectld [string - in]
param: priorityld [int - in]
param: typeld [int - in |

param: dueDate [date - in]
param: finishDate [date - in]
param: startDate [date - in]
param: taskDescription [string - in]
param: taskName [string - in |
param: taskId [string - in]

createMaterial (string,
doule, string, string)

public: void

param: materialDescription [string - in |
param: materialCost [doule - in]
param: materiaName [string - in |
param: materialld [string - in |

'createMaterial' methood is used to create
new materials with the specified attributes.

createMeeting (date,
string, string, string,

date, date, date, date,
date, date, string)

public: void

param: lastReplyDate [date - in]
param: attachement3 [string - in |
param: attachement? [string - in]
param: attachement] [string - in |
param: dateOption5 [date - in]
param: dateOption4 [date - in |
param: dateOption3 [date - in]
param: dateOption2 [date - in]
param: dateOption] [date - in]
param: finalMeetingDate [date - in]
param: meetingld [string - in]

1

'createMeeting' method is used to create a
new meeting with the specified attributes.

buysMaterial (double,
double, string)

public: void

param: unitPrice [double - in]
param: quantity [double - in]
param: materialld [string - in]

'‘buysMaterial' method marks the database
so that the purchase information is
recorded.

setUserPrefencesForMeet

public: void

param: meetingld [string - in]
param: option5 [int - in]

39

ing (string, int, int, int,
int, int)

param
param
param
param

: option4 [int - in]
:option3 [int - in]
: option2 [int - in]
:option] [int - in]

'setUserPreferencesForMeeting' method

marks

the database according to the

preferences made by this user for a
meeting he/she was assigned to.

approveTask () public: void 'approveTask' method is called when the
reviewer approves a task of another user.

assignToProject (int, public: void param: taskeditlevel [int - in]

boolean, boolean, String) param: istimeapprover [boolean - in]
param: isprojectmanager [boolean - in]
param: projectid [String - in]

createCompany (string, | public: void param: companyLogoPath [string - in |

string, string, int, string, param: phoneno [string - in |

string) param: webPageAddress [string - in |
param: weekManagementPolicy [int - in]
param: companyAddress [string - in]
param: compayName [string - in]

sendNotification (string, | public: void param: attachedfile3 [string - in]

string, string, string, param: attachedfile2 [string - in |

string) param: attachedfilel [string - in]
param: notificatedUser [string - in |
param: notificationld [string - in]

40

2.2.2 CLASS ASSOCIATIONS

cd comp2
1 initislizes 1 3 4 connects
Initializer bt Session b SOER s SglCennecticn
hastctive| AR T
T g hasActive
1
Company

hasAohasLoggedin Maotification

/ hasActive
1 1

User

hesActive

hasActive hasActive hasAdtive hasictive
a1
. 1sistsOf
Material il ProjectRescurce
1 1
0.1
Project
'q
includes
a.- a1 a1 0.1 0.4
1
- istsi
Task Meeting ForumThread Q& ForumMessage
1 yifisd

e

consistsOf

1

Farum

The associations between the classes are shown on the diagram above. The class
names are used without the attributes and operations of the classes to create a clearer diagram.
The associations described here are only the static associations between classes, in terms of
aggregation, inclusion and inheritance. The dynamic relations between classes are presented
in the sequence diagram.

Session 'hasActive' Company

For every session that is started for a user, we will hold an instance of the Company
class which represents the company of the logged-in user.

Session 'hasLoggedIn' User

For every session, we will hold an instance of the User class which represents the
logged-in user.

41

Session 'hasActive' User

During a session, if the user wants to create a new user, or wants to modify/delete the
records of an existing user, then the user whose records are being modified (or created) will
be held as the 'currentUser' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Project

During a session, if the user wants to create a new project, or wants to modify/delete
the records of an existing project, then the project whose records are being modified (or
created) will be held as the 'currentProject' in the session. This determines the 'hasActive'
relationship.

Session 'hasActive' Task

During a session, if the user wants to create a new task, or wants to modify/delete the
records of an existing task, then the task whose records are being modified (or created) will be
held as the 'currentTask' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Meeting

During a session, if the user wants to create a new meeting, or wants to modify/delete
the records of an existing meeting, then the meeting whose records are being modified (or
created) will be held as the 'currentMeeting' in the session. This determines the 'hasActive'
relationship.

Session 'hasActive' ForumThread

During a session, if the user wants to view the contents of a forum thread, then the
forum thread whose records are being viewed will be held as the 'currentForumThread' in the
session. This determines the 'hasActive' relationship.

Session 'hasActive' ForumMessage

During a session, if the user wants to create a new forum message, or wants to view an
existing message, then the message whose records are being created (or viewed) will be held
as the 'currentForumMessage' in the session. This determines the 'hasActive' relationship.

Session 'hasActive' Material

During a session, if the user wants to create a new type of material, or wants to
modify/delete the records of an existing material, then the material whose records are being
modified (or created) will be held as the 'currentMaterial' in the session. This determines the
'hasActive' relationship.

Session 'hasActive' Notification

During a session, if the user wants to create a new notification, or wants to view those
notifications (which may be more than one), then the notifications whose records are being

42

created or being viewed will be held as the 'currentNotifications' in the session. This
determines the 'hasActive' relationship.

Initializer 'initializes' Session

For every session that is started for a user, an Initializer class is held to handle the
initializations both before and after the login. This determines the 'initializes' relationship.

SqglConnection 'connects' Session

For every session that is started for a user, a SqlConnection class is held to handle the
database connections both before and after the login. This determines the 'connects'
relationship.

Project 'includes' Task

For every project there are zero or more tasks that belong to the project.

Forum 'consistsOf' ForumThread

In a Forum, there may be zero or more ForumThreads. That is; a forum consists of
threads. This also determines the aggregation character of the association.

ForumThread 'consistsOf ForumMessages

In a ForumThread, there may be one or more ForumMessages. That is; a forum thread
consists of messages. This also determines the aggregation character of the association.

ProjectResource 'consistsOf' Material

Every project resource consists of some material. There may be only one material type
in a project resource.

43

2.3 SEQUENCE DIAGRAMS

«/SF pagexs
Main

«JSF pages
ErrorPage
o

&
z

e
i
e
i

:SglConnection

on{
din

acti

Conm

:Session
nnection
connect)
=g

clion:

tD B
an=false

nn

Co
[bool

SessicnConstructor
chi

boolean:= validsth

Conn
EF
'

:Initializer

og
Sql

Ly
1, userF assw:

befo
n,

on
==

inj

Sessi

|

aservlets
LoginDo Serviet

Sponse, reque

e

oPostr

d

«JSF pagex
LoginPage

44

Login

Figure 1

asenlets
AddTaskTypeServlet

5 B 5
T 5 TS SN~ S~
o g
¢ 2
b
S - - e g e g U S R L G i SR s g El5-- e e ! i i i a1 i i e g’
i F S 3
3 £
i < o i e e R g e e S B S R S gl e B S g R e R g e e R [R S g e e S R [Tl S g R e
g iy
§ i £
g2 3 Nl -
T T T e A Forgt e e e yEg [TETE
SR 85
| B) Lo
& L 5 & g =
pil B & s
& E g 5 -
L S e T e R oot g e g Gl L
5 F 3 Iy 'z 2 g
] =
& i3 =
I PN | m— T Y i TR B e R
ig e £
= & T
7] £ &
= L B B T e R e P T Tt et -5
5 = 2
o
..m*
R T R — o - T B B T o — R -~ — R e =
&
ﬁ
e e L R b R oI PR, S
&
: 8 k. ¥
i ey 2.2 .2 . .2 2. 2 @24 | o w2 e 202 =82 2. |2 2| X 2. S22 2. (2. ..2..2 (2. ¥ 2.2 .29
i = i}
- = 2 £ ¥
F BR[O e R S = Fanicl) | R il S PSR e =
i 2 = E £
5 £ & =
= E = 2 &
i . & {5t 2 §
| 170 S LR O S . I = 2 % 8 2 B9l 98 .82 £ |9 @B . © @ \» @B |»# 2. S &8 . $8 .9 @2 @2 8
I g2 -
i %
; g
S
3 E
g B
i 5 - 95 L R B e i L T i] e T R T e T~ b~
22
L S
z 2 ¥
& o L e e M R P e L e B e e {2
& [im} 3
=

ot B---- E£1 = = = =

=

45

NewProject

Figure 2

sd NewTask

B
g
A4
oo
[
hE
¥ £
[%}
=L
i
i
L E
% 1]
5 .m
5 EER
£ e
SRR e i = W
L i I -
s) I
g [T . ,.
_nvn“ : _r__ .Mm :
h o . :
% m nnm
3 : m
i]] .
g e S S o el <
: ¥
i 3 |
- A A e
o R L & i
o 5 i : _m
Low . r.
i M .]
Eowm :
, N 6 & & |lal6s| 8
e 8 B B E B OB ¥ B BoM B ¥ OB
.I T e Lt
: " 5
¥ ; m m
2 g ; m :
5= . ; |
= E g L
§ ; o
; 3 \ == &3
..........)
; § E £ |& .
(-} e Y -4
VR g gz gl %
= :
m. =]
: g
:]
g W.ow W ouwgug ul
T | s T K
L o o o
o
|
o)
B
ae
L
F o2 |-
o
g
G 3 3J3 3?33k 3EEUEyY
yF ° B B B B E B B E B Yy B OB
1% B £
W [l
L [) "
{=Ha L X
= : Y
3 A i} £E £t EEREECE R EEEE H—.ll
T _m
ff 2 B E 2 2 & E B &
5 Bf £ £ £ &£ £
2 e
a = | _ -2
& & g
I (=
i Jm &
_———
as &
4

: NewTask

Figure 3

46

sd Newlser

%
5
I E 2 2 5 9 3 2 5 9 3% 3 5 9 o 5 5.9
ik » = = v »n » v @ w B o oo om 2 =
vl 7o B B o9 7 o83 B o
Ly <[EGe ER LY 1 A | | ey | | R, i
; S
i g :
i 8
o g
2
£ g
T O T S e
R R S R . 4 g
=1 s i £
1 3
L= -
M e :
{0 :
4 it ;
3| &
: gl F
3. | —] e85 "
[I S S T i i
= i i 5 &
% .m 4 o
Aoy !
s
% 3 5 8 % 3 %.%. % 3|3 % B B ¥l B
gy wm @ da m a4 .h.m W R A~ O LS
1 i i
- = oy
w
1 Y
E e = 28 8 £ & £] 5 .
1 R P G - SO S B |m
e k- =
o
;
b+ =
g g%
8 ! g
ﬁ 3 [=8 D_.m
e £ £ ¢
2 3 j
- (%]] I
o 5 :
N il m_..m |||||||||||||||||||||||||||||||||||||||
il m e il B Wl wmom owm | wl s
g4
.m. .
i s
2 o m
: i
5 L3 T
P ,...,....,...:..........rli.hn,... £
M._s ﬂ Tlll |||||||| |.r||r||r||r||r||r||..| .E m_.
o8 1
R | 3
%3 T & 1
ey m ,H_.H mm
! ; feii
: - E=5 onoR
; =
_.__ = E

-

: NewUser

Figure 4

47

:Project

Initisliz:

=
5
Tl gl
dl 5
& g
3
m -
=]
Y= =
= C
Fi i
-
o
-
&l
3 T
gl A
E
5
ol
"
[
n
E
i
[T
n
=
T A = g
y b =
5 i &
3 w

£

£

5]

- J

z 8|
HE B
E| o
i L] I | O T
B E]
£| & Hm_
£~ z
= 2
ol E
£
5
|| SRR 7 s
3 i

SessionInit

Figure 5

48

E «wlSP pages| | «f5P pagew wservlets :Session currentTask Task wservlsts
FA Tasks Task TaskServiet TaskinOutServiet
User
' ' ‘ : ‘
Crpen Taskiinput)) . :
il : : :
1ML N2 !
‘retrieve T askitaskid) :
i : I Ll
setCumantT ask.‘T-asi-cj- :
redirect
L E]

Edit and Savellnput) .

doPostiresponse request)

Task=
getCumentTask()

™)

n

update])
| :
T 0 i T
1 ' 1 1
Cpen INOUT Request{) | 3 : ;
: : ‘ :
' ' 1 i
' ' d i 1
H ! doPostirasponse request) :
: ' ‘ :
' ' | i
' ' i !
: ' ! Task= !
H ’ J getCurmentTask])
' ' | !
: i 1 1userStartedWorkOn])
' ' 1
' ' !
1 1 1
' ' 1 1
. : : userFinishedWokon)
: : i
' ' 1
' ' 1 1
: 1 redirect :
4 | | j
R T T 1 1 1 e
' 1 1 1 1 1 l
! ' 1 ' 1 1 1

Figure 6 : WorkedOnTask

49

|
! VEEEEEERE D 8
B B i
[TEEITEmE] [mit
i
| 7
_ W : n._ %
& =
_ 2o 7 ¥
. u 4) ARSI
| [+8 Y RN i
. = o 88888 .m
| B | Pl = - = a
| & | | .m |
! : | n.ﬂ. g
| i :
i o i | |
| m n B o
| o 2R B :
e i ! 5 5N
| K § T il
m U .._.u_ e H i P D 2 o9 o B o r m.
;) = 1 | [wu__.
m .n_ | [5 —E
| I =_ : -
el : n rg |
_ n m m gl W5
n , 1
_ m W= : 2 g
_ F : i .
| W Bkl | m 173
1 e 9N 2 S P S W | n ..x....hm i
_ m |||||||||||||||||| o I _ 2 _.u_uJ
m ﬁ : ,_h _ L
z
I it | | -
| 7 s m
| m_ : | m
_ a
! m g : | H
! -
1 -H E _|m
_ | i3
‘ y !
boE R 8 o a | i
B e = _ | :
| ' ;] i o
1 il i .
i B g “
| 2 - _
| = : :
| n : i a3
| m : 14
| ; cw n 2
i ; |
| W_ M Fom
3 (i
Y : 5
| Enw - - p—
i 22 f HISELIEE
¥ L= » 15518
n__ U = g o °
| g | @ o 2 w
| m u = bole A £ & 2
g | t
| = 2 = § w
| il o0 2 :
; 1 m
i Bl d : | mn
| [==c] b BEE B =] :
1 TEEE&] =R i 15RRRR
w g l.ﬂ_u |||||||||||||| | = ﬂ m |||||||||||||||||||||||||||
| N. .m —. .m_ A H w« 4 m i SR
2 | 1 ,_
H % u) = .o ; & 5 n._ i
53 B i at » w
| ¥ & il o~ @8 5 F
I o _ |
o - |
!) P i !
& 2 2l 2 28 52 2 " - 3
m = Bap BB 8 8 8 DR | &0 { P S
n | .n ! ..Fl 2 o g
L &
] gy & y |
= Skl _m :
[T & d
g 3
B
| 2
L
=
5

50

BuyMaterial

Figure 8

«JSP pages

g

AN

Resources

ProjectAdmin

«]SP pagex
CreateMaterial

wsarylats

[Createlaterial Serviet

:Session

currentUser :User

'

' .

Create Material Request()
-

Enter and Save{lnput)

doFostresponse reguest)

Lol |

'
oreatelaterial{materis| Desoription, materislC

ost,materiaMame materislld)

:Material

Material:= Material{Input)
——

tMaterial{Materialy
; rediract
Figure 9 : CreateMaterial
sd Import/Export
Sz «/5P pages wservlets «l5P pages wservlets
FAY Import Import Serviet Export ExportServiet
User
: i i
Select File to Import{input) :
Ll 1
dEFE‘St!’EE:D[}I’:SE,'E:hESt}E
I | ol

Select Project to Export])

Impcrt{FileMams)

Give FileName to Export])

Select Project for Ex_:.}z it}

 §

h |
o O e B A e RO e SOOI o SRR, s

h §

doPost{response request)

_—

export{Filename,projectid)

Figure 10 : Import/Export

51

sd InformMeetingPreferences /

S:_"' «/S5P pages «/5F pages wsarviets :Session currentllser :User
FAY Meetings Arrangedieeting| [ArrangediMeeting Serviet
User

1
Select Mesting{mestingld)
|l

Mesting:= retrievelMesting{meetingld)

setCumenthlesting

redirect

Select Preferences() .

gl

doPostiresponse, reguest)

Meeting:= getCumentiesting

User= gEt-.-h"":r'tL-EF i

setlbserPrefencesForl le=ting{lnput)

T;

—
'
]
'

Figure 11 : InformMeetingPreferences

52

2 ISP pages «l5F pages wservlets

P Login InitializeCompany InitializeCompany Serviet
Ad::nir:

i !

New Company Reguest()

redirect

~ 1
Enter and Savellnput) !

o

doPostiresponse reguest)

| ‘Company
Company:= Company{lnput)
2t il et

insert() i

U+ SO - S

Figure 12 : InitializeCompany

53

52 «/5P pages «I5P pagex «ISF pages aserylets
FAY Reports TaskReport TimeReport TaskReportServiet
User
: T T T T
: i i i i
Select Task or Time Report({id) : p !
Ll ‘ 1 1 1
h 1 I
[id=Task Report]: redirect : :
3 Lan i I
. 1 I
\ [id=Time Report]: redirect ol '
1 L] :
" 1 1 1
Select the Filt =1 c]
1 '—'L'_| 1 I
Execute and Savethe Filterfiltername) . i 1
1 . i i
; doPostiresponse,request) g
: : o
| ; Filter
' : Filter:= Filter{Input)
1 | —
1 i
1 1
i i
: , !
! ! -;EnE.’StEREDC"l!FiHE-’:IX
1 1
L 1 L 1
: , : : ,
: 1 1 1 1
; , , : :
L 1 1 1 1
; , , , |
. 1 1 1 1
; , , , ,
X 1 ll 1 1
Figure 13 : Reports
R S U S
sd ReviewTask 7
SZ «/SP pages «J5P pages aserviets (Session currentlser :User
Y RewviewTasks RewviewTheTask RewiewTheTask Serviet
Reviewer
; , , . . ,
! 1 1 l 1 1
Select Task to Review() : ! ' !
- 1 I 1 I
i i i i
1 1 1 I
redirect ! : : i
1 1 I
1 1 I
i i 1 i I
. 1 1 1 I
Feview/boolean) o ! L !
i Ll | 1 1 I
1 1 1 I
1 1 1 I
i doPostiresponse, requesth , ;
: - : :
i Task:= retrieve T ask(taskld) i
. L] |
| setCumentTask(Tazk) | i
E = :
! User:= getCumentUser | !
: by B i
1 T I
1 ' |
! spproveT ask{taskid, boclean))
1 i
: L ' !]
1 i 1 |
' 3 1 1 '
i Iecues : ' i
L™ 1 1 I
L] L 1 ' I
v 1 1 1 1 1
! 1 l]] 1
' ']] 1 1

Figure 14: ReviewTask

54

$ xJ5P pagen «JSP pagex aserviets (Gession User
Fis Motifications Sendiotification SendNotification Servlet
Lfser
L} 1
Send Notification Request))
e 1
i
L redirect !
Enter and Send{lnput) :
v L |
'
'
: doPostiresponses request) s
1 L |
J User:= getCumantlUsan),
1
i sendMotification{input) -
H ""
'
i -Motification
4 Motification:= Metificstion{lnput)
H) 1
H redirect !
i : 5 ;
\ . insert{) ey
] G|
x

Figure 15: SendNotification

Login Messages

This diagram specifies the session initialization and login procedure in DProject for
every user. User starts with the page ‘Login.jsp’ and after entering his 'company name',
'user_id' and 'password', the page calls the doPost method of the ‘LoginServlet’. Servlet calls
the beforeLogin operation of the Initializer class. This operation constructs a session and
creates connection for database by using the SQLConnection class. Then servlet calls the
‘Initializer.login’ operation of the ‘Initializer’ that checks the user login and password and
returns whether user is authorized or not in which an error page is shown by the system. After
that, authorization servlet calls the ‘afterLogin’ operation and this makes the necessary
initialization for the Session variables. We show this initialization part at SessionInitialization
diagram. Finally, the page is redirected to ‘Main.jsp’.

NewProject Messages

This diagram shows the complete process of creating a new project. User can only
create the project and leave the process but diagram shows the whole creation scneario for the
user. Firstly, a new project is created using the general information about the project by the
operation ‘User.createNewProject()’. This operation creates a Project by calling the
constructor of Project with the necessary input as argument and calls the ‘insert()’ operation
to create the project in the database. After creating project, it sets the currentProject to this
new project. Then ‘EditProject.jsp’ page is redirected which enables the user to edit general
information in the created project. After that, user decides to assign the users to project which
redirects the page to AssignedUsersForProject. This page shows the assigned users for this
project which is empty since it is a new project. When ‘Assign a User’ request comes from
user the page is redirected to ‘AssignUserToProject.jsp’. After specifying the user and his/her
access rights for the project, page calls doPost method of the associated servlet. This servlet
takes the currentProject object from the session and calls its ‘assignToUser’

55

operation which makes the neccesary addition to database. The third stage is the adding ‘task
types’, ‘task priorities’, ‘task statuses’ to the project. In this diagram only ‘adding task type’ is
shown. For these processes, associated servlets take the ‘currentProject’ from session and call
the related operation of the ‘currentProject’ object.

NewTask Messages

This diagram shows the process of creating a new task for specified project. When
user requests to add task to project the page redirects to the ‘AddTask.jsp’. Then user
specifies the information about the task and submits to create a task. Then page call the
servlets ‘doPost’ method which gets the currentUser object from session and calls the
‘createNewTask()” method of this object. Then servlet sets the currentTask to this task and
calls the ‘insert()’ method of the ‘currentTask’ object. After creating the task the assignation
and adding attachment phases are done which are very similar to this phase.

NewUser Messages

Like above, this diagram shows the complete process of creating a user which also
includes the assignation of the created user to some projects. The general information is used
for creating the user by the operation ‘createUser’ of the ‘currentUser’ object. This operation
creates the user object and calls its insert method to insert the user into database and sets the
editedUser to this user. In the second phase ‘AssignNewUserServlet’ takes the ‘editeUser’
from session and calls the ‘assignToProject’ operation of this object.

SessionInit Messages

This diagram shows the intialization process of the DProject. ‘Session.init()’ calls its
variables' ‘init()’ operations. The currentCompany, currentUser objects won’t change during
the session. The currentProject object will show the the project that is open during the session.
We also initialize the users' projects for later usage.

WorkedOnTask Messages

This diagram shows how the user can edit his work for a specified task. Editing the
information and opening the In/Out processes shoud be treated as seperate processes but we
show them together here one after the other. User selects one of his/her tasks to edit which in
turn calls the Session.retrieveTask(taskid) operation and this operation returns the Task object.
Then this page sets the currentTask to this task and redirects to ‘Task.jsp’. Edited information
is passed to Servlet by doPost method and servlet takes the currentTask from the session and
call ‘update()’ operation of the ‘currentTask’ object.

The other phase is opening or closing the In/Out option. When user requests this
operation, the ‘TasksInOutServlet’ takes the currentTask object from session and calls
userStartWork() or userFinishWork() operations. These operations make the necessary
changes on database.

ArrangeMeeting Messages

In the Meetings page, if user requests to arrange a meeting, page is redirected to
‘ArrangeNewMeeting.jsp’. User specifies the necessary information and submits the meeting.

56

Then the page calls the doPost method of the related servlet. Servlet gets the ‘currentUser’
object from the session and calls the ‘createMeeting()’ operation of this object. This operation
creates a Meeting object and calls the ‘insert()’ method of this object which builds the
meeting in the database.

BuyMaterial Messages

This diagram shows the process of purchasing some quantity of specified material to
project. In the Resources page user can see the project resources and defined materials. If he
select a material page redirects to ‘Material.jsp” which shows the materials properties. Then
user request to purchase some quantity of this material type which redirects to page
‘BuyMaterail.jsp’. After spectiying amount of material that is bought page calls the servlets
doPost method. Servlet gets the currentUser object from the session and calls the
buysMaterial() method of this object. This method get the ‘ProjectResources’ of the
‘currentProject’ object and call the setQuantity() to set the new quantity to database and to
object.

CreateMaterial Messages

This diagram shows the sequence of the processes for defining a new material for
company. From the Resources page user can request to define new material which will
redirect him to ‘CreateMaterial.jsp’. In this page user specifies the information about the
material and submits to create the material which calls the servlet's doPost method. Servlet
gets the currentUser object from the session and calls the createMaterial() method of this
object. This method creates a Material object and calls its insert() method to create the
material in database.

Import/Export Messages

This diagram shows the process of importing and exporting files for specified project.
We show the processes as one after another but these processes are seperate. For the import
phase, user write the file to import and submit this request. Then page calls the related
servlet's doPost method which in turn calls its Import() method to import the information to
database. Second phase includes exporting a project to a file. User selects a project and a
filename and submits its request to export for the project. Then the servlet is called and it
creates the file using the information in the database.

InformMeetingPreferences Messages

This diagram shows the process of specifying the date options for the potential
meeting which are stated by the potential attendant of the meeting. User selects a meeting that
he will participate and this redirects the page to ‘ArrangedMeeting.jsp’. This page calls the
servlet's method after getting information from the user. Then servlet gets the currentUser
object from the session and calls the setUserPreferencesForMeeting() method to save the
information into database.

57

InitializeCompany Messages

This diagram shows the creation of new company process in Dproject. This process is
used only once for the company by the admin of it. In the login page, if the user requests a
Create Company operation, page redirects to the ‘InitializeCompany.jsp’. User specifies the
information for the company and page calls the doPost method of the servlet. Servlet creates
an object of Company and calls insert() operation of this object which creates a new database
(with the name of the company) in DBMS.

Reports Messages

This diagram only shows the process of creating a new task report which is very
similar to time reports. User selects the filter and submits his request to generate report.
Servlet's doPost method is called and this method generates the report from the information in
the database. If the user also wants to save this filter by giving a name to it, servlet creates a
‘Filter’ object and calls its ‘insert()’ method to create the Filter in the database.

ReviewTask Messages

This diagram shows the process of reviewing the works of users on tasks and rejecting
or accepting them. Page calls the servlet's doPost method after reviewer selects the task to
review. Servlet calls the session's retrieveTask() method which returns a Task object to take
the related Task from database. Then it takes the currentUser object from the session and calls
its approveTask() method to save the decision of the reviewer into the database.

SendNotification Messages
This diagram shows the process of sending a notification to another user. Servlet gets

the ‘currentUser’ object from session and calls the sendNotification() method for creating the
notification in the database. This method create the notification and calls its ‘insert()’ method.

2.4 ACTIVITY DIAGRAM

Activity diagram can be found in the Appendix since it does not fit on an ordinary A4
page.

The explanation of the activity diagram is below:

The activities are started by displaying the login screen.

- The user will fill in with his/her id and password, after the user enters his/her id
and password these information will be compared with the one that will be
retrieved from the database. If the password turns out to be valid then the main

screen will be displayed, if the password entered by the user turns out to be invalid
then we return to the initial screen.

58

First of all, some information isn’t shown in this activity diagram for the sake of
simplicity. The omission is; after main screen is displayed, the user can select display main
screen link or logout link any time s/he wants.

In the main screen the user has the following options:

- If the user selects ‘Send Notification’ link then the notification form will be
displayed. And the user will fill in. Then the user will click send button and the
notification will be sent to the specified users. (As I mentioned in the beginning, in
any of the stages, the user can select the ‘Main Screen’ link so that the notification
process will be canceled and system will return to the Main screen. Also the user
can select ‘Logout’ in any stage so that the system will terminate the session.
These possible activities won’t be specified in any other option.)

- If the user selects ‘Create new filter’ link then the new filter creation form will be
displayed. And the user will fill in. Then the user will click save button and the
filter will be stored in database.

- If the user selects ‘Edit Preferences’ link then the ‘Preferences Screen’ will be
displayed. And the user will edit his/her preferences. Then the user will click save
button and the preferences will be stored in database.

- If the user selects ‘Generate Statistics Link’ link, then s/he will select the filters to
be applied. After that the statistics will be generated and displayed depending on
the filters selected by the user.

- If the user selects ‘Help’ link then the ‘Help Screen’ will be displayed. And the
user will enter the topic that s/he wants to get information about. Then the system
will display the information about the topic if there is any record about that topic
in the database.

- If the user selects ‘Forum’ link then the ‘Forum Screen’ will be displayed. After
that user can either read a message or write a new message. If s/he wants to read a
message, s’he will simply select the thread and the message will be displayed. If
the user wants to write a new message, s’he will select the thread under which s/he
wants to write new message and then will write the body of the message and click
the send button after that the message will be stored in database.

- If the user selects ‘Reports’ link then the ‘Reports Screen’ will be displayed. After
that user has two other options :

o If the user selects ‘Import Report’ link, the report will be fetched from
user’s computer and will be viewed.

o If the user selects ‘Generate Report’ link, s/he will specify the type of the
report and the filters to be applied and after that system will generate the
report based on this selections and display it. In this stage user can select to
export the report into his/her computer or go back to the main reports
screen.

- If the user selects ‘Administration’ link then the access rights of the user will be
checked. If the user doesn’t have the necessary rights, s’he won’t be able to do any
administration operation and ‘Main Screen’ will be displayed. Else if the user has
admin rights ‘Administration Screen’ will be displayed. And the user can either
select to create a new user account to the system or create a new company account.
In either case, admin will enter the necessary information, then select the save
button and the records will be saved in database.

- If the user selects ‘Arrange Meeting’ link then the access rights of the user will be
checked. If the user doesn’t have the necessary rights, s/he won’t be able to

59

arrange any meeting and ‘Main Screen’ will be displayed. Else if the user has
enough rights user will specify the potential dates and the attendants of the
meeting. After the potential attendants of the meeting stated their choices, user will
fix the details of the meeting depending on these choices. And then user will select
the save button and the records will be saved in database.
If the user selects ‘Projects’ link then the ‘Projects Main Screen’ will be displayed.
In this stage, user has following options:
o User can view the details of a project by selecting ‘View Project’ link.
After this selection the system will display the project details and now user
has another two options:

If the user selects ‘Export Project’ link, the project will be saved in
a file into the user’s computer.

If the user selects ‘Task creation’ link, then the access rights of the
user will be checked. If the user doesn’t have the enough rights,
s’/he won’t be able to create any task and ‘Projects Main Screen’
will be displayed. Else if the user has enough rights, s/he will enter
the necessary information to create a new task (task name, assigned
users, etc) and hit the save button. After that new task will be saved
in the database.

o User can select ‘Create New Project’ link. Of course, first of all the access
rights of the user are fetched from the database to see whether s/he has the
necessary access rights to create a project and if not user won’t be able to
create the project and ‘Projects Screen’ will be displayed. Else if the user
has enough access rights, s/he will specify the creation type (from template
or from scratch). To create project from template, the project file is fetched
forum user’s computer and for the other case a blank project is created and
the user enters the necessary information about the new project (name,
tasks, assigned users, etc). After that system saves the project in database.

If the user selects ‘Tasks’ link then the ‘Tasks Main Screen’ will be displayed. In
this stage, user has following options:

User can select ‘View Tasks’ link. In this case, the access rights of
the user will be checked. If the user doesn’t have the enough rights,
s’/he won’t be able to view any task and ‘Tasks Main Screen’ will
be displayed. Else if the user has enough rights, task will be
displayed. Now, user can either choose to send the finished tasks to
the reviewer or work on a task. If the user selects to work on a task,
it will be checked that whether the task is assigned to the user. If
it’s not, the user won’t be able to open in/out and ‘Main Tasks
Screen’ will be displayed. Else in/out will be opened, the user will
work on the task and in/out will be closed.

User can select ‘Review Tasks’ link. In this case, the user will
select from the finished tasks which are sent for reviewing and if
the reviewer of the task is assigned to be the user, s/he will be able
to review the task and either accept or reject the work done. In
either case, a notification is sent to the user who did the task and if
reviewer rejected the work done, task will be marked as undone and
the assigned user will have to do it again.

If the user selects ‘Logout’ in any stage then the system terminates the session.

60

2.5 STATE DIAGRAM

sm Statecharts

. Web browser openad /Call Session beforelogin{)

Waiting for login

Handling forum
operations

|d&password entered /Call Session afterlogind)

Forum operation request /Csll Session retrieveForum TheeadTitles

Vaiting for
command

Handling task

operaticns Task operstion reguest /Call Session.s=tCumrentTask

J

“ Project cperaticn request /Csll Sessicn.setCumentProjed

Handling project
operations

Reportfstatistics opkrsticn request /Csll sppropriste reportéstatistics method

Matification operation request /Csll Session.setCumentNotification

Handling
reporidstatistics
operations

Handling
netification
operations

Request served
Mesting operaticn request /call Session setCumenth=sting

Reguast served

Handling meeting
operations

Request served

Request served

Reguest served

Reguest served

Figure 1: Session class state diagram

When the user opens the address of the project management tool in his browser, a
session is created and its beginLogin method is called, triggering a translation from the initial
state to the Waiting for login state. When the user enters his id and password correctly, the

new state is Waiting for command state, in which requests of the user are being waited to be
handled.

There are a number of possible translations from the Waiting for command state. The
state changes to:

- Handling task operations state, if the user makes a task operation request

- Handling project operations state, if the user makes a project operation request

- Handling notification operations state, if the user makes a notification operation
request

61

- Handling meeting operations state, if the user makes a meeting operation request

- Handling report&statistics operations state, if the user makes a report&statistics
operation request

- Handling forum operations state, if the user makes a forum operation request

sm TaskOpr
. View tasks request

I//_ Rewviewing task -\\

Rewviewing work

Ehh__“‘-hh- done

Review task reguest

Displaying current
tasks

new task request

fCreate new tssk/

‘Waork on task request /Call Task userStartedWekOn
Work rejected ‘Work accepted

I'J/— Creating new task -\\

Setting up task

Accepting work
dane

Rejecting work done

information

Working on task

o o

Tazk oreated succesfully
‘Call Task.assignTollser

User finished working /Call Task userFinishedWokCn

Assigning users
Request task details /Get task details

Viewing task details

User(s) sssigned /Call Task assignToReviewsr

Assigning

reviewers 4
Task status updated

Task is viewsd

Reviewers) assigned

Figure 2: Task class state diagram

When the user makes a view tasks request, a transition occurs from the initial state to the
Displaying current tasks state.

When the user wants to create a new task, a transition occurs from the Displaying
currents tasks state to the Creating new task state. This state has three sub-states, namely the
Setting up task information state, Assigning users state, and the Assigning reviewers state. In
the Setting up task information sub-state, the necessary information for the creation of a task
is entered. When this necessary information is provided, a translation occurs to the Assigning
users state, in which the task is assigned to users. When the assignation is done properly, a
transition occurs to the Assigning reviewers state, in which reviewers are assigned to the task.

When the user wants to review a task, a transition occurs from the Displaying current

tasks state to the Reviewing task state. This state has three sub-states, namely the Reviewing
work done state, Rejecting work done state, and the Accepting work done state. The user

62

reviews the task in the Reviewing work done state. Depending on the decision of the reviewer,
a transition occur either to the Rejecting work done state (the work done is rejected), or to the
Accepting work done state (the work done is accepted).

When the user wants work on a task, a work on task request causes a transition from
the Displaying current tasks state to the Working on task state.

When the user wants to view the details of a task, requesting the details of the task
causes a transition from the Displaying current tasks state to the Viewing task details state.

sm ProjectOpr -~

. View project request /Csll Session.retrieveProject

Viewing project

Rescurce management request /Call Project. getProjectResources

Human management request /Call Project getProjectUserdameas

/_ Handling resource management \

Wiewing project
reSOUrces
- - T

Attach rescurce request /Call Task.hashMaterisl

o Handling human management 3

Wiewing human
resources

Assign new user request /Call Project. sssignTollser

Assigning
rescurces to
projecttasks

Create new user request /Set user datails

Assignning users

Assign new user reguest’Call Project assignTolser

Update budget request /Call Project. setBudget
Add new rescurce reguest /Call Project. hashMaterial

Updating project
budget
Adding newr
resource to project

. o

Regquest project details /Get project details

Creating users

Add new project reguest /Set project details

Viewing project

Creating new :
details

project

Human management cperstion handled Rescurce mansgement cperation handlecd

Project detils viewed

Project oreated

Figure 3: Project class state diagram

When the user makes a view project request, a transition occurs from the initial state to
the Viewing project state.

When the user wants to perform human management operations, a transition occurs

from the Viewing project state to the Handling human management state. This state has three
sub-states, namely the Viewing human resources state, Assigning users state, and the Creating

63

users state. The user views that human resources of the project in the Viewing human
resources state. If the user wants to assign a user to the project, a transition occurs to the
Assigning user state. If the user wants to create a new user, a transition occurs to the Creating
users state. If the user wants to assign the newly created users to the project, a transition
occurs to the Assigning users state.

When the user wants to perform Resource management operations, a transition occurs
from the Viewing project state to the Handling resource management state. This state has four
sub-states, namely the Viewing project resources state, Assigning resources to project tasks
state, Updating project budget state, and the Adding new resource to project state. The user
can view the project resources in the Viewing project resources state. If the user wants to add
a new resource to the project, a transition occurs to the Adding new resource to project state.
If the user wants to update the budget of the project, a transition occurs to the Updating
project budget state. If the user wants to assign resources to any of the project tasks, a
transition occurs to the Assigning resources to project state.

When the user wants to create a new project, a transition occurs from the Viewing
project state to the Creating new project state.

When the user wants to view the details of a project, a transition occurs from the
Viewing project state to the Viewing project details state.

sm NotificationOpr -~ ‘

Wiewing notification

. Wiew notification request /Get notification details

Downlosad attachement requast /Call Notification getattachedFils

Downloading
attachements

Send notification reguest

i Sending notification iy

Meotification composed /Call Motification. setMotificatedUser

Receivers set /Call Notification. setAttachedFiles

Attaching files

. ==

Attachements downloaded

Motification sent

Figure 4: Notification class state diagram

When the user makes a send notification request, the transition occurs from the initial
state to the Sending notification state. This state has three sub-states, namely the Composing
notification state, Setting receivers state, and the Attaching files state. The user composes the
notification in the Composing notification state. When the notification is composed, a
transition occurs to the Setting receivers state, in which the receivers of the notification are set.
When the receivers are set successfully, a transition occurs to the Attaching files state, in

64

which the files (if exists) of the notification are attached to it. After this state, the notification
is ready to be sent.

When the user wants to view his notifications, a transition occurs from the initial state
to the viewing notification state. If the user makes a download attachments request at this
state, a transition occurs to the Downloading attachments state.

sm ForumOpr

Viewing forum Viewing forum
. View forum request /Get forum threads View thread request /Get thread information

Compose forum thread request /Set thread information

Sending forum /
thread Thread sent @

Figure 5: Forum class state diagram

When the user wants to view the forum a view forum request causes a
transition from the initial state to the Viewing forum state. If the user wants to view a thread
in the forum, a view thread request causes a transition to the Viewing forum thread state.

When the user wants to compose a forum thread, a compose forum thread request
causes a transition from the initial state to the Sending forum thread state.

65

sm MeetingOpr

Viewing meetings Wiewing meeting
. View meetings requests /Get meetings View details request /Gat meeting details details

Amange meeting reguest

Sending mesting preferences sequest l'/_ Sending meeting preferences \

\ Viewing possibla
T - meeting details
(/_ Arranging meeting \
Setting new
roeeting el Freferances choosen /Call Usar setUserPrefersnossForleating
Detsils set /Call Motification setiotificated User
Setting meeting
preferences

Sending
notifications to
potential attendants

Potentist sttendants responded /Call Mesting insert

Fixing meeting
details

Dietails fixed /Call Motificstion.setNotificatedUser

Sending
notifications to
attendants

Preferences sent

Mesting anranged

Details viewed

Figure 6: Meeting class state diagram

When the user wants to arrange a meeting, a transition occurs from the initial state to
the Arranging meeting state. This state has four sub-states, namely the Setting new meeting
details state, Sending notifications to potential attendants state, Fixing meeting details state,
and Sending notifications to attendants state. In the Setting new meeting details state, the user
specifies options for meeting details (e.g. meeting place, date). When these are set, a transition
occurs to the Sending notifications to potential attendants state, in which the potential
attendants are notified of the meeting options. When the potential attendants notify the
arranger of their preferences, a transition occurs to the Fixing meeting details state, in which
all the details of the meeting are fixed. Then the exact details of the meeting are sent to the
attendants in the Sending notifications to attendants state.

When the user is a potential attendant of a meeting and wants notify the arranger of his
choices, a transition occurs to the Setting meeting preferences state. This state has two sub-
states, namely the Viewing possible meeting details state and the Setting meeting preferences
state. The user views the possible meeting options in the Viewing possible meeting details
state. When he wants to set his preferences for that meeting, a transition occurs to the Setting
meting preferences state.

66

2.6 DATABASE DESIGN
2.6.1 ER DIAGRAM

Meeting

User

Has
Notification

Project

Invelved
In Project

Notification
Company
Has
Forum Thread
Haz
Forum s !

2.6.2 DATABASE TABLES

USER
userid
password
date created
last visit time
first name

Buy:

Tazk
Aszvigned
To

Work: On

Eeviewsz

Haz

Mezzage

PRIMARY KEY

67

Material

Project

Mlaterial

Material

Task

Message

Filter

History Trail
Item

last name

phone

email

birth date

gender

speciality

photo

address

global access_right
can_add project
user_directory

email notification NewTask
num_of tasks per page
num_of months per page
num_of weeks per page
payment_policy

payment _amount

user _group id

COMPANY
company id PRIMARY KEY
company_name
company_address
contact_info
logo
email server
webpage
timezone format
forum_id

TASK
task id PRIMARY KEY
task name
task description
start_date
due date
finish date
priority id
type id
project _id
status_id
percent_done
reviewer id
group id
attached filel
attached file2
attached file3
attached file4
actual hours
last update

68

date created
last reviewed percent done int

HISTORY TRAIL ITEM
history trail id PRIMARY KEY
task 1d
user_id
modification_type
old value
new_value

MATERIAL
material id PRIMARY KEY
material name
material cost
material description
created date
creator user id

PROJECT
project_id PRIMARY KEY
project name
project_description
project_creator
create date
start date
finish date
due date
budget
contact name
contact _phone
contact_email
project_type id

FILTER
filter id PRIMARY KEY
selected user id
selected project id
selected paymentpolicy id
selected salary comparison
selected salary quantity
selected age comparison
selected age
selected gender
selected global profil
selected time entry mod
selected start date comp
selected finish date comp
selected finish date
selected due date comp

69

selected due date

selected priority id

selected type id

selected status_id

selected percent done comp
selected percent done quant
selected reviewer id

selected group id

selected actualhours comparison
selected actualhours

selected projectstartdate comp
selected projectstartdate
selected projectfinishdate comp
selected projectfinishdate
selected projectduedate comp
selected projectduedate

selected projectmanager id

FILTER MEETING
filter id PRIMARY KEY
selected creator id
selected final meeting date comp
selected final meeting date

MEETING
meeting_id PRIMARY KEY
final meeting date
date optionl
date option2
date option3
date option4
date_option5
creator userid FOREIGN KEY (user)
create date
attachmentl
attachment2
attachment3
last reply date

NOTIFICATION
notification_id PRIMARY KEY
notificated user FOREIGN KEY (user:user_id)
notification_type
owner of action FOREIGN KEY (user:user_id)
date of action
attached filel
attached file2
attached file3

70

Task Depends On
task id1 PRIMARY KEY
task id2 PRIMARY KEY
dependency type

User Has Meeting
user_id PRIMARY KEY FOREIGN KEY
meeting_id PRIMARY KEY FOREIGN KEY
user_selected optionl
user_selected option2
user_selected option3
user_selected option4
user_selected option5

Task Needs Material

task id PRIMARY KEY FOREIGN KEY
material id PRIMARY KEY FOREIGN KEY
quantity

Project Has Material

project_id PRIMARY KEY FOREIGN KEY
material id PRIMARY KEY FOREIGN KEY
quantity

User Buys Material

purchaser id PRIMARY KEY FOREIGN KEY
material id PRIMARY KEY FOREIGN KEY
project id PRIMARY KEY

quantity

unit_price

date PRIMARY KEY

Task Assigned To

user_id PRIMARY KEY
task id PRIMARY KEY
date

assigner id

Works On
user_id PRIMARY KEY
task id PRIMARY KEY
start date PRIMARY KEY

finish date
i1s_approved

Has Access Right
user_id PRIMARY KEY
project id PRIMARY KEY
is_project manager
can_approve time

71

can_open_project
can_arrange meeting
level

PRIORITY TABLE
priority id PRIMARY KEY
priority name

TASK TYPE TABLE
task type id PRIMARY KEY
task type

PRIORITY TABLE
priority id PRIMARY KEY
priority name

STATUS TABLE
status_id PRIMARY KEY
status_name
status_image

GROUP_TABLE
group _id PRIMARY KEY
group name

group logo

PROJECT TYPE TABLE
prpject_type id PRIMARY KEY
project_type

FORUM
threadid PRIMARY KEY
subject
creator
date created

MESSAGES
messageid PRIMARY KEY
threadid PRIMARY KEY
message

title
message owner
date

3. PROJECT SCHEDULE

Project schedule is found in the Appendix since it does not fit in an ordinary A4 page.

72

