DEVELOPER’S GUIDE

MODULES

Maths

This module is implemented to simplify the use of mathematical operations. The most important classes in this module are VECTOR3D and Plane classes. Also there is a Matrix class for matrix operations. All the functions related to points and planes are implemented. These functions are used extensively in the other parts of the code so if you change one of them, the code will have to be changed also.
e.g.

VECTOR3D::Normalize,GetRotatedAxis,IsInsideBox etc.
PLANE::Normalize,GetDistance,SetFromPoints etc.
Extensions

In this module some of the extensions of opengl are implemented, such as multitexturing. We have taken this code from the web.

Animation

This module contains the implementation of CmodelMD3 class. It is used to create models, load them and their animations, and destroy them. Inside character class, there is a CmodelMD3 object for each character. The RenderScene function lets the model to be rendered on the screen. The ChangeCharacterAnimation supplies the character’s animation to be changed. Md3_Init takes the initial values of the model, such as the starting animation of the model and the textures. It uses the model_name,model_path,gun_name,gun_path, which have been previously initialized in the character module.
Character
This module contains the characterList and the character classes. When the program is run, a characterList object is created in the Main module. As this object is created the constructor is supplied with the filename that contains the model filenames necessary for that level. This filename (for the characterList constructor) is by default characterList.txt.

The format of this text file is as follows;

The first line contains the number of models in that particular level. On the next lines, the paths of the files that contain the data of the models’are given. The position of the path of a character in this file determines is characterID.

The format of the model text files (e.g. bunker.txt) are as follows;

The first line contains the name of the model (.md3) file. Then the path of the file. Then the next line contains the name of the name of the weapon the model is holding, then the path of the weapon model. The last line contains the scaling factor of the model.

The AI() function of the character class reads the properties of that character from the script file, e.g. character’s mission in the game, the path it has to follow etc. So it determines the behaviour of the character such as if it sees the hero, it decides whether to follow him, or shoot or shoot and follow at the same time, therefore the AI changes the animation accordingly.

All the functions of the character class are called inside the AI() function such as GoBack, ChangeAnimation, IsHeroVisible, ShootHero except the Init and Render.
BSP
This class is responsible for the loading of the bsp format map. The name of this map is read from the first line fo the file config.txt. Other than loading the map, collision detection is as important. This is accomplished by the use of the trace function. This function is fed with the start and end points and an outputFraction. As long as the outputFraction is 1.0f then there is no collision on the map with the hero and this function returns true otherwise false. Any alterings in this module outside the walking_camera.cpp may create huge problems.

Walking_Camera class holds the data of the hero such as position, direction etc., and passes messages to bsp inorder to detect collision. Mainly there are 3 functions;

HandleHeight: This is where the gravity is implemented so that if the hero is on air then he falls, until he collides with a plane on the xz axis. Other than that climbing stairs and going down the stairs.

CheckForCollision: Given the start and end position the hero tries to move to this function returns a value between 0 and 1 indicating how far along he can move. If zero he cannot move at all. If between 0 and 1 then there is collision but he can move a bit. If 1 then there is no collision at all.

CheckForMovement: Controls the movements of the hero. userInput module asigns the values taken from the user’s according to mouse and keyboard inputs, to the fStrafeSide, fStrafeAhead variables inside the walking_Camera class and this function determines the vector of the movement direction with respect to these values.

Sound

This module contains the soundList and sound classes. For each level a soundList object is created using a text file containing sound information. The file has a default name given in the main module called sound.txt. This file is in the Sound folder and its format is as follows; In the first line there are 2 numbers with a space in between. The first number is the number of background music in the level and the second is the number of sound effects. Then the names and paths of these sound files are given, background music files followed by sound effect files. The sound module is simple. In the constructor of soundList SDL is initialized. In the initialize function the constructor of each sound file’s init is called. And in the init of the sound class the file is loaded. Other than init in the sound class there is a playmusic function for playing of the music and musicDone function that stops it. For sound effect not to disrupt another sound, ie for them to be played simultaneously a different channel is used for each one. For efficiency purposes the channel number is not given in the beginning but assigned when it is going to be played.

Display

 As the name implies, this module’s responsibility is to render everything on the screen. The RenderPausedMenu, and RenderMainMenu are the functions that display things seen out of the game. RenderLevel displays the scene related things, and it is the main function. Main module decides which render to call. There are a lot of loading functions other than rendering. These functions are the places where everything’s textures other than the map and the models are loaded. Such as menu textures, weapon effect textures or the textures of buttons on the map.
Weapon

Its structure is similar to the animation class. The only difference is that the loaded models do not have animations, which makes them static models. These model’s classes are weapon_CmodelMD3.

UserInput

The required operations are done to the keyboard and mouse inputs here. The main function is KeyboardMouseInput(). The operation is done here with respect to the different inputs. Other than this there is a function named HandleMessages() where messages are handled and updates are made. Also there is a function, ShootHero() which is called when the hero shoots. It finds the point the bullet hits on the map or an enemy model by making use of the trace function that is used for collision detection.
MAIN

OpenGL and Python are initialized here. This is the entry point of the game. The main loop of the game takes place here.
PYTHON SCRIPT FILE
ButtonChunk Class:

Each door on the map has an associated button chunk object with it. This object holds the password of that door to open. It has a position value, for it to be rendered on the map.
ButtonList Class

This class holds list of all the buttons on a level. It has functions for doing some simple tasks, such as getListLength which returns how many buttonchunks there are on the level. getPosition returns the position of the button with the id=n. Locate functions returns the nearest buttonchunk in a predefined range given the position of the hero. EnterKey function takes 5 numbers in the range 1-9 and returns 1 or 0 depending on whether the entered numbers are the same as the password list of the button chunk. getPassword is for enemies. It returns the password of the button chunk with the id n.

Door Class

This class is similar to the buttonchunk class. It has position values, and a flag to indicate whether it is open or not.

DoorList Class
This class holds all the door objects in the level in a list. There is an add function to add a door to the list. getPosition function, supplied with an index returns the position of the door with that index. There is an open function that opens the door by changing the flag and an isOpen function to get the flag value.

Zone Class

This class is just a point with x,y,z values.

Enemy Class

This class has an id, two zones and a mission. There are 3 kinds of enemies. They are created with index t as parameter to the constructor. First kind, 0, protects a zone and doesn’t follow the hero, just attacks from that position. Second, 1, when sees the hero follows him. Third, 2, is special character. Some enemies objects are created with 2 different zones for them to patrol, and some are created with 2 zones with the same value for them to stay on watch.
Level Class

This class holds the enemy list for the level. Makespecial function makes the enemy that is wanted a special one. It takes enemyID, 6 zones and the zoneid to make a gesture. Dielist holds the id’s of the enemies that have to be killed to complete the level. checkAnimation checks if the animation of the special character should start or not. getNextPoint returns the point the special character should move next. getGstNum returns the zoneID of the zone to make the gesture in. getStartPoint/getEndPoint takes enemyID as input, and returns the start/finish zone for that enemy.
