

SYSTEM

INITIAL DESIGN REPORT

WARDEN

Ali Çetinbulut
Burak Çiflikli

Fatih Yıldız

Tolga Can

1. INTRODUCTION ... 3

1.1 Goals and Objectives .. 3

1.2 Statement of Scope... 3

1.3 Design Constraints... 4

2. COMPONENTS and INTERFACES... 6

2.1. Open/Close Sensor – Single Board.. 6

2.2. Electronic Control Lock – Single Board .. 6

2.3. Card Reader – Single Board (Converter) .. 6

2.3.1. Software of Converter... 6

2.3.2. Hardware of Converter ... 15

2.4. Single Board.. 22

2.4.1. State Chart of Single Board Application 22

2.4.2. Definition of State Chart Diagram.. 23

2.5. Master Computer .. 27

2.5.1. Class Diagram of Master Computer Application 27

2.5.2. NETWORK .. 28

2.5.3. DATA MANAGER .. 29

2.5.4. GUI ... 32

2.5.4.1. LOG... 32

2.5.4.2. DOOR ... 35

2.5.4.3. USER .. 38

2.5.4.4. GROUP... 41

2.5.4.5. SYSTEM ... 44

2.5.6. Collaboration Diagrams .. 45

2.5.6.1. Add User ... 45

2.5.6.2. Edit Group.. 46

2.5.6.3. Enable Holiday ... 47

1. INTRODUCTION

1.1 Goals and Objectives

 WARDEN is a card based wireless door control system for

companies, laboratories, hospitals especially areas where limited
people are allowed to enter.

The users will be given cards that are installed to the system.
The user will be able to enter a door if his card is given the entrance

permission. Allowed users will be able to enter whereas the rest will
not. System will give an alarm if door is opened for a long time or tried

to be opened by an illegal way.
Assigning permissions will be done by the admin of the system

using a master computer. Tracing the events going on the doors will
also be done via the master computer. This will be provided by

keeping the logs of the events of the door on the master computer.
Adding/removing/editing users or doors will also be provided to

the system admin.

1.2 Statement of Scope

WARDEN is a door security system. Users will have cards and

they will get them read to the card readers on the doors for entrance.
The permission of the user will be checked and the entrance will be

granted or denied.
There will be doors and users that are added to the system.

Users and doors can be added to, deleted from the system or edited
via the master computer user interface by the system admin. The user

information and permission will be kept in the master computer. A
user may have different permissions for different doors. There will also

be user grouping. The members of the group will automatically get the

group permissions. To reduce the waiting time of the users, the
permissions of the users will also be stored locally at the doors; that is

every door will store its own permission file. The update of permissions
will be done from the master computer and the updated files will be

sent to the doors. The master will be able to make an update
whenever there is such a request from the user admin.

Another important task of the system is keeping the logs of the
events on the doors like ‘confirmed accesses, ‘not defined user’ and

‘force attempt’. When a user gets its card read, the card id is sent to
the door. It is checked and if the user has permission to enter, it will

be reported to the master as a ‘confirmed access’. If the card id is

invalid, then the report will be ‘user not defined’. If the door is open by
brutal force; that is if the door opens without id authentication, this

will be reported as a ‘forced attempt’. There will be a handle on one
side of the door in case of an emergency. When this handle is used, it

will also be reported as a ‘forced attempt’. The logs will be reported to
the master immediately after an event. In case of a system crash,

certain amount of these logs will also be stored locally at the doors.
The master will also provide a holiday and an emergency mode.

When the holiday mode is enabled, the system will be shut down. The
doors will not be opened even if an identified user gets his card read

until this mode is disabled. When the emergency mode is enabled, the
system will permit everyone. The doors will be open until this mode is

disabled.
When the card is read to the card reader on the door, the card id

will be checked from the local database. The card reader will send the

id in Wiegand protocol, whereas the local board will get this data in
RS232 protocol. Another task of our system is to establish the

communication between the card reader and the board, which is a
converter between Wiegand and RS232 protocols.

The communication between the doors and the master will be
established through a wireless network. The risk of a crash in the

communication due to external physical factors will be reduced. This
will also make introducing new doors to the system very easier.

1.3 Design Constraints

 The response speed of the system is very important. After

getting read his card, the user shouldn’t wait for a long period of time.
The authentication process should be as fast as possible.

 The data transfer between the master computer and the door
systems should also be fast. The amount of data traveling should be as

small as possible. Also an encryption algorithm should be applied as
we are using wireless network. Although the wireless protocols encrypt

the data before sending, any wireless receiver using the same protocol
can decrypt the data.

 The system that will be established at the doors will have a
totally 128MB disk. The operating system and the locally stored data

should be as small as possible due to this disk space constraint.

 The design of Warden in component and interface base is below.

Figure 1 - Interfaces of components

2. COMPONENTS and INTERFACES

We can mainly decompose WARDEN into two main components:
DOOR and Master Computer.

 The DOOR component is also composed of 5 components:
Open/Close Sensor, Electronic Lock Control, Wiegand Card Reader,

RS232 Converter and Single Board. For all DOOR additions to system,
these entire 5 components will be added.

 In diagram the names of interfaces are put according to the
component that is communicated with.

2.1. Open/Close Sensor – Single Board

The Open/Close Sensor component has an interface to interact
with the Single Board component. The sensor will inform the single

board about the open/closed situation of the door by one bit data. This
will be achieved via the parallel port and the single board takes one bit

data by pooling.

2.2. Electronic Control Lock – Single Board

Similarly, the single board will open or close the door lock via
parallel port. The output data is again one bit. This output signal and

the electric supply for the lock will be given as input to an AND gate

and the output will be connected to the lock. One pin of the port will
be used to input from the sensor and one to output to the AND gate.

2.3. Card Reader – Single Board (Converter)

2.3.1. Software of Converter

 In the programmable integrated circuit, there will be a program

which will be implemented in assembly language. Source code will be
implemented in AVR Studio 3.53 environment. This program will

support two card readers. They can be Wiegand 26 or Wiegand 37
interface. Transmitted by the card reader data will be checked for

errors and retransmitted via RS232 interface to single board. Both
interfaces, Wiegand and RS232 will be implemented in software as

interrupt service routines. Due to lack of RAM, transmission via RS232

and receiving from RS232 will be done separately.

There will be three interrupts in software, two for Wiegand
interface and one for RS232 interface. There will be two interrupts for

Wiegand interface since there will be two card readers at the doors,
one inside one outside. Wiegand interfaces will use external interrupt

INT0 and INT1 while RS232 interface will use timer T0 overflow
interrupt.

Timer T0 overflow interrupt is used for both: running timeout

timers of access control reader and RS232 transmissions. T0 overflow
interrupt generates interrupts during every RS232 bit. RS232

reception will be done by polling and transmission is done by T0
overflow interrupt control. T0 interrupt will count until RS232

transmission is completed since RS232 transmission time and one

cycle of T0 interrupt is not same. When count of T0 interrupt is satisfied
a new transmission is allowed. When transmission via RS232 is

started, other two interrupts will be disabled to stop data receiving
from readers. When transmission is completed or an error occurs

interrupts will be enabled again.

Other two interrupts INT0 and INT1 will work almost same.
There will be three main differences between these two interrupts are:

1- External Interrupt that they will use (one will use INT0 and
other will use INT1)

2- Data pins data they will get data from reader.
3- Reader that they will get data from

Interrupts will start when a data comes from card reader. If a bit

is received and an interrupt is invoked other interrupt will be disabled.

If data transmission from card reader will be cut or all data is read
then two interrupts will be enabled again. In both interrupts, during

each period one bit Wiegand data will be read and stored in buffer. In
Wiegand interface, there will a time delay between two bits. This time

delay will be controlled by a timer. Number of data read from card
reader will represent data format.

Since Wiegand interface has parity bits, in the software, parity

check will be done. If an error has occurred, this data will not be send
via RS232. If parity bits are correct then correct data will be send via

RS232.

According to data received from RS232, LEDs and beeper will be

set to invoke user about the result of process. Most of the routines in
the program will be controlled by flags and these flags are set in T0

interrupt.

Technical Data:
- Wiegand data format : Wiegand26 or Wiegand 37

- RS232 : full duplex
- RS232 speed : 1200 bit/s

- RS232 data format : 8N1

Clear RAM and Iniate Variables

Set CPU Internal Hardware Configuration

Enable Interrupts and Set Timers

Main Loop

Check Rs232 Recived Flags

Get data via rs232 and Set or Reset LEDs
YES

NO

Check For Wiegand Parity Bits

YES

NO

Check Rs232 Transfer Flags

Reset Rs232 Receive Flag

Send Data via rs232

Reset Rs232 Transfer Flag

Figure 2 - State Chart Diagram of Converter Application

This state chart diagram is the state chart of main program in

programmable integrated circuit.

Clear RAM and Initiate Variables State

This state initiates all variables and clear RAM. When the
program first started, this state is executed.

Set CPU Internal Hardware Configuration State

This state initiates status of internal structure of hardware and

specifies input and output pins of programmable integrated circuit.

Enable Interrupts and Set Timers State

In code there are some interrupts and time counters. This state

enables interrupts and initiates timer registers and start T0 interrupt.

Main Loop State

This is the main part of program. It sets and checks status of
registers.

Get data via RS232 and Set or Reset LEDs State

This state receives data via RS232 and according to this data set

or reset LEDs to invoke user.

Reset RS232 Receive Flag State

This is the end of receiving data via RS232. When data receiving

finishes, status flags of RS232 are reset for another receive.

Check for Wiegand Parity Bits State

Wiegand protocol has parity bits to check correctness of data.
Before sending Wiegand Data via RS232 these parity bits are checked.

Send Data via RS232 State

After receiving data from Wiegand protocol and checking its

parity bits this data is send via RS232.

Reset RS232 Transfer Flag State

This step resets transfer flag for other transfers after transferring

data via RS232 is completed.

Store Status Register

Restore Status Register

Increment Time Count and Take Modulo

Decrement Wiegand Time out Timer

Set or Reset Rs232 Receive and Transfer Status Flags

Figure 3 - T0 Interrupt State Chart Diagram

This interrupt is the main interrupt of the program in

programmable integrated circuit. T0 interrupt is always executed and
it specifies states according to timers of program. It decides sending,

receiving data via RS232 and getting data from Wiegand protocol.

Store Status Register State

In the programmable integrated circuit, there are registers that
control the status of executable program. In the execution of T0,

interrupt stores these registers not to modify these registers.

Decrement Wiegand Time out Timer State

Wiegand time out timer is used to check whether time to wait for

other bit is exceed some Wiegand send data time or not. In every
interrupt, this count is decremented and other interrupts are executed

according to this timer.

Set or Reset Rs232 Receive and Transfer Status Flags State

Transferring and sending data via RS232 is done according to
status of RS232. While sending data via RS232, status of program

does not allow another send attempt till sending is finished. While
receiving data from RS232, status of program does not allow another

receive attempt till sending is finished.

Restore Status Register State

When T0 interrupt is called program has some registers to

execute program. After finishing execution of T0 interrupt these
registers are set back to their old values.

Store Status Register

Data0=0 & Data1=0

Data0=1 & Data1=1

Disable other interrupts and Store bit in Wiegand buffer

Wiegand Count ++

Start Wiegand time out timer

Restore Status Register

YES

YES

NO

NO

Figure 4 - Interrupt State Chart Diagram

Our program has two interrupts Int0 and Int1. These two

interrupts work similar. Int0 controls card reader that is inside and

Int1 controls card reader that is outside. These two interrupts is
started from different pins and get data from different pins. When one

interrupt starts other interrupt is disabled. Both interrupt send data via

RS232 and use some data pins. These interrupts starts when data flow

starts from their data pins.

Store Status Register State

In the programmable integrated circuit, there are registers that
control the status of executable program. In the execution of Int0 or

Int1, interrupt stores these registers not to modify these registers.

Disable Other Interrupts and Store Bit in Wiegand Buffer State

When data flow starts from one of the data pins that interrupts
follow, other interrupt is disabled to enable reading from one reader

and data is received from reader. This data is stored in a register that
is reserved for Wiegand data as buffer.

Wiegand Count ++ State

Reader sends data serial. Two decide whether transferring data
is completed or not received character count is incremented.

Start Wiegand Time-out Timer State

While receiving data from reader, there is a delay between two

data bits. To check this time delay interrupt set Wiegand Time-out
counter and start to decrement.

Restore Status Register State

When Int0 or Int1 interrupt is called program has some registers

to execute program. After finishing execution of Int0 or Int1 interrupt

these registers are set back to their old values.

2.3.2. Hardware of Converter

Figure 5 – General View of Hardware

2.3.3. Parts of Converter:

a) 2 Proximity Readers:

In our system there are two readers for each door. Theses reader is

used for taking card-id from user. Then these readers send card-id by
Wiegand protocol which is 26 or 37 bit serial protocol. Our converter

supports both of them. Proximity reader has 2 outputs and 5 inputs as
shown in below diagram.

We have Data 1 and Data 0 lines as output. And also we have
12V, ground, Beeper, LED Green and LED Red as input.

Beeper, LED Green and LED Red inputs are used for returning

the validity of card-id. This information come form single board
computer via rs232.

The reader transmits data by pulling low “Data 0” line when

sending logic zero and “Data 1” line when sending logic one. The bit
pulse lasts for about 50ms while interval between two bits equals

approximately 2ms. Absence of pulses for about 200ms signals the
new data block.

Figure 6 - Wiegand interface waveforms diagram

Wiegand 26 data block consists of 26 bits. The first bit and the
last bit are even parity bit of the first half of the data block and odd

parity bit of the second half of the data block respectively, while bits
b2...b9 and bits b10...b25 represent 8-bit facility code and 16-bit card

number respectively. The structure of Wiegand 26 data block is shown
in below.

Figure 7 - Structure of Wiegand 26 data block

Wiegand 37 data block consists of 37 bits. As in Wiegand 26, the
first bit and the last bit are even parity bit of the first half of the data

block and odd parity bit of the second half of the data block
respectively. Owing to the odd number of bits in the data block, the bit

b19 is counted for both even and odd parity. Bits b2...b36 represent
35-bit card number. The structure of Wiegand 37 data block is shown

in below.

Figure 8 - Structure of Wiegand 37 data block

b) Over voltage Protection unit

In our system we use AVR microcontroller. We have to prevent

our microcontroller against the over voltage. So, we include this unit in

our system. This unit takes two input from Wiegand which are DATA 0

and DATA 1 line and it has two outputs which are OD_0 and OD_1.

c) AND Gate

As we explained, Wiegand protocol sends data when one of the
lines comes to zero. In software of our system we take the Wiegand

input by interrupt. We have two reader so we have two and gate. First
AND gate generates interrupt (Int1) whenever negative pulse on 0_D1

or 0_D0 line appears. Second AND gate generates interrupt (Int0)
whenever negative pulse on I_D1 or I_D0 line appears.

d) AVR Microcontroller

We choose AT90S2313 model which is production of ATMEL

Corporation. The AT90S2313 is a low-power CMOS 8-bit

microcontroller based on the AVR RISC architecture. We add
instruction set to the Appendix. By executing instructions in a single

clock cycle, the AT90S2313 achieves throughputs approaching 1 MIPS
per MHz allowing the system designer to optimize power consumption

versus processing speed. The AVR core combines a instruction set with
32 general purpose working registers. All the 32 registers are directly

connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction

executed in one clock cycle.

There are two main reasons why we choose AT90S2313
microcontroller. Firstly, it has two interrupts which are INT 0 and INT 1

in PD2 and PD3 pin. Secondly, it has timer, and we need timer
because it we will check rs232 input in every particular time interval.

Thirdly, this microcontroller provides us a developer studio (AVR

Studio) and simulator of microcontroller.

This microcontroller has 20 pin. 2 pin for VCC and Ground, 1 pin
for reset, 7 pin for PD0-PD6, 8 pin for PB0-PB7 and 2 pin for Oscillator

which are XTAL1 and XTAL2.

Figure 9 - Oscillator Connections

 By using this oscillator we will create 7.3728 MHz.

Figure 10 - The AT90S2313 Block Diagram

e) MAX232

This chip is an Rs232 voltage level connector. As you can see

below diagrams, our microcontroller use “TTL/CMOS Serial Logic
Waveform” and our single board computer use “RS-232 Logic

Waveform”. For transferring “TTL/CMOS Serial Logic” to “RS-232
Logic” and also for “RS-232 Logic” to “TTL/CMOS Serial Logic” , we use

MAX232 circuit.

Figure 11 - TTL/CMOS Serial Logic Waveform

Figure 12 - RS-232 Logic Waveform

We connect PB1 and PB0 pin of AVR Microcontroller to the TR2IN
and R2OUT and we connect ground to TR1IN respectively. And take

the output from TR2OUT, R2IN and TR1OUT and connect these pin to
the rs232 connector.

Figure 13 - Pin outs for the MAX232

Figure 14 -Typical Max232 Circuit

f) RS232 Connector

We take TR2OUT, R2IN and TR1OUT pin, then we connect these
pin to RS232 connector as shown in below diagram.

Figure 15 - RS232 Pin Connection

Figure 16 - RS232 Connector End

g) Power Supply

We use voltage regulator LM78L05 unit. Above diagram takes

power between +9...15Vdc and generates always constant voltage
which are +12V and +5V.

Figure 17 -Diagram of power supply of the converter

2.4. Single Board

2.4.1. State Chart of Single Board Application

MAIN

Initialization and configuration

IS DOOR
OPEN

/ Set Beeper Signal,Manage Log

Yes

No

We use hashing algorithms
for searching validty of card-id

/ Check Card ID

IS CARD
ID VALID Yes

No

IS NETWORK
DATA READY

/ Manage Log,Set Red Signal

IS RS232
DATA
READY

NoYes

/ Manage Log,Set Green Signal,Set Beep Signal,Open Lock

Yes
No

/Set Red Signal,Update Permission File

Figure 18 - State Chart Diagram of Single Board

2.4.2. Definition of State Chart Diagram

Set Red Signal:

Send a signal to the converter that turns on the red LED of card

reader.

Set Green Signal:

Send a signal to the converter that turns on the green LED of
card reader.

Set Beep Signal:

Send a signal to the converter that activates beeper of card

reader.

These three set signals are sending by serial port. Writing to the
port is explained below.

Pseudo Code

PROCEDURE Set Port

 GET (Port)

 WHILE Port NOT EQUAL Port Array Element
 NEXT Port Array Element
 END WHILE

 IF END of Port Array REACHED
 THEN Port NOT FOUND
 ELSE PORT <- Port Array Element
END Set Port

PROCEDURE Write Port

 Set Port

 ADD LISTENER TO USER

 WHEN EVENT
 IF EVENT EQUAL DATA TO SEND

 THEN WRITE DATA
 END WHEN

END Write Port

Manage Log:

 Single board will send every log entry to master computer
immediately by encoding. But because of some electricity cut or other

problems this log entry may not be delivered immediately. For this
case, single board will store log file internally. This log data also will be

store encoded. In single board, there is no much memory because of
this log file will be stored circular. It will take last 5000 entry. Also

there will be another file to store current line of log file. If an error
occurs current line of log file will be taken and then storing logs to file

will continue from this position without any loose of data. To ensure
that log and current line is stored in file these two files will be closed

and opened.

Log data will contain:

• User card id(16 bit)
• Operation type(entry, exist, force attempt)(2 bits)
• Time (11 bits = 5 bit hour field and 6 bits minute field)
• Date(16 bits = 5 bits day 4 bits mount and 7 bits year)

One log data will be 45 bits. For 5000 log data will be approximately
30Kbytes.

Pseudo Code

At the beginning log file is full of with a special character. We only

change these characters to log data. Also current file position is 0.

Int iLoopCouter = 0;
Open(logFile);
Open(currentPosFile)
While(true)
{
 if(a card is read)
 {

decide on operation type;
produce log data;
encode data;

send log data;
 if(current position > end of logFile)
 {
 set current pos to 0;

}
go to current position in logFile
write log data to logFile;
increment current position;
write current pos to currentPosFile;
increment iLoopcount;
if(iLoopCount == 100)
{
 iLoopCounter = 0;
 fclose(logFile);
 fclose(currentPosFile);
 fopen(logFile);
 fopen(currentPosFile);
}

}
}

Update Permission File:

Master computer will send permission files to doors in case of
request from master computer user. When a send request come from

master computer to single board, single board will start to listen

network. While transferring, single board will decode permission file
and store it. Since we will need all file in the single board, file will not

be closed and opened while transferring permissions.

Pseudo Code

If(a send request from master exists)
{
 fopen(permissionFile);
 clear permissionFile;
 while(transmittion)
 {
 get file data;
 decode data;
 write to file according to hash order;

}
fclose(permissionFile);

}

Check Card ID:

 After the card ID is taken from serial port by the code below, it
is searched in the permission file that is stored.

Pseudo Code

PROCEDURE Set Port

 GET (Port)

 WHILE Port NOT EQUAL Port Array Element
 NEXT Port Array Element
 END WHILE

 IF END of Port Array REACHED
 THEN Port NOT FOUND
 ELSE PORT <- Port Array Element
END Set Port

PROCEDURE Listen Port

 Set Port

 ADD LISTENER TO PORT

 WHEN EVENT
 IF EVENT EQUAL DATA AVAILABLE
 THEN READ DATA
 END WHEN

END Listen Port

2.5. Master Computer

2.5.1. Class Diagram of Master Computer Application

+Backup()
+Vıew Records()

LOG_GUI

+Update Permissions()
+Add New Door()
+Edit()
+Remove()

DOOR_GUI

+Search()
+Remove()
+Edit()
+Add New()
+Get Text()
+Set List()
+Get Selected()

USER_GUI

+Add New Group()
+Edit()
+Remove()
+Get Selected()

GROUP_GUI

+Enable_Holiday()
+Disable_Holiday()
+Enable_Emergency()
+Disable_Emergency()

SYSTEM_GUI

+Select Tab()
+Display Tab()

GUI

1

1

1

1

1

1

1

1

1

1

+Combine Daily Log Files()
+Copy Log Files as Backup()
+Delete Old Log Files()
+Join Log Files()
+List Doors()
+Add Door to Door List()
+Create Door Permission File()
+Display Door Properties()
+Update Door Properties()
+Rename Door Permission File()
+Remove Door from Door Lİst()
+Delete Door Permission File()
+Find User()
+List Groups()
+Add User()
+Add User to Permisiion Files()
+Find User from Door Permission Files()
+Find User from Group Member Files()
+Display User Properties()
+Delete User from User File()
+Delete User from Group Member Files()
+Delete User from Door Permission Files()
+Create Group member File()
+Add Group()
+Display Group Permissions()
+Delete Group form Groups File()
+Delete Group member File()

Data Manager

+Update Door Permission Files()
+Let All()
+Deny All()

Network

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 19 - Class Diagram of Master Computer Application

2.5.2. NETWORK

Update Door Permission Files:

We will send permission files from master computer to single board.
File data will be encoded for security. When “UPDATE PERMISSION”

button is pressed, every permission file is decoded and sent to doors
via WiFi.

Pseudo Code

fopen(doorNamesFile);
while(doorNamesFile != EOF)
{
 get door name and IP;
 concatenate required file name for permission file;
 fopen(doorPermisionFile);
 read all permission data;
 encode data;
 send encoded permission data to door IP;
 fclose(doorPermisionFile);
}
fclose(doorNamesFile);

Let All:

 All card ID’s of the system will be send to doors so every user

can use doors. After these files is created, they will be send by the
pseudo code be above.

Deny All:

 Empty files will be send to doors again by the pseudo code

above.

Get Log Data:

 Single board only sends log data to master computer. This
transfer will be done when a card is read from card reader. Coming

data will include card id, operation type, date, time and location.

Location data will get from header. Since we store logs day by day, we
will not write day to the log. All of our transmission via WiFi is encoded

so when a log data is received first it is decoded and added to that

day’s log file. Not to loose data because of electricity cut or another
problem, after writing some log data to file, file will be closed and

opened.

Pseudo Code

Int iLoopCount;
fopen(todayLogFile);
While(true)
{
 if(a new log data comes)
 {
 decode data;
 generate log data;
 add to log file;

show log to user;
 increment iLoopCount;
 if(time == 23:59)
 {
 fclose(todayLogFile);
 fopen(tomorrowLogFile);

}
if(iLoopCount == 100)
{
 fclose(todayLogFile);
 fopen(todayLogFile);
 iLoopCount = 0;
}

}
}

2.5.3. DATA MANAGER

Data manager have simple functions such as opening a file, closing a
file, reading a file and go to the line in a file. There are 5 different file

types in the file structure.

USER FILE

 This file will store the user information at the master computer.
Name, surname, user ID and card Id for each user will be stored in

this file. Data are kept by hashing card Id’s.

GROUP FILES

 These files will store the user group information at the master
computer. Firstly a structure that provides the opportunity to

understand which user is in which group is needed. This structure will
consist of separate files for each group. Each file will have a group’s

name. These group files will contain its card IDs.

A separate file will also be stored to keep the list of groups and
their entrance permissions for the doors that are installed to the

system.

PERMISSION FILES

 The entrance of a user will be authorized according to his
permission. Each door will keep a local permission file. This will be

faster than a permission check from the master computer. This local

file will consist of the card IDs of the users that have entrance
permission and the permission resource. The resource of the

permission can be an individual one or due to a group membership.
The card IDs will be hashed.

 These local files will be installed and updated from the master

computer. The master computer will keep a permission file for each of
the doors. These files will be exactly the same as the local ones. The

name of the files will consist of the IP and the name of the door which
it belongs to. The desired permission chances will be done in these

files and then they will be uploaded to the doors.

A separate file will also be stored at the master to keep the list
of doors and their properties.

LOG FILES

 When an event occurs on a door, this is reported to the master
computer. This report will include user id (if has), event type, event

time and location. The reports from all of the doors will be joined
together on the master computer and a log structure will be kept. This

structure will be a linear one. The logs will be ordered according to

their event time.
 A log file for each day will be stored at the master. At the end of

each month, the separate daily log files will be joined together and the
log file for that month will be formed. After this operation, the

separate daily log files will be deleted.
 When a backup is requested, firstly, previously formed monthly

log files will be copied to a specified backup directory. Secondly, the
separate daily logs for that month - which have not been joined yet –

will be joined into a file at the backup directory. But, this time the
daily log files will not be deleted. As the most important aim for a

backup is to reduce the disk usage, if there are monthly log files
belonging to six months before, they are deleted from the system.

Tracing the records will be provided by observing these daily and
monthly log files.

Figure 20 - Log Structure of the Master

 In case of a crash in the master computer, every door will keep

a certain amount of its own logs. When the master computer is

restarted, these files will be loaded from the doors and appended to
the log structure of the master computer. The files on the doors will

have a circular structure. When the maximum amount of logs reached,
the incoming log will overwrite the oldest one.

2.5.4. GUI

2.5.4.1. LOG

This is the main window of the LOG tab of the GUI of the master
computer. From this window, the events that are formed at that

moment will be traced. The user name, surname, user ID, event date,

event time, event name and event location will be displayed. The
“BACKUP” button will be used to take a backup of the records and the

“VIEW RECORDS” button will be used to display previous records.

BACKUP

 This window will be opened when the “BACKUP” button of the

main window of the LOG tab is pressed. A backup is formed in case
there is not enough disk space in the master computer. So after the

backup, the logs of the system will be copied to a backup folder, then

the logs before 6 month will be deleted. The user will be informed
about the situation by this warning window. If the “YES” button is

pressed, the backup will be taken, and if the “NO” button is pressed,
the operation will be cancelled and the warning window will be closed.

VIEW RECORDS

This window will be opened when the “VIEW RECORDS” button of
the main window of the LOG tab is pressed. The user will choose the

time interval of the events of whose records are wanted to be
displayed. This interval will be squeezed into the record interval of the

system; user will not be able to request for the previously deleted
records. When the “VIEW” button is pressed, the logs within the

chosen interval will be displayed.

2.5.4.2. DOOR

This is the main window of the DOOR tab of the GUI of the

master computer. From this window, the doors will be added, removed
and edited. The “UPDATE PERMISSIONS” button will be used to send

the permission files from the master to the doors. “ADD NEW DOOR”
button will be used to install a new door to the system. To edit a

previously installed door, the “EDIT” button will be used. Firstly a door
from the list will be selected and this button will be pressed. Similarly,

to remove a selected door, the “REMOVE” button will be pressed.

ADD NEW DOOR

This window will be opened when the “ADD NEW DOOR” button
of the main window of the DOOR tab is pressed. The user will enter the

name and the network IP of the door. If the “OK” button is pressed,

the door will be installed. If a problem occurs in installation user will
be informed. If the “CANCEL” button is pressed, the operation will be

cancelled and the window will be closed.

EDIT DOOR

This window will be opened when the “EDIT” button of the main

window of the DOOR tab is pressed after a door is selected. The name
and the IP of the selected door will be displayed. The user will be able

to change these properties. IP changes are needed in case of an

Ethernet card failure. If the “OK” button is pressed, the door will be
updated, and if the “CANCEL” button is pressed, the operation will be

cancelled and the window will be closed.

REMOVE DOOR

This window will be opened when the “REMOVE” button of the
main window of the DOOR tab is pressed after a door is selected. If

the “YES” button is pressed, the door will be removed from the
system, and if the “NO” button is pressed, the operation will be

cancelled and the window will be closed.

2.5.4.3. USER

This is the main window of the USER tab of the GUI of the
master computer. From this window, the users will be added, removed

and edited. This window contains a small search engine. The users
that have all the properties that are entered will be displayed when the

“SEARCH” button is pressed. To edit a user, the “EDIT” button will be

used. Firstly the user will be selected from the list and this button will
be pressed. Similarly, to remove a user, the “REMOVE” button will be

pressed. “ADD NEW” button will be used to add a new user to the
system.

ADD NEW USER

This window will be opened when the “ADD NEW” button of the
main window of the USER tab is pressed. Firstly the name, surname,

user ID and the card ID of the new user will be entered. Secondly, the
doors that the user will have permission to enter will be selected.

Lastly, the groups of which the user is a member will be selected. If
the “OK” button is pressed, the user will be added, and if the

“CANCEL” button is pressed, the operation will be cancelled and the
window will be closed.

EDIT USER

This window will be opened when the “EDIT” button of the main
window of the USER tab is pressed after a door is selected. The

properties of the user will be displayed. These properties can be

changed. If the “OK” button is pressed, the user properties will be
updated, and if the “CANCEL” button is pressed, the operation will be

cancelled and the window will be closed.

REMOVE USER

This window will be opened when the “REMOVE” button of the
main window of the USER tab is pressed after a user is selected. If the

“YES” button is pressed, the user will be removed from the system,

and if the “NO” button is pressed, the operation will be cancelled and
the window will be closed.

2.5.4.4. GROUP

This is the main window of the GROUP tab of the GUI of the
master computer. From this window, the user groups will be created,

removed and edited. The “ADD NEW GROUP” button will be used to
create a new user group. To edit a previously created group, the

“EDIT” button will be used. Firstly a group from the list will be selected
and this button will be pressed. Similarly, to remove a selected group,

the “REMOVE” button will be pressed.

ADD NEW GROUP

WARDENWARDEN

LOG USERDOOR

FRESHMAN
SOPHOMORE
JUNIOR
SENIOR
ALUMNI

ADD NEW GROUP

REMOVE

EDIT

GROUP

ADD NEW GROUPADD NEW GROUP

NAME :

OK CANCEL

INEK1

INEK2

ISMAIL ABI1

ISMAIL ABI2

MULTIMEDIA5

MULTIMEDIA4

MULTIMEDIA3

MULTIMEDIA1

MULTIMEDIA2

DOORS

SYSTEM

This window will be opened when the “ADD NEW GROUP” button
of the main window of the GROUP tab is pressed. The user will enter

the name and the entrance permissions for each door of the group. If
the “OK” button is pressed, the group will be created, and if the

“CANCEL” button is pressed, the operation will be cancelled and the
window will be closed.

EDIT GROUP

WARDENWARDEN

LOG USERDOOR

FRESHMAN
SOPHOMORE
JUNIOR
SENIOR
ALUMNI

ADD NEW GROUP

REMOVE

EDIT

GROUP

EDIT GROUPEDIT GROUP

NAME : SENIOR

OK CANCEL

INEK1

INEK2

ISMAIL ABI1

ISMAIL ABI2

MULTIMEDIA5

MULTIMEDIA4

MULTIMEDIA3

MULTIMEDIA1

MULTIMEDIA2

DOORS

SYSTEM

This window will be opened when the “EDIT” button of the main

window of the GROUP tab is pressed after a user group is selected.
The name and the entrance permissions for each door of the selected

group will be displayed. The user will be able to change these
properties. If the “OK” button is pressed, the group will be updated,

and if the “CANCEL” button is pressed, the operation will be cancelled

and the window will be closed.

REMOVE GROUP

This window will be opened when the “REMOVE” button of the
main window of the GROUP tab is pressed after a user group is

selected. If the “YES” button is pressed, the group will be removed
from the system, and if the “NO” button is pressed, the operation will

be cancelled and the window will be closed.

2.5.4.5. SYSTEM

We have two different controls for two different situations. One is

for holidays. In these days nobody can use doors. We make this by
sending empty card Id files to doors. The other situation is emergency,

like fire or something similar. When you enable emergency
management, all doors can be used by every user in system. We make

this by sending all card Ids to all doors.

2.5.6. Collaboration Diagrams

2.5.6.1. Add User

GUI User GUI

2: display tab

1: select tab

Data Manager

Add New User GUI

3: Add New

4
:
Li
st
 D
oo
rs

5
:
L
is
t
 G
r o
u
p
s

8: Get Text
7: Get Checks

6: OK

9
: A

dd
 U
ser

10
: A

d
d U

se
r T

o
 P
e
rm

issio
n
 F
ile
s

When the user selects the ‘USER’ tab of the master computer user

interface, firstly the ‘select tab’ operation of the ‘GUI’ class is called.
Then the ‘display tab’ operation is called to display the selected tab. If

the user presses the ‘Add New’ button, ‘Add New User’ GUI is
displayed and the ‘List Doors’ and the ‘List Groups’ operations of the

‘Data Manager’ class are called to display the user the list of previously
installed doors and previously formed groups. When the user presses

the ‘OK’ button, ‘OK’, ’Get Text’ and ‘Get Checks’ operations are called
to get the user properties. Lastly, ‘Add User’ and ‘Add User to

Permission Files’ operations of the ‘Data Manager’ class are called to
add the user to the user file and assign the user permissions.

2.5.6.2. Edit Group

GUI Group GUI

2: display tab

1: select tab

Data Manager

3:
 L
is
t G

ro
up
s

Edit Group GUI

4: Edit

5: D
isp

lay
 Gr

oup
 Pe

rmi
ssio

ns

10: Get Text
9: Get Checks

8: Ok
7: Set Text

6: Set Checks

1
1
:
U
p
d
a
te
 D
o
o
r
P
e
rm

is
si
o
n
 F
ile
s

When the user selects the ‘GROUP’ tab of the master computer

user interface, firstly the ‘select tab’ operation of the ‘GUI’ class is
called. Then the ‘display tab’ operation is called to display the selected

tab. ‘List Groups’ operation of the ‘Data Manager’ class is called to
display the list of previously formed groups. If the user presses the

‘Edit’ button after selecting a group, ‘Edit Group’ GUI is displayed.
‘Display Group Permissions’ operation of the ‘Data Manager’ class is

called to get the group permissions over the doors from file structure.
Then ‘Set Checks’ and ‘Set Text’ operations of the ‘Edit Group GUI’

class are called to display group name and permissions. When the user
presses the ‘OK’ button, ‘OK’, ’Get Text’ and ‘Get Checks’ operations

are called to get the group properties. Lastly, ‘Update Door Permission
Files’ operation of the ‘Data Manager’ class is called to update group

and user permissions.

2.5.6.3. Enable Holiday

4
:
D
e
n
y
A
ll

3
:
E
n
a
b
le
 H
o
lid
a
y

When the user selects the ‘SYSTEM’ tab of the master computer

user interface, firstly the ‘select tab’ operation of the ‘GUI’ class is
called. Then the ‘display tab’ operation is called to display the selected

tab. If the user presses the ‘Enable’ button of ‘Holiday Management’,
‘Enable Holiday’ operation of the ‘System GUI’ class and then this

operation calls the ‘Deny All’ operation of the ‘Data Manager’ class is
called to update user permissions to deny every entrance.

