
 1

 2

Contents
1. INTRODUCTION

1.1 Purpose of the Document………………………………………….………………3

1.2 Scope of the Document…………….……………………………..……………….3

1.3 Abbreviations and Definitions ……………………………………………………3

2. SYSTEM OVERVIEW

2.1 System Description………………………………………………………………...4

2.2 Functional Requirements…………………………………………………………..4

2.3 System Requirements……………………………………………………………...5

3. INTERFACE DESIGN

3.1 Sample Graphical User Interfaces………………………………………………….5

3.2 Reviewed Use Case Diagrams……………………………………………………..9

3.3 Activity Diagram………………………………………………………………….10

4. SYSTEM DESIGN

4.1 System Data Structures……………………………………………………..…….14

4.2 GUIEventHandler Class………………………………………………..…………22

4.3 EditorChecker Class……………………………………………………..………..34

4.4 OSGWindows Class………………………………………………………..……..36

4.5 AnimationWindow Class…………………………………………………..……..40

4.6 PhysicsEngine Class……………………………………………………….……..44

4.7 FileHandler Class……………………………………………………………..…..47

4.8 Audio Class………………………………………………………………….……48

4.9 Class Diagrams Overview………………………………………………….……..49

A. APPENDIX

A.1 Enumeration Types………………………………………………………………51

A.2 DTD Schema……………………………………………………………………..55

A.3 Coding Standards………………………………………………………………...59

A.4 Gantt Chart……………………………………………………………………….59

 3

1. INTRODUCTION

1.1 Purpose of the document

 This document is intended to introduce the system design considerations that will be

basic guideline for the prototype implementation. The document is an improved version of the

previous Initial Design Report in which design specifications were defined.

1.2 Scope of the document

After giving a general overview, the document specifies the requirements of the

system. Graphical user interface of the system is shown and system functionalities are

described with the help of use case and activity diagrams. System modules along with their

classes are described in detail giving the relationships between them. Additionally, file

hierarchy and a dynamic Gantt chart is attached.

1.3 Abbreviations and Definitions

2D: Two Dimensional

3D: Three Dimensional

AVI: Audio Video Interleave

DTD: Document Type Definition

GUI: Graphical User Interface

MP3: MPEG Audio Layer 3

ODE: Open Dynamics Engine

OSG: OpenSceneGraph

WAV: Waveform Audio

XML: Extended Markup Language

Lane: A portion of a street or highway, usually indicated by pavement markings, that

is intended for one line of vehicles.

 4

2. SYSTEM OVERVIEW

2.1 System Description

The system TraffEdu is a 3D editor for designing 3D traffic environment and

preparing traffic case simulation on it. It provides the user to prepare any traffic case which

includes creating road map, inserting traffic lights or traffic signs, environmental objects,

audio or text, any type of vehicles and determining behaviors of the vehicles in the traffic.

According to these specifications an XML formatted file will be produced.

 Animation will be constructed after user presses the animation button by reading data

from that XML file. This animation will not be in the format of AVI file which does not allow

user interaction. It will enable the user to change view of the case by translating or rotating

the camera.

2.2 Functional Requirements

Functional requirements of the TraffEdu System are mentioned in the Software

Requirements Analysis report. Functionalities below are the ones that are changed or added to

the system after the analysis phase.

1. In the analysis report it is mentioned that TraffEdu Editor shall provide the user to

define traffic lights’ synchronization. Instead, in the timeline user sets behavior of the

traffic light (red, yellow, or green) for each key frame and system adjusts

synchronization accordingly.

2. In the analysis report it is mentioned that while constructing the road map of the

environment, user will see 2D symbolic representations of the real 3D objects in 2D

environment. Instead user can see different projections (orthogonal projection from

top, orthogonal projection from front, orthogonal projection from side and perspective

projection by a user defined angle) of the 3D environment in four sub windows.

3. TraffEdu system shall provide the user to hide or display sub windows mentioned

above.

4. TraffEdu system shall provide the user to hide or display menus in the GUI.

5. Functionality of choosing the hours of the day will not be supported.

6. Functionality of creating an executable animation file will not be supported.

7. Functionality of changing behavior of a vehicle during the animation phase will not be

supported.

 5

8. While user is constructing roadmap, adding traffic signs or constructing special case,

the user’s conflicting actions (e.g. locating the car to a position outside of its path) will

be prevented by giving a warning message to direct the user to correct her/his fault.

2.3 System Requirements

TraffEdu System requires Microsoft Windows 98/2000/NT/XP Operating

System.

On the developer side the requirements are listed below:

• Microsoft Windows XP Professional

• Microsoft Visual Studio .NET 2003

• OpenSceneGraph 0.9.9

• Open Dynamics Engine 0.5

• osgAL 0.4

• 3D Studio Max

• Adobe Photoshop

3. INTERFACE DESIGN

3.1 Sample Graphical User Interfaces

The TraffEdu Editor’s window is mainly divided into four areas which is toolbar (or

menu bar) at the top, Toolbox Window at the left, main window at the middle and Objects and

Properties Windows on the right of the editor window. By default an orthogonal view of the

3D environment is provided for the user for creating his/her traffic environment.

The addition of objects to the environment is supported via Toolbox Window on the left of

the window.

A grid platform is provided for better placement of objects into the area. Creating a

traffic case, starts with placing appropriate road types onto the grid platform. This is provided

in the Road Map section of Toolbox Window. The user may click on a type of road and then

click on where he/she wants to place the road on the grid.

For placement of Vehicle objects, user can choose the type from Vehicles section of

toolbox and then clicks on the place. Here there will be types of vehicles that the user can

select for using in the traffic case being designed.

 For addition of the traffic signs and lights again the toolbox is used and the user has

the opportunity to add them to the appropriate places in the road map designed.

 6

The user can insert environmental objects house and trees from the Environmental

Objects section of the toolbox.

The current objects in the environment can be seen from the Objects Window on the

right panel of the window. Clicking on an object listed in the Objects Window shows the

current selected object’s properties in Properties Window below.

User will draw path to vehicle objects by clicking the path icon in the toolbar. After

user is done with the current frame, he/she will click the check inconsistency button provided

in the toolbar to see if the designed environment has any erroneous placement of objects.

Animation button in the toolbar is clicked after all the frames are inserted, to see the

3D animation of the traffic case designed. The animation is displayed in another window.

Figure 3.1

The File menu presents actions related with the file operations which are opening a

new file, opening an existing file, closing the current file, saving the file with the same

name or with a different name, displaying currently opened file names and finally exiting

the program.

Camera menu adjusts he camera according to the needs of the user. Yaw means

changing the look at point of the camera in left and right directions. Pitch means changing

the look at point of the camera in up and down directions. Zoom In/Zoom out property of

camera means zooming in/out to the current position of the camera reference point

through the camera view direction. When an object is selected zooming action is done by

 7

centering to the object that means changing camera reference point as the center of the

selected object. The keyboard shortcuts will be displayed in the menu near each item.

Help menu presents the manual for TraffEdu and also some pre-created sample maps

with explanations for easing program usability.

Figure 3.2

Under edit menu the following actions may be performed. Delete, cut, copy actions

will be active when an object is selected.

Under frame menu, user will be able to save the currently formed environment as a

frame by clicking Insert Frame or he/she will be able to delete the current frame by clicking

Delete Frame.

 8

Figure 3.3

View menu gives user the chance of viewing/hiding objects or panels on the

environment and the Editor window. Under Hide/Display item user will have the choice of

viewing or not viewing Road Map, Vehicles, Traffic Signs, Traffic Lights, and Environmental

Objects.

Under Windows user will have the opportunity to see the environment prepared, with

Top View, Front View, Side View and 3D View options. The checked ones will be provided

in the main area of the editor. User will also choose which panels of the Editor (Toolbox,

Objects and/or Properties) to be shown.

User will be able to insert objects, audio and text to the current frame within Insert

Menu. When Text is clicked, a pop up window will appear allowing the user to insert any

text. In the same way the user will be able to insert any audio file into the frame by clicking

Audio item and selecting an audio file of her/his choice.

 9

Figure 3.4

3.2 Reviewed Use Case Diagrams

The functionalities of the system and the actions that can take place by the user are

depicted clearly in the GUI of the program. However there exist some actions that must be

done sequentially and dependently to some other actions. These dependencies that are not

dictated in the GUI are represented with use case diagrams in Figure 3.5.

 10

Figure 3.5

If the user wants to insert an object (i.e. traffic sign, traffic light or vehicle) into the map,

he should first insert a road on which the other objects must be located or he should insert the

objects on an already inserted road. There could not be any object residing on the grids of the

editor except for the road and the environmental object.

If the user presses on animate button, he should have inserted any frame to the system that

he plans to constitute.

For a frame to be inserted there must be any road located on the grids previously to be

displayed in the animation phase.

Lastly, all the insertions should be done after inserting a timeline. For the system to be

informed about the starting, ending and characteristic times of the cases, the timelines of each

case should be inserted before preparing the positions of the objects.

3.3 Activity Diagram

In TraffEdu system, from opening a new file to construct a new traffic case to pressing

animation button and watching the simulation, several sequences can be followed. Activity

Diagram below shows one of those sequences to make working mechanism of the system

clearer.

 11

 Figure 3.6

 12

Figure 3.7

 13

Figure 3.8

 14

4. SYSTEM DESIGN

4.1 System Data Structures

Figure 4.1

 15

Frame Class

Frame class is an aggregate class that contains all the elements that are specific to a

frame. Objects of scene, such as vehicles, roads, traffic lights, traffic signs; camera, text, and

audio are all inside this class.

frameID: int

This member is an identification number for frames.

objects: Vector<Object>

The dynamic objects of the TraffEdu system that are possibly different in each frame

is hold in this vector. These dynamic objects are instances of either Vehicle class or

TraficLight class.

lightColors: Vector<boolean>

 This vector holds the state information of traffic lights, if there exists a traffic light in

the frame.

cutObjects: Vector<Object>

 This vector holds the objects on which a cut operation is performed. The vector

is adjusted by the GUIEventHandler class.

copiedObjects: Vector<Object>

This vector holds the objects on which a copy operation is performed. The vector is

adjusted by the GUIEventHandler class.

deletedObjects: Vector<Object>

This vector holds the objects on which a delete operation is performed. The vector is

adjusted by the delete function.

selectedObjects: Vector<int>

This vector holds the objectId s of objects that are currently selected. The vector is

adjusted by the GUIEventHandler class.

copiedObjectsIndex: int

This is the index which points to an object in the copiedObjects vector whose

execute function was called at the closest time. The value of the variable is adjusted by the

ComandCopy class.

 16

cutObjectsIndex: int

This is the index which points to an object in the cutObjects vector whose

execute function was called at the closest time. The value of the variable is adjusted by the

ComandCut class.

transformationObjects: Vector<Object>

This vector holds the objects on which a transformation operation is performed. The

vector is adjusted by the GUIEventHandler class.

transformationObjectsIndex: int

This is the index which points to an object in the transformationObjects

vector whose execute function was called at the closest time. The value of the variable is

adjusted by the CommandScale, CommandRotate and CommandTranslate

classes.

deletedObjectsIndex: int

This is the index which points to an object in the deletedObjects vector whose

execute function was called at the closest time. The value of the variable is adjusted by the

ComandDelete class.

audiosIndex: int

This is the index which points to an object in the audios vector whose execute

function was called at the closest time. The value of the variable is adjusted by the

ComandInsertAudio class.

textsIndex: int

This is the index which points to an object in the texts vector whose execute

function was called at the closest time. The value of the variable is adjusted by the

ComandInsertText class.

texts: Vector<String>

This vector holds the text for the frame.

audios: Vector<String>

This vector holds the audio file name for the frame.

setScene(): void

This function is responsible from camera settings like pitching, yawing and zooming

operations.

 17

delete(Vector <Object>): void

This function removes the objects from the objects vector according to the objects

in the argument vector.

insert(Object): void

This function inserts the argument to the objects vector.

drawFrame(Window): void

This function is responsible from the rendering. It calls the draw methods of all

objects in the objects vector.

guiHandler: GUIEventHandler

Each frame has a GUIEventHandler object.

osgHandler: OSGEventHandler

 Each frame has a OSGEventHandler object.

Camera Class:

Whenever a keyboard callback related to camera positioning happens, OSG

EventHandler class or AnimationEventHandler class request an update for the

camera position, the camera object in the current frame is then updated using the

updateCamera function of this class. This function resets the point where the camera is,

the point where it looks and the up vector of the camera looking at the parameter which tells

the movement type of the camera. For example if it is ZOOM_IN, it will change the eye

vector of the camera that keeps the position of the camera. Whenever a frame either in the

animation or in the editor is rendered, setCamera method of the Camera class will be

called to set the viewing position and viewing volume. This method will be the called from

drawFrame method of Frame class using the Camera object of that frame in the editor,

but in the animation this method will be called from the drawFrame function of

Animation Class using the Camera object of AnimationWindow class. Camera object

is both involved in Frame class and AnimationWindow class. But the crucial point here

is that, Frame objects that has Camera object is the ones in the editor, not in the animation

phase. In the animation phase the user will not go backwards and see the previous frames, so

we do not need to keep the camera positions of the previous frames, only one Camera object

is enough for the animation. This is also one of the reasons why we need a separate event

handler class for the animation phase. Whereas, while editing the environment in the editor,

 18

user will also be able to update camera and this will be permanent since for each frame we

had a separate Camera object.

Object Class:

 Object class is the parent of classes that denotes the objects to be drawn in 3D

environment. Since vehicles, wheels, roads, branches, traffic signs and traffic lights along

with the environment objects such as buildings and trees all have similar properties; the

functions manipulating these will be implemented in the Object class.

objectID:int

This field will be used to identify objects. For example to be able to calculate the

speed of a vehicle, we should find the difference in its position from one frame to another

frame. Since each Frame object has its own carObjects vector, we should identify the

same car by the help of its objectID.

geomID:dGeomID

 Every object in the environment will have a geom object related to it and this field will

keep the related geomID, and this field will be set for each object just before the animation

starts by calling createGeom method from initialize method of PhysicsEngine

class and assigning the returned dGeomID to object’s geomID .

type:ObjectType

 This field will be used to identify the model of the object to be rendered. To give an

instance, If the type is TRAFFIC_SIGN, a predisposed traffic sign model will be used or if

the type is PATH red lines will be rendered.

viewMode:ObjectViewMode

 It identifies whether the object should be hidden or displayed in the screen.

currentPosition: Vector<float>

 If a user clicks on one of OSG Windows after clicking on an icon in ToolBox

Window or selecting insert from the Menu Bar, an object will be created at the clicked

position. This will be the currentPosition of that object. Whenever a translation is done on

that object, this will be updated. If the object is a Vehicle, this currentPosition

should follow the path, means it should be on the path.

transformationMatrix:Vector<float>

 This matrix will keep all the translations, rotations, and scaling on the object.

 19

draw():void

 If the object’s viewMode is DISPLAY, this function will multiply the current matrix

with the transformationMatrix, then it will draw the vertices of the object using the

predisposed model according to the ObjectType. For the animation phase this

transformationMatrix will be calculated using getGeomPosition or

getBodyPosition giving the geomID (or bodyID if it is Vehicle or Wheel object)

as parameter to these functions. The returned vector is the newly calculated

transformationMatrix.

display():void

This function sets the object’s viewMode to DISPLAY.

hide():void

 This function sets the object’s viewMode to HIDE.

translate(Vector<float>): void

 transformationMatrix is recalculated multiplying it with the parameter vector.

scale(Vector<float>):void

 transformationMatrix is recalculated multiplying it with the parameter vector.

rotate(Vector<float>):void

 transformationMatrix is recalculated multiplying it with the parameter vector.

Vehicle Class:

Vehicle have properties such as, speed , steer , path vector of type float, and

wheelObjects vector of type Wheel , carspaceID of type dspaceID and bodyID of

type dbodyID that are specific to vehicle objects.

bodyID: dbodyID

Every Vehicle object in the environment will have a body related to it and this field

will keep the related bodyID, and this field will be set for each Vehicle object just before

the animation starts by calling createBody method from initialize method of

PhysicsEngine class and assigning the returned dBodyID to vehicle’s bodyID .

Vehicle class has this field because the vehicle body and its Wheel bodies will be attached

by joints.

speed:dReal

 This is the desired speed of the motor that will be given to related hinge joints of the

front wheels in the animation phase.

 20

steer:dReal

 This is the steering parameter of the motor that will be given to related hinge joints of

the front wheels in the animation phase.

carspaceID: dspaceID

 Every vehicle object will form a space with its wheels. In the initialization

of the PhysicsEngine class after creating related geoms of the Vehicle and of its

Wheels , we create a carspace calling createCarSpace of PhysicsEngine class.

wheelObjects: Vector<Wheel>

 Vehicle and Wheel classes have hasa relationship since every Vehicle

object strictly includes four Wheel object.

path: Vector<float>

 This is a vector of float keeping the coordinates of the path’s critical points. For

example if the path is composed of two line segments, it will keep three coordinates denoting

the beginning vertex of the path, the vertex in the middle and the ending point of the path.

drawPath():void

 If the path vector of the Vehicle object is not empty, this function will draw lines

using the coordinates in this vector. Whenever an object of type VEHICLE is drawn this

method will be invoked.

removePath():void

This method deletes the path vector of a Vehicle object.

changePath():void

 This method will be invoked whenever the path of the vehicle is needed to be changed.

This will happen when the user clicks on path icon in the ToolBar or selects Change Path after

right clicking on a selected vehicle. These two actions will set the DrawMode to

DRAW_PATH, so when an event occurs in the OSG Window when the user left clicks,

current selected vehicle object’s changePath will be invoked and the mouse coordinates are

added to path vector and drawPath method will be called after this.

Road Class:

 Road class also inherits from Object class with some specific attributes like its

type, its branches and vectors of TrafficSign and TrafficLight that are on the road.

The reason why Road class has ‘hasa’ relationship with TrafficSign and

TrafficLight classes is, they are static objects and their existence depends on the road

 21

type and existence of the road. Whenever a road is removed from the map they are also

removed and a road should already exist wherever a traffic sign or traffic light is placed and

their consistency should be checked with that road by the EditorChecker class. Road

objects are composed of Branches and branches should be accessed from Road since the

user can manipulate each Branch by setting its attributes such as increasing the number of

lanes, assigning direction to the lanes which the vehicles should follow and determining road

lines.

Wheel Class:

 Wheel class has also inherits from Object class with some specific attributes like

jointID and bodyID.

jointID: dJointID

Every wheel will be attached by joints to its vehicle, so for the related bodies of

vehicles and wheels, we need to keep related joint ID. This field will be set for each Wheel

object just before the animation starts by calling createJoint method from

initialize method of PhysicsEngine class and assigning the returned dJointID

to wheel’s jointID .

bodyID: dBodyID

Every Wheel object in the environment will have a body related to it and this field

will keep the related bodyID, and this field will be set for each Wheel object just before the

animation starts by calling createBody method from initialize method of

PhysicsEngine class and assigning the returned dBodyID to wheel’s bodyID .

 22

4.2 GUIEventHandler Class

Figure 4.2

 23

Main work-flow of TraffEdu System is, getting inputs from the user and operating

accordingly. As a result, there are many kinds of events that should be handled in the system.

GUIEventHandler class is one of the event handler classes in the system that

handles the requests coming from toolbar, toolbox window or OSGEventHandler class.

Each Frame object has an instance of GUIEventHandler class. Whenever a Frame

object is created, a GUIEventHandler object for that frame is also created automatically.

GUIEventHandler class is designed according to the rules of “command design

pattern”. “Command design pattern” encapsulates a request as an object, thereby letting you

parameterize clients with different requests, queue or log requests, and support undoable

operations. Encapsulating each operation as a separate first-level object means that we can

also easily support multilevel undo/redo operations.

The work sequence of this class is as follows:

 Whenever a request comes from the frame, an object from the Command class is

created. If the request is an undoable operation then the function, addCommand, adds the

object for this request to the historyLists vector. Undo and redo operations are

performed by traversing on the historyLists vector.

Detailed explanations of these data structures, requests and the response of the system

are below:

frame: Frame *

 The frame points to the Frame object which created this GUIEventHandler

object.

historyLists: Vector <Command>

 Each command operation that the user performs is stored in this vector.

nextUndoPosition:int

 This variable holds the position of the next undoable Command object in the

historyLists v ector. Value of this variable is determined by the undo and redoes

operations. The initial value for the variable is -1.

addCommand(System Object *)

 This function deals with creation of the Command objects according to the argument

sender and also addition of that object to the historyLists vector, if the operation is

undoable. For example, if a cut request comes to the GUIEventHandler , addCommand

function is activated. Then the function creates a CommandCut object and calls

 24

clearRest function. After that, since cut operation is undoable, it increments the

nextUndoPosition by one and adds the object to the historyLists vector. As a last

step, it calls execute function of CommandCut object.

clearRest()

If the user performs a new command after some undo operations, this function clears

the front of the historyLists vector to disable further redos.

It operates as follows;

Firstly clearRest function checks whether nextUndoPosition is equal to the

size of the historyLists vector. If the condition holds, meaning there is no undo

operation before the request, it returns. If not, meaning there has been done some undo

operations before the request, it traverses historyLists vector from the last added

command object to the object nextUndoPosition points. Each command object between

these two points is checked.

 For example, there is an instance of CommandCut class between those points. By

using the information indicating how many objects were cut, clearRest function clears

that number of objects from the front of the cutObjects vector, in the Frame object that

frame points. After that, CommandCut object is popped out from the historyLists

vector.

 Other command objects between those two points are performed similarly.

Command Class

Command class is an abstract class used for gathering all kinds of command objects in

the same structure. It has undo and execute functions that will be implemented in each

inherited class of Command class.

Each inherited class of Command class, is a command, used for handling GUI

callbacks and calling related classes of other modules. Descriptions of those classes are

below:

CommandSelect Class

 In TraffEdu system user has opportunity to make single or multiple selections. User

can select objects in the following ways:

 25

• Select All Option:

When this option is chosen by the user from the toolbar under Edit menu, the

CommandSelect class constructor is called by the addCommand function, with

the arguments indicating that a request to select all parameters has made. After that, all

objectId s in the frame will be copied into the selectedObjects vector in the

frame by the execute function of this CommandSelect class.

• Single Select Option:

This option is chosen by the user by left-clicking on the object to be selected in the

frame. This results in a request from OSGEventHandler to GUIEventHandler

to create a CommandSelect object. After that, selected object’s objectId in the

frame, will be copied into the selectedObjects vector in the frame by the

execute function of this CommandSelect class.

• Multiple Select Option:

This option is activated when the CTRL key is pressed down and deactivated when the

CTRL key is released up. If this option is active, user shall select the objects in the

frame by left-clicking on them. This results in a request from OSGEventHandler to

GUIEventHandler to create a CommandSelect object. After that, selected

objects’ objectId s (in the frame), will be copied into the selectedObjects

vector (in the frame) by the execute function of this CommandSelect class.

 The undo function of this class has a similar behavior with execute function of

CommandDeselect class.

CommandDeselect Class

 User can deselect objects in the following ways:

• Deselect All Option:

This option can be chosen in two ways. One of them is by using the Edit menu

in toolbar, and the other one is by left-clicking on an empty area in the frame if

multiple selection option is not active. These results in a request from

OSGEventHandler to GUIEventHandler to create a CommandDeselect

object. After that, selectedObjects vector in the frame is emptied by the

execute function of this CommandDeselect class.

 26

• Single Deselect Option:

This option can be chosen by left-clicking on an object if multiple selection

option is active. This results in a request from OSGEventHandler to

GUIEventHandler to create a CommandDeselect object. After that,

objectId of the chosen object is removed from selectedObjects vector in the

frame.

The undo function of this class has a similar behavior with execute function of

CommandSelect class.

CommandDelete Class

 In TraffEdu system user has opportunity to make single or multiple deletions.

CommandDelete class handles GUI delete operations either coming from Edit menu in

toolbar or from the RightClickMenu which is opened when the user clicks right button of the

mouse on an object.

 The deletedObjectNumber indicates how many objects are deleted from the

frames. The value of this variable is set with the size of the selectedObjects vector.

 The execute function carries all the objects whose objectId s exist in the

selectedObjects vector from objects vector to the deletedObjects vector for

the current frame and removes these objects from objects vector of following key frames.

 The undo function copies deletedObjectNumber number of objects from the

deletedObjects vector of current frame to the objects vector of this and all following

key frames. Then deletedObjectsIndex is decremented according to the

deletedObjectNumber.

CommandCut Class

 In TraffEdu system user has opportunity to make single or multiple cut operations.

CommandCut class handles GUI cut operations either coming from Edit menu in toolbar or

from the RightClickMenu which is opened when the user clicks right button of the mouse on

an object.

 The cutObjectNumber indicates how many objects are cut from the frames. The

value of this variable is set with the size of the selectedObjects vector.

 27

 The execute function carries all the objects whose objectId s exist in the

selectedObjects vector from objects vector to the cutObjects vector for the

current frame and removes these objects from objects vector of following key frames.

 The undo function copies cutObjectNumber number of objects from the

cutObjects vector of current frame to the objects vector of this and all following key

frames. Then cutObjectsIndex is decremented according to the cutObjectNumber.

CommandCopy Class

 In TraffEdu system user has opportunity to make single or multiple copy operations.

CommandCopy class handles GUI copy operations either coming from Edit menu in toolbar

or from the RightClickMenu which is opened when the user clicks right button of the mouse

on an object.

The copiedObjectNumber indicates how many objects are copied from the

frame . The value of this variable is set with the size of the selectedObjects vector.

 The execute function copies all the objects whose objectId s exist in the

selectedObjects vector from objects vector to the copiedObjects vector for the

current frame. Then copiedObjectsIndex is incremented according to the

copiedObjectNumber.

CommandPaste Class:

CommandPaste class handles GUI paste operations either coming from Edit menu in

toolbar or from the RightClickMenu which is opened when the user clicks right button of the

mouse on an object.

The execute function starts traversing the historyLists vector looking for a

match either for a CommandCut or CommandCopy object. If it finds a match for

CommandCut(CommandCopy), it copies cutObjectNumber

(copiedObjectNumber) number of objects from cutObjects

(copiedObjects) vector to the objects vector of the current and the following frames.

Then cutObjectsIndex(copiedObjectsIndex) is decremented according to the

cutObjectNumber(copiedObjectNumber).

The undo function starts traversing the historyLists vector from the index of

CommandPaste object looking for a match either for a CommandCut or CommandCopy

object. If it finds a match for CommandCut (CommandCopy), it removes

 28

cutObjectNumber (copiedObjectNumber) number of objects from the objects

vector of the current and the following frames according to the objectIds’ of objects in

cutObjects(copiedObjects) vector.

Then cutObjectsIndex (copiedObjectsIndex) is incremented according

to the cutObjectNumber (copiedObjectNumber).

CommandUndo Class

 When this option is chosen by the user from the toolbar under Edit menu, the

CommandUndo class constructor is called by the addCommand function.

The execute function calls the undo function of the Command object which is

pointed by the nextUndoPosition and steps backwards to the previous item by

decrementing nextUndoPosition .

CommandRedo Class

 When this option is chosen by the user from the toolbar under Edit menu, the

CommandRedo class constructor is called by the addCommand function.

The execute function steps forward by incrementing nextUndoPosition and

then calls the execute function of the Command object which is pointed by the

nextUndoPosition .

CommandInsertObject Class

CommandInsertObject class handles GUI insert operation either coming from

the insert menu in toolbar or from the toolbox by making drag & drop.

The insertedObjectType indicates which type of object will be created in the

frame.

The execute function calls current frame’s and the following frames’ insert

function. This results in creation of an object at the coordinates where the user determined.

The undo functions calls the delete function of the frame object and the object,

whose objectId is given, is removed from the objects vector.

CommandInsertText Class

CommandInsertText class handles GUI insert text operation coming from insert

menu in toolbar.

 29

The execute function takes the text that the user inserted into the frame and sends

it to the texts vector in the frame . TraffEdu System supports only adding one text for each

frame so if there is a text inserted before, newly created text is written over the old one. Then

textsIndex in the frame is incremented.

The undo function only decrements the textsIndex in the frame by one. If this

value is zero, there will no text is written to the file while other parameters of the frame is

being written to the file.

CommandInsertAudio Class

CommandInsertAudio class handles GUI insert audio operation coming from

insert menu in toolbar.

The execute function takes the audio information that the user chose and sends it to

the audios vector in the frame . TraffEdu System supports only adding one audio for each

frame so if there is an audio inserted before, newly created audio information is written over

the old one. Then audiosIndex in the frame is incremented.

The undo function only decrements the audiosIndex in the frame by one. If this

value is zero, there will no audio information is written to the file while other parameters of

the frame is being written to the file.

CommandScale Class

 In TraffEdu system user has opportunity to scale single or multiple objects at the same

time. CommandScale class handles GUI scaling operation coming from the

RightClickMenu which is opened when the user clicks right button of the mouse on the

selected area in the frame.

The scaledObjectNumber indicates how many objects are scaled in the frame .

The value of this variable is set with the size of the selectedObjects vector.

The execute function applies scaling operation to each object in the

selectedObjects vector by using the objectId s stored in the selectedObjects

vector. Before multiplying current matrix of the object with the scale matrix, that matrix is

stored in the transformationObjects vector in the frame and

transformationObjectsIndex is incremented by one.

 30

The undo function loads the matrixes which are stored in the

transformationObjects vector over the current matrix of the related objects. Then

transformationObjectsIndex is decremented by one.

CommandRotate Class

 In TraffEdu system user has opportunity to rotate single or multiple objects at the

same time. CommandRotate class handles GUI rotation operation coming from the

RightClickMenu which is opened when the user clicks right button of the mouse on the

selected area in the frame.

The rotatedObjectNumber indicates how many objects are rotated in the

frame . The value of this variable is set with the size of the selectedObjects vector.

The execute function applies rotation operation to each object in the

selectedObjects vector by using the objectId s stored in the selectedObjects

vector. Before multiplying current matrix of the object with the rotation matrix, that matrix is

stored in the transformationObjects vector in the frame and

transformationObjectsIndex is incremented by one.

The undo function loads the matrixes which are stored in the

transformationObjects vector over the current matrix of the related objects. Then

transformationObjectsIndex is decremented by one.

CommandTranslate Class

 In TraffEdu system user has opportunity to translate single or multiple objects at the

same time. After selecting objects in the frame , user shall make drag & drop. This results in

a request from OSGEventHandler to GUIEventHandler to create a

CommandTranslate object.

The translatedObjectNumber indicates how many objects are translated in the

frame . The value of this variable is set with the size of the selectedObjects vector.

The execute function applies translation operation to each object in the

selectedObjects vector by using the objectId s stored in the selectedObjects

vector. Before multiplying current matrix of the object with the translation matrix, that

matrix is stored in the transformationObjects vector in the frame and

transformationObjectsIndex is incremented by one.

 31

The undo function loads the matrixes which are stored in the

transformationObjects vector over the current matrix of the related objects. Then

transformationObjectsIndex is decremented by one.

CommandFile Class

CommandFile class handles file operations coming from file menu in the toolbar.

Since undo and redo operations can not be applied to this class, constructed CommandFile

object is not added to the historyLists vector.

The new method opens a new OSG window to provide a blank environment to the user.

The open method calls loadFile method in the FileHandler class with giving

file name as the parameter to the method.

The close method firstly checks if the current file is saved. If not, a pop-up menu

appears to check if the user wants to save the current file or not. According to the user intent

save method is called or current OSG window is deleted.

The save method calls saveFile method in the FileHandler class with giving

file name as the parameter to the method.

The saveAs method works similar with the save method, only sent parameter name is

changing according to the user request.

The currentFiles method is used to make all currently name of opened files

appear.

The exit method is used for exiting from the system but before this it calls close

method for each currently opened files.

CommandView Class

CommandView class handles view operations coming from view menu in the toolbar.

Since undo and redo operations can not be applied to this class, constructed CommandView

object is not added to the historyLists vector.

The hideDisplay method hides or displays the selected type of objects in the

frame .

The windows method shows sub-windows which are not on the display or hides sub-

windows which are on the display.

The toolboxWindow method hides or displays the toolbox window.

The objectsWindow method hides or displays the objects window.

 32

The propertiesWindow method hides or displays the properties window.

CommandCamera Class

In TraffEdu system camera properties are adjusted either from camera menu in the

toolbar or from the keyboard. If the user wants to change camera properties from the

keyboard, a request is created by OSGEventHandler and sent to the

GUIEventHandler.

The yawLeft method rotates the camera head to the left.

The yawRight method rotates the camera head to the right.

The pitchUp method rotates the camera head to the up.

The pitchDown method rotates the camera head to the down.

The zoomIn method zooms in to the current position of the camera reference point

through the camera view direction. When an object is selected zooming action is done

by centering to the object that means changing camera reference point as the center of

the selected object.

The zoomOut method zooms out from the current position of the camera reference

point through the camera view direction. When an object is selected zooming action is

done by centering to the object that means changing camera reference point as the center

of the selected object.

CommandFrame Class

As it is mentioned before, in TraffEdu system cut, copy, and paste operations are not

supported. Only inserting a new frame or deleting a created frame is supported.

The insertFrame method firstly calls checkInconsistency method of the

EditorChecker class by giving pointer of the temporary frame. By this way correctness of

everything in the frame for the animation is guaranteed. Then searchFrames method in

the OSGWindows class is called. This function returns if there is a frame in the keyFrames

vector whose frameId is same as the temporary frame. If it returns true, means there is a

frame whose frameId is same with the temporary frame, that frame is removed from the

keyFrames vector. Finally temporary frame is inserted to the keyFrames vector.

 The deleteFrame method firstly calls searchFrames method in the

OSGWindows class. If it returns true, means there is a frame whose frameId is same with

the temporary frame, that frame is removed from the keyFrames vector. If not, nothing is

 33

done because temporary frame has not been inserted to the keyFrames vector in the

OSGWindows class.

CommandHelp Class

 CommandHelp class handles help operations coming from help menu in the toolbar.

Since undo and redo operations can not be applied to this class, constructed CommandHelp

object is not added to the historyLists vector.

The traffEduHelper , samples , and aboutTraffEdu are the methods of this

class whose aim is to help the user while preparing the animation.

CommandAnimate Class

 CommandAnimate class is created when the user clicks on the animate button on the

GUI. The execute function of this class calls animate method of the

AnimationWindow class. By this way prepared traffic case is animated on a newly created

window.

CommandRightClickMenu Class

 In TraffEdu system when the user right clicks on the OSG window, a request from

OSGEventHandler to GUIEventHandler to open a right click menu is sent.

 The menuId indicates which right click menu will be popped up when the user clicks

right button of the mouse.

 The execute function of this class opens a right click menu by using the menuId .

CommandTimelineClick Class

 There are many cases when the user clicks on the timeline. These cases and how they

are handled are as follows:

When the user clicks on the timeline,

• If keyFrames vector in the OSGWindows is empty a blank temporary frame is

created.

• If keyFrames vector in the OSGWindows is not empty and there is no frame with

the same frameId with the clicked area of the timeline, a temporary frame is created.

This frame contains same environment objects with the last key frame, whose

frameId is less than the frameId of the frame.

 34

• If keyFrames vector in the OSGWindows is not empty and there is a frame with the

same frameId with the clicked area of the timeline, that frame is loaded to the newly

created temporary frame.

The execute function performs all the conditions by the help of searchFrames

method in the OSGWindows class.

4.3 EditorChecker Class

Figure 4.3

EditorChecker class, as the name implies, checks the operations done in TraffEdu

Editor so that the user can be notified if he does conflicting operations. The consisitency in

each frame is checked whenever check consistency button is pressed, that means

GUIEventHandler’s commandCheckConsistency object will create a

EditorChecker object and call checkInconsistency method of that object, or the

user inserts the current environment as a new frame, that means GUIEventHandler’s

commandInsertFrame object will create a EditorChecker object and call

checkInconsistency method .

checkInconsistency(int, OSGWindows *)

 This method calls checkFrame , for the frame whose frameID given as first

argument, so a process of checking the frame for different types of consistencies will be

started. The second argument is a pointer to the OSGWindows object that has that frame. We

need this pointer to be able to reach static frame objects like roads, traffic signs and lights

which are kept in OSGWindows object but not in Frame object, since these objects are not

specific to a single frame.

 35

checkFrame(Frame *, OSGWindows *):boolean

 This function calls checkObjectPosition for each object in the

frame which is pointed by the first argument. Then for Vehicle type objects it calls

checkVehiclePath, and for Road type objects it calls checkRoadConjuctions.

checkObjectPosition (ObjectType, Vector<float>, OSGWindows

*):boolean

This function checks whether the object placements are done appropriately. It checks

whether the object with object type denoted with the first argument could be inserted at the

coordinates denoted with the second argument. It first selects the nearest object in that

coordinates, and according to the type of that object it returns true or false. Following are the

constraints about positioning of objects.

• A vehicle can only be inserted on road and should follow its path.

• A road can only be inserted on the grid.

• A path can only be inserted on road.

• Traffic lights and traffic signs can only be inserted on road.

• Environmental objects can not be inserted on the road.

checkVehiclePath(Vehicle *):boolean

 If the vehicle whose pointer is given as argument has empty path vector, this

function returns false, otherwise true. A warning message should be generated since the user

will not be able to change position of the vehicle in the next frames unless it has a path

associated with it.

checkRoadConjuctions(Frame *, OSGWindows *):boolean

 The direction of the lanes of the two branches of two different roads should match

if these branches are placed side by side. This means if a lane of a branch with DOGU_BATI

direction meets a lane of another branch with BATI_DOGU direction this function will return

false.

 36

4.4 OSGWindows Class

Figure 4.4

lastFrameId:int

lastFrameId is the variable that keeps the id of the last keyframe inserted. This

variable is necessary for allocating space for the animationFrames vector of the

AnimationWindow object. The size of the vector is calculated by using this variable.

roadObject: Vector<Object>

environmentObject: Vector<Object>

grids: Vector<Grid>

Grid objects, Road objects, the TrafficSign and TrafficLight object that

the roads contains and Environment objects are static for each frame, their position and

orientation does not change from frame to frame. That is why they are kept in this class rather

than Frame class.

keyFrames: Vector<Frame*>

The key frames that the user inserted are pushed back to the keyFrames vector in

the order the user inserted.

 37

timeline: TimeLine

 This object is drawn with each call to draw function.

openWindow()

 This function initializes the main display area of the editor.

closeWindow()

 This function clears the main display area of the editor.

searchFrames(int):boolean

This function returns true if the keyFrames vector of this class contains a frame with

id that is same with argument and false otherwise.

draw(Vector <WindowName>)

 This function calls draw functions for objects in roadObject,

environmentObject, grids, keyframe vectors of this class. The timeline

object is also displayed by setting a predetermined orthographic projection. The argument

determines which of the views will be displayed in the main area. 3D_VIEW mode displays

perspective projection of the environment. TOP_VIEW mode displays orthogonal

projection of the environment from top view. FRONT_VIEW mode displays orthogonal

projection of the environment from front view. SIDE_VIEW mode displays orthogonal

projection of the environment from side view. The viewports are adjusted according to the

size of the argument vector which is the number of viewing modes. Each mode is drawn by

adjusting the properties of the camera object of current frame.

TimeLine Class

vertices:vector<float>

 This vector stores the vertices of each rectangle in the timeline.

coloredAreas:vector<float>

 This vector keeps the indexes of the rectangles for which a frame is inserted.

drawTimeline()

 This function draws the vertices vector as a sequence of rectangles.

Grid Class

Grid class is used to help the user visualize the environment better. Also grids help in

consistency checking. The user is not allowed to put the cars on the grids on which no roads

are located. Grids are fixed for all frames.

 38

gridId:int

It is the identification number for each grid.

centerx, centery, centerz :float

They are x, y and z coordinates of each grid.

roadPtr :Road*

 This pointer is set to the Road object if such a Road object is placed on this grid.

This is needed in order to check if a Vehicle type object is placed on a Road type object or

not.

drawGrid()

 This function is responsible for drawing the grid on OSGWindows.

OSGEventHandler Class

OSGEventHandler class is one of the event handler classes in the system that

handles the requests coming from the OSG windows. It manages the operations of the

callback functions of the openscenegraph. Each Frame object has an instance of this

OSGEventHandler class. Whenever a Frame object is created, an OSGEventHandler

object for that frame is also created automatically.

The mouseControl function in OSGEventHandler considers the following

possible conditions:

o Mouse Left-Click (with CTRL key released)

o On Empty Area

There is no action taken against such a condition by the OSGEventHandler

class.

o On a Selected Object

There is no action taken against such a condition by the OSGEventHandler

class.

o On a Deselected Object

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class by calling the addCommand function with a

parameter to indicate that a CommandSelect object should be created.

 39

o Mouse Left-Click (with CTRL key pressed)

o On Empty Area

There is no action taken against such a condition by the OSGEventHandler

class.

o On a Selected Object

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class by calling the addCommand function with a

parameter to indicate that a CommandDeselect object should be created.

o On a Deselected Object

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class by calling the addCommand function with a

parameter to indicate that a CommandSelect object should be created.

o Mouse Right-Click (with CTRL key released)

o On Empty Area

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class by calling the addCommand function with a

parameter to indicate that an appropriate CommandRightClickMenu object

should be created.

o On a Selected Object

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class by calling the addCommand function with a

parameter to indicate that an appropriate CommandRightClickMenu for

that selected object should be created.

o On a Deselected Object

There is no action taken against such a condition by the OSGEventHandler

class.

o On TimeLine

OSGEventHandler class leaves the management of this callback to

GUIEventHandler class indicating a CommandTimelineClick object

should be created.

When met with a mouse motion callback on an object, the OSGEventHandler class

calls the addCommand function of the GUIEventHandler indicating that a

CommandTranslate object should be created.

 40

updateCamera(float, float, float, float, float, float, float, float, float)

 When a keyboard callback occurs, this function updates the camera properties which

are position, reference point and the look up vector.

4.5 AnimationWindow Class

Figure 4.5

AnimationWindow (last_frame_id:int)

 The size of animationFrames vector will be equal to 30*5*last_frame_id .

last_frame_id is the identification number of the frame that is inserted lastly in

OSGWindows object. This number is multiplied by 30, which is the number of frames

displayed per second in the animation, and 5. The user is allowed to insert frames into places

in timeline which are multiple of 5 seconds--similar to the timeline of the Macromedia Flash

Editor. So the last_frame_id must be multiplied by 5 to get how many seconds of

animation is required in total.

 41

camera: Camera

 A camera object is created and located in a default position in the scene at the

beginning of the animation. As the input comes from the keyboard, the callback function,

setCameraPosition , of the AnimateEventHandler object locates the camera to the

new location. As stated before in the explanation of Camera class, in the animation phase

only one camera object is created instead of one camera object per frame, therefore a change

in the position or orientation of the camera will be permanent for all frames until a new

keyboard event occurs.

animationFrames:vector<Frame *>

 When the animate button is pressed an object of this class is created. The in-between

frames of the frames vector in OSGWindows object, are created and collected in the

animationFrames vector by calculating and filling the fields of objects.

animate () : void

 This function will call sortFrameVector, fillFrameVector,

calculateSpeed, calculateSteer, openWindow functions of this call in

succession.

sortFrameVector(vector<Frame>)

 The frames vector in OSGWindows class is filled with frames in the order, the user

inserts them. For calculations, two consecutive keyframes must be detected. In order to do so,

the frames vector of OSGWindows is sorted by sortFrameVector function according to

the frame ids.

fillFrameVector(vector<frame>)

 fillFrameVector function fills the in-between frames by incrementally taking

two consecutive frames from its argument vector. The necessary speed and steer

properties of Vehicle objects and color properties of the trafficLight objects are

adjusted.

calculateSpeed()

After setting the corresponding values for objects in animationFrames , speed of

Vehicle objects in each frame is calculated by calculateSpeed function using the

position difference of Vehicles between frames. This speed property of the Vehicle

objects will be used in setting the speed of each motor for each worldstep for making

calculations in ODE.

 42

calculateSteer()

 The steer of each Vehicle object is calculated for each frame according to the

checkpoints of the path of the car in calculateSteer function. The checkpoints are the

points where the angle of the path is changed. In these points the steer of the vehicle will be

changed accordingly. For the vehicle to make the rotations realistic, the car should start

steering before reaching the checkpoints. This steer property of each object will be used to set

the steers of the cars in each worldstep for making calculations in ODE.

 Steer and speed properties of the vehicles are not calculated during the animation but

just before the animation while filling the in-between frames.

displayText(String)

 This function displays the String object given as its argument.

playAudio(String)

 This function plays audio by calling the playSound function of Audio class with its

argument.

openWindow()

 After making the calculations for sorting the array, filling the array with necessary

frame information, calculating the speed and steer of the each vehicle object, the

openWindow function is called for passing to the animation window from the editor

window. A new window is opened in the screen and the drawFrame function is called.

drawFrame()

 The objects vector in OSGWindows class keeps the positions static objects like roads,

traffic lights and traffic signs. For current frame, the RoadObject and

EnvironmentObject vectors are drawn since the elements in these arrays are stable

during the animation. The color of light for each TrafficLight object is stored in

lightColor vector of animationFrames. So the change in traffic lights for each

frame is achieved by this way.

 The necessary information for the Vehicle objects is collected in the

animationFrames vector. This is the speed and steer information. At each frame we give

the speed and steer to motors and step the world and get the positions of the bodies to update

the position of vehicles and wheels, namely the dynamic objects.

 43

Draw static environment

If time equals timeStep

then

 increment currentFrame

 run motor with speed and steer of currentframe

 worldstep(timeStep)

 for each vehicle objects

 vehicle curren tposition = getBodyPosition

 for each wheel object of vehicle

 wheel curren tposition = getBodyPosition

draw vehicle and the wheels in their current position

In addition, the animationFrames vector’s texts vector is checked if this

frame contains textual information. If textsIndex variable of this frame is not -1 , then

displayText is called with argument texts[textsIndex].

For audio play, the animationFrames vector’s audios vector is checked if this

frame must be displayed with audio. . If audiosIndex variable of this frame is not -1 ,

then playAudio is called with argument audios[audiosIndex].

closeWindow()

 This method exits the animation window.

AnimateEventHandler Class

 Although animation window is also a OSGWindow, a separate class is needed to

handle this window events. The reason is due to the different responses of the animation

window to the events coming from the keyboard or mouse. For example, a right click on other

OSG windows will result in calling the GUIEventHandler class to create a GUI related to

the current selected object, whereas in animation window all inputs coming from the user is

related to camera positioning.
setCameraPosition (CameraMotion)

 This function handles the inputs from the keyboard and adjusts the camera positions

by calling the updateCamera function of the AnimationWindow class’s camera

object.

 44

4.6 PhysicsEngine Class

Figure 4. 6

The Physics Module is used for simulating vehicles in the system and applies the

essential physics to the bodies in the environment so that the resulting animation becomes

more realistic. All the objects in the environment should be exposed to gravitation, in addition

to this dynamic vehicle objects should be exposed to friction. Motion with acceleration,

deceleration or constant speed should be simulated for those dynamic objects. What is more,

collision detection should be done and collisions should be simulated in consistency with the

real world physics. It is decided to use Open Dynamics Engine (ODE) library for these

purposes to supply the collision detection and velocity control of the dynamic bodies in the

created world.

PhysicalEngine class makes the necessary ODE initializations with the call of

initialize function to constitute the static environment of a typical simulation in

animation phase of TraffEdu system. Firstly, it is invoked to create a world with

createWorld function to embed the bodies of the objects and sets the gravity for that

world. Then, a physical space is created with createSpace function to handle the collision

detections. Finally the ground plane will be created in the space with createPlane

 45

function to set the ground of the environment. Planes are non-placeable geoms, therefore they

do not have an assigned position and rotation. In other words it is assumed that the plane is

always part of the static environment and not tied to any movable object.

For each vehicle and for its four wheel objects a rigid body should be created

and the corresponding rigid bodies should be attached with joints. To achieve this

createBody function of the PhysicalEngine class should be called, this function will

return the created dBodyID which will be recorded in the bodyID field of the object. To

attach a joint to a vehicle object body and its wheels’ bodies’ attachJoint method

will be used. Similarly for each object a geom should be created and should be related to

its body if one exists. The former will be done by createGeom and the latter. What is

more, for each vehicle and its wheels these geoms should be added to simple car space

for collision handling.

 Before rendering each frame the world should be stepped once by the stepWorld

function so that the new dynamics can be calculated and the body or geom positions can be

get in the correct place by calling the getBodyRotation /getBodyPosition or

getGeomPosition /getGeomRotation.

The hierarchy of physics module is shown in Figure 4.6.

world: dWorldID Identifies the world

space: dSpaceID Identifies the space.

ground : dGeomID Identifies the ground geom.

dWorldID :createWorld()

Calls dWorldCreate() function of ODE and returns the created world ID

void : stepWorld(dReal stepSize)

 Calls dWorldStep (world, stepSize) function of ODE

void : setGravity(dReal x, dReal y, dReal z)

Calls dWorldSetGravity (world ,x, y, z) so that the world’s global gravity vector is set

dGeomID:setGroundPlane(dReal a, dReal b, dReal c, dReal d)

Calls dCreatePlane (space,a,b,c,d) to create a plane for ground with the equation

ax+by+cz=d and returns the created plane geom ID.

dSpaceID : createSpace()

Calls dHashSpaceCreate (0) function of ODE and returns the created space ID

 46

dSpaceID : createCarSpace(vehicleObject:vehicle)

Calls dSimpleSpaceCreate (space) function of ODE and adds the vehicle’s and its

wheels’ geom to that space by calling dSpaceAdd (dSpaceID, dGeomID) function of ODE

and returns the created spaceID so that the vehicle object can set its carSpaceID parameter.

dBodyID : createBody()

 Calls dBodyCreate (world) and returns the created body ID.

dGeomID: createGeom(geomType:int)

Calls dGeomCreate (geomType) and returns the created geom ID.

void : relateGeomBody(geomID:dGeomID, bodyID:dBodyID)

 Calls dGeomSetBody (geomID, bodyID) function of ODE.

dJointID : createJoint()

 Calls dJointCreateHinge2 (world,0) and returns the created joint ID.

void:attachJoint(jointID:dJointID,bodyID1:dBodyID,bodyID2:dBod

yID)

Calls dJointAttach (jointID , bodyID1 , bodyID2)

void : initialize()

Calls createWorld ,setGravity, createSpace, setGroundPlan e

methods and for each object in the environment creates needed body, geom and joints and

relates these as explained above.

void : finalize()

Destroys world, spaces, contact groups and geoms using the dWorldDestroy,

dSpaceDestroy, dGeomDestroy, dJointGroupDestroy methods of ODE.

Vector<dReal>:getGeomPosition(geom:dGeomID)

It returns setTransformation(dGeomGetPosition(geom),dGeomGetRotation(geom))

Vector<dReal>:getBodyPosition(body:dBodyID)

It returns setTransformation(dBodyGetPosition(body),dBodyGetRotation(body))

Vector<dReal>: setTransformation (trans: Vector<dReal>, rotat:

Vector<dReal>)

Calculates a 4 by 4 matrix from the given 4 by 3 matrix and returns the result.

 47

4.7 FileHandler Class

Figure 4.7

This class has three main functionalities; one of which is to read the vertices data of

models to be inserted. One other functionality is to read from an XML file and so involve in

the reconstruction of the frames vector for the traffic case prepared previously. The last one is

to write the prepared traffic scene to an XML formatted file.

In TraffEdu, premeditated 3ds max models will be used. To export models from 3ds

max to OpenSceneGraph, we will use OSGExp which is an open source exporter, actually a

plug-in to be installed on top of 3ds max. The .max models will be translated once and will be

stored in the directory hierarchy of our project TraffEdu in .osg format under

TraffEdu/Models directory. In implementing the file functions, both the functions supported

by the OpenSceneGraph in osgDB library and the input/output functions of C++ will be used

according to their ease of use. The osgDB library provides support for reading and writing

scene graphs, providing a plugin framework and file utility classes. The plug-in framework is

centered on the osgDB::Registry, and allows plugins which provide specific file format

support to be dynamically loaded on demand. osgDB provides handy functions not only for

managing files but also managing directories. To give an example, the directory content or a

given file’s type in a given directory can easily be accessed.

boolean loadModel(String)

The function will read the vertices and normal vector information of objects from the

given argument file name. If read operation is successful (unsuccessful), it returns a true

(false) boolean value.

boolean saveFile(Vector <Frame>,String)

This function simply takes two arguments one of which is for the frames to be saved

and the other for the name of the file to be produced. The function saves only the objects,

audios, texts, lightcolors vectors for each frame and roadObject ,

environmentObject vectors in OSGWindow class. If save operation is successful

(unsuccessful) it returns a true (false) boolean value.

 48

boolean loadFile(String, Vector <Frame> *)

This function simply takes two arguments one of which is for the frames to be loaded

in and the other for the name of the file to be loaded from. If save operation is successful

(unsuccessful), it returns a true (false) boolean value.

The parsing of the XML file will be done via Apache Xerces C++ XML Parser. The

DTD schema and a hierarchy of tags for the XML file are given in A.2.

4.8 Audio Class

Figure 4.8

 TraffEdu will have some audios like speaking of the user and effects in the animation.

Audio class will be implemented to control the sounds. Audio will interact with Physics

class to play crash effects if a traffic accident happens in the animation. Also it will interact

with AnimationWindow class to play some music or effects inserted by the user in the 3D

Editor part.

Functions in osgAL, toolkit for handling spatial (3D) sound in the OpenSceneGraph

rendering library, will be used to implement this module.

• osg::Sample will be created to hold the .vaw sample file for each audio object.

• osgAL::SoundState will be created to hold the samples and its settings. Volume of the

sound is one of them.

• osgAL::SoundNode will be created to hold a SoundState and this node will be inserted

wherever an audio object is created.

• osgAL::SoundManager will be created to handle queued SoundStates and to store all

SoundStates to make it possible to find them later on. For example, when a crash

occurs in a frame and user has been inserted an Audio object into that frame in the

animation preperation phase, both sound events coming from AnimationWindow

class and Physics class will be pushed into the queue and played according to their

priority.

 49

The volume variable indicates the volume (gain) of the sound state.

The playSound method is used for creating a new audio stream according to the given

sound name and playing the stream by using setPlay method of osgAL::SoundState setting

"true" as a parameter.

The stopSound method is used for stopping the stream which is being played by using

setPlay method of osgAL::SoundState setting "false" as a parameter.

The setVolume method is used for setting the volume of the stream by using setGain

method of osgAL::SoundState.

The getVolume method is used for getting the volume of the stream by using getGain

method of the osgAL::SoundState.

4.9 Class Diagrams Overview

 50

Figure 4. 9

 51

A. APPENDIX

A.1 Enumeration Types

Enum WindowName{

 TOP_VIEW,

 SIDE_VIEW,

 FRONT_VIEW,

 3D_VIEW

}

Enum DrawMode{

 SELECT

 DRAW_VEHICLE,

 DRAW_PATH,

 DRAW_WHEEL,

DRAW_ROAD,

DRAW_ROAD_BRANCH,

DRAW_LANE,

DRAW_TRAFFIC_SIGN,

DRAW_TRAFFIC_LIGHT,

DRAW_TREE,

DRAW_HOUSE

}

Enum ObjectType{

 VEHICLE,

WHEEL

 PATH,

ROAD,

ROAD_BRANCH,

LANE,

TRAFFIC_SIGN,

TRAFFIC_LIGHT,

HOUSE,

TREE

}

 52

Enum BranchType{

 ANAYOL,

TALIYOL,

KAVSAK

}

Enum RoadType {

 DUZ_YOL,

TALI_ YOL,

KAVSAKLI_YOL,

ADA_YOL,

BOLUNMUS_YOL,

VIRAJLI_YOL,

DARALAN_YOL,

IKI_YONDEN_DARALAN_YOL

}

Enum RoadLineType {

 TEKLI_KESIKLI_CIZGI,

 CIFTLI_KESIKLI_CIZGI,

 TEKLI_DEVAMLI_CIZGI,

 CIFTLI_DEVAMLI_CIZGI

}

Enum LaneDirection {

 DOGU_BATI,

 BATI_DOGU,

 KUZEY_GUNEY,

 GUNEY_KUZEY,

 KUZEYDOGU_GUNEYBATI,

 KUZEYBATI_GUNEYDOGU,

 GUNEYDOGU_KUZEYBATI,

 GUNEYBATI_KUZEYDOGU

}

Enum TrafficSignTypes{

SAGA_TEHLIKELI_VIRAJ,

SOLA_TEHLIKELI_VIRAJ,

 53

SAGA_TEHLIKELI_ DEVAMLI_VIRAJ,

SOLA_TEHLIKELI_DEVAMLI_VIRAJ,

IKI_TARAFTAN_DARALAN_KAPLAMA,

SAGDAN_DARALAN_KAPLAMA,

SOLDAN_DARALAN_KAPLAMA,

KAYGAN_YOL,

ISIKLI_ISARET_CIHAZI,

IKI_YONLU_TRAFIK,

DIKKAT,

KONTROLSUZ_KAVSAK,

ANAYOL_TALIYOL_KAVSAGI,

SAGDAN_ANAYOL_TALIYOL_KAVSAGI,

SOLDAN_ANAYOL_TALIYOL_KAVŞAGI,

SAGDAN_ANAYOLA_GIRIS,

SOLDAN_ANAYOLA_GIRIS,

DONEL_KAVSAK_YAKLASIMI,

TEHLIKELI_VIRAJ_YON_LEVHASI,

YOL_VER,

DUR,

TASIT_GIREMEZ,

TASIT_TRAFIGINE_KAPALI_YOL,

MOTOSIKLET_HARIC_MOTORLU_TASIT_TRAFIGINE_KAPALI_YOL,

MOTORLU_TASIT_GIREMEZ,

TASIT_GIREMEZ,

SAGA_DONULMEZ,

SOLA_DONULMEZ,

U_DONUSU_YAPILMAZ,

ONDEKI_TASITI_GECMEK_YASAKTIR,

AZAMI_HIZ_SINIRLAMASI,

BUTUN_KISITLAMALARIN_SONU,

HIZ_KISITLAMASI_SONU,

GECME_YASAGI_SONU,

SAGA_MECBURI_YON,

SOLA_MECBURI_YON,

 54

ILERI_MECBURI_YON,

ILERI_SAGA_MECBURI_YON,

ILERI_SOLA_MECBURI_YON,

SAGA_SOLA_MECBURI_YON,

ILERIDE_SAGA_MECBURI_YON,

ILERIDE_SOLA_MECBURI_YON,

SAGDAN_GIDINIZ,

SOLDAN_GIDINIZ,

HER_IKI_YANDAN_GIDINIZ,

ADA_ETRAFINDA_DONUNUZ,

MECBURI_ASGARI_HIZ,

MECBURI _ASGARI_HIZ_SONU,

GIRISI_OLMAYAN_YOL_KAVSAGI,

ILERI_CIKMAZ_YOL,

ANAYOL,

ANAYOL_BITIMI,

BOLUNMUS_YOL_ONCESI_YON_LEVHASI

}

Enum TrafficLightTypes{

NORMAL_ISIK,

SUREKLI_YANIP_SONEN_ISIK,

SAGA_OKLU_ISIK,

SOLA_OKLU_ISIK

}

Enum TrafficLightColor{

 KIRMIZI,

 SARI,

YESIL

}

Enum ObjectViewMode{

 DISPLAY,

 HIDE

}

 55

Enum CameraMotion{

 ZOOM_IN,

 ZOOM_OUT,

 PITCH_UP,

 PITCH_DOWN,

 ROW_LEFT,

 ROW_RIGHT

}

A.2 DTD Schema

<?xml encoding="ISO-8859-1"?

<?xml version="1.0" encoding="UTF-8" standalone="ye s"?>

<!DOCTYPE TrafficCase [

<!ELEMENT TrafficCase (Background, Frames)>

<!ELEMENT Background (Roads)>

<!ELEMENT Roads (Road+))>

<!ELEMENT Road (Position, Branches+, Lights*,Signs*)>

<!ATTLIST Road type CDATA #REQUIRED>

<!ATTLIST Road objectID CDATA #REQUIRED>

<!ELEMENT Position>

<!ATTLIST Position currentX CDATA #REQUIRED>

<!ATTLIST Position currentY CDATA #REQUIRED>

<!ATTLIST Position currentZ CDATA #REQUIRED>

<!ATTLIST Position transformationMatrix CDATA #REQU IRED>

<!ELEMENT Branches(Branch+))>

<!ELEMENT Branch (Lanes)>

<!ATTLIST Branch objectID CDATA #REQUIRED>

<!ATTLIST Branch direction CDATA #REQUIRED >

<!ATTLIST Branch type CDATA #REQUIRED>

<!ELEMENT Lanes(Lane+)>

<!ELEMENT Lane>

<!ATTLIST Lane leftLine>

<!ATTLIST Lane rightLine>

<!ATTLIST Lane direction>

<!ELEMENT Lights (Light+))>

 56

<!ELEMENT Light (Position)>

<!ATTLIST Light type CDATA #REQUIRED>

<!ATTLIST Light objectID CDATA #REQUIRED>

<!ELEMENT Signs (Sign+))>

<!ELEMENT Sign (Position)>

<!ATTLIST Sign type CDATA #REQUIRED>

<!ATTLIST Sign objectID CDATA #REQUIRED>

<!ELEMENT Frames (Frame+)>

<!ELEMENT Frame (Objects, Text, Audio)>

<!ATTLIST Frame frameID CDATA #REQUIRED>

<!ELEMENT Objects (Vehicles, LightUpdates)>

<!ELEMENT Vehicles (Vehicle*)>

<!ELEMENT Vehicle (Position)>

<!ATTLIST Vehicle objectID CDATA #REQUIRED>

<!ATTLIST Vehicle type CDATA #REQUIRED>

<!ATTLIST Vehicle path CDATA #REQUIRED>

<!ELEMENT LightUpdates (LightUpdate *)>

<!ELEMENT LightUpdate>

<!ATTLIST LightUpdate objectID CDATA #REQUIRED>

<!ATTLIST LightUpdate color CDATA #REQUIRED>

<!ATTLIST LightUpdate arrowColor CDATA #IMPLIED >

<!ELEMENT Text (#PCDATA)>

<!ELEMENT Audio (#PCDATA)>

]>

The hierarchy of tags in the XML output files of TraffEdu can be seen below:

<TrafficCase>

<Background>

<Roads>

<Road type objectID>

<Position currentX currentY currentZ

transformationMatrix/>

 <Branches>

<Branch objectID direction type>

<Lanes>

<Lane leftLine rightLine

direction />

 57

 <Lane>...</Lane>

 </Lanes>

 </Branch>

 <Branch>...</Branch>

 </Branches>

 <Lights>

 <Light objectID type>

<Position currentX currentY curentZ

transformationMatrix/>

 </Light>

 <Light>...</Light>

</Lights>

 <Signs>

 <Sign objectID type>

 <Position currentX currentY curentZ

transformationMatrix/>

 </Sign>

 <Sign>... </Sign>

 </Signs>

</Road>

<Road> ... </Road>

 </Roads>

 </Background>

 <Frames>

 <Frame frameID>

 <Objects>

 <Vehicles>

 <Vehicle objectID type path>

 <Position currentX currentY currentZ

transformationMatrix/>

 </Vehicle>

 <Vehicle>...</Vehicle>

 </Vehicles>

 <LightUpdates>

 <LightUpdate objectID color arrowColor/>

 <LightUpdate>...</LightUpdate>

 58

 </LightUpdates>

 </Objects>

 <Text> </Text>

 <Audio> </Audio>

 </Frame>

 <Frame>...</Frame>

 </Frames>

</TrafficCase>

The directory hierarchy of system TraffEdu is as follows:

Figure A.1

 59

A.3 Coding Standards

We decided on some coding standards to make our code more readable. Below are the

standards for variables, function names, type names and enumeration types.

Variable names begin with lower case characters and if it is a composite word each

new word begins with a capital letter. (e.g. word1Word2Word3)

Function names begin with lower case characters and if it is a composite word each

new word begins with a capital letter. (e.g. word1Word2Word3)

Type names such as class, enumeration and user defined types begin with upper case

characters and if it is a composite word each new word begins with a capital letter. (e.g.

Word1Word2Word3)

Enumerated types are all written in capital letters.

Vector typed variables’ are written in plural form.

A.4 Gantt Chart

 60

 61

 62

 63

