

 1

Contents
1. INTRODUCTION

1.1 Purpose of the Document…………………………………………………………3

1.2 Scope of the Document…………….……………………………..……………….3

1.3 Abbreviations and Definitions ……………………………………………………3

2. SYSTEM OVERVIEW

2.1 System Description………………………………………………………………...4

2.2 Functional Requirements…………………………………………………………..4

2.3 System Requirements……………………………………………………………....5

3. INTERFACE DESIGN

3.1 Sample Graphical User Interfaces………………………………………………….5

3.2 Reviewed Use Case Diagrams……………………………………………………18

3.3 Activity Diagram………………………………………………………………….19

4. SYSTEM DESIGN

4.1 System Data Structures………………………………………………………….23

4.2 GUIEventHandler Class…………………………………………………………26

4.3 EditorChecker Class……………………………………………………………..29

4.4 OSGWindows Class……………………………………………………………..30

4.5 PhysicsEngine Class……………………………………………………………..32

4.6 FileHandler Class………………………………………………………………..34

4.7 Audio Class………………………………………………………………………35

4.8 Class Diagrams Overview………………………………………………………..36

A. APPENDIX

A.1 Enumeration Types………………………………………………………………37

A.2 DTD Schema……………………………………………………………………..40

A.3 Coding Standards………………………………………………………………...41

A.4 Gantt Chart……………………………………………………………………….42

 2

1. INTRODUCTION

1.1 Purpose of the document

 This document is intended to introduce the system design considerations that will be

basic guideline for the final design specification and prototype implementation. The document

gives an initial motivation on how to design the system to meet the requirements previously

defined in the Requirement Analysis Report.

1.2 Scope of the document

After giving a general overview, the document specifies the requirements of the

system. Graphical user interface of the system is shown and system functionalities are

described with the help use case and activity diagrams. System modules along with their

classes are described in detail giving the relationships between them. Lastly, a dynamic Gantt

chart is presented.

1.3 Abbreviations and Definitions

2D: Two Dimensional

3D: Three Dimensional

AVI: Audio Video Interleave

DTD: Document Type Definition

GUI: Graphical User Interface

MP3: MPEG Audio Layer 3

ODE: Open Dynamics Engine

OSG: OpenSceneGraph

WAV: Waveform Audio

XML: Extended Markup Language

 3

2. SYSTEM OVERVIEW

2.1 System Description

The system TraffEdu is a 3D editor for designing 3D traffic environment and

preparing traffic case simulation on it. It provides the user to prepare any traffic case which

includes creating road map, inserting traffic lights or traffic signs, environmental objects,

audio or text, any type of vehicles and determining behaviors of the vehicles in the traffic.

According to these specifications a XML formatted file will be produced.

 Animation will be constructed after user presses the animation button by reading data

from that XML file. This animation will not be in the format of AVI file which does not allow

user interaction. It will enable the user to change view of the case by translating or rotating

the camera.

2.2 Functional Requirements

Functional requirements of the TrafEdu System are mentioned in the Software

Requirements Analysis report. Functionalities below are the ones that are changed or added to

the system after the analysis phase.

1. In the analysis report it is mentioned that TraffEdu Editor shall provide the user to

define traffic lights’ synchronization. Instead, in the timeline user sets behavior of the

traffic light (red, yellow, or green) for each key frame and system adjusts

synchronization accordingly.

2. In the analysis report it is mentioned that while constructing the road map of the

environment, user will see 2D symbolic representations of the real 3D objects in 2D

environment. Instead user can see different projections (orthogonal projection from

top, orthogonal projection from front, orthogonal projection from side and perspective

projection by a user defined angle) of the 3D environment in four sub windows.

3. TraffEdu system shall provide the user to hide or display sub windows mentioned

above.

4. TraffEdu system shall provide the user to hide or display menus in the GUI.

5. Functionality of choosing the hours of the day will not be supported.

6. Functionality of creating an executable animation file will not be supported.

7. Functionality of changing behaviour of a vehicle during the animation phase will not

be supported.

 4

8. While user is constructing roadmap, adding traffic signs or constructing special case,

the user’s conflicting actions (e.g. locating the car to a position outside of its path) will

be prevented by giving a warning message to direct the user to correct her/his fault.

2.3 System Requirements

TraffEdu System requires Microsoft Windows 98/2000/NT/XP Operating

System and DirectX support on the user side.

On the developer side the requirements are listed below:

• Microsoft Windows XP Professional

• Microsoft Visual Studio .NET 2003

• OpenSceneGraph 0.9.9

• Open Dynamics Engine 0.5

• DirectX SDK

• 3D Studio Max

• Adobe Photoshop

• LATEX

3. INTERFACE DESIGN
3.1 Sample Graphical User Interfaces

The following screen capture is what TraffEdu Editor will look like when a new file is

opened. The Window is mainly divided into four areas which is toolbar (or menu bar) at the

top, Toolbox Window at the left, main window(OSG windows) at the middle and Objects and

Properties Windows on the right of the editor window. The events occurred in OSG windows

will be handled by EventHandleOSG class and events occurred in GUI windows will be

handled in GUIEventHandler. User will use the orthogonal view (which is the top left

view in the following picture) for creating his/her traffic environment. The addition of objects

to the environment is supported via Toolbox Window on the left of the window. A grid

platform is provided for better placement of objects into the area.

 5

Figure 3. 1

Creation of a traffic case starts with placing appropriate road type onto the grid

platform. This is provided in the Road Map section of Toolbox Window. The user will drag &

drop the needed road types to the platform. If an inappropriate kind of road is placed that

cannot be joint to the neighbor road type, this is prevented by the system.

Figure 3. 2

 6

For placement of Vehicle objects user can drag and drop from Vehicles section of

toolbox. Here there will be types of vehicles that the user can select for using in the traffic

case being designed.

Figure 3. 3

For addition of the traffic signs and lights again the toolbox is used and the user has

the opportunity to add them to the appropriate places in the road map designed.

Figure 3. 4

 7

Figure 3. 5

The user can insert environmental objects house and trees from the Environmental

Objects section of the toolbox.

Figure 3. 6

 8

The current objects in the environment can be seen from the Objects Window on the

right panel of the window.

Figure 3. 7

Clicking on an object listed in the Objects Window shows the current selected object’s

properties in Properties Window below.

Figure 3. 8

 9

The File menu presents the following actions to the user. Current Files is for viewing

the currently opened files.

Figure 3. 9

Under edit menu the following actions may be performed. These actions will be active

when an object is selected. Only Zoom In/Zoom out property does not require selection of an

object which means zooming with respect to the current camera direction. When an object is

selected zooming action is done centering that object selected.

Figure 3. 10

 10

Removing a class of objects or all objects can be done via Edit->Remove.

Figure 3. 11

View menu gives user the chance of viewing/not viewing objects or panels on the

environment and the Editor window.

Figure 3. 12

 11

The user will be able to hide or display objects as shown below.

Figure 3. 13

The user will have the opportunity to see the environment prepared, with Top View,

Front View, Side View and 3D View options. The checked ones will be provided in the main

area of the editor.

Figure 3. 14

 12

The user will be able to insert objects, audio and text to the case within this Insert

Menu and also save the currently formed environment as a frame by selecting Frame. When

Text is clicked, a pop up window will appear allowing the user to insert any text into the

current frame. In the same way the user will be able to insert any audio file into the frame by

clicking Audio menu and selecting an audio file of her/his choice.

Figure 3. 15

Help menu presents the manual for TraffEdu and also some pre-created sample maps

with explanations for easing program usability.

Figure 3. 16

 13

For adding a path to the vehicles a toolbar icon is provided. Also the user can right

click on the car object to draw its path or do some actions related with the car like cut, copy,

etc.

Figure 3. 17

Drawing path of the vehicle is done by joining the small squares that is presented as

soon as the Draw Path icon from toolbar is clicked or the user right-clicked the vehicle object

and chose Draw Path. For changing a path the user will hold the arrow in front of the path line

and drop to the target place. The user will stay in this mode until it clicks the icon again.

Removing of the path may be done by again right-clicking on the vehicle and clicking

Remove Path.

 14

Figure 3. 18

Right-click action on a road object presents the following menu.

Figure 3. 19

 15

If the user clicks on Edit Road the following menu will pop-up and the user will have

the chance of determining road properties like count of lanes and direction of lanes. Also the

type of the road lines will be determined. In later steps if another road object is added to the

environment and has a join with this road object, the directions of the lanes will be checked.

Figure 3. 20

Right clicking on an empty grid shows the following menu.

Figure 3. 21

 16

If the user places two car objects on top of each other, a warning message is presented

in order to make certain that the user wants an accident indeed.

Figure 3. 22

User will first click on a frame from the timeline and then starts designing the case.

When the user finishes with the current frame, either right clicking the selected frame on the

timeline or by Insert->Frame menu, the frame will be saved in the system. Removal of a

frame is done again by a right-click action on the frame.

Figure 3. 23

 17

The system forces placement of vehicle objects on their path not anywhere else, in

each frame.

Figure 3. 24

3.2 Reviewed Use Case Diagrams

The functionalities of the system and the actions that can take place by the user are

depicted clearly in the GUI of the program. However there exist some actions that must be

done sequentially and dependently to some other actions. These dependencies that are not

dictated in the GUI are represented with use case diagrams in Figure 3.25.

 18

Figure 3. 25

If the user wants to insert an object (i.e. traffic sign, traffic light or vehicle) into the map,

he should first insert a road on which the other objects must be located or he should insert the

objects on an already inserted road. There could not be any object residing on the grids of the

editor except for the road and the environmental object.

If the user presses on animate button, he should have inserted any frame to the system that

he plans to constitute.

For a frame to be inserted there must be any road located on the grids previously to be

displayed in the animation phase.

Lastly, all the insertions should be done after inserting a timeline. For the system to be

informed about the starting, ending and characteristic times of the cases, the timelines of each

case should be inserted before preparing the positions of the objects.

3.3 Activity Diagram

In TraffEdu system, from opening a new file to construct a new traffic case to pressing

animation button and watching the simulation, several sequences can be followed. Activity

Diagram below shows one of those sequences to make working mechanism of the system

clearer.

 19

Figure 3. 26

 20

Figure 3. 27

 21

Figure 3. 28

 22

4. SYSTEM DESIGN
4.1 System Data Structures

Figure 4. 1

 23

Frame Class:

Frame class is an aggregate class that contains all elements specific to a frame.

Objects of scene, such as vehicles, roads, traffic lights, traffic signs; camera, text, and audio

are all inside this class.

setScene method will arrange the camera position that is inside the frame.

drawFrame method calls draw methods of all the objects in the objects vector. Other

methods select, cut, copy, delete or paste an object in the frame. These methods

change the object vectors in the Frame class. Whenever an object is cut it is removed from

objects vector and put in cutObjects vector, so it is not drawn in the scene. But

whenever an object is copied it is put in cutObjects without removing it from the original

list. To paste an object last element of the cutObjects is added to objects vector.

Deleting an object is simply removing it from the objects vector.

Camera Class:

Whenever a keyboard callback related to camera positioning happens,

EventHandlerOSG class request an update for the camera position, the camera object in

the current frame is then updated using the updateCamera function of this class. This

function resets the point where the camera is, the point where it looks and the up vector of the

camera.

Audio and Text Class:

These are the classes of inserted text and audios to the frame. Text class’ string field

keeps the text that user inputs and Audio class’ string field keeps the name of the audio file.

These are both saved to the related frame part of XML file. Whenever the frame is rendered,

the Frame object will call Audio module’s Audio class’ (this is not the Audio class of

Frame class) playSound function giving the audio name as the argument.

Object Class:

Object class is the parent of classes that denotes the objects to be drawn in 3D

environment. Since vehicles, roads, traffic signs and traffic lights along with the environment

objects such as buildings and trees all have similar properties; the functions manipulating

these will be implemented in the Object class. Every Object has a position so any

information related to Object’s position is kept in object, as ‘hasa’ relationship in Object

and Position classes.

draw function will use the OSG functions to render the object at the given position.

scale function will change the scaling factor in the Position.

 24

translate function will change the center coordinates of the object in the Position.

rotate function will change the rotation vector in the Position.

display function sets the object’s viewMode to DISPLAY.

hide function sets the object’s viewMode to HIDE.

Position Class:

This class is related to the object class with ‘hasa’ relationship, since every object

should have attributes like its center coordinates, its rotation vector and its scale factor.

Vehicle Class:

Vehicles have properties such as acceleration, speed, path and

followDistance that are specific to vehicle objects.

drawPath method takes a Path object and copies it to Vehicle’s path attribute. By

this way the path and the corresponding vehicle is related.

removePath method deletes the path attribute of a Vehicle object.

changePath method reloads path attribute of a Vehicle object.

Path Class:

Path class has only one attribute which is an integer vector that keeps the indexes of

grids where the path is on. These indexes are the grids vector indexes which is an attribute

of OSGWindows class.

Road Class:

Road class also inherits from Object class with some specific attributes like its

type, its branches and vectors of TrafficSign and TrafficLight that are on the

road. The reason why Road class has ‘hasa’ relationship with TrafficSign and

TrafficLight classes is, they are static objects and their existence depends on the road

type and existence of the road. Whenever a road is removed from the map they are also

removed and a road should already exist wherever a traffic sign or traffic light is placed and

their consistency should be checked with that road by the EditorChecker class.

Road objects are composed of branches and branches should be accessed from Road

since the user can manipulate each Branch by setting its attributes such as increasing the

number of lanes, assigning direction to the lanes which the vehicles should follow and

determining road lines.

 25

4.2 GUIEventHandler Class

Figure 4. 2

GUIEventHandler class is designed by obeying rules of “command design pattern”

which encapsulates a request as an object, thereby letting you parameterize clients with

different requests, queue or log requests, and support undoable operations.

 26

GUIEventHandler class meets events coming from GUI, creates command objects,

and adds them to the historyLists vector (addCommand) which contains constructed

command objects. By traversing on the historyLists vector, undo and redo operations

are performed.

Each inherited class of Command class, is a command, used for handling GUI callbacks

and calling related classes of other modules. Descriptions of those classes are below:

CommandDelete Class:

CommandDelete class handles GUI delete operation either coming from the toolbar

or from the menu which opens when the user clicks right button of the mouse on an

environment object.

CommandCut Class:

CommandCut class handles GUI cut operation either coming from the toolbar or from

the menu which opens when the user clicks right button of the mouse on an environment

object.

CommandRedo Class:

CommandRedo class handles GUI redo operation coming from the toolbar.

CommandUndo Class:

CommandUndo class handles GUI undo operation coming from the toolbar.

CommandPaste Class:

CommandPaste class handles GUI paste operation either coming from the toolbar or

from the menu which opens when the user clicks right button of the mouse on an environment

object.

CommandInsertObject Class:

CommandInsertObject class handles GUI insert object operation either coming

from the toolbar or from the toolbox which is used for constructing traffic case.

CommandInsertText Class:

CommandInsertText class handles GUI insert text operation coming from the

toolbar.

CommandInsertAudio Class:

CommandInsertAudio class handles GUI insert audio operation coming from the

toolbar.

 27

CommandInsertFrame Class:

 CommandInsertFrame class handles GUI insert frame operation coming from the

toolbar.

CommandEdit Class:

CommandEdit class handles GUI edit operations coming from the toolbar, except

those added to the historyLists vector. Since undo and redo operations can not be

applied to this class, constructed CommandEdit object is not added to the historyLists

vector.

CommandFile Class:

CommandFile class handles GUI file operations coming from the toolbar. Since undo

and redo operations can not be applied to this class, constructed CommandFile object is not

added to the historyLists vector. save and load methods call related classes in the

FileHandler module.

CommandView Class:

CommandView class handles GUI file operations coming from the toolbar. Since undo

and redo operations can not be applied to this class, constructed CommandView object is not

added to the historyLists vector. Functionality of its methods is hiding or displaying

objects, windows, toolbar, toolbox window, properties window or objects window.

CommandHelp Class:

CommandHelp class handles GUI help operations coming from the toolbar. Since

undo and redo operations can not be applied to this class, constructed CommandHelp object

is not added to the historyLists vector.

CommandAnimate Class:

CommandAnimate class handles GUI animate operations coming from the animate

buton in the toolbar. This class has two functions; first one generates the frames that are not

specifically designed by the user. Second function starts the simulation loop. Since undo and

redo operations can not be applied to this class, constructed CommandAnimate object is not

added to the historyLists vector.

 28

4.3 EditorChecker Class

Figure 4. 3

EditorChecker class, as the name implies, checks the operations done in TraffEdu

Editor. Whenever an event occurs on OSG Windows such as inserting a new object to the

map, before taking that action, EditorChecker object checks the consistency of the

operation.

checkObjectPosition(ObjectType, Vector<int>)

This function checks whether the object with object type denoted with the first

argument can be inserted at the coordinates denoted with the second argument. It first selects

the nearest object in that coordinates, and according to the type of that object it returns true or

false meaning it is possible to insert new object on top of existing one. For example a vehicle

may be inserted on road but a road can not be inserted on other road.

checkInconsistency(Object, Object):boolean

This function checks whether there is an inconsistency between given two objects and

returns true if they are not consistent, otherwise it returns false. For example if a traffic sign is

to be put on a road, this function checks whether that type of traffic sign is consistent with the

road type.Traffic sign with type ANAYOL can not be put on a road with type TALIYOL.

Samely, the consistency of directions of roads that are next to each other, the consistency of

traffic signs on the same road and whether the vehicle is moved on its path is checked with

this function.

checkFrame():boolean

 Whenever a frame is attempted to save this function is called whether the frame is set

completely, for example if there is any vehicle without a path this function will return false

and a warning will be created since the user will not be able to change positions of the

vehicles in the next frames.

 29

4.4 OSGWindows Class

Figure 4. 4

OSGWindows class represents the area where the user designs his/her own environment.

Windows created in OSG are reached by means of a pointer from the window created by

.NET.

It contains Frame class vector that includes created environment objects and Grid

class vector which represents the ground that the environment settles on. Grid class has ‘hasa’

relationship with OSGWindows class since it is drawn in every window except for

TimeLineWindow and it does not change frame to frame.

There are four subwindows displaying the environment from different projections and

a TimeLineWindow for inserting frames in the OSG window. Classes inherited from

OSGWindows class represents those sub windows. Description of those classes are as

follows:

 30

3Dview Class:

3Dview class represents the sub window displaying perspective projection of the

environment.

TopView Class:

TopView class represents the sub window displaying orthogonal projection of the

environment from top view. Interaction with the user will be handled in this window by

EventHandleOSG class.

FrontView Class:

FrontView class represents the sub window displaying orthogonal projection of the

environment from front view.

SideView Class:

SideView class represents the sub window displaying orthogonal projection of the

environment from side view.

TimeLineView Class:

TimeLineView class represents the timeline window displaying a timeline by using

the vertices array of that class. Interaction related to choosing frame from timeline is handled

by EventHandleOSG class.

 31

4.5 PhysicsEngine Class

Figure 4. 5

The Physics Module is used for simulating vehicles in the system and apply the

essential physics to the bodies in the environment so that the resulting animation becomes

more realistic. This module receives the positional properties of the vehicles from Frame

class and responds with the physics that is required for realistic animation applied to the

vehicles. It is decided to use Open Dynamics Engine (ODE) library for this purpose which

supplies the collision detection and velocity control of the bodies in the created world. The

hierarchy of physics module is shown in Figure 4.5.

 32

PhysicalEngine class makes the necessary ODE initializations to constitute the

environment of a typical simulation in animation phase of TrafEdu system. Firstly, it is in

involved to create a world with createWorld function to embed the bodies of the objects.

Then, a physical space is created with createSpace function to handle the collision

detections.

For each vehicle model a rigid body to which the force is transmitted to gain the linear

velocity in the desired direction, should be created. These bodies are added to the

corresponding world object in PhysicalWorld class. The bodies gain these forces via a

geom object which is of dGeom data type in ODE. Therefore, each body should have a geom

object associated with it and each geom should be created in a space. For this purpose a

PhysicalSpace class is created in PhysicalEngine class to provide the collision

detection environment in which the geom objects in accordance with the bodies are put.

Geoms are distinct from rigid bodies in that a geom has geometrical properties (size, shape,

position and orientation) but no dynamical properties (such as velocity or mass). A body and a

geom together represent all the properties of the simulated object.

The PhysicalBody class read the corresponding position and rotation properties

from the Frame class in which the calculated properties of models can be found. That’s why

the body object can follow the actual model during the animation. In PhysicalGeom class

there are also the position and rotation functions in the same manner and the geomSetBody

function which associates the geom to the rigid body.

In a vehicle model body objects should be created for each part of the car (such as the

wheels and the body of the car). Because when the car is leaded to a certain position all the

parts should also go along the same path following one another to provide the combination.

This task is done by the joints (dJoint data type) in ODE which combine bodies to each other.

In PhysicalWorld class joints are created after bodies by JointCreate function and

attached to the corresponding bodies via JointAttach function and form a rigid body that

acts like a car in the same world during the animation.

 33

4.6 FileHandler Class

This module has three main functionalities; one of which is to read the vertices data of

models to be inserted. One other functionality is to read from a XML file. The last one is to

write to an XML formatted file and so involve in the reconstruction of the Frame object for

the traffic case prepared previously. The module consists of one class, FileHandler, to

manage these functionalities.

We will use premeditated 3ds max models in TraffEdu. To export models from 3ds

max to OpenSceneGraph, we will use OSGExp which is an open source exporter, actually a

plug-in to be installed on top of 3ds max. The .max models will be translated once and will be

stored in the directory hierarchy of our project TraffEdu in .osg format under

TraffEdu/Models directory. As an extra feature, it is still considered to give the user the

opportunity of adding new models. In implementing the file functions, both the functions

supported by the OpenSceneGraph in osgDB library and the input/output functions of C++

will be used according to their ease of use. The osgDB library provides support for reading

and writing scene graphs, providing a plugin framework and file utility classes. The plug-in

framework is centered around the osgDB::Registry, and allows plugins which provide specific

file format support to be dynamically loaded on demand. osgDB provides handy functions not

only for managing files but also managing directories. To give an example, the directory

content or a given file’s type in a given directory can easily be accessed.

The function loadModel will load the vertices and normal vector variables of

Object class instances, with the vertices and normal vector data read from the appropriate

model files. The function saveFile simply takes two arguments one of which is for the

Frames to be saved and the other for the name of the file to be produced. loadFile is the

opposite of saveFile. It takes an argument for the name of the file to be loaded and returns

a vector of Frame class instances. The parsing of the XML file will be done via Apache

Xerces C++ XML Parser. The DTD schema and a hierarchy of tags for the XML file is given

in A.2.

 34

http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/classosgDB_1_1Registry.html

4.7 Audio Class

TraffEdu will have some audios like speaking of the user, effects in the animation, or

warning sound effects in the preparation of the traffic case. Audio class will be implemented

to control the sounds. Functions in Direct Sound Library of DirectX will be used to

implement this module. Audio will interact with physics engine while playing crash effects

and with GUIEventHandler if user makes a wrong attempt while constructing the

environment. All kinds of audio files will be saved as mp3 or wav files.

Audio is the class that operates in Audio module. Description of the methods of this

class is explained below:

playSound:

playSound creates a new audio stream for the audio whose name is given. Volume

is adjusted according to volume argument. This function returns a streamID used to pause

or stop the sound stream.

pauseSound:

pauseSound pauses the audio stream according to the given streamID.

stopSound:

stopSound stops the audio stream according to the given streamed.

4.8 Class Diagrams Overview

 35

Figure 4. 6

 36

A. APPENDIX

A.1 Enumeration Types

Enum WindowName{
 TOP_VIEW,
 SIDE_VIEW,
 FRONT_VIEW,
 3D_VIEW,

TIMELINE
}
Enum DrawMode{
 DRAW_VEHICLE,
 DRAW_PATH,

DRAW_ROAD,
DRAW_ROAD_BRANCH,
DRAW_LANE,
DRAW_TRAFFIC_SIGN,
DRAW_TRAFFIC_LIGHT,
DRAW_TREE,
DRAW_HOUSE

}
Enum VehicleType{
 OTOMOBILE,
 AMBULANCE,
 TRACK
}
Enum ObjectType{
 VEHICLE,
 PATH,

ROAD,
ROAD_BRANCH,
LANE,
TRAFFIC_SIGN,
TRAFFIC_LIGHT,
HOUSE,
TREE

}
Enum BranchType{
 ANAYOL,

TALIYOL,
KAVSAK

}
Enum RoadType {
 DUZ_YOL,

TALI_ YOL,
KAVSAKLI_YOL,
ADA_YOL,
BOLUNMUS_YOL,
VIRAJLI_YOL,
DARALAN_YOL,
IKI_YONDEN_DARALAN_YOL

 37

}
Enum RoadLineType {
 TEKLI_KESIKLI_CIZGI,
 CIFTLI_KESIKLI_CIZGI,
 TEKLI_DEVAMLI_CIZGI,
 CIFTLI_DEVAMLI_CIZGI
}
Enum LaneDirection {
 DOGU_BATI,
 BATI_DOGU,
 KUZEY_GUNEY,
 GUNEY_KUZEY,
 KUZEYDOGU_GUNEYBATI,
 KUZEYBATI_GUNEYDOGU,
 GUNEYDOGU_KUZEYBATI,
 GUNEYBATI_KUZEYDOGU
}
Enum BranchDirection{
 DOGU_BATI_DOGRULTUSU,
 KUZEY_GUNEY_DOGRULTUSU,
 KUZEYDOGU_GUNEYBATI_DOGRULTUSU,
 KUZEYBATI_GUNEYDOGU_DOGRULTUSU
}
Enum TrafficSignTypes{

SAGA_TEHLIKELI_VIRAJ,
SOLA_TEHLIKELI_VIRAJ,
SAGA_TEHLIKELI_ DEVAMLI_VIRAJ,
SOLA_TEHLIKELI_DEVAMLI_VIRAJ,
IKI_TARAFTAN_DARALAN_KAPLAMA,
SAGDAN_DARALAN_KAPLAMA,
SOLDAN_DARALAN_KAPLAMA,
KAYGAN_YOL,
ISIKLI_ISARET_CIHAZI,
IKI_YONLU_TRAFIK,
DIKKAT,
KONTROLSUZ_KAVSAK,
ANAYOL_TALIYOL_KAVSAGI,
SAGDAN_ANAYOL_TALIYOL_KAVSAGI,
SOLDAN_ANAYOL_TALIYOL_KAVŞAGI,
SAGDAN_ANAYOLA_GIRIS,
SOLDAN_ANAYOLA_GIRIS,
DONEL_KAVSAK_YAKLASIMI,
TEHLIKELI_VIRAJ_YON_LEVHASI,
YOL_VER,
DUR,
TASIT_GIREMEZ,
TASIT_TRAFIGINE_KAPALI_YOL,
MOTOSIKLET_HARIC_MOTORLU_TASIT_TRAFIGINE_KAPALI_YOL,
MOTORLU_TASIT_GIREMEZ,
TASIT_GIREMEZ,
SAGA_DONULMEZ,

 38

SOLA_DONULMEZ,
U_DONUSU_YAPILMAZ,
ONDEKI_TASITI_GECMEK_YASAKTIR,
AZAMI_HIZ_SINIRLAMASI,
BUTUN_KISITLAMALARIN_SONU,
HIZ_KISITLAMASI_SONU,
GECME_YASAGI_SONU,
SAGA_MECBURI_YON,
SOLA_MECBURI_YON,
ILERI_MECBURI_YON,
ILERI_SAGA_MECBURI_YON,
ILERI_SOLA_MECBURI_YON,
SAGA_SOLA_MECBURI_YON,
ILERIDE_SAGA_MECBURI_YON,
ILEIDE_SOLA_MECBURI_YON,
SAGDAN_GIDINIZ,
SOLDAN_GIDINIZ,
HER_IKI_YANDAN_GIDINIZ,
ADA_ETRAFINDA_DONUNUZ,
MECBURI_ASGARI_HIZ,
MECBURI _ASGARI_HIZ_SONU,
GIRISI_OLMAYAN_YOL_KAVSAGI,
ILERI_CIKMAZ_YOL,
ANAYOL,
ANAYOL_BITIMI,
BOLUNMUS_YOL_ONCESI_YON_LEVHASI

}

Enum TrafficLightTypes{

NORMAL_ISIK,
SUREKLI_YANIP_SONEN_ISIK,
SAGA_OKLU_ISIK,
SOLA_OKLU_ISIK

}
Enum TrafficLightColor{
 KIRMIZI,
 SARI,

YESIL
}
Enum ObjectViewMode{
 DISPLAY,
 HIDE
}

 39

A.2 DTD Schema
<?xml encoding="ISO-8859-1"?
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE TrafficCase [
<!ELEMENT TrafficCase (Frames*, Background)>
<!ELEMENT Frames (Frame+)>
<!ELEMENT Frame (Object+, Audio, Text)>
<!ATTLIST Frame id CDATA #REQUIRED>
<!ELEMENT Object (Vehicle+))>
<!ELEMENT Text (#PCDATA)>
<!ELEMENT Audio (#PCDATA)>
<!ELEMENT Background (Road+,Light*,Sign*)>
<!ELEMENT Road (Position, Branch+)>
<!ATTLIST Road type CDATA #REQUIRED>
<!ATTLIST Road id CDATA #REQUIRED>
<!ELEMENT Position>
<!ATTLIST Position centerX CDATA #REQUIRED>
<!ATTLIST Position centerY CDATA #REQUIRED>
<!ATTLIST Position centerZ CDATA #REQUIRED>
<!ATTLIST Position scaleFactor CDATA #REQUIRED>
<!ATTLIST Position rotationVector CDATA #REQUIRED>
<!ATTLIST Position translationVector CDATA #REQUIRED>
<!ELEMENT Branch (Lane)+>
<!ATTLIST Branch direction CDATA #REQUIRED >
<!ATTLIST Branch type CDATA #REQUIRED>
<!ELEMENT Lane>
<!ATTLIST Lane leftLine>
<!ATTLIST Lane rightLine>
<!ATTLIST Lane direction>
<!ELEMENT Vehicle (Position)>
<!ATTLIST Vehicle type CDATA #REQUIRED>
<!ATTLIST Vehicle id CDATA #REQUIRED>
<!ATTLIST Vehicle path CDATA #REQUIRED>
<!ATTLIST Vehicle speed CDATA #REQUIRED>
<!ATTLIST Vehicle acceleration CDATA #REQUIRED>
<!ELEMENT Light (Position)>
<!ATTLIST Light type CDATA #REQUIRED>
<!ATTLIST Light color CDATA #REQUIRED>
<!ATTLIST Light id CDATA #REQUIRED>
<!ATTLIST Light arrowcolor CDATA #IMPLIED >
<!ELEMENT Sign (Position)>
<!ATTLIST Sign type CDATA #REQUIRED>
<!ATTLIST Sign id CDATA #REQUIRED>
]>

The XML structure can be seen in a more hierarchical way below:

<TrafficCase>
 <Background>
 <Road type id>
 <Position centerX centerY centerZ scaleFactor
 rotationVector translationVector>
 <Branch direction type>
 <Lane leftLine rightLine direction>
 </Road>
 <Road>
 ...
 </Road>
 <Light type id color arrowcolor>

 40

 <Position centerX centerY centerZ scaleFactor
 rotationVector translationVector>
 </Light>
 <Light>
 ...
 </Light>
 <Sign type id>
 <Position centerX centerY centerZ scaleFactor
 rotationVector translationVector>
 </Sign>
 <Sign>
 ...
 </Sign>
 </Background>
 <Frames>
 <Frame id>
 <Object>
 <Vehicle id type path speed acceleration>
 <Position centerX centerY centerZ scaleFactor
 rotationVector translationVector>
 </Vehicle>
 <Vehicle>
 ...
 </Vehicle>
 </Object>
 <Object>
 ...
 </Object>
 </Frame>
 <Frame>
 ...
 </Frame>
 </Frames>
</TrafficCase>

A.3 Coding Standards

We decided on some coding standards to make our code more readable. Below are the

standards for variables, function names, type names and enumeration types.

Variable names begin with lower case characters and if it is a composite word each

new word begins with a capital letter. (e.g. word1Word2Word3)

Function names begin with lower case characters and if it is a composite word each

new word begins with a capital letter. (e.g. word1Word2Word3)

Type names such as class, enumeration and user defined types begin with upper case

characters and if it is a composite word each new word begins with a capital letter. (e.g.

Word1Word2Word3)

Enumerated types are all written in capital letters.

Vector typed variables’ are written in plural form.

A.4 Gantt Chart

 41

 42

 43

 44

 45

