Middle East Technical University

Department of Computer Engineering

CENG 491
Computer Engineering Design 1

Initial Design Report

CodeSchbeke Software Solutions

Q2%

Sila Arslan
Cagla Okutan
Hatice Kevser Sanmez
Bahar Pamuk
Ebru Dogan

FALL 2005

Contents

1.

INTRODUCTION

1.1 Purpose of the Document.............cccovviiiiiiiieniennne.
1.2 Scope of the Document............ccooveiiiiii i,

1.3 Abbreviations and DefiNitiONSoo et e e e e e e e e e e e e

SYSTEM OVERVIEW

2.1 System DesCription..........cccvveiieiie e
2.2 Functional Requirements.............cooevevieiieinvniennnn
2.3 System ReqUITEMENTS.ovvne it

INTERFACE DESIGN

3.1 Sample Graphical User Interfaces..........ccooeiiii it e e,
3.2 Reviewed Use Case DiagramsS. e e ieteeee et e ee et et e ve e eneeen
3.3 Activity Diagram.......ccoeeiriie i e e

SYSTEM DESIGN

4.1 System Data Structures..........coooevviiiiiiiiie e
4.2 GUIEventHandler Class.......c.oovveiiviiiiiiiieeeen,
4.3 EditorChecker Class.........c.ooviiiiii i e
4.4 OSGWINdoWS Class.......ovvveveiriie i e
4.5 PhysicSENGINe Class.......c.vvvviiiiiiii i
4.6 FileHandler Class.........oovviiii i
A 0o [T O - TSP

4.8 Class DIiagrams OVEIVIEW.eeue e it et e e e e e e e e e eae e eaeaeenas

APPENDIX

AL ENUMEration TYPES.....v ittt ie e ee e e
A2DTD SChema........c.ooiiiiiiii e
A.3 Coding Standards...........o.oevi i
AL GaNTE CRart. ... e e e e

1. INTRODUCTION

1.1 Purpose of the document

This document is intended to introduce the system design considerations that will be
basic guideline for the final design specification and prototype implementation. The document
gives an initial motivation on how to design the system to meet the requirements previously

defined in the Requirement Analysis Report.

1.2 Scope of the document

After giving a general overview, the document specifies the requirements of the
system. Graphical user interface of the system is shown and system functionalities are
described with the help use case and activity diagrams. System modules along with their
classes are described in detail giving the relationships between them. Lastly, a dynamic Gantt

chart is presented.

1.3 Abbreviations and Definitions
2D: Two Dimensional
3D: Three Dimensional
AVI: Audio Video Interleave
DTD: Document Type Definition
GUI: Graphical User Interface
MP3: MPEG Audio Layer 3
ODE: Open Dynamics Engine
OSG: OpenSceneGraph
WAYV: Waveform Audio
XML: Extended Markup Language

2. SYSTEM OVERVIEW

2.1 System Description

The system TraffEdu is a 3D editor for designing 3D traffic environment and
preparing traffic case simulation on it. It provides the user to prepare any traffic case which
includes creating road map, inserting traffic lights or traffic signs, environmental objects,
audio or text, any type of vehicles and determining behaviors of the vehicles in the traffic.
According to these specifications a XML formatted file will be produced.

Animation will be constructed after user presses the animation button by reading data
from that XML file. This animation will not be in the format of AVI file which does not allow
user interaction. It will enable the user to change view of the case by translating or rotating

the camera.

2.2 Functional Requirements

Functional requirements of the TrafEdu System are mentioned in the Software
Requirements Analysis report. Functionalities below are the ones that are changed or added to
the system after the analysis phase.

1. In the analysis report it is mentioned that TraffEdu Editor shall provide the user to
define traffic lights’ synchronization. Instead, in the timeline user sets behavior of the
traffic light (red, yellow, or green) for each key frame and system adjusts
synchronization accordingly.

2. In the analysis report it is mentioned that while constructing the road map of the
environment, user will see 2D symbolic representations of the real 3D objects in 2D
environment. Instead user can see different projections (orthogonal projection from
top, orthogonal projection from front, orthogonal projection from side and perspective
projection by a user defined angle) of the 3D environment in four sub windows.

3. TraffEdu system shall provide the user to hide or display sub windows mentioned

above.

TraffEdu system shall provide the user to hide or display menus in the GUI.

Functionality of choosing the hours of the day will not be supported.

Functionality of creating an executable animation file will not be supported.

A

Functionality of changing behaviour of a vehicle during the animation phase will not
be supported.

8. While user is constructing roadmap, adding traffic signs or constructing special case,
the user’s conflicting actions (e.g. locating the car to a position outside of its path) will
be prevented by giving a warning message to direct the user to correct her/his fault.

2.3 System Requirements
TraffEdu System requires Microsoft Windows 98/2000/NT/XP Operating
System and DirectX support on the user side.
On the developer side the requirements are listed below:
e Microsoft Windows XP Professional
e Microsoft Visual Studio .NET 2003
e OpenSceneGraph 0.9.9
e Open Dynamics Engine 0.5
e DirectX SDK
e 3D Studio Max
e Adobe Photoshop
e LATEX

3. INTERFACE DESIGN
3.1 Sample Graphical User Interfaces

The following screen capture is what TraffEdu Editor will look like when a new file is
opened. The Window is mainly divided into four areas which is toolbar (or menu bar) at the
top, Toolbox Window at the left, main window(OSG windows) at the middle and Objects and
Properties Windows on the right of the editor window. The events occurred in OSG windows
will be handled by EventHandleOSG class and events occurred in GUI windows will be
handled in GUIEventHandler. User will use the orthogonal view (which is the top left
view in the following picture) for creating his/her traffic environment. The addition of objects
to the environment is supported via Toolbox Window on the left of the window. A grid

platform is provided for better placement of objects into the area.

™ TraffEdu
File Edit Wiew Insert Help

DEEd 2RO O -

Timeline |] I £ | = 1]]
‘ ANEEERRNEERENRERRENEERENNRRENRENNEN

4% Road Map
1 Wehicles

% | Traffic Signs
b4 Traffic Lights

Environmental Objects

Objects

Properties

Figure 3.1

Creation of a traffic case starts with placing appropriate road type onto the grid

platform. This is provided in the Road Map section of Toolbox Window. The user will drag &

drop the needed road types to the platform. If an inappropriate kind of road is placed that

cannot be joint to the neighbor road type, this is prevented by the system.

™ TraffEdu

File Edit Yiew Insert Help

DEHE {§RB®O D = v -

Road Map

X0gjoo >§

i o

T [T

il

e

[| kA

L
| [Timeline |] i [ol = T]
‘ IR RSN EN NN NN

Wehicles

Traffic Signs

Traffic Lights

Environmental Ohjects

Figure 3. 2

Cbjects
Properties

For placement of Vehicle objects user can drag and drop from Vehicles section of

toolbox. Here there will be types of vehicles that the user can select for using in the traffic

case being designed.

™ TraffEdu

Road Map

File Edit Wew Insert Help

AaE= = -

@ 5 2 e

ehicles

Timeline | 5 10 1=} il =] 1] |
i| e 0 1 T i 5 o
T 1

0|00y }5

=
P

A1

Traffic Signs

Traffic Lights

the opportunity to add them to the appropriate places in the road map designed.

Environmental Objects

Figure 3. 3

Ohjects

Properties

For addition of the traffic signs and lights again the toolbox is used and the user has

™ TraffEdu

Road Map

File Edt Wiew Insert Help

DEH BB D = V-

Wehidles

Timeling | = 0 [] = ET]]
| [TITTTT I I I T I IIT I I ITITT]

Traffic Signs

=0q[o0y }§

zﬁx

®

ﬁ;

A

@

Traffic Lights

| Environmental Objects

Figure 3. 4

Ohjects
Properties

™ TraffEdu e
File Edit “iew Insert Help

D@E & BRBOES D v/{---
Road Map ‘T|mellne Objects
||||||||||||||||||||||||||||||||I||| e SRERY
Vehicles Properties
Traffic Signs [y e
Traffic Lights

bed
-
@

=0q|o0y }§

Environmental Objects]

Figure 3.5

The user can insert environmental objects house and trees from the Environmental
Obijects section of the toolbox.

£ TraffEdu [
File Edit Wew Insert Help

W= = %\@@E}Qx.v/{---

-}@ Road Map ‘T|mellne Object:
o A -
=3 Properties
= __ Traffic Sians 1
= Traffic Lights -

| Environmental Objects

Figure 3.6

The current objects in the environment can be seen from the Objects Window on the
right panel of the window.

FE TraffEdu =13
File Edt Wiew Insert Help
NEH $BRREOD =V G-
3% Rosd Map |Timeline [= 0 B T = T l
R _Eoaslh T T D T T T T LT ITT jots
g LI I o CaR1
g | Traffic Signs CARZ
= Traffic Lights T I L - TRAFFIC LIGHT1

| Environmental Objects

- B

{
Figure 3.7

Clicking on an object listed in the Objects Window shows the current selected object’s
properties in Properties Window below.

™ TraffEdu EEX

File Edit YWiew Insert Help

_ D EE i BRBRB®E D 0 €
Foad Map Timeline [= LS 5 i = Al |

o i i WA ks R W I RGO AT B A

Cbjects
CARL
___ Traffic Signs |

CARZ
Traffic Lights i L - TRAFFIC LIGHT1
| Environmental Objects —
- | B

Hogjoo }§

CAR1 Properties
Yame: Hatali arabs

Zolar, Kirmizi
Warka: By
Type: . Automabile

Figure 3.8

The File menu presents the following actions to the user. Current Files is for viewing
the currently opened files.

A TraffEdu [
W Edit View Ingerk Help

Mew By B ®E 2 o o e
Open Timeline | = 0 [i = =1 I i
| [TITTTT I I I T I IIT I I ITITT] ChoRs

Close
I Save Froperties
Save As

Current Files
Exit

Dbjects

Figure 3.9

Under edit menu the following actions may be performed. These actions will be active
when an object is selected. Only Zoom In/Zoom out property does not require selection of an
object which means zooming with respect to the current camera direction. When an object is

selected zooming action is done centering that object selected.

FH TraffEdu EEX

File B8 wiews Insert Help

O

0|00y }5
P

=il

Undo
Reda
Delete
Remove
Zuk

Copy
Paste
Select Al
Zoorn In
Zoarn Suk

Eln]

| B®@® 0 2 v faue

Ohjects

Timeline | 5 [& il = E]
| [TITTTTTTTT I I I TII I I IIT I ITITT]

Properties

Figure 3. 10

10

Removing a class of objects or all objects can be done via Edit->Remove.

ﬂgTraffEdu
LI Yiew Insert Help

| Be®o o \/(---

'}@ | |T|me||ne Ohject:
e |||||||||||||||||I|IIII||||||||||||| P‘Et:_
o — roperties
e Road Map
2 Cut Vehicles =
-
|1 Copy | Traffic Signs
= Paste Enviromental Objects
Select all Paths
Zoom In Al
Zoam Qut]

Figure 3. 11

View menu gives user the chance of viewing/not viewing objects or panels on the

environment and the Editor window.

™ TraffEdu
File Edit RN Insert Help
. D B’? H|dec,||'D|sp|ay !» . feea

] | Windows t 5 I
o PO] i i 5 M N R SR R
B qraf Current Objects Tookhox i I Properties
g TraFi Properties Toolbox |

Ervsironmental Objects J

Figure 3. 12

11

The user will be able to hide or display objects as shown below.

8 TraffEdu

File Edit mInsert Help

0 & | R
9B Roac indows b wehicles T 5 0 = Eif] Chiects
| wehi Toolbox Window Traffic Signs HEEEEERENEEEREEEENERNENEEN :
=) : ¢ i - S— Properties
S| Traff Objects Window Traffic Lights
=] Traffl Properties Window Enviramental Objects

Envionmental Objects |

Figure 3. 13

The user will have the opportunity to see the environment prepared, with Top View,
Front View, Side View and 3D View options. The checked ones will be provided in the main

area of the editor.

™ TraffEdu

File Edit BUEEN Insert Help

(1 & | Hide/Display P IS e
B Roa Top Yiew 5 I [il P E | ;
e e, SRR i Gifeis
o —) } : : e T (T [e | Properties
S| Traf Objects Window Side View
= Trafl Properties Window 3D Yiew | =

{ran

Ervirormental Objects J

Figure 3. 14

12

The user will be able to insert objects, audio and text to the case within this Insert

Menu and also save the currently formed environment as a frame by selecting Frame. When

Text is clicked, a pop up window will appear allowing the user to insert any text into the

current frame. In the same way the user will be able to insert any audio file into the frame by

clicking Audio menu and selecting an audio file of her/his choice.

8 TraffEdu

DEHE
9% Road Map
=i Wehidles

% | Traffic Sigry
=3 Traffic Lights

Objects [£ (o ens

Texk Timelinel = 10 1= il o= 1]
audio | IR ENEENERE NN NN NN
Frame | T T1°1

File Edit View Bl Help

Objects

Ervironmental Objects

Properties

Figure 3. 15

Help menu presents the manual for TraffEdu and also some pre-created sample maps

with explanations for easing program usability.

™ TraffEdu

— | ehicles
Traffic Signs
Traffic Lights

o
o |
o
O
=

File Edit Wiew Insert S
O % By Traffedu Helper

Samples
About TraffEdu

5 10 =} il L= E1i]
I T T 0 o

Ervironmental Objects

Figure 3. 16

Cbjects

Properties

13

For adding a path to the vehicles a toolbar icon is provided. Also the user can right

click on the car object to draw its path or do some actions related with the car like cut, copy,

etc.

™ TraffEdu =113
File Edit View Insert Help
TSH SRR D -
2 _foadlle | [T T T T T T
é.; 'u'ehlclles. T T T 11 11]
g. Traffic Signs
3 Traffic Lights - -
| Environmental Objects —l -IJ ‘ ‘ ‘
. |
emove Path
1 Change Path
" Delete
Copy
Cuk
Paste
Zoorm In
Zoorm Cuk
Rotate
Scale ¢)
Properties \ o5
Figure 3. 17

Drawing path of the vehicle is done by joining the small squares that is presented as
soon as the Draw Path icon from toolbar is clicked or the user right-clicked the vehicle object
and chose Draw Path. For changing a path the user will hold the arrow in front of the path line
and drop to the target place. The user will stay in this mode until it clicks the icon again.
Removing of the path may be done by again right-clicking on the vehicle and clicking
Remove Path.

14

A TraffEdu EEX

File Edt Wiew Insert Help

DEH BB D = Vit
3% Road Map Timeline | = = [i B Al | Objects
et e A O OO o], o
= | Traffic Signs
2 Traffic Lights S !
| Environmental Objects |
E.——I——I—
Figure 3. 18
Right-click action on a road object presents the following menu.
8 TraffEdu =13
File Edt Wiew Insert Help
DEH|) REes 9 G-
9% Road Map Timeline | 5] = o ES £]
e ‘ 000 0 o S i
g e] T T T 1]
gl T FFicLi;hts ‘
ral 1| ; i
| Environmental Objects —I < m
| !ut
Paste
Riotate
Scale
Zoom In
Zoom Juk
Properties
Edit Road

Figure 3. 19

15

If the user clicks on Edit Road the following menu will pop-up and the user will have

the chance of determining road properties like count of lanes and direction of lanes. Also the

type of the road lines will be determined. In later steps if another road object is added to the

environment and has a join with this road object, the directions of the lanes will be checked.

™ TraffEdu
File Edit Yiew Insert Help
DS 2RO G-

. Road ™ Titmeli [= 10 [1=] m = I |
5}'; e |""E'”e||||||_|.||||||_|||||||||||||||||||||||
%: Traffic Signs - [I | | |
= Traffic Lights | |3 T

| Environmental Objects —l 'I1 ‘ ‘ ‘

= ™1 | I

Lane Count: 1
| Fioad Lines:
=] |
Direction of Lanes:
S e
Figure 3. 20
Right clicking on an empty grid shows the following menu.
™ TraffEdu

File Edit Wew Insert Help

Hin = = ®O 9 = v -
9% Road Map ‘Time”nel = [i] =] E 1]
— | vehicles [TITTTTTTIT I I I I I T IIT T TITIqT]
= __ Traffic Sians I 1 [11
= Traffic Lights ‘ | ‘
| Environmental Objects
b Zoam In
Zoorn Ok
Paste
Figure 3. 21

Cbjects
&

AR1
CARZ
TRAFFIC LIGHT1

CAR1 Properties
Matme: Hatali araba

Zolor: Kirmizi
wiarka: B
Type: Automobile

Ohjects

Properties

16

If the user places two car objects on top of each other, a warning message is presented
in order to make certain that the user wants an accident indeed.

F® TraffEdu =13
File Edt Wiew Insert Help
SH L RBOS D G-

Road Map

Timeline | = I C il =] Al I Ohjects
Vehicles ‘ 0 0 0 e 0 _
— Properties

Traffic Signs
Traffic Lights : l L
Ervvironmental Objects I

g

=0q|ony &D

There is an accident]

Do vou really want to continue

|Yes | | Mo |

Figure 3. 22

User will first click on a frame from the timeline and then starts designing the case.
When the user finishes with the current frame, either right clicking the selected frame on the
timeline or by Insert->Frame menu, the frame will be saved in the system. Removal of a

frame is done again by a right-click action on the frame.

F TraffEdu EEX

File Edit YWiew Insert Help

DEH $BRROO D v -

9% Road Map ‘Time”nel =] g] =] T] Obiette
— | ehicles 0 5 I o O O v A s
b= e Properties
= | Traffic Signs 'h
2 Traffic Lights gl
Ervitonmental Objects 101
- S
=4 = Lade L
I
S =
. 2
Figure 3. 23

17

The system forces placement of vehicle objects on their path not anywhere else, in

each frame.
(™ TraffEdu =13
File Edit YWiew Insert Help
DEH B2BEE D = v -
9% Poad Map ‘Timeline' E] 5] ﬁ m 5] ETl] Objects
i | vehides 0 oo 0 0 0 v A _
b= e Properties
= __ Traffic Sians 1 "?
= Traffic Lights 1 i1
| Environmental Objects |.
1 .¥_“
IO N
1 0 \
Figure 3. 24

3.2 Reviewed Use Case Diagrams

The functionalities of the system and the actions that can take place by the user are
depicted clearly in the GUI of the program. However there exist some actions that must be
done sequentially and dependently to some other actions. These dependencies that are not
dictated in the GUI are represented with use case diagrams in Figure 3.25.

18

o,
ﬁ,wz.\'-‘r..- i 2
pLfie Insert s <<uses>y Insert
OG-y
Ohjecis

{ﬂﬁﬂnds}; 7 T
Lf_‘ﬁ-@f =
o -’
Inzert
Vehicles ﬂ, 5
Draw Path _<<ngeszs z:‘-'b-"' 7
e
b
-
-
-
Figure 3. 25

If the user wants to insert an object (i.e. traffic sign, traffic light or vehicle) into the map,
he should first insert a road on which the other objects must be located or he should insert the
objects on an already inserted road. There could not be any object residing on the grids of the
editor except for the road and the environmental object.

If the user presses on animate button, he should have inserted any frame to the system that
he plans to constitute.

For a frame to be inserted there must be any road located on the grids previously to be
displayed in the animation phase.

Lastly, all the insertions should be done after inserting a timeline. For the system to be
informed about the starting, ending and characteristic times of the cases, the timelines of each

case should be inserted before preparing the positions of the objects.

3.3 Activity Diagram

In TraffEdu system, from opening a new file to construct a new traffic case to pressing
animation button and watching the simulation, several sequences can be followed. Activity
Diagram below shows one of those sequences to make working mechanism of the system

clearer.

19

Open Mew File

Left Click
Timeline

Chooge Category
From Toolbox

Left Click Ohbject
Aymbol

Drag to O35

Window | oo T ERROH

Insert to Map

Select Drawr
Path

Foad Ohject Select Edit

Road

Figure 3. 26

20

V1

Diyawe Path

ERR.OE

Select Road
Lines

PIgua; 10N \/

]
B
g
o
=%
|
k

Inzert Lities
To Road

ERROR

ERROR

Select Direction
of Laties

Rrguoy 1'3'N\/

SPEM JAT0)

Ingert Direction

ERROR

of Lanes

Figure 3. 27

Cloze Edit Boad
Dialog Box

Felect INSERT
From Toolbar

Zelect FRAME

Left Click a Frame
on TimeLine

Change Posiition or
Fropertiesof Objects

Belect INSERT \aee———————=7 Tmeeaa... FREOE
From Toolbar

Select FRAME

Push Animate
Button

Figure 3. 28

22

4. SYSTEM DESIGN
4.1 System Data Structures

TrafficLight

type TratficLightTypes
color TratficLightColor
arrowColor Traffic LightColor

T Fra
Camera e rame
e
T -
eve:Vector<int T franeDont
loak: Vector<int “=slobjects Vector<Object > e
-~ L - L .
up:Vector-int 7 [eutObjects Vector<Object > e
'.,.»-"" texts:-Vector <Text> e
updateCamera(Vector<int =} void T audios:Vector < Audio> T
J_/-"’ caner Canera T
f"" .k""\-\.k
T setSceneivoul e
ext drawFrame(WmdowName voud T
— select():Object Audio
text:String delete(Objeet)ivoud
getText() Sting cut(Object) Object nane: Sting
setText(pvoud WP)'U_-’I‘.]EC'-‘Ul‘]“' = :
paste(Cbject)voud getTest() Stung
e setText{yvold
Obijec Road
obgectldint tvpe:RoadType
Vehicle vetices Vector float roadBranches: Vector <Branch
noitnls Vectoi-float traffic Signs: Vector < TrafficSign
pathFath type Chgeet Type trafficLights Vector < TrafficLight
speed:float viewMode: ObjgctViewMode
acceleration:float abpectPositon Position
followDistance float —D’
draw(yvoid e ! rk _"““--.hﬂ__ﬂ_
removePath() sealefinty Position T
drawPath(Path) tianslate(Veetor= float=) Position
changePath(Path) totate Vector- float =) Position Branch
f dis plav{pvond .
(} ml?h'_u o lanes Vector <Lane TrafficSien
| Dide(yvoid 2!
direction BranchDisction
"1 type BranchType tvpe TrafficSignTypes
Y,
f
Path |
|
pathVector Vector-int | T
. i
Position iyl
center float
centerY-float
centerZ-float Lane

scalzFactormt
tationVactor Vector=float >

|eftLing RoadLineTvpe
ghtLine RoadLmeTyvpes
duzction: LaneDuzction

Figure 4.1

23

Frame Class:

Frame class is an aggregate class that contains all elements specific to a frame.
Objects of scene, such as vehicles, roads, traffic lights, traffic signs; camera, text, and audio
are all inside this class.
setScene method will arrange the camera position that is inside the frame.
drawFrame method calls draw methods of all the objects in the objects vector. Other
methods select, cut, copy, delete Or paste an object in the frame. These methods
change the object vectors in the Frame class. Whenever an object is cut it is removed from
objects vector and put in cutObjects vector, so it is not drawn in the scene. But
whenever an object is copied it is put in cutObjects without removing it from the original
list. To paste an object last element of the cutObjects is added to objects vector.
Deleting an object is simply removing it from the objects vector.

Camera Class:

Whenever a keyboard callback related to camera positioning happens,
EventHandlerOSG class request an update for the camera position, the camera object in
the current frame is then updated using the updateCamera function of this class. This
function resets the point where the camera is, the point where it looks and the up vector of the
camera.

Audio and Text Class:

These are the classes of inserted text and audios to the frame. Text class’ string field
keeps the text that user inputs and Audio class’ string field keeps the name of the audio file.
These are both saved to the related frame part of XML file. Whenever the frame is rendered,
the Frame object will call Audio module’s Audio class’ (this is not the Audio class of
Frame class) playSound function giving the audio name as the argument.

Object Class:

Object class is the parent of classes that denotes the objects to be drawn in 3D
environment. Since vehicles, roads, traffic signs and traffic lights along with the environment
objects such as buildings and trees all have similar properties; the functions manipulating
these will be implemented in the Object class. Every Object has a position so any
information related to Object’ s position is kept in object, as *hasa’ relationship in Object
and Position classes.
draw function will use the OSG functions to render the object at the given position.

scale function will change the scaling factor in the Position.

24

translate function will change the center coordinates of the object in the Position.
rotate function will change the rotation vector in the Position.

display function sets the object’s viewMode to DISPLAY.

hide function sets the object’s viewMode to HIDE.

Position Class:

This class is related to the object class with ‘hasa’ relationship, since every object
should have attributes like its center coordinates, its rotation vector and its scale factor.
Vehicle Class:

Vehicles have properties such as acceleration, speed, path and
followDistance that are specific to vehicle objects.
drawPath method takes a Path object and copies it to Vehicle’ s path attribute. By
this way the path and the corresponding vehicle is related.
removePath method deletes the path attribute of a Vvehicle object.
changePath method reloads path attribute of a Vehicle object.

Path Class:

Path class has only one attribute which is an integer vector that keeps the indexes of
grids where the path is on. These indexes are the grids vector indexes which is an attribute
of 0SGWindows class.

Road Class:

Road class also inherits from Object class with some specific attributes like its
type, its branches and vectors of TrafficSign and TrafficLight that are on the
road. The reason why Road class has ‘hasa’ relationship with TrafficSign and
TrafficLight classes is, they are static objects and their existence depends on the road
type and existence of the road. Whenever a road is removed from the map they are also
removed and a road should already exist wherever a traffic sign or traffic light is placed and
their consistency should be checked with that road by the EditorChecker class.

Road objects are composed of branches and branches should be accessed from Road
since the user can manipulate each Branch by setting its attributes such as increasing the
number of lanes, assigning direction to the lanes which the vehicles should follow and

determining road lines.

25

4.2 GUIEventHandler Class

GUTEventHandler CommandEdit
nextUndoPosition : int
history Lists Vector-Conmnmand
addCommand (System: Object copyi}
CommandDelete *sender) Zoonlng b
ZoomCht(y
exgcute()

-'\
axecnte() \
undof)
CommandFile
CommandCut saveFile(string)
loadFilz(stung)
exgcute(string
exzcute()
undo()} Command CommandView

sender : Systenn:Objpect *
CommandRedo \ﬁ; — hideObjects{Object Ty pe)

o {3 displavObpcts{ObgctType)

hide W mdow{W indowMame }
exaentel) &. display Window(WindowMName b
nndo() ludeToolbar

displayToolbar()

hideToolboxW indow(}
displav T oolboxdWindow(y
CommandUndo hideProperties Window(}
displavProperties W indow()
hideCibjects Window()
displayObjects Window()
exzeuted} execute(}

nndol)

CommandPaste CommandHe lp

traffEduHslpe1()
samples()
abontTraffEdu)
axaente()

axzente()
undo(}

CommandInsertObject

CommandAnimate

exaemtedf
nndof)

fillBlankFrames () Vector<Frames

animate(pvoid
CommandInsertText
CommandlnsertAudio CommandInsertFrame

exacute(}
undof}

exzcutal) executel)

undod}
undo(}

Figure 4.2

GUIEventHandler class is designed by obeying rules of “command design pattern”
which encapsulates a request as an object, thereby letting you parameterize clients with

different requests, queue or log requests, and support undoable operations.

26

GUIEventHandler class meets events coming from GUI, creates command objects,
and adds them to the historyLists vector (addCommand) which contains constructed
command objects. By traversing on the historyLists vector, undo and redo operations
are performed.

Each inherited class of Command class, is a command, used for handling GUI callbacks
and calling related classes of other modules. Descriptions of those classes are below:
CommandDelete Class:

CommandDelete class handles GUI delete operation either coming from the toolbar
or from the menu which opens when the user clicks right button of the mouse on an
environment object.

CommandCut Class:

CommandCut class handles GUI cut operation either coming from the toolbar or from
the menu which opens when the user clicks right button of the mouse on an environment
object.

CommandRedo Class:

CommandRedo class handles GUI redo operation coming from the toolbar.
CommandUndo Class:

CommandUndo class handles GUI undo operation coming from the toolbar.
CommandPaste Class:

CommandPaste class handles GUI paste operation either coming from the toolbar or
from the menu which opens when the user clicks right button of the mouse on an environment
object.

CommandInsertObject Class:

CommandInsertObject class handles GUI insert object operation either coming
from the toolbar or from the toolbox which is used for constructing traffic case.
CommandInsertText Class:

CommandInsertText class handles GUI insert text operation coming from the
toolbar.

CommandInsertAudio Class:
CommandInsertAudio class handles GUI insert audio operation coming from the

toolbar.

27

CommandInsertFrame Class:

CommandInsertFrame class handles GUI insert frame operation coming from the
toolbar.
CommandEdit Class:

CommandEdit class handles GUI edit operations coming from the toolbar, except
those added to the historyLists vector. Since undo and redo operations can not be
applied to this class, constructed CommandEdit object is not added to the historyLists
vector.

CommandFile Class:

CommandF1ile class handles GUI file operations coming from the toolbar. Since undo
and redo operations can not be applied to this class, constructed CommandF1i1e object is not
added to the historyLists vector. save and 1oad methods call related classes in the
FileHandler module.

CommandView Class:

CommandView class handles GUI file operations coming from the toolbar. Since undo
and redo operations can not be applied to this class, constructed CommandView object is not
added to the historyLists vector. Functionality of its methods is hiding or displaying
objects, windows, toolbar, toolbox window, properties window or objects window.
CommandHelp Class:

CommandHelp class handles GUI help operations coming from the toolbar. Since
undo and redo operations can not be applied to this class, constructed CommandHe1p object
is not added to the historyLists vector.

CommandAnimate Class:

CommandAnimate class handles GUI animate operations coming from the animate
buton in the toolbar. This class has two functions; first one generates the frames that are not
specifically designed by the user. Second function starts the simulation loop. Since undo and
redo operations can not be applied to this class, constructed CommandAnimate object is not

added to the historyLists vector.

28

4.3 EditorChecker Class

EditorChecker

chieckObjectPosifion(ObjectType, Vector=mt =) boolean
checkInconsitency(Olyect, Clhyect) boolean
checkFrame() boolzan

Figure 4. 3

EditorChecker class, as the name implies, checks the operations done in TraffEdu
Editor. Whenever an event occurs on OSG Windows such as inserting a new object to the
map, before taking that action, EditorChecker object checks the consistency of the
operation.
checkObjectPosition (ObjectType, Vector<int>)

This function checks whether the object with object type denoted with the first
argument can be inserted at the coordinates denoted with the second argument. It first selects
the nearest object in that coordinates, and according to the type of that object it returns true or
false meaning it is possible to insert new object on top of existing one. For example a vehicle
may be inserted on road but a road can not be inserted on other road.
checkInconsistency (Object, Object) :boolean

This function checks whether there is an inconsistency between given two objects and
returns true if they are not consistent, otherwise it returns false. For example if a traffic sign is
to be put on a road, this function checks whether that type of traffic sign is consistent with the
road type.Traffic sign with type ANAYOL can not be put on a road with type TALIYOL.
Samely, the consistency of directions of roads that are next to each other, the consistency of
traffic signs on the same road and whether the vehicle is moved on its path is checked with
this function.
checkFrame () :boolean

Whenever a frame is attempted to save this function is called whether the frame is set
completely, for example if there is any vehicle without a path this function will return false
and a warning will be created since the user will not be able to change positions of the

vehicles in the next frames.

29

4.4 OSGWindows Class

Frame ey

frame L int H"‘w,_x
objects: Vector-Object h\'f_'\
cutithpects: Vector=Ohjpect B — Grid
texts Vector <Text OSGWindows 1

: : . | gridIDint
:Illdln.-i:‘-.d'l.‘l‘ﬂl' Audio vis Vector<Frame - center™ float
camera Camera grids Vector Grids centerY float
setScens(I:Vnhl. draw (WindowMName) e
drawFrame()void openWindow(WindowName) lengthy float ,
select(kObject close W indow{ W indowNatne b soahinEog

dele r.'fH:"hkL‘.r pvoud drawCrid(ivoid
cut{Chject pobpect

copy(ObpctkObjct
pasta(Objecthvoid

/ TopView FrontView Side View

IDView

renderTopVisw(} rendarFrontViswi} renderSide Viswi)

T
A}
render3DView() N

Time Line

vertices Vector<float
coloredAreas <float

drawTiueline{ pvoid

EventHandlerOSG

handleEvents()

Figure 4. 4
OSGWindows class represents the area where the user designs his/her own environment.

Windows created in OSG are reached by means of a pointer from the window created by
NET.

It contains Frame class vector that includes created environment objects and Grid
class vector which represents the ground that the environment settles on. Grid class has “hasa’
relationship with 0SGWindows class since it is drawn in every window except for
TimeLineWindow and it does not change frame to frame.

There are four subwindows displaying the environment from different projections and
a TimeLineWindow for inserting frames in the OSG window. Classes inherited from
OSGWindows class represents those sub windows. Description of those classes are as

follows:

30

3Dview Class:

3Dview class represents the sub window displaying perspective projection of the
environment.
TopView Class:

TopView class represents the sub window displaying orthogonal projection of the
environment from top view. Interaction with the user will be handled in this window by
EventHandleOSG class.

FrontView Class:

FrontView class represents the sub window displaying orthogonal projection of the
environment from front view.
SideView Class:

SideView class represents the sub window displaying orthogonal projection of the
environment from side view.
TimeLineView Class:

TimeLineView class represents the timeline window displaying a timeline by using
the vertices array of that class. Interaction related to choosing frame from timeline is handled

by EventHand1eOSG class.

31

4.5 PhysicsEngine Class

FhysicalEngine

wotld PloraicalWorld
space:Physical3pace

create’forld])void
createdpace])void

ituitialize() woid

finalize):vroid
relateCreomBody)bodyID
getPositionint objectIDN Position

/ \

PhysicalSpace FPhysicalWorld
spacelllint wrotldIDint
geoms Vector<PhysicalGeom= bodies Vector<PhysicalBody=
addGeomPhysicalGeo) woid ey o
removeieom addBodyPhysicalB ody)void
(PhysicalGe o) void joittCreatel):dl ot
destroy)void joittAttachldBodyIDN vrodd
getdpacel D) :spacelD removeBodyPhysicalBody)void
set3pacelDrspacelDNvoid destroy)void
et W otldID) v oeldID
setWorldDwotldI D void

PhysicalGeom
geomlDiint PhysicalBody
getGe ol D) ge omlD bodylDiint
setgeoml D zeomlTNvoid
getPosition): Vector=float> getBodyID(bodyID
setPosttion)void setBodyID(bo dyIDNvoid
getRotation): Vector<float> getP osition Y ector<float™
setRotation)vroid setPosition)void
getGeomTypel) getRotation) Vector<float>
geom3etBody (geomlD, setRotation):void
bodyID): geomlD
getGeomBody() hodyID

Figure 4.5
The Physics Module is used for simulating vehicles in the system and apply the

essential physics to the bodies in the environment so that the resulting animation becomes
more realistic. This module receives the positional properties of the vehicles from Frame
class and responds with the physics that is required for realistic animation applied to the
vehicles. It is decided to use Open Dynamics Engine (ODE) library for this purpose which
supplies the collision detection and velocity control of the bodies in the created world. The

hierarchy of physics module is shown in Figure 4.5.

32

PhysicalEngine class makes the necessary ODE initializations to constitute the
environment of a typical simulation in animation phase of TrafEdu system. Firstly, it is in
involved to create a world with createWor1d function to embed the bodies of the objects.
Then, a physical space is created with createSpace function to handle the collision
detections.

For each vehicle model a rigid body to which the force is transmitted to gain the linear
velocity in the desired direction, should be created. These bodies are added to the
corresponding world object in PhysicalWorld class. The bodies gain these forces via a
geom object which is of dGeom data type in ODE. Therefore, each body should have a geom
object associated with it and each geom should be created in a space. For this purpose a
PhysicalSpace class is created in PhysicalEngine class to provide the collision
detection environment in which the geom objects in accordance with the bodies are put.
Geoms are distinct from rigid bodies in that a geom has geometrical properties (size, shape,
position and orientation) but no dynamical properties (such as velocity or mass). A body and a
geom together represent all the properties of the simulated object.

The PhysicalBody class read the corresponding position and rotation properties
from the Frame class in which the calculated properties of models can be found. That’s why
the body object can follow the actual model during the animation. In PhysicalGeom class
there are also the position and rotation functions in the same manner and the geomSetBody
function which associates the geom to the rigid body.

In a vehicle model body objects should be created for each part of the car (such as the
wheels and the body of the car). Because when the car is leaded to a certain position all the
parts should also go along the same path following one another to provide the combination.
This task is done by the joints (dJoint data type) in ODE which combine bodies to each other.
In PhysicalWorld class joints are created after bodies by JointCreate function and
attached to the corresponding bodies via JointAttach function and form a rigid body that

acts like a car in the same world during the animation.

33

4.6 FileHandler Class

File Handler

loacdFieiatng) Vector=Frane =
saveFle(Vector-Frame = stoung) v ol
loacd b odelistmng v ol

This module has three main functionalities; one of which is to read the vertices data of
models to be inserted. One other functionality is to read from a XML file. The last one is to
write to an XML formatted file and so involve in the reconstruction of the Frame object for
the traffic case prepared previously. The module consists of one class, FileHandler, to
manage these functionalities.

We will use premeditated 3ds max models in TraffEdu. To export models from 3ds
max to OpenSceneGraph, we will use OSGExp which is an open source exporter, actually a
plug-in to be installed on top of 3ds max. The .max models will be translated once and will be
stored in the directory hierarchy of our project TraffEdu in .osg format under
TraffEdu/Models directory. As an extra feature, it is still considered to give the user the
opportunity of adding new models. In implementing the file functions, both the functions
supported by the OpenSceneGraph in osgDB library and the input/output functions of C++
will be used according to their ease of use. The osgDB library provides support for reading
and writing scene graphs, providing a plugin framework and file utility classes. The plug-in
framework is centered around the osgDB::Registry, and allows plugins which provide specific
file format support to be dynamically loaded on demand. osgDB provides handy functions not
only for managing files but also managing directories. To give an example, the directory
content or a given file’s type in a given directory can easily be accessed.

The function 1oadModel will load the vertices and normal vector variables of
Object class instances, with the vertices and normal vector data read from the appropriate
model files. The function saveFile simply takes two arguments one of which is for the
Frames to be saved and the other for the name of the file to be produced. 1oadFile is the
opposite of saveFile. It takes an argument for the name of the file to be loaded and returns
a vector of Frame class instances. The parsing of the XML file will be done via Apache
Xerces C++ XML Parser. The DTD schema and a hierarchy of tags for the XML file is given
in A.2.

34

http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/classosgDB_1_1Registry.html

4.7 Audio Class

Audio

volme |t

plavSound {string soundMame, int volums}
stopSound ()

setVolume (int volume)

getVolume () int

TraffEdu will have some audios like speaking of the user, effects in the animation, or
warning sound effects in the preparation of the traffic case. Audio class will be implemented
to control the sounds. Functions in Direct Sound Library of DirectX will be used to
implement this module. Audio will interact with physics engine while playing crash effects
and with GUIEventHandler if user makes a wrong attempt while constructing the
environment. All kinds of audio files will be saved as mp3 or wav files.

Audio is the class that operates in Audio module. Description of the methods of this
class is explained below:
playSound:

playSound creates a new audio stream for the audio whose name is given. Volume
is adjusted according to volume argument. This function returns a streamID used to pause
or stop the sound stream.
pauseSound:

pauseSound pauses the audio stream according to the given streamID.
stopSound:

stopSound stops the audio stream according to the given streamed.

4.8 Class Diagrams Overview

35

36

Figure 4.6

1aydau31001p3 X
i s UL J3DSUTPUBLLILOD) olpnyIRsuUTpuBLALIO) pry—"
Y TopueHold | . .
ao@% T Y BUALIO)
%Upy,) . ﬁw&
Apogjeaishyd . ..
wovnjesiyd P Y
B AEUYpUELRLO)
) I e, e _ i
/__ /.q .t Gb -.
o7 owny IUTTI W
o%ﬁé. w et Y 0}J2sUTpUELLLLIO
dﬁﬁﬁ&_..@ y
PHomEIsAY4 Ve Dagemedd Sy e—
— Eﬂpﬁu] u.vwo_h e) X —
——. —" . ﬂw.vﬂy e P . .W\
. e RUO;
5S5043|pUEHIUBAT " A5
& - S >
. & T e
e / 5 R : opunpueLALO?)
& s
.m«.. ..._ .#,0
. o s %y, |andpuewsuoy f
. Fean v, :
P oE %, ..
.%aov ; &“U opaupuELALIG)
. p e - ‘ .-
& | %, P :
MIIAPIS ﬁ i
aluesy . }p3pueLILIO) - i/ . - =
SBUNS BIRIIED SBUBYD: = S v v . N
: 3 Jpueway
. X
=7 smopumoso [| 3
eh 19|pueHIU2AI IND .m]
MDIA QE [} 5) —
* o e e HE RS YOOI AMBYUOy » = m s m e e e

A. APPENDIX
A.1 Enumeration Types

Enum WindowName {
TOP VIEW,
SIDE VIEW,
FRONT_VIEW,
3D VIEW,
TIMELINE

Enum DrawMode {
DRAW VEHICLE,
DRAW PATH,
DRAW ROAD,
DRAW ROAD BRANCH,
DRAW LANE,
DRAW TRAFFIC SIGN,
DRAW TRAFFIC LIGHT,
DRAW TREE,
DRAW HOUSE

Enum VehicleType(
OTOMOBILE,
AMBULANCE,
TRACK

Enum ObjectType/{
VEHICLE,
PATH,
ROAD,
ROAD BRANCH,
LANE,
TRAFFIC SIGN,
TRAFFIC LIGHT,
HOUSE,
TREE

Enum BranchType{
ANAYOL,
TALIYOL,
KAVSAK

Enum RoadType {
DUZ YOL,
TALI YOL,
KAVSAKLI YOL,
ADA YOL,
BOLUNMUS_ YOL,
VIRAJLI YOL,
DARALAN YOL,
IKI YONDEN DARALAN YOL

}

Enum RoadLineType {
TEKLI KESIKLI CIZGI,
CIFTLI KESIKLI CIZGI,
TEKLI DEVAMLI CIZGI,
CIFTLI DEVAMLI CIZGI

Enum LaneDirection {

DOGU BATI,

BATI DOGU,
KUZEY_GUNEY,

GUNEY KUZEY,
KUZEYDOGU GUNEYBATI,
KUZEYBATI_GUNEYDOGU,
GUNEYDOGU KUZEYBATI,
GUNEYBATI KUZEYDOGU

Enum BranchDirection/{
DOGU BATI DOGRULTUSU,
KUZEY GUNEY DOGRULTUSU,
KUZEYDOGU GUNEYBATI DOGRULTUSU,
KUZEYBATI GUNEYDOGU DOGRULTUSU
}
Enum TrafficSignTypes/{
SAGA TEHLIKELI VIRAJ,
SOLA TEHLIKELI VIRAJ,
SAGA TEHLIKELI DEVAMLI VIRAJ,
SOLA TEHLIKELI DEVAMLI VIRAJ,
IKI TARAFTAN DARALAN KAPLAMA,
SAGDAN DARALAN KAPLAMA,
SOLDAN DARALAN KAPLAMA,
KAYGAN YOL,
ISIKLI ISARET CIHAZI,
IKI YONLU TRAFIK,
DIKKAT,
KONTROLSUZ KAVSAK,
ANAYOL TALIYOL KAVSAGI,
SAGDAN ANAYOL TALIYOL KAVSAGI,
SOLDAN ANAYOL TALIYOL KAVSAGI,
SAGDAN ANAYOLA GIRIS,
SOLDAN ANAYOLA GIRIS,
DONEL KAVSAK YAKLASIMI,
TEHLIKELI VIRAJ YON LEVHAST,
YOL_VER,
DUR,
TASIT GIREMEZ,
TASIT TRAFIGINE KAPALI YOL,
MOTOSIKLET HARIC MOTORLU TASIT TRAFIGINE KAPALI YOL,
MOTORLU TASIT GIREMEZ,
TASIT GIREMEZ,
SAGA DONULMEZ,

38

SOLA_DONULMEZ,
U_DONUSU_YAPILMAZ,

ONDEKI TASITI GECMEK YASAKTIR,
AZAMI_HIZ SINIRLAMASI,

BUTUN KISITLAMALARIN SONU,

HIZ KISITLAMASI SONU,
GECME_YASAGI_SONU,
SAGA_MECBURI_YON,

SOLA_ MECBURI_YON,

ILERI MECBURI_YON,

ILERI SAGA MECBURI_ YON,

ILERI SOLA MECBURI_ YON,
SAGA_SOLA_ MECBURI_YON,
ILERIDE SAGA MECBURI YON,
ILEIDE_SOLA MECBURI_YON,
SAGDAN GIDINIZ,
SOLDAN_GIDINIZ,

HER IKI YANDAN GIDINIZ,
ADA_ETRAFINDA DONUNUZ,

MECBURI ASGARI HIZ,

MECBURI ASGARI HIZ SONU,
GIRISI OLMAYAN YOL KAVSAGI,
ILERI CIKMAZ YOL,

ANAYOL,

ANAYOL BITIMI,
BOLUNMUS YOL ONCESI YON LEVHASI

Enum TrafficLightTypes{
NORMAL ISIK,
SUREKLI YANIP SONEN ISIK,
SAGA OKLU ISIK,
SOLA OKLU ISIK

}

Enum TrafficLightColor{

KIRMIZI,
SART,
YESIL
}
Enum ObjectViewMode {
DISPLAY,
HIDE

39

A.2 DTD Schema

<?xml encoding="IS0-8859-1"7

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE TrafficCase [

<!ELEMENT TrafficCase (Frames*, Background) >
<!ELEMENT Frames (Frame+)>

<!ELEMENT Frame (Object+, Audio, Text)>
<!ATTLIST Frame id CDATA #REQUIRED>

<!ELEMENT Object (Vehicle+))>

<!ELEMENT Text (#PCDATA)>

<!ELEMENT Audio (#PCDATA)>

<!ELEMENT Background (Road+,Light*,Sign*)>
<!ELEMENT Road (Position, Branch+)>

<!ATTLIST Road type CDATA #REQUIRED>

<!ATTLIST Road id CDATA #REQUIRED>

<!ELEMENT Position>

<!ATTLIST Position centerX CDATA #REQUIRED>
<!ATTLIST Position centerY CDATA #REQUIRED>
<!ATTLIST Position centerZ CDATA #REQUIRED>
<!ATTLIST Position scaleFactor CDATA #REQUIRED>
<!ATTLIST Position rotationVector CDATA #REQUIRED>
<!ATTLIST Position translationVector CDATA #REQUIRED>
<!ELEMENT Branch (Lane)-+>

<!ATTLIST Branch direction CDATA #REQUIRED >
<!ATTLIST Branch type CDATA #REQUIRED>
<!ELEMENT Lane>

<!ATTLIST Lane leftLine>

<!ATTLIST Lane rightLine>

<!ATTLIST Lane direction>

<!ELEMENT Vehicle (Position)>

<!ATTLIST Vehicle type CDATA #REQUIRED>
<!ATTLIST Vehicle id CDATA #REQUIRED>

<!ATTLIST Vehicle path CDATA #REQUIRED>
<!ATTLIST Vehicle speed CDATA #REQUIRED>
<!ATTLIST Vehicle acceleration CDATA #REQUIRED>
<!ELEMENT Light (Position)>

<!ATTLIST Light type CDATA #REQUIRED>

<!ATTLIST Light color CDATA #REQUIRED>
<!ATTLIST Light id CDATA #REQUIRED>

<!ATTLIST Light arrowcolor CDATA #IMPLIED >
<!ELEMENT Sign (Position)>

<!ATTLIST Sign type CDATA #REQUIRED>

<!ATTLIST Sign id CDATA #REQUIRED>

1>

The XML structure can be seen in a more hierarchical way below:

<TrafficCase>
<Background>
<Road type id>
<Position centerX centerY centerZ scaleFactor
rotationVector translationVector>
<Branch direction type>
<Lane leftline rightLine direction>
</Road>
<Road>

</Road>
<Light type id color arrowcolor>

40

<Position centerX centerY centerZ scaleFactor
rotationVector translationVector>
</Light>
<Light>

</Light>
<Sign type id>
<Position centerX centerY centerZ scaleFactor
rotationVector translationVector>

</Sign>
<Sign>
</Sign>
</Background>
<Frames>
<Frame id>
<Object>
<Vehicle id type path speed acceleration>
<Position centerX centerY centerZ scaleFactor
rotationVector translationVector>
</Vehicle>
<Vehicle>
</Vehicle>
</Object>
<Object>
</Object>
</Frame>
<Frame>
</Frame>
</Frames>

</TrafficCase>

A.3 Coding Standards

We decided on some coding standards to make our code more readable. Below are the
standards for variables, function names, type names and enumeration types.

Variable names begin with lower case characters and if it is a composite word each
new word begins with a capital letter. (e.g. word1Word2Word3)

Function names begin with lower case characters and if it is a composite word each
new word begins with a capital letter. (e.g. wordlWord2Word3)

Type names such as class, enumeration and user defined types begin with upper case
characters and if it is a composite word each new word begins with a capital letter. (e.g.
WordlWord2Word3)

Enumerated types are all written in capital letters.

Vector typed variables’ are written in plural form.

A.4 Gantt Chart

41

he—r—

| I I e T [

ol

=

| A |

4 | W

1

| s | m |

4 | W

50, AON 1T | S0, A0k A0

S0, B0 #E

s 1 1]
|

S0, P00k

50, das o7

S |
|

S0, a5 7L

AR] O R (R
aaepa] 125 [eayders ubisaqg -
ufisaq ey =
AEAYOS (|8 L0 uaijejuswadxg
SEANYOS, B L0 UORE|ElE|
alEANIOS UD UDISh[DU0D
AUEAYOS UD Yoleasay Jaypng
00] wswdolanag =
uaipEaa s, SIsheny uawadnbay
poday sisAEUy Uawadnbay
SUaaINbEY UD Ana1nay
WEEAS 10 UDIEZLENOW (2l
SRYEUOIIUN S WalEAS U0 UOIEh|au0 D
adoag uo uojsh[ouas
sisAjeuy wawaanbay -
LojjeUiLEla SaEUoaun g uep waishs
Auunno adoos
adoag o
Yaleasay eauyae]
uoiededald poday Assdns aunpdap
SARSIAISIU] pUE JIRPU0D A3nanS
Ldeas e
Aanins pue yaieasay -
ufizac] abed qans, ey
uoijeledald poday esodoid
UOIHULS] Wa(doad
uoeedald poday awaslby wes |
uopezlefag Wes)

UONINISUOT) Wea] -

alep) yse]

ES

[

o D!EE[E]

" BZ
8z
i
az
57
vz
&7
iz
1z
0z
Bl
2l
il
al
Sl
L
£l
Zl
Ll
ol

— | = WD a0

42

TPV U U] Py |-
WBISAS JO UONEZLIRNPOR] P2l =
SARIRUINA 150 10 UAIES] paelag
AMDEILN A, S308(00 Jo UAlsa pelel]
ARDEIU SEIHadolH 10 uBlsag pajelag
ANDRIUA ¥og|o0] 0 Uiz papelag
Jeqoo] 4o ullEag pajelag
saepiap] 1asq [esnydens jo ubisag papeag =
ubisag papeyad =
Uoelasald o uopeledald
| uonEuasald Palold =
U=y a s, UblEs e
Hoday ubiEag ey
SENPOR WSSAS O UOISH[2UDD
alnpopy Jaqaauo0pg Jo ulisad ey
ANpoW SSALL 10 UBIES [RIpY|
SINEOp JafueH 814 1o ubisa (e
SNpoR Je(puUeH usad Jo UBEa] (e
Z24MandlS B1e ublEan
ubisaq s.2NPep-ins =
WBYSAS JO UONRZLIRINPOR [RIU] =
SARORUL SIS0 10 UBIES (e
ARDFIL A, 5308000 J0 UElsa] (e
ARDEIL, SEIHad0lH 10 uBlisac ey
ANDEIUIAA, X000] 40 UBISSd ey
degoo] 4o uBised ey
saepa] 1asq [eanydeig ubisag =
ubisag ey =

UEANIOS I8 10 Udieusexg

o)
£5
5
35
05
Gt
2t
Lt
ar
St
¥t
cF
ct
It
Ot
GE
gc
L8
9c
SE
FE
gL
[
3
0e
[
e
L2
9z

43

BEEaEDDODERNRENDDERnRERDRDERnEnnnEnm
60 O0.UerZ0| S0,99097| S0,9906L| S0,990ZL| G0.99050| G0, AOMEZ| SOAON LZ| SO, AON L

alep) yae | o

[t |

SEFEE R

sl1lLls]amlw

s[1lLr]s] 3]mlw

m_H_H_.m_“__E

0, HEr 0F

90, uer £7 |

a0, Her gl

a0, uer g0 |

a0, Uer 2o

50, 220 97 |

S0, 2= 6

50,2207 |

S0, =20

L= |
2101044 1o uoipEplewEc)
azen addlowd Lo ubisad
sapap] adilod 1o ubizan
adep el Jasn (eaydels adiogndd 1o ublsag
2dAyoyoad =
punos g Bupelbal)
50 Bupebag
30 AupeadE)
sale jo ueneiba =
uoipeayLlie s, Ubisad pajelag
Uoday ufisag paelag
oiphy ubisag
S[apapy 10alho uawUuoaug ubiEag
SiEpop AN 2| ublEag
(AP0 ubiS Jiped] ubisag
S|apop peoy ubisag
F|apap Jeo ubisag
s|apop ubisaqg =
ubisa epsunyngy =
SANPOP WRISAS J0 UOIEH[EU0D
Slnpop JeqoeyluIoiRg 1o ublsag pajeleg
SInpayy =EAYd 4o ubisag papeag
SInpop JapUEH B4 40 Ubisa paelag
Slnpop Jepuey Juaag 1o ublsag paelag
FaINionAS eed Lo ubisan pajeiag
SANPO-ONG Jo ublsad papeiag =
WIASAS Jo UONEZLIRINPOW papela] =
SaOpUI, S50 J0 UBlsa] paeiag

alep) jee]

E=]

e

g
Bl
=]
i1
gz
52
tl
£l
)
Le
02
B9
89
9
99
59
9
£9
73
19
09
B%
a5
25
a5
55
5
£5
5

44

HNNNEEET

sl slalmim|ls 1l 1]lslalmiwlsltl1]ls] 4 mlw

a0 8240z 90, 4R £l

FlEnUEp) JaE 10 uopEedaly

UOIEUSWNDIO] [=
Lojeuasald b0 uojjeledalg
IHuonepasald yalold =
1za] uoedfeql) walsAs uny
F)Ea] denpog) uny
uoeuawedw) asen 15a]
uflsag asen 53]
UGIEIYLIS N [=
Ao Jo uoeBag)

2ANPOR-gNS 10 UoipEjUe Wi

Qg J0 U0lanpody
S[2p0P 40 Uojonpoad
USIANPoId eIp2wyniy =
uoneswadu) =
ubisaq 20ed qap p2uei2a
[aITE=Tg
aclAi10104d 1o uoipeuEswEe)
asen adA101044 4o ubiEag
slapap adi)ognld 1o ublEag

adepa) 2sn eaydeda adAiold 1o ubizag

adfyoyoad =
punosaad] Buipebagy)
S50 BueBa|

alep) yse]

a5
SE
FE
£6
fil s}
(151
05
G2
a8
L8
92
52
¥2
£8
fits]
=]
0z
;7
2L
L
=R
5L
¥
gL

45

