
MIDDLE EAST TECHNICAL UNIVERSITY

Department of Computer Engineering

CENG 491

Initial Design Report

ComFuture Technology

Orhan Tuncer 1250851

Ugur Turan 1348028

Guven Orkun Tanik 1347947

Sebnem Sonmezler 1298231

Hakan Okten 1250562

 2

INDEX:
1. Introduction���������������������
 1.1 Purpose of This Document��������������...
 1.2 Definition and Scope of the Project�����������.
 1.3 Overview of the Project Properties�����������.

1.3.1 Portable��������������������.
1.3.2 Secure���������������������
1.3.3 Reusable��������������������
1.3.4 Easily Programmable���������������

 1.4 Design Goals��������������������..
1.4.1 Hardware Design����������������..
 1.4.1.1 PIC ��������������������.

 1.4.1.2 Intermediate Circuit��������������
1.4.2 Library Design�����������������..
 1.4.2.1 Client side Library��������������..
 1.4.2.2 Server side Library�������������...
1.4.3 Application Server����������������
1.4.4 Server Side API�����������������
1.4.5 Proof of Concept����������������..

2. Project Schedule����������������............
3. Architectural Overview�������������..........
4. Library Design�������������������...
 4.1 Client-Side Library�����������������...
 4.2 Server-Side Library�����������������..
5. Application Server������������������
6. Server API���������������������...
7. Hardware Design������������������...
 7.1 PIC������������������������..
 7.2 Programming Software����������������
 7.3 Intermediate Hardware����������������
8. Proof of Concept�������������������
9. Conclusion���������������������...
10. References���������������������.

3
3
3
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
9
10
10
12
13
36
37
37
41
41
46
50
50

 3

1. Introduction

1.1 Purpose of This Document
This document is prepared to summarize the efforts spent on the early

design phases of our project, ComFuture Bluetooth Controller. It basically covers

the initial design activities and establishes a basis for the detailed design phase.

In this document design concepts will be undertaken in a general sense. The

detailed design will ascertain the concepts in this report and so this report will

form a basis for the final design report.

1.2 Definition and Scope of the Project
Our project is to design and implement a general-purpose controller

device which will allow any suitably configured Bluetooth device to control the

intended device which contains our controller module. Thus our controller will be

modular, easily installed, compliant with the current standards in the area. We

will design and implement developer libraries to use the controller and thus the

end product will depend on the specific implementation. We are going to produce

a detailed and easily understandable API and a broad spectrum of library

functions.

 The main speciality of the product will be its generic modules and

compliance with other hardware units. By this way Bluetooth won't be a close-

packed technology for other developers since by this product they can easily

integrate Bluetooth property to their products with ease and a very little

background.

1.3 Overview of the Project Properties
 Since the project has some predefined concerns it is useful to explain

these concerns in order to give a more precise understanding on the overall

 4

design. They are fundamental to understand the design goals which are

explained in the next chapter (1.4).

1.3.1 Portable
Since we are designing a general purpose Bluetooth controller, the

product has to be portable for a variety of devices.

 If this functional requirement would not be satisfied, it will contradict with

the main idea of a �general� purpose Bluetooth controller. In order to reduce the

probability of the occurrence of this type of contradiction, we will consider a wide

variety of devices that can be controlled by our product and try to meet their

standards during the design phase.

1.3.2 Secure
Although there would be some applications for the Bluetooth controller

which does not require security, we assume that our controller system should

provide a level of security which can be defined by four fundamental elements:

Availability, access, integrity, and confidentiality. If we assure that the connection

between the controller and the device is secure under these conditions, no other

third party device can interfere with the connection or interrupt, while the device

and the controller is communicating without losing integrity and confidentiality.

 As it is known by most of the cellular phone users interested in Bluetooth,

any Bluetooth device can be realized by a phone when searched for devices.

Since Bluetooth technology can communicate out of sight, this can be a critical

problem in security issues. In today's cellular phones there is an authentication

protocol for giving permission to connect to a Bluetooth device. This must be

implemented in our product since the proof of concept can be used in critical

places for security.

 5

 Also we want to add portability and generic issues to our system. As a

result we must implement all the same protocols for the Bluetooth connection

about security and in our libraries there must be additional security issues for the

hardware which are wanted to be kept more private that a cellular phone.

1.3.3 Reusable
Our hardware will be easily pluggable and unpluggable. As long as the

number of pins are enough it can be reprogrammed and used in an other

context.

1.3.4 Easily Programmable
The generic component on the board will be the client application which is

located on the PIC. It can be easily reprogrammed to accommodate any user

needs. So it can be easily reprogrammed to be used in any context or situation.

Our client side library will offer the necessary tools to develop an client

application fastly and easily.

On the server side our Application Server will offer the necessary

container to keep and process the Java Classes. Our server side library will offer

the necessary tools to develop a Java Class fastly and easily.

1.4 Design Goals
 Our design goals are driven by the facts of simplification necessities of

any hardware by the means of design costs and production costs, simplification

necessities of software systems by the means of design costs and maintainability

as well as the concerns about the satisfaction and demands of the end users.

1.4.1 Hardware Design

 We divided our hardware design process into two parts consisting of

selecting the suitable PIC, which has a high importance level in our designs

 6

including the software design which is highly connected to the PIC selection, and

intermediate circuit design which is necessary to include the PIC to the current

hardware, the Bluetooth development environment.

1.4.1.1 PIC

 We will be working with a PIC16F877A model PIC. Its relatively high

internal capacity and embedded analog to digital converter will be used to

simplify the hardware part considerably.

1.4.1.2 Intermediate Circuit

 We will use an extremely simple intermediate circuit which will consist of

noise dampening bypass capacitors and voltage adjustment subcircuit to connect

PIC and serial port of the Bluetooth controller.

1.4.2 Library Design
 There will be two different libraries located at two sides of the architecture;

server side and client side. This division is required because the Java Classes

and the client side applications will be working on two different systems which

also separate them by the means of programming languages. The server side

library, as well as the application server itself, will be constructed on the Java

Technology, on the other hand client side library will be developed with C

language for PIC programming, which also defines the client side programming

language. The details of client side programming and server side programming

will be explained in chapter 4 �Library Design�.

1.4.2.1 Client side Library

 It will be used at the compile time of the client side application. It will

contain the necessary tools to communicate with the Bluetooth controller. We

tried to develop a compact but powerful library to be used at the client side that

will perform the hardware related operations in order to give the application

programmer a more logical view of the system.

 7

1.4.2.2 Server side Library

It will be used to communicate with the client application. We tried to

develop a compact but powerful library by not incorporating any redundant or

interlaced functions. It will give the application programmer the ability of

controlling system events and develop a better business context.

1.4.3 Application Server
 Application Server is the main improvement we have added to the design.

It will be the main container of the Java Classes with ability to offer a better

control to the system designer using our Bluetooth controller. It will be

constructed on the Java Technology. This improvement will give a more flexible

working environment for both the application and system designers as well as the

client application itself.

1.4.4 Server Side API
It will be used to coordinate the interaction with the application server. To

improve the consistency and the security of the system, an application

programmer can define some rules to be forced on the application by the server.

It is essential if the Java Class has various components and if a well defined

business logic is required. Our server side API will give the designer these

abilities by offering the complementary tools effectively using the abilities that the

Application Server offers.

1.4.5 Proof of Concept
 Our proof of concept will be a modified remote-controlled vehicle, which

we will buy as a toy, but going to modify to meet our project needs. Since it will

also be used as a testing and evolution tool of our design, hardware and software

it needs to be simple but improvable. Some possibilities have already been

started to evaluated and they will be explained later.

 8

2. Project Schedule

We will start with intermediate hardware designs which will enable us to

implement and try our PICs as we program.

We supplied our PIC programming software and hardware and also we

purchased necessary bread boards and circuit components. This will allow us to

concentrate on building our project rather than trying to decide on which part to

use. As such we will proceed as learning and programming in order. We will do

the peripheral programming first than concurrently start application server and

Client programming. Also library design can not be separated from any of these.

As we approach to the final phase of development we will concentrate on the

proof of concept. Testing will be held during all of the development stages.

 9

3. Architectural Overview

Our architecture has two main aspects. First one is Application Server and

the second one is ComFuture Bluetooth Controller.

The Server Application in our previous model is replaced by an application

server in our current model. The reason is to provide users a better intermediate

tool between client application and server application. In this approach user can

define multiple classes that can work together and also the client application can

choose the class to work with.

In this scheme such a layout will be formed:

Figure - 3.1 Architectural Overview

In our Controller besides to Bluetooth communication circuit given to us we

will implement the following circuits:

- Intermediate hardware to connect the serial port of the Bluetooth

communication circuit. This circuit will generally condition the input to the

PIC in our desired format.

- PIC16F877A as a container for the client application and intermediate

processes.

- Intermediate hardware to distribute and format the output according to our

specifications.

- Output Pins.

Figure 3.2 depicts this layout:

 10

Figure - 3.2 ComFuture Bluetooth Controller Details

4. Library Design

 There are two libraries in our design separated by the means of location,

usage and programming language: client side and server side. The motivation of

separating them is explained before so here we will be focusing on details of their

designs.

4.1 Client-Side Library

 Client Side Library is designed to fulfill the needs of application

programmer. It consists of necessary tools which will hide the hardware

connection details from the programmer. This library will be implemented in C

language for PIC and the client side applications are restricted to be

implemented in C language.

 Client application will have the ability of choosing the server that it wants

to work with and also the Java Class to handle the data that it sends. These

powerful abilities will give the client application a more flexible working

environment and the system designer more easily designable and maintainable

environment.

 Functions of this library and their explanations are given below:

 11

FUNCTIONS EXPLANATION

bcnt blu_Connect (char* serverID, char*

ClientID)

Opens connection to Blucon server.

Returns Blucon connection object

which defines the path of Java Class

which is decided by the server.

int blu_classPref(bcnt* con, string

class_name)

Sends the request of working with a

specific class located at the server.

int blu_Disconnect (bcnt* con) Closes connection to Blucon server.

int blu_sendLayout (bcnt* con) Sends the pin layout to the server in

Blucon pins object format.

bpin blu_readLayout (void) Reads the values of the pins and

returns Blucon pins object.

int blu_writeLayout (bpin pin) Sets the values of the pins.

void blu_onLayout (bfn* fnc) The function to be called when new

layout arrives. The function must be

in bfn format.

void blu_onPinUpdate (bfn* fnc) The function to be called when the

values of the pins changes. The

function must be in bfn format.

void blu_clientLoop (bmain* main) Client side main processing loop. The

function must be in bmain format.

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bcnt* cnt)

 12

4.2 Server-Side Library

 Server Side Library is designed to fulfill the needs of application

programmer by the means of defining events and give the programmer control

over these events. It is main tool that enables the programmer to communicate

with the client application. Since a server must only serve we did not provided

any tools which will interfere the client application.

 Server side applications will be java classes resting in the container

section of the application server which uses our library functions to interact with

the client.

 Functions of this library and their explanations are given below:

FUNCTIONS EXPLANATION

int blu_sendLayout (bcnt* cnt, bpin pin) Sends the pin layout to the client.

void blu_onConnect (bcon* con) The function to be called when a new

connection is requested. The function

must be in bcon format.

void blu_onDisconnect (bcon* con) The function to be called when a

connection is closed. The function

must be in bcon format.

void blu_onLayoutServe (bfn* fun) The function to be called when new

layout arrives. The function must be in

bfn format.

void blu_serverLoop (bmain* main) Server side main processing loop. The

function must be in bmain format.

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bcnt* cnt)

 13

5. Application Server
 Application Server is the most powerful aspect of our design. It will be

constructed on the top of the Java Technology and it will offer the necessary

tools to develop a well defined system using our Bluetooth controller.

 The backbone of our application server will be the Java�s dynamic class

loading ability. The Java Classes will be resting in the container section of our

application server. After a client is connected to the server it will choose the class

that it wants to work with. At this moment application server dynamically loads

the requested java class and maintains the necessary linkage with the client

application and Java Class. After a connection dies the linkage is halted and the

Java Class is killed.

 It is also possible for different clients to work with the same class. In this

case each client works with a different copy of the java class and handled

independently.

 More detailed information about application server is below.

Appserv:

Packages

appserv.SystemCore

appserv.SystemCore.BluetoothDeamon

appserv.SystemCore.FileSystem

 14

 Class Hierarchy

o class java.lang.Object

o class appserv.SystemCore.BluetoothDeamon.BlueDeamon

o class appserv.SystemCore.ClassLoader

o class appserv.SystemCore.ConnectionPool

o class appserv.SystemCore.DeviceLogger

o class appserv.SystemCore.Logger

o class appserv.SystemCore.FileSystem.PathHandler

o class appserv.SystemCore.SettingPool

o class appserv.SystemCore.SysCore

 15

Package appserv.SystemCore

 16

Class Summary

ClassLoader Copyright: Copyright (c) 2006 Company: ComFuture Technology

ConnectionPool Copyright: Copyright (c) 2006 Company: ComFuture Technology

DeviceLogger Copyright: Copyright (c) 2006 Company: ComFuture Technology

Logger Copyright: Copyright (c) 2006 Company: ComFuture Technology

SettingPool Copyright: Copyright (c) 2006 Company: ComFuture Technology

SysCore Copyright: Copyright (c) 2006 Company: ComFuture Technology

appserv.SystemCore
Class ClassLoader
java.lang.Object

 appserv.SystemCore.ClassLoader

Method Detail

loadClass
public int loadClass(java.lang.String device_id,

 java.lang.String class_name,

 java.lang.String path)

Loads a class with given name and path and marks it as "loaded" in local

databese. If the class is loaded it just skips the dynamic loading process. It

generates a new copy of the loaded class and writes the necassery path to reach to

the 'copy' into local XML Database and gives a unique class_id to the 'copy'.

Parameters:

device_id - String

class_name - String

 17

path - String

Returns:

int

appserv.SystemCore
Class ConnectionPool
java.lang.Object

 appserv.SystemCore.ConnectionPool

Method Detail

addConnection
public boolean addConnection(java.lang.String device_id,

 java.lang.String class_id)

it adds a new entry to connection table of the local XML database. It identifies

which device uses which copy of which class. The incomming data from the

device will be directed to selected class copy.

Parameters:

device_id - String

class_id - String

Returns:

boolean

dropConnection
public boolean dropConnection(java.lang.String device_id)

it drops the entry belongs to the device_id from the connection table.

 18

Parameters:

device_id - String

Returns:

boolean

returnOnlineDevices
public java.lang.String[] returnOnlineDevices()

it returns the device_id's of all online devices.

Returns:

String[]

dropAllDevices
public int dropAllDevices()

it clears the connection table and drops all entries.

Returns:

int

dropTimedOutDevices
public int dropTimedOutDevices()

it scans all the connection entries and if it finds a connection is timed out, it drops

that connection from the table.

Returns:

int

 19

appserv.SystemCore
Class DeviceLogger
java.lang.Object

 appserv.SystemCore.DeviceLogger

Method Detail

addDevice
public java.lang.String addDevice(java.lang.String device_name)

It adds the device_name to the local database and gives a unique id to it. This

means that the device is connected to server.

Parameters:

device_name - String

Returns:

String

returnDeviceId
public java.lang.String returnDeviceId(java.lang.String device_name)

Returns the unique DeviceId reserved for that device name.

Parameters:

device_name - String

Returns:

String

dropDevice
public boolean dropDevice(java.lang.String device_name)

It deletes the device entry from database to implement the disconnection.

 20

Parameters:

device_name - String

Returns:

boolean

dropAllDevices
public boolean dropAllDevices()

it clears the connected device table from the local database and drops all entries.

Returns:

boolean

appserv.SystemCore
Class Logger
java.lang.Object

 appserv.SystemCore.Logger

Method Detail

addLog
public boolean addLog(java.lang.String device_id,

 java.lang.String class_id,

 java.lang.String value)

It adds an entry to the log table in local XML database with given parameters.

This table can later be investigated to retrieve desired information.

Parameters:

 21

device_id - String

class_id - String

value - String

Returns:

boolean

appserv.SystemCore
Class SettingPool
java.lang.Object

 appserv.SystemCore.SettingPool

Method Detail

insertSetting
public boolean insertSetting(java.lang.String device_id,

 int setting_id,

 java.lang.String value)

It inserts a new entry to setting table in local XML database. These entries will be

used for validity checking on settings of the class file before serving to a request

from a device.

Parameters:

device_id - String

setting_id - int

value - String

Returns:

 22

boolean

readSetting
public java.lang.String readSetting(java.lang.String device_id,

 int setting_id)

returns the value of a specific setting of a specific device.

Parameters:

device_id - String

setting_id - int

Returns:

String

updateSetting
public boolean updateSetting(java.lang.String device_id,

 int setting_id,

 java.lang.String value)

it changes the specific setting of a specific device.

Parameters:

device_id - String

setting_id - int

value - String

Returns:

boolean

 23

appserv.SystemCore
Class SysCore
java.lang.Object

 appserv.SystemCore.SysCore

Method Detail

addConnection
public boolean addConnection(java.lang.String device_name)

it adds a connection entry to the connected device table by using ConnectionPool

class. It is called after the LoadClass class and class_id parameter comes from

there.

Parameters:

device_name - String

Returns:

boolean

addDevice
public java.lang.String addDevice(java.lang.String device_name)

when a new device sends connection infirmations to the server the device is added

to the device list by using DeviceLogger class.

Parameters:

device_name - String

Returns:

String

 24

checkSettingValidity
public int checkSettingValidity(java.lang.String device_id,

 int setting_id,

 java.lang.String value)

it checks for validity of a setting for a given class by using SettingPool class.

Parameters:

device_id - String

setting_id - String

value - String

Returns:

int

loadClass
public int loadClass(java.lang.String class_name)

it dynamically loads a class from file system. The path is stored in properties file.

Parameters:

class_name - String

Returns:

int

initialize
public void initialize()

it initializes the server at start up.

 25

Package appserv.SystemCore.BluetoothDeamon

Class Summary

BlueDeamon Copyright: Copyright (c) 2006 Company: ComFuture Technology

appserv.SystemCore.BluetoothDeamon
Class BlueDeamon
java.lang.Object

 appserv.SystemCore.BluetoothDeamon.BlueDeamon

 26

Method Detail

readFromServerDataQ
public java.lang.String[] readFromServerDataQ()

returns the oldest data in the server data to queue.

Returns:

String[]

addToServerDataQ
public boolean addToServerDataQ(java.lang.String device_name,

 java.lang.String value)

when server finishes to process a data it returns it to the deamon. it is added to a

queue and when the deamon is available it sends is to the device.

Parameters:

device_name - String

value - String

Returns:

boolean

retrieveData
public java.lang.String[] retrieveData()

server uses this function to accept data from connected devices.

Returns:

String[][][]

sendData
public boolean sendData(java.lang.String device_name,

 java.lang.String data)

server uses this function to send data to connected devices.

 27

Parameters:

device_name - String

data - String

Returns:

boolean

addToDeviceDataQ
public boolean addToDeviceDataQ(java.lang.String device_name,

 java.lang.String value)

when a new info comes from a device it is added to a queue. when the server is

available it asks for the oldest data in the queue and process it.

Parameters:

device_name - String

value - String

Returns:

boolean

readFromDeviceDataQ
public java.lang.String[] readFromDeviceDataQ()

returns the oldest entry in the device data queue

Returns:

String[]

sizeDeviceDataQ
public int sizeDeviceDataQ()

returns the size of device data queue

Returns:

boolean

 28

sizeServerDataQ
public int sizeServerDataQ()

returns the size of server data queue.

Returns:

boolean

Package appserv.SystemCore.FileSystem

Class Summary

PathHandler Copyright: Copyright (c) 2006 Company: ComFuture Technology

appserv.SystemCore.FileSystem
Class PathHandler
java.lang.Object

 appserv.SystemCore.FileSystem.PathHandler

 29

Method Detail

updateClassPath
public boolean updateClassPath(java.lang.String path)

updates the path of stored class files in properties file.

Parameters:

path - String

Returns:

boolean

returnClassPath
public java.lang.String returnClassPath()

it returns the path of class files that are stored. When a device requests to use a

class, the class is assumed to be here.

Returns:

String

returnPropertyFilePath
public java.lang.String returnPropertyFilePath()

at start up properties are loaded from this file. which defines the necassery paths.

Returns:

String

returnXMLDatabasePath
public java.lang.String returnXMLDatabasePath()

returns the path of local XML Database where the system keeps its valuable

information.

Returns:

 30

String

Structural View

Summary

The overall stability of the system is 87% . Highly stable systems are typically above

90%.

There are 12 objects, forming a total of 11 relationships. The typical object in this system

immediately depends on 0.92 objects. On average, the modification of one object

potentially affects 1.5 other objects.

 31

Statistics

Property Value

Number of Objects 12

Number of Packages 4

Number of Relationships 11

Maximum Dependencies 8

Minimum Dependencies 0

Average Dependencies 0.92

Maximum Dependents 1

Minimum Dependents 0

Average Dependents 0.92

Relationship To Object Ratio 0.92

Affects on Average 1.5

 32

INDEX

A

addConnection(String, String) - Method in class appserv.SystemCore.ConnectionPool

it adds a new entry to connection table of the local XML database.

addConnection(String) - Method in class appserv.SystemCore.SysCore

it adds a connection entry to the connected device table by using ConnectionPool

class.

addDevice(String) - Method in class appserv.SystemCore.DeviceLogger

It adds the device_name to the local database and gives a unique id to it.

addDevice(String) - Method in class appserv.SystemCore.SysCore

when a new device sends connection infirmations to the server the device is added

to the device list by using DeviceLogger class.

addLog(String, String, String) - Method in class appserv.SystemCore.Logger

It adds an entry to the log table in local XML database with given parameters.

addToDeviceDataQ(String, String) - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

when a new info comes from a device it is added to a queue. when the server is

available it asks for the oldest data in the queue and process it.

addToServerDataQ(String, String) - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

when server finishes to process a data it returns it to the deamon. it is added to a

queue and when the deamon is available it sends is to the device.

appserv.SystemCore - package appserv.SystemCore

appserv.SystemCore.BluetoothDeamon - package

appserv.SystemCore.BluetoothDeamon

appserv.SystemCore.FileSystem - package appserv.SystemCore.FileSystem

 33

B

BlueDeamon - class appserv.SystemCore.BluetoothDeamon.BlueDeamon.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

BlueDeamon() - Constructor for class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

C

ClassLoader - class appserv.SystemCore.ClassLoader.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

ClassLoader() - Constructor for class appserv.SystemCore.ClassLoader

ConnectionPool - class appserv.SystemCore.ConnectionPool.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

ConnectionPool() - Constructor for class appserv.SystemCore.ConnectionPool

checkSettingValidity(String, int, String) - Method in class

appserv.SystemCore.SysCore

it checks for validity of a setting for a given class by using SettingPool class.

D

DeviceLogger - class appserv.SystemCore.DeviceLogger.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

DeviceLogger() - Constructor for class appserv.SystemCore.DeviceLogger

dropAllDevices() - Method in class appserv.SystemCore.ConnectionPool

it clears the connection table and drops all entries.

dropAllDevices() - Method in class appserv.SystemCore.DeviceLogger

it clears the connected device table from the local database and drops all entries.

dropConnection(String) - Method in class appserv.SystemCore.ConnectionPool

it drops the entry belongs to the device_id from the connection table.

dropDevice(String) - Method in class appserv.SystemCore.DeviceLogger

 34

It deletes the device entry from database to implement the disconnection.

dropTimedOutDevices() - Method in class appserv.SystemCore.ConnectionPool

it scans all the connection entries and if it finds a connection is timed out, it drops

that connection from the table.

I

initialize() - Method in class appserv.SystemCore.SysCore

it initializes the server at start up.

insertSetting(String, int, String) - Method in class appserv.SystemCore.SettingPool

It inserts a new entry to setting table in local XML database.

L

Logger - class appserv.SystemCore.Logger.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

Logger() - Constructor for class appserv.SystemCore.Logger

loadClass(String, String, String) - Method in class appserv.SystemCore.ClassLoader

Loads a class with given name and path and marks it as "loaded" in local

databese.

loadClass(String) - Method in class appserv.SystemCore.SysCore

it dynamically loads a class from file system.

P

PathHandler - class appserv.SystemCore.FileSystem.PathHandler.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

PathHandler() - Constructor for class appserv.SystemCore.FileSystem.PathHandler

R

readFromDeviceDataQ() - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

returns the oldest entry in the device data queue

 35

readFromServerDataQ() - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

returns the oldest data in the server data to queue.

readSetting(String, int) - Method in class appserv.SystemCore.SettingPool

returns the value of a specific setting of a specific device.

retrieveData() - Method in class appserv.SystemCore.BluetoothDeamon.BlueDeamon

server uses this function to accept data from connected devices.

returnClassPath() - Method in class appserv.SystemCore.FileSystem.PathHandler

it returns the path of class files that are stored.

returnDeviceId(String) - Method in class appserv.SystemCore.DeviceLogger

Returns the unique DeviceId reserved for that device name.

returnOnlineDevices() - Method in class appserv.SystemCore.ConnectionPool

it returns the device_id's of all online devices.

returnPropertyFilePath() - Method in class

appserv.SystemCore.FileSystem.PathHandler

at start up properties are loaded from this file. which defines the necassery paths.

returnXMLDatabasePath() - Method in class

appserv.SystemCore.FileSystem.PathHandler

returns the path of local XML Database where the system keeps its valuable

information.

S

SettingPool - class appserv.SystemCore.SettingPool.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

SettingPool() - Constructor for class appserv.SystemCore.SettingPool

SysCore - class appserv.SystemCore.SysCore.

Copyright: Copyright (c) 2006 Company: ComFuture Technology

SysCore() - Constructor for class appserv.SystemCore.SysCore

 36

sendData(String, String) - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

server uses this function to send data to connected devices.

sizeDeviceDataQ() - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

returns the size of device data queue

sizeServerDataQ() - Method in class

appserv.SystemCore.BluetoothDeamon.BlueDeamon

returns the size of server data queue.

U

updateClassPath(String) - Method in class

appserv.SystemCore.FileSystem.PathHandler

updates the path of stored class files in properties file.

updateSetting(String, int, String) - Method in class appserv.SystemCore.SettingPool

it changes the specific setting of a specific device.

6. Server API
 Server API is designed to be a middleware between Java Class and the

application server. It is used to define the working conditions of the Java Classes

and tell the application server how to run the Java Class. It offers the necessary

tools to maintain the consistency and the security of the designed system.

 Functions of the Server API and their explanations are given below:

 37

FUNCTIONS EXPLANATION

int setMaxIdleTime(int time) Sets the max allowed idle time for the

Java Class. If no interrupt comes from

client for the defined amount of time,

the application is killed.

int activateLogging (string file_name) Keep the log of transferred pin values

between server and client. Data will be

written to a file with the given name.

int deactivateLogging (void) Deactivate logging.

int setMaxClient(int number) Set the number of maximum clients

that can use that class at a time.

int activateSecurity(void) Activates the restrictions on the class

to increase security.

int deactivateSecurity(void) Deactivate security mode.

Int setAllowedDevices(string*

deviceList)

Sets the allowed device identities that

can use the class. No other client is

allowed to work with that class.

7. Hardware Design

7.1 PIC

Since we need a client application on the client side and since the client will not

be a computer, the application should be embedded on the client. We decided

that the most suitable solution for an embedded microcontroller was a PIC. A

long survey led us to choose PIC16F877A PDIP, which satisfies our needs with

its 40 pins, 8K x 14 words of Flash Program Memory, 368 x 8 bytes of Data

Memory (RAM), 256 x 8 bytes of EEPROM Data Memory and embedded analog-

to-digital converter.

 38

 39

7.2 Intermediate Hardware

We designed our hardware, which will connect the BlueRadios board and

the device being controlled also in which the PIC is embedded as in the figure on

the previous page. Below is the photograph of the actual hardware:

7.3 Programming Software

As a result of our researches and discussions after considering various

software we decided on using MPLAB v6.42 as our IDE. As it is a comprehensive

editor, project manager and design desktop for application development of

embedded designs using Microchip PICmicro microcontrollers. In addition, a few

of the many MPLAB IDE system features are provided to help finish applications

quickly.

The software that will be loaded on PIC is demonstrated below. Please

nothe that the program is in a pseudocode-like C programming language and not

ready to be compiled, which is left to the implementation phase of the project

development.

 42

/*Global variables for status of connection and connection constants*/

char status=0; /*Connection status, 0 disconnected, 1 connected*/
char devoutpins[8]; /*The state of the device output pins(pic
 to device)*/
char devinppins[8]; /*The state of the device input
 pins(device to pic)*/
char rcreg1; /*Holds the value sent by the blu_controller*/
void (*pt2func)(void)=NULL;

/*There will be constants corresponding to different AT commands
defined in the pic so that this function builds up the constants
or AT commands and connects to the server
*/

int blu_Connect()
{
 char in;
 /*Sequence of input and output commands (AT commands) we need*/
 Example:
 /* Get Input*/
 rcreg1=receiveChar();
 /*Write Output*/
 sendChar(deger);
 /*Finish*/
 if("Success")
 { status=1; return 1;}
 status=0;
 return 0;
}

/* Disconnection */
int blu_Disconnect()
{
 /* Has the same routine as the above function*/
}

/* Informs the server of the classes this device intends to use*/
int blu_ClassPref(char *classname)
{
 char *pt=classname;
 send_char(*pt);
 return 0;
}

/* Updates the Global pin object.*/
void blu_readLayout()
{
 devinppins[0]=input(PIN_B0);
 devinppins[1]=input(PIN_B1);
 devinppins[2]=input(PIN_B2);
 devinppins[3]=input(PIN_B3);
 devinppins[4]=input(PIN_B4);

 43

 devinppins[5]=input(PIN_B5);
 devinppins[6]=input(PIN_B6);
 devinppins[7]=input(PIN_B7);
}

/*Sends the Global pin object to the device output*/
void blu_writeLayout()
{
 char out=0;
 char i=0;
 int k=1;
 for(; i < 8 ; k=k*2,i++)
 { out += k * devoutpins[i]; }

 sendChar(out);
}

void blu_sendLayout()
{
 char out=0;
 char i=0;
 int k=1;
 blu_readLayout();
 for(; i < 8 ; k=k*2,i++)
 { out += k * devinppins[i]; }

 output_b(out); /*to the device*/

}

void blu_onLayout()
{
 char command=0;
 char i=0;
 int k=1;
 rcreg1=receiveChar();
 devoutpins[0]=rcreg1(0);
 devoutpins[1]=rcreg1(1);
 devoutpins[2]=rcreg1(2);
 devoutpins[3]=rcreg1(3);
 devoutpins[4]=rcreg1(4);
 devoutpins[5]=rcreg1(5);
 devoutpins[6]=rcreg1(6);
 devoutpins[7]=rcreg1(7);

 for(; i < 8 ; k=k*2,i++)
 { command += k * devoutpins[i]; }

/* Interpret the command, get the input for the second time
for parameters etc., call the necessary functions*/

 /* 0 -> disconnect
 1 -> Send Layout to server
 2 -> set the internal device out pins with next input
 3 -> Read Layout
 4 -> Write Layout to device
 */

 44

 if(command==0) blu_Disconnect();
 if(command==1) blu_sendLayout();
 if(command==2) {while(blu_onpinupdate());
 devoutpins[0]=rcreg1(0);
 devoutpins[1]=rcreg1(1);
 devoutpins[2]=rcreg1(2);
 devoutpins[3]=rcreg1(3);
 devoutpins[4]=rcreg1(4);
 devoutpins[5]=rcreg1(5);
 devoutpins[6]=rcreg1(6);
 devoutpins[7]=rcreg1(7);
 }
 if(command==3) blu_readLayout();
 if(command==4) blu_writeLayout();
 if(command==5) ;
 if(command==6) ;
 if(command==7) ;
 if(command==8) ;

 /* Up to 256 different commands can be implemented using
any combination of internal commands

 or writing other code*/
}

/* busy wait until one of the Device or controller pins are
updated, return which one is updated*/
int blu_onPinUpdate()
{
 /*Which input; 0 btcontroller, 1 device */
 start:
 if(devoutpins[0]!=rcreg1(0)) return 0;
 if(devoutpins[1]!=rcreg1(1)) return 0;
 if(devoutpins[2]!=rcreg1(2)) return 0;
 if(devoutpins[3]!=rcreg1(3)) return 0;
 if(devoutpins[4]!=rcreg1(4)) return 0;
 if(devoutpins[5]!=rcreg1(5)) return 0;
 if(devoutpins[6]!=rcreg1(6)) return 0;
 if(devoutpins[7]!=rcreg1(7)) return 0;

 if(devinppins[0]!=input(PIN_B0)) return 1;
 if(devinppins[1]!=input(PIN_B1)) return 1;
 if(devinppins[2]!=input(PIN_B2)) return 1;
 if(devinppins[3]!=input(PIN_B3)) return 1;
 if(devinppins[4]!=input(PIN_B4)) return 1;
 if(devinppins[5]!=input(PIN_B5)) return 1;
 if(devinppins[6]!=input(PIN_B6)) return 1;
 if(devinppins[7]!=input(PIN_B7)) return 1;
 go to start;
}

void sendChar(char value)
{
 while (!(txBufferIsReady()));
 txreg = value; // Load TXREG
}

 45

char receiveChar()
{
 while (!(rxBufferIsReady()));
 return rcreg;
}

void blu_ClientLoop()
{
 int changed=0;
 while(1)
 { changed=blu_onPinUpdate();
 if(changed) /*device input changed*/

/*Function to be called*/
{ pt2func();}

 else blu_onLayout();
 }
}

int main(void)
{
 Char class1[20]="MyClass.class";

 /*
 Port A --> Device to picanalog input)
 Port B --> Device to pic

Port C --> BtController to pic & Pic to BtController
 (serial)

 Port D --> Pic to device (Parallel)
 */
 set_tris_a(255);
 set_tris_b(255);
 set_tris_c(11000000b);
 set_tris_d(0);

 txsta=0; // Transmit Status Register-init everything to 0
 rcsta=0; // Receive Status Register-init everything to 0

 // Now set up baud rate
 set_bit(txsta,BRGH); // High Baud Rate Select
 spbrg=129; /* 20MHz: 129=9600, 64=19200 (if BRGH=0 then
 129=2400)*/

 // Set SYNC to 0 for Async mode
 clear_bit(txsta,SYNC); // SYNC=0; // Async Mode

 set_bit(rcsta,SPEN); // SPEN=1; // Serial Port Enable

 set_bit(txsta,TXEN); // Transmit Enable

 pt2func=userdefineddevicestatechangefunction;
 blu_Connect();
 blu_classPref(class1);

 blu_ClientLoop();
}

 46

8. Proof of Concept
There are many areas where we can use our controller design. We have

gathered some of possible applications of our bluetooth controller. These

application areas are also can be used as testing environments where we can

develop our proof of concept. These documented are presented below.

Camera controller using bluetooth

Assuming that every room in a house includes wireless camera connected

to a robot car controlled by bluetooth signals. Then, we can control the cameras

using bluetooth, that is, we can watch each part of the rooms by changing the

position of the robot car using bluetooth. This means that, if we have a small child

and we have to work in study room for log time , we can watch the child and his

actions from your computer. By using such an instrument, there is no need to go

to child�s room and check him frequently. Because the car has ability to turn right

,turn left go directly ,turn back as we can see in the figure.

 47

Controlling Sunblind Using Bluetooth

Assuming there are no curtains in the house and there are sunblinds on

the windows. We know that the lights of the sun comes with different angles

during the day. Because of the rays coming in different angles and ability to

change the angle of sunblind in the house, we can not make use of sun light very

efficiently. As we can see in the figure.

We can connect a timer and bluetooth connected to the sunblinds, we can

make some arrangement with the angles of sunblind according to sun rays. With

the use of timer bluetooth system, we can change the angles of sunblind in some

periods automatically. In addition to this, this system can also be connected to

computer and we can change the angles manually. For example, if we want to

watch a movie on computer in a dark room, we can close the sunblinds

manually.

 48

A Bluetooth Controller For The Machinery At Home

We can design a box, connected to all machinery via bluetooth, next to the

door inside the house. This box includes a controller for all machinery, lights and

kombi. When leaving the home, we can switch of all of them or some of them by

using this box. We can also control the radio and TV via this box which uses

bluetooth.

 49

Controlling Kombi via Bluetooth

We are planning to control kombi via bluetooth. There are thermometers in

each room and we want to keep room temperatures between some ranges. The

thermometers and the kombi are connected to each other via bluetooth. And the

thermometer tells about the room temperature in each room via bluetooth. For

example, we are planning to keep room temperature between 20 oC and 25 oC.

The kombi starts working at 20oC and goes on working till 25 oC and at 25 oC it

stops working till the room temperature becomes 20 oC. When it reaches this

value, it gets started to work again. By connecting a timer to this system, we can

arrange the the room temperature as for example between 15 oC and 20 oC at

nights. This means we can make kombi work at different temperatures at

different day times. In addition to this, that we can save money. By using this

system, we can arrange different temperatures for different rooms. For example,

by using thermometer we can make some arrangement for the child room like

25-28 oC while it is 20 -25 oC for the sitting room. Also, we can make these

arrangements by giving commands automatically, or by using computer

manually. As we can see in the figure

 50

9. Conclusion

We choosed our intended tools and built our guidelines in this report. We

made throughout research about our hardware and project requirements and

chose our hardware which was a great experience in our project.

This initial design report is prepared to establish a connection between our

design and implementation. The information given here such as diagrams and

other design products are produced in order to guide us through our way in the

implementation of our project. Despite being an initial design, this document is a

milestone that will

help us make our prototype and real design report. We believe that this report will

contribute to our project in a quite useful way.

10. References
(1) Dynamic Class Loading in java
 http://www-h.eng.cam.ac.uk/help/tpl/languages/java/javaplugins.html

(2) Dynamically Extend Java Applications

http://www.javaworld.com/javaworld/jw-08-2001/jw-0810-extend.html

(3) PIC16F877A PDIP modeled PIC documentation.

(4) MPLAB IDE documentation.

(5) Java OBEX API documentation.

(6) Sun's home for Java.

http://java.sun.com/

 51

(7) Hands-on, how-to features and columns by Java experts; news; Java applets;

sample code; tips

http://www.javaworld.com/

(8) Java[TM] technology collaboration center.

http://java.net/

(9) JavaBT:Bluetooth API for Personal Java running under Symbian OS.

http://www.sics.se/humle/projects/mobitip/javabt/tutorial.php

