
MIDDLE EAST TECHNICAL UNIVERCITY

Department of Computer Engineering

CENG 491

Initial Design Report

ComFuture Technology

Orhan Tuncer 1250851

Ugur Turan 1348028

Guven Orkun Tanik 1347947

Sebnem Sonmezler 1298231

Hakan Okten 1250562

 2

INDEX:
1. Introduction���������������������
 1.1 Purpose of This Document��������������...
 1.2 Definition and Scope of the Project�����������.
 1.3 Overview of the Project Properties�����������.

1.3.1 Portable��������������������.
1.3.2 Secure���������������������
1.3.3 Reusable��������������������
1.3.4 Easily Programmable���������������

 1.4 Design Goals��������������������..
1.4.1 Hardware Design����������������..
 1.4.1.1 PIC ��������������������.

 1.4.1.2 Intermediate Circuit��������������
1.4.2 Library Design�����������������..
 1.4.2.1 Client side Library��������������..
 1.4.2.2 Sever side Library��������������...
1.4.3 Application Server����������������
1.4.4 Server Side API�����������������
1.4.5 Proof of Concept����������������..

2. Project Schedule����������������............
3. Architectural Overview�������������..........
4. Library Design�������������������...
 4.1 Client-Side Library�����������������...
 4.2 Server-Side Library�����������������..
5. Application Server������������������
6. Server API���������������������...
7. Hardware Design������������������...
 7.1 PIC������������������������..
 7.2 Programming Software����������������
 7.3 Intermediate Hardware����������������
8. Proof of Concept�������������������
9. Conclusion���������������������...
10. References���������������������.

3
3
3
4
4
4
5
5
6
6
6
6
6
7
7
7
7
8
8

10
11
11
13
15
16
17
17
24
24
25
26
26

 3

1. Introduction

1.1 Purpose of This Document
This document is prepared to summarize the efforts spent on the early

design phases of our project, ComFuture Bluetooth Controller. It basically covers

the initial design activities and establishes a basis for the detailed design phase.

In this document design concepts will be undertaken in a general sense. The

detailed design will ascertain the concepts in this report and so this report will

form a basis for the final design report.

1.2 Definition and Scope of the Project
Our project is to design and implement a general-purpose controller

device which will allow any suitably configured Bluetooth device to control the

intended device which contains our controller module. Thus our controller will be

modular, easily installed, compliant with the current standards in the area. We

will design and implement developer libraries to use the controller and thus the

end product will depend on the specific implementation. We are going to produce

a detailed and easily understandable API and a broad spectrum of library

functions.

 The main speciality of the product will be its generic modules and

compliance with other hardware units. By this way Bluetooth won't be a close-

packed technology for other developers since by this product they can easily

integrate Bluetooth property to their products with ease and a very little

background.

 4

1.3 Overview of the Project Properties
 Since the project has some predefined concerns it is useful to explain

these concerns in order to give a more precise understanding on the overall

design. They are fundamental to understand the design goals which are

explained in the next chapter (1.4).

1.3.1 Portable
Since we are designing a general purpose Bluetooth controller, the

product has to be portable for a variety of devices.

 If this functional requirement would not be satisfied, it will contradict with

the main idea of a �general� purpose Bluetooth controller. In order to reduce the

probability of the occurrence of this type of contradiction, we will consider a wide

variety of devices that can be controlled by our product and try to meet their

standards during the design phase.

1.3.2 Secure
Although there would be some applications for the Bluetooth controller

which does not require security, we assume that our controller system should

provide a level of security which can be defined by four fundamental elements:

Availability, access, integrity, and confidentiality. If we assure that the connection

between the controller and the device is secure under these conditions, no other

third party device can interfere with the connection or interrupt, while the device

and the controller is communicating without losing integrity and confidentiality.

 As it is known by most of the cellular phone users interested in Bluetooth,

any Bluetooth device can be realized by a phone when searched for devices.

Since Bluetooth technology can communicate out of sight, this can be a critical

problem in security issues. In today's cellular phones there is an authentication

protocol for giving permission to connect to a Bluetooth device. This must be

 5

implemented in our product since the proof of concept can be used in critical

places for security.

 Also we want to add portability and generic issues to our system. As a

result we must implement all the same protocols for the Bluetooth connection

about security and in our libraries there must be additional security issues for the

hardware which are wanted to be kept more private that a cellular phone.

1.3.3 Reusable
Our hardware will be easily pluggable and unpluggable. As long as the

number of pins are enough it can be reprogrammed and used in an other

context.

1.3.4 Easily Programmable
The generic component on the board will be the client application which is

located on the PIC. It can be easily reprogrammed to accommodate any user

needs. So it can be easily reprogrammed to be used in any context or situation.

Our client side library will offer the necessary tools to develop an client

application fastly and easily.

On the server side our Application Server will offer the necessary

container to keep and process the server side applications. Our server side

library will offer the necessary tools to develop a server application fastly and

easily.

 6

1.4 Design Goals
 Our design goals are driven by the facts of simplification necessities of

any hardware by the means of design costs and production costs, simplification

necessities of software systems by the means of design costs and maintainability

as well as the concerns about the satisfaction and demands of the end users.

1.4.1 Hardware Design

 We divided our hardware design process into two parts consisting of

selecting the suitable PIC, which has a high importance level in our designs

including the software design which is highly connected to the PIC selection, and

intermediate circuit design which is necessary to include the PIC to the current

hardware, the Bluetooth development environment.

1.4.1.1 PIC

 We will be working with a PIC16F877A model PIC. Its relatively high

internal capacity and embedded analog to digital converter will be used to

simplify the hardware part considerably.

1.4.1.2 Intermediate Circuit

 We will use an extremely simple intermediate circuit which will consist of

noise dampening bypass capacitors and voltage adjustment subcircuit to connect

PIC and serial port of the Bluetooth controller.

1.4.2 Library Design
 There will be two different libraries located at two sides of the architecture;

server side and client side. This division is required because the server side

applications and the client side applications will be working on two different

systems which also separate them by the means of programming languages.

The server side library, as well as the application server itself, will be constructed

on the Java Technology, on the other hand client side library will be developed

 7

with C language for PIC programming, which also defines the client side

programming language. The details of client side programming and server side

programming will be explained in chapter 4 �Library Design�.

1.4.2.1 Client side Library

 It will be used at the compile time of the client side application. It will

contain the necessary tools to communicate with the Bluetooth controller. We

tried to develop a compact but powerful library to be used at the client side that

will perform the hardware related operations in order to give the application

programmer a more logical view of the system.

1.4.2.2 Sever side Library

It will be used to communicate with the client application. We tried to

develop a compact but powerful library by not incorporating any redundant or

interlaced functions. It will give the application programmer the ability of

controlling system events and develop a better business context.

1.4.3 Application Server
 Application Server is the main improvement we have added to the design.

It will be the main container of the server side applications with ability to offer a

better control to the system designer using our Bluetooth controller. It will be

constructed on the Java Technology. This improvement will give a more flexible

working environment for both the application and system designers as well as the

client application itself.

1.4.4 Server Side API
It will be used to coordinate the interaction with the application server. To

improve the consistency and the security of the system, an application

programmer can define some rules to be forced on the application by the server.

It is essential if the server side application has various components and if a well

defined business logic is required. Our server side API will give the designer

 8

these abilities by offering the complementary tools effectively using the abilities

that the Application Server offers.

1.4.5 Proof of Concept
 Our proof of concept will be a modified remote-controlled vehicle, which

we will buy as a toy, but going to modify to meet our project needs. Since it will

also be used as a testing and evolution tool of our design, hardware and software

it needs to be simple but improvable. Some possibilities have already been

started to evaluated and they will be explained later.

2. Project Schedule

We will start with intermediate hardware designs which will enable us to

implement and try our PICs as we program.

We supplied our PIC programming software and hardware and also we

purchased necessary bread boards and circuit components. This will allow us to

concentrate on building our project rather than trying to decide on which part to

use. As such we will proceed as learning and programming in order. We will do

the peripheral programming first than concurrently start application server and

Client programming. Also library design can not be separated from any of these.

As we approach to the final phase of development we will concentrate on the

proof of concept. Testing will be held during all of the development stages.

 9

 10

3. Architectural Overview

Our architecture has two main aspects. First one is Application Server and

the second one is ComFuture Bluetooth Controller.

The Server Application in our previous model is replaced by an application

server in our current model. The reason is to provide users a better intermediate

tool between client application and server application. In this approach user can

define multiple classes that can work together and also the client application can

choose the class to work with.

In this scheme such a layout will be formed:

Figure - 3.1 Architectural Overview

In our Controller besides to Bluetooth communication circuit given to us we

will implement the following circuits:

- Intermediate hardware to connect the serial port of the Bluetooth

communication circuit. This circuit will generally condition the input to the

PIC in our desired format.

- PIC16F877A as a container for the client application and intermediate

processes.

- Intermediate hardware to distribute and format the output according to our

specifications.

- Output Pins.

 11

Figure 3.2 depicts this layout:

Figure - 3.2 ComFuture Bluetooth Controller Details

4. Library Design

 There are two libraries in our design separated by the means of location,

usage and programming language: client side and server side. The motivation of

separating them is explained before so here we will be focusing on details of their

designs.

4.1 Client-Side Library

 Client Side Library is designed to fulfill the needs of application

programmer. It consists of necessary tools which will hide the hardware

connection details from the programmer. This library will be implemented in C

language for PIC and the client side applications are restricted to be

implemented in C language.

 Client application will have the ability of choosing the server that it wants

to work with and also the server application to handle the data that it sends.

These powerful abilities will give the client application a more flexible working

 12

environment and the system designer more easily designable and maintainable

environment.

 Functions of this library and their explanations are given below:

FUNCTIONS EXPLANATION

bcnt blu_Connect (char* serverID, char*

ClientID)

Opens connection to Blucon server.

Returns Blucon connection object

which defines the path of server

application which is decided by the

server.

int blu_classPref(bcnt* con, string

class_name)

Sends the request of working with a

specific class located at the server.

int blu_Disconnect (bcnt* con) Closes connection to Blucon server.

int blu_sendLayout (bcnt* con) Sends the pin layout to the server in

Blucon pins object format.

bpin blu_readLayout (void) Reads the values of the pins and

returns Blucon pins object.

int blu_writeLayout (bpin pin) Sets the values of the pins.

void blu_onLayout (bfn* fnc) The function to be called when new

layout arrives. The function must be

in bfn format.

void blu_onPinUpdate (bfn* fnc) The function to be called when the

values of the pins changes. The

function must be in bfn format.

void blu_clientLoop (bmain* main) Client side main processing loop. The

function must be in bmain format.

 13

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bcnt* cnt)

4.2 Server-Side Library

 Server Side Library is designed to fulfill the needs of application

programmer by the means of defining events and give the programmer control

over these events. It is main tool that enables the programmer to communicate

with the client application. Since a server must only serve we did not provided

any tools which will interfere the client application.

 Server side applications will be java classes resting in the container

section of the application server which uses our library functions to interact with

the client.

 Functions of this library and their explanations are given below:

 14

FUNCTIONS EXPLANATION

int blu_sendLayout (bcnt* cnt, bpin pin) Sends the pin layout to the client.

void blu_onConnect (bcon* con) The function to be called when a new

connection is requested. The function

must be in bcon format.

void blu_onDisconnect (bcon* con) The function to be called when a

connection is closed. The function

must be in bcon format.

void blu_onLayoutServe (bfn* fun) The function to be called when new

layout arrives. The function must be in

bfn format.

void blu_serverLoop (bmain* main) Server side main processing loop. The

function must be in bmain format.

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bcnt* cnt)

 15

5. Application Server
 Application Server is the most powerful aspect of our design. It will be

constructed on the top of the Java Technology and it will offer the necessary

tools to develop a well defined system using our Bluetooth controller.

 The backbone of our application server will be the Java�s dynamic class

loading ability. The server side applications will be resting in the container

section of our application server. After a client is connected to the server it will

choose the class that it wants to work with. At this moment application server

dynamically loads the requested java class and maintains the necessary linkage

with the client application and server application. After a connection dies the

linkage is halted and the server application is killed.

 It is also possible for different clients to work with the same class. In this

case each client works with a different copy of the java class and handled

independently.

 Since the design of our application server is in its very early stages there

is not much documentation prepared for it yet.

 16

6. Server API
 Server API is designed to be a middleware between server application

and the application server. It is used to define the working conditions of the

server applications and tell the application server how to run the server

application. It offers the necessary tools to maintain the consistency and the

security of the designed system.

 Functions of the Server API and their explanations are given below:

FUNCTIONS EXPLANATION

int setMaxIdleTime(int time) Sets the max allowed idle time for the

server application. If no interrupt

comes from client for the defined

amount of time, the application is killed.

int activateLogging (string file_name) Keep the log of transferred pin values

between server and client. Data will be

written to a file with the given name.

int deactivateLogging (void) Deactivate logging.

int setMaxClient(int number) Set the number of maximum clients

that can use that class at a time.

int activateSecurity(void) Activates the restrictions on the class

to increase security.

int deactivateSecurity(void) Deactivate security mode.

Int setAllowedDevices(string*

deviceList)

Sets the allowed device identities that

can use the class. No other client is

allowed to work with that class.

 17

7. Hardware Design

7.1 PIC

Since we need a client application on the client side and since the client will not

be a computer, the application should be embedded on the client. We decided

that the most suitable solution for an embedded microcontroller was a PIC. A

long survey led us to choose PIC16F877A PDIP, which satisfies our needs with

its 40 pins, 8K x 14 words of Flash Program Memory, 368 x 8 bytes of Data

Memory (RAM), 256 x 8 bytes of EEPROM Data Memory and embedded analog-

to-digital converter.

 18

 19

 20

 21

 22

 23

 24

7.2 Programming Software

As a result of our researches and discussions after considering various software

we decided on using MPLAB v6.42 as our IDE. As it is a comprehensive editor,

project manager and design desktop for application development of embedded

designs using

Microchip PICmicro microcontrollers. In addition, a few of the many MPLAB IDE

system features are presented to help finish applications quickly.

7.3 Intermediate Hardware

We are going to use custom parts separately purchased to use as noise filters

and voltage adjusters. Also we will need digital-to-analog converter and several

logic chips to format the output and a simple logic selection circuit to direct

dynamically selected outputs.

The above circuit model illustrates the By-pass capacitor that we will use as a

primitive noise filter.

 25

8. Proof of Concept
In order to prove that our general purpose bluetooth controller works

properly for typical industrial devices, we will implement a higher level library for

a specific device such as a remote controlled car, a robot or an air conditioner.

The client application will run on the device, receiving orders from the application

server and giving feedbacks to the server. By the use of this device, we will prove

that any device can be automated using our controller. Although the proof of

concept part is not a part of our project, we will make use of it in the presentation

of our product and provide the classes we added as a sample for the future

users.

For instance, in case of controlling a car, the car can travel in a room

without hitting the walls, directed by a computer and no human interaction

needed at all. Furthermore, various sensors can be placed on top of the car for a

wide variety of purposes, this way the car can be used for many different

purposes like spraying insecticides, other chemical pesticides that threatens

health.

 It is also possible to use a robot which has already added sensors on it

and define some actions for it as a combination of a server and client

applications. This approach is also promising as a testing and evaluation tool.

 26

9. Conclusion

We choosed our intended tools and built our guidelines in this report. We

made throughout research about our hardware and project requirements and

chose our hardware which was a great experience in our project.

This initial design report is prepared to establish a connection between our

design and implementation. The information given here such as diagrams and

other design products are produced in order to guide us through our way in the

implementation of our project. Despite being an initial design, this document is a

milestone that will

help us make our prototype and real design report. We believe that this report will

contribute to our project in a quite useful way.

10. References
(1) Dynamic Class Loading in java
 http://www-h.eng.cam.ac.uk/help/tpl/languages/java/javaplugins.html

(2) Dynamically Extend Java Applications

http://www.javaworld.com/javaworld/jw-08-2001/jw-0810-extend.html

(3) PIC16F877A PDIP modeled PIC documentation.

(4) MPLAB IDE documentation.

(5) Java OBEX API documentation.

