MIDDLE EAST TECHNICAL UNIVERCITY

Department of Computer Engineering

CENG 491

Initial Design Report

ComFuture Technology

Orhan Tuncer 1250851

Ugur Turan 1348028

Guven Orkun Tanik 1347947
Sebnem Sonmezler 1298231
Hakan Okten 1250562

INDEX:

1. Introduction......................ii 3
1.1 Purpose of This Document............................iiiiiinnn. 3
1.2 Definition and Scope of the Project.................................. 3
1.3 Overview of the Project Properties.................................. 4

L3.1Portable.......oouiii 4
L.3.2 SECUIE. ...eetiee e 4
L1.3.3Reusable......oouiiiii 5
1.3.4 Easily Programmable...................oooiiii 5
1.4 Design Goals..........ooooiiiiiiii 6
1.4.1 Hardware Design..........cvviiiiiiiiiiii i, 6
LA PIC o 6
1.4.1.2 Intermediate Circuit...........cooviiiiiiiiiiiieenieeannn.. 6
1.4.2 Library Design......c.ovvniiiiiiiiie i, 6
1.4.2.1 Client side Library..........ccoooeiiiiiiiiiiiiii e, 7
1.4.2.2 Sever side Library...........ccoooiiiiiiiiiii i, 7
1.4.3 Application Server..........cooviiieiiiiiiie i eiianns 7
1.4.4 Server Side APIL.......oooi i 7
1.4.5 Proofof Concept.......coovviiiiiiiiii e, 8

2. Project Schedule............................. 8

3. Architectural Overview..........................oo, 10

4. Library Design....................... 11
4.1 Client-Side Library..............coooiiiiiiii e, 11
4.2 Server-Side Library..............oiiiii 13

5. Application Server......................o 15

6.Server AP 16

7. Hardware Design. ..., 17
78 T) 17
7.2 Programming Software....................oiiiiiiiiiiiii i 24
7.3 Intermediate Hardware.......................ooooiiiiiii. 24

8. Proofof Concept..................ooooiiiiii 25

9. ConcClusiON. ..o 26

10. References...............ooooiiiii i 26

1. Introduction

1.1 Purpose of This Document

This document is prepared to summarize the efforts spent on the early
design phases of our project, ComFuture Bluetooth Controller. It basically covers
the initial design activities and establishes a basis for the detailed design phase.
In this document design concepts will be undertaken in a general sense. The
detailed design will ascertain the concepts in this report and so this report will
form a basis for the final design report.

1.2 Definition and Scope of the Project

Our project is to design and implement a general-purpose controller
device which will allow any suitably configured Bluetooth device to control the
intended device which contains our controller module. Thus our controller will be
modular, easily installed, compliant with the current standards in the area. We
will design and implement developer libraries to use the controller and thus the
end product will depend on the specific implementation. We are going to produce
a detailed and easily understandable APl and a broad spectrum of library

functions.

The main speciality of the product will be its generic modules and
compliance with other hardware units. By this way Bluetooth won't be a close-
packed technology for other developers since by this product they can easily
integrate Bluetooth property to their products with ease and a very little

background.

1.3 Overview of the Project Properties

Since the project has some predefined concerns it is useful to explain
these concerns in order to give a more precise understanding on the overall
design. They are fundamental to understand the design goals which are

explained in the next chapter (1.4).

1.3.1 Portable

Since we are designing a general purpose Bluetooth controller, the
product has to be portable for a variety of devices.

If this functional requirement would not be satisfied, it will contradict with
the main idea of a “general” purpose Bluetooth controller. In order to reduce the
probability of the occurrence of this type of contradiction, we will consider a wide
variety of devices that can be controlled by our product and try to meet their

standards during the design phase.

1.3.2 Secure

Although there would be some applications for the Bluetooth controller
which does not require security, we assume that our controller system should
provide a level of security which can be defined by four fundamental elements:
Availability, access, integrity, and confidentiality. If we assure that the connection
between the controller and the device is secure under these conditions, no other
third party device can interfere with the connection or interrupt, while the device
and the controller is communicating without losing integrity and confidentiality.

As it is known by most of the cellular phone users interested in Bluetooth,
any Bluetooth device can be realized by a phone when searched for devices.
Since Bluetooth technology can communicate out of sight, this can be a critical
problem in security issues. In today's cellular phones there is an authentication

protocol for giving permission to connect to a Bluetooth device. This must be

implemented in our product since the proof of concept can be used in critical
places for security.

Also we want to add portability and generic issues to our system. As a
result we must implement all the same protocols for the Bluetooth connection
about security and in our libraries there must be additional security issues for the
hardware which are wanted to be kept more private that a cellular phone.

1.3.3 Reusable

Our hardware will be easily pluggable and unpluggable. As long as the
number of pins are enough it can be reprogrammed and used in an other

context.

1.3.4 Easily Programmable

The generic component on the board will be the client application which is
located on the PIC. It can be easily reprogrammed to accommodate any user
needs. So it can be easily reprogrammed to be used in any context or situation.
Our client side library will offer the necessary tools to develop an client
application fastly and easily.

On the server side our Application Server will offer the necessary
container to keep and process the server side applications. Our server side
library will offer the necessary tools to develop a server application fastly and
easily.

1.4 Design Goals

Our design goals are driven by the facts of simplification necessities of
any hardware by the means of design costs and production costs, simplification
necessities of software systems by the means of design costs and maintainability

as well as the concerns about the satisfaction and demands of the end users.

1.4.1 Hardware Design

We divided our hardware design process into two parts consisting of
selecting the suitable PIC, which has a high importance level in our designs
including the software design which is highly connected to the PIC selection, and
intermediate circuit design which is necessary to include the PIC to the current

hardware, the Bluetooth development environment.

1.4.1.1PIC
We will be working with a PIC16F877A model PIC. Its relatively high
internal capacity and embedded analog to digital converter will be used to

simplify the hardware part considerably.

1.4.1.2 Intermediate Circuit

We will use an extremely simple intermediate circuit which will consist of
noise dampening bypass capacitors and voltage adjustment subcircuit to connect
PIC and serial port of the Bluetooth controller.

1.4.2 Library Design

There will be two different libraries located at two sides of the architecture;
server side and client side. This division is required because the server side
applications and the client side applications will be working on two different
systems which also separate them by the means of programming languages.
The server side library, as well as the application server itself, will be constructed

on the Java Technology, on the other hand client side library will be developed

with C language for PIC programming, which also defines the client side
programming language. The details of client side programming and server side
programming will be explained in chapter 4 “Library Design”.

1.4.2.1 Client side Library

It will be used at the compile time of the client side application. It will
contain the necessary tools to communicate with the Bluetooth controller. We
tried to develop a compact but powerful library to be used at the client side that
will perform the hardware related operations in order to give the application

programmer a more logical view of the system.

1.4.2.2 Sever side Library

It will be used to communicate with the client application. We tried to
develop a compact but powerful library by not incorporating any redundant or
interlaced functions. It will give the application programmer the ability of

controlling system events and develop a better business context.

1.4.3 Application Server

Application Server is the main improvement we have added to the design.
It will be the main container of the server side applications with ability to offer a
better control to the system designer using our Bluetooth controller. It will be
constructed on the Java Technology. This improvement will give a more flexible
working environment for both the application and system designers as well as the
client application itself.

1.4.4 Server Side API

It will be used to coordinate the interaction with the application server. To
improve the consistency and the security of the system, an application
programmer can define some rules to be forced on the application by the server.
It is essential if the server side application has various components and if a well
defined business logic is required. Our server side API will give the designer

these abilities by offering the complementary tools effectively using the abilities
that the Application Server offers.

1.4.5 Proof of Concept

Our proof of concept will be a modified remote-controlled vehicle, which
we will buy as a toy, but going to modify to meet our project needs. Since it will
also be used as a testing and evolution tool of our design, hardware and software
it needs to be simple but improvable. Some possibilities have already been
started to evaluated and they will be explained later.

2. Project Schedule

We will start with intermediate hardware designs which will enable us to
implement and try our PICs as we program.
We supplied our PIC programming software and hardware and also we
purchased necessary bread boards and circuit components. This will allow us to
concentrate on building our project rather than trying to decide on which part to
use. As such we will proceed as learning and programming in order. We will do
the peripheral programming first than concurrently start application server and
Client programming. Also library design can not be separated from any of these.
As we approach to the final phase of development we will concentrate on the

proof of concept. Testing will be held during all of the development stages.

ComFuture Bluetooth Controller

Months

Tasks December January February March April May

Flanned %

Planned Duration — Milestone

3. Architectural Overview

Our architecture has two main aspects. First one is Application Server and
the second one is ComFuture Bluetooth Controller.

The Server Application in our previous model is replaced by an application
server in our current model. The reason is to provide users a better intermediate
tool between client application and server application. In this approach user can
define multiple classes that can work together and also the client application can
choose the class to work with.

In this scheme such a layout will be formed:

Eluetooth
Connection

Application Server

ComFuture Eluetooth Controller

Class Buchet

Figure - 3.1 Architectural Overview

In our Controller besides to Bluetooth communication circuit given to us we
will implement the following circuits:

- Intermediate hardware to connect the serial port of the Bluetooth
communication circuit. This circuit will generally condition the input to the
PIC in our desired format.

- PIC16F877A as a container for the client application and intermediate
processes.

- Intermediate hardware to distribute and format the output according to our
specifications.

- Output Pins.

10

Figure 3.2 depicts this layout:

Bluetooth
Connection
>

Board Serial Port fm

Pins

PIC

Intermediate
Hardware

Hardware

Intermediate

Figure - 3.2 ComFuture Bluetooth Controller Details

4. Library Design

There are two libraries in our design separated by the means of location,
usage and programming language: client side and server side. The motivation of
separating them is explained before so here we will be focusing on details of their

designs.

4.1 Client-Side Library

Client Side Library is designed to fulfill the needs of application
programmer. It consists of necessary tools which will hide the hardware
connection details from the programmer. This library will be implemented in C
language for PIC and the client side applications are restricted to be
implemented in C language.

Client application will have the ability of choosing the server that it wants
to work with and also the server application to handle the data that it sends.
These powerful abilities will give the client application a more flexible working

11

environment and the system designer more easily designable and maintainable

environment.

Functions of this library and their explanations are given below:

FUNCTIONS

EXPLANATION

bent blu_Connect (char* serverlD, char*
ClientID)

Opens connection to Blucon server.
Returns Blucon connection object
which defines the path of server
application which is decided by the

server.

int blu_classPref(bcnt* con, string

class_name)

Sends the request of working with a
specific class located at the server.

int blu_Disconnect (bcnt* con)

Closes connection to Blucon server.

int blu_sendLayout (bcnt* con)

Sends the pin layout to the server in
Blucon pins object format.

bpin blu_readLayout (void)

Reads the values of the pins and

returns Blucon pins object.

int blu_writeLayout (bpin pin)

Sets the values of the pins.

void blu_onLayout (bfn* fnc)

The function to be called when new
layout arrives. The function must be

in bfn format.

void blu_onPinUpdate (bfn* fnc)

The function to be called when the
values of the pins changes. The

function must be in bfn format.

void blu_clientLoop (bmain* main)

Client side main processing loop. The

function must be in bmain format.

12

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bent* cnt)

4.2 Server-Side Library

Server Side Library is designed to fulfill the needs of application
programmer by the means of defining events and give the programmer control
over these events. It is main tool that enables the programmer to communicate
with the client application. Since a server must only serve we did not provided
any tools which will interfere the client application.

Server side applications will be java classes resting in the container
section of the application server which uses our library functions to interact with
the client.

Functions of this library and their explanations are given below:

13

FUNCTIONS

EXPLANATION

int blu_sendLayout (bcnt* cnt, bpin pin)

Sends the pin layout to the client.

void blu_onConnect (bcon* con)

The function to be called when a new
connection is requested. The function

must be in bcon format.

void blu_onDisconnect (bcon* con)

The function to be called when a
connection is closed. The function

must be in bcon format.

void blu_onLayoutServe (bfn* fun)

The function to be called when new
layout arrives. The function must be in

bfn format.

void blu_serverLoop (bmain* main)

Server side main processing loop. The

function must be in bmain format.

Defined Function Formats

void bfn (bcnt* cnt, bpin pin)

int bmain (void)

void bcon (bent* cnt)

14

5. Application Server

Application Server is the most powerful aspect of our design. It will be
constructed on the top of the Java Technology and it will offer the necessary
tools to develop a well defined system using our Bluetooth controller.

The backbone of our application server will be the Java’s dynamic class
loading ability. The server side applications will be resting in the container
section of our application server. After a client is connected to the server it will
choose the class that it wants to work with. At this moment application server
dynamically loads the requested java class and maintains the necessary linkage
with the client application and server application. After a connection dies the
linkage is halted and the server application is killed.

It is also possible for different clients to work with the same class. In this
case each client works with a different copy of the java class and handled
independently.

Since the design of our application server is in its very early stages there
is not much documentation prepared for it yet.

15

6. Server API

Server API is designed to be a middleware between server application

and the application server. It is used to define the working conditions of the

server applications and tell the application server how to run the server

application. It offers the necessary tools to maintain the consistency and the

security of the designed system.

Functions of the Server API and their explanations are given below:

FUNCTIONS

EXPLANATION

int setMaxIdleTime(int time)

Sets the max allowed idle time for the
server application. If no interrupt
comes from client for the defined
amount of time, the application is killed.

int activateLogging (string file_name)

Keep the log of transferred pin values
between server and client. Data will be

written to a file with the given name.

int deactivateLogging (void)

Deactivate logging.

int setMaxClient(int number)

Set the number of maximum clients

that can use that class at a time.

int activateSecurity(void)

Activates the restrictions on the class

to increase security.

int deactivateSecurity(void)

Deactivate security mode.

Int setAllowedDevices(string*
deviceList)

Sets the allowed device identities that
can use the class. No other client is

allowed to work with that class.

16

7. Hardware Design

7.1 PIC

Since we need a client application on the client side and since the client will not

be a computer, the application should be embedded on the client. We decided

that the most suitable solution for an embedded microcontroller was a PIC. A

long survey led us to choose PIC16F877A PDIP, which satisfies our needs with

its 40 pins, 8K x 14 words of Flash Program Memory, 368 x 8 bytes of Data

Memory (RAM), 256 x 8 bytes of EEPROM Data Memory and embedded analog-

to-digital converter.

40-Pin PDIP
MolRVer — =1 -/ 40 [J<—» RB7PGD
RAD/AND =[] 2 39 [T «—= RBG/PGC
RAT/ANT = [13 38 [] «—= RB5
RA2/ANZ/VREF-/CVREF =—» [] 4 37 [J == RB4
RAJAN3INVREF+ -—=[]5 36 [J =—= RB3/PGM
RA4/TOCKI/C10UT -=—[] 6 35 [] «=—= RB2
RAS/AN4/SS/C20UT =—» [7 rj{_ 34 [] == RB1
REO/RD/ANS =—=[] 8 IS 33 [J=—= RBOINT
RETAVR/ANG =—= [9 < 2 =—\voo
RE2/CS/ANT -—=[110 = 31[]=— Vss
VoD — 011 & 30 [J~—= RD7/PSP7
Vss — w[J12 Y5 29[J<«— RDEPSPS
OSC1/CLKI —=[113 ¥ 28 [] =—s RDS/PSP5
0SC2/CLKO =[] 14 E 27 [] <—» RD4/PSP4
RCO/T10SOTICK] =[] 15 26 [T =—= RCT/RX/DT
RC1T10SIICCP2 =[] 16 25 [] =— RCB/TX/CK
RC2/CCP1 =[] 17 24 [] <—» RC5/SDO
RC3/SCKISCL =[] 18 23 [] =—= RC4/SDI/SDA
RDO/PSPO =[] 19 29 [] =—» RD3/PSP3
RD1/PSP1 - [20 21 [] =—= RD2/PSP2

17

Key Features PIC1GFBTTA
Cperating Frequency DC - 20 MHz
Resets (and Delays) FOR, BOR
(FPWRT, OST)
Flash Program Memory aK
(14d-hit words)
Data Memaory (hytes) 368
EEFROM Data Memory (hytes) 2h6
Interrupts 15
11O Ports Ports A,B,C, 0, E
Timers 3
Capture/Compare/PWh modules 2
Serial Communications MSSP, USART
Farallel Communications PSP
10-hit Analog-to-Digital Module 8 input channels
Analog Comparators 2
Instruction Set 35 Insfructions
Packages 40-pin PDIP
44-pin PLCC
44-pin TQFP
44-pin QFMN

18

PIC16F874A/877TA BLOCK DIAGRAM

B = - Data Bus 8 PORTA
;:‘:I rogra rrj._uaun:er f J L Ny RAGIAND
Flash i 4 RAT/AN1
Program . o RAZIAN2NVReF-ICVREF
Memory 3 Level Stack RAM — P RAYANIVREF+
{13-bit) File . RA4/TOCKIC10UT
) i Registers - RASIAN4/SS/IC20UT
Program
Bis ¢ RaM Agdrl!) ¢ g PORTB —
iU '
[Tnstrucion reg | / Addr MUX 1 & Rra
T +—=[| RB2
| Direct Addr 7 I gfndrect . 1—IX| ReaPGM
1 i _' + = RB4
& RES
& RBEPGC
] RB7/PGD
&
1 I FORTC
|- RCOM1OS0OMICK]
Power-up 3 N mux/ : RC1T10SI/CCP2
Timer = . = RC2CCPY
Instruction | N Oscil Ia_lpr 3 = : 383‘25}"383%
Decode & [~—~ art-up Timer i
Caontrol = ALY N RC5/SD0
-:nR.\-er-[un g | & RCBTX/CK
- ese Rl = RCT/RX/DT
. | _Timing | Watchdog
b= Generafion [T Tirner W reg PORTD
O§C1.-'CLK Brown-out J - RODQ/PSPO
OSC2ICLKD Reset > R
In-Circuit M—1x] RO2PSP2
Debugger = RD3PSP3
Low-Voltage = QD%.-IPS Pf
Programming =] RD5/PSPS
= ROG/PSPE
4—[X] RO7/PSPT
PORTE
MCLR Voo, Vss -—-{X] REQ/RDIANS
— 4— RE1WRIANG
—=[>{] RE2/TSIANT
" kit AR Parallel
Timerd Timer1 Timer2 10-bit A/D Slave Port
1[1L 1L 1L 1L
il T 1 [T 1,
- - Violtage
Data EEPROM CeP12 Synchionous USART Comparator Reference
Device Program Flash Data Memory Data EEPROM
PIC16Fa74A 4K words 192 Bytes 128 Bytes
PICI1EFaTTA 8K words 368 Bytes 256 Bytes

Note 1: Higher order bits are from the Status register.

19

PIC16F874A/877A PINOUT DESCRIPTION

Pin Name PDIP | PLCC | TQFP | QFN | NO/P Buffer Description
Pin# | Pin# | Pin# | Pin# | Type Type
OSC1/CLKI 13 14 30 32 sTicMosi¥ | Oscillator crystal or external clock input.

0SsC1 Oscillator crystal input or external clock source
input. ST buffer when configured in RC mode;
otherwise CMOS.

CLKI External clock source input. Always associated
with pin function OSC1 (see OSC1/CLKI,
OSC2ICLKO pins).

OSC2/CLKO 14 15 31 33 — Oscillator crystal or clock output.

0SC2 o] Oscillator crystal output.

Connects to crystal or resonator in Crystal
Oscillator mode.

CLKO o] In RC mode, OSC2 pin outputs CLKO, which
has 1/4 the frequency of 05C1 and denotes the
instruction cycle rate.

MCLR/VPP 1 2 18 18 ST Master Clear {(input) or programming voltage (output).

MCLR | Master Clear (Reset) input. This pinis an active
low Reset to the device.

VPR P Programming voltage input.

PORTA is a bidirectional /0O port.

RAD/AND 2 3 19 19 TTL

RAD 1o Digital /0.

ANO | Analog input 0.
RAT/ANT 3 4 20 20 TTL

RA1 1o Digital /0.

AN1 | Analog input 1.
RA2IAN2NVReF-ICVREF| 4 5 21 21 TTL

RA2 1o Digital /0.

ANZ | Analog input 2.

VREF- | A/D reference voltage (Low) input.

CVREF o Comparator VREF output.

RA3FANI/NVREF+ 5 6 22 22 TTL

RA3 1o Digital /0.

AN3 | Analog input 3.

VREF+ | A/D reference voltage (High) input.

RA4/TOCKI/C10UT 6 7 23 23 ST

RA4 o Digital I/0 — Open-drain when configured as
output.

TOCKI | Timer(external clock input.

c1ouT o Comparater 1 output.

RAS/AN4/SS/IC20UT 7 g 24 24 TTL

RAB 1o Digital /0.

AN4 | Analog input 4.

S8 | SPI slave select input.

C20UT 0] Comparator 2 output.

Legend: |=input O = output IfO = inputfoutput P = power
— =MNotused TTL=TTL input ST = Schmitt Trigger input
Mote 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Senal Programming mode.
3 This buffer is a Schmitt Trigger input when cenfigured in RC Oscillator mode and a CMOS input otherwise.

20

PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Pin Name PDIP | PLCC | TQFP | QFN | WOIP Buffer Description
Pin# | Pin# | Pin# | Pin# | Type Type P
PORTE is a bidirectional /0 port. PORTE can be
software programmed for internal weak pull-up on all
inputs.
RBO/INT 33 36 8 9 TTLST
REBO o Digital IO,
INT | External interrupt.
RB1 34 37 9 10 [l{e] TTL Digital IO.
RB2 35 38 10 1 [l{e] TTL Digital I/O.
RB3/PGM 36 39 11 12 TTL
RB3 lfe] Digital I/O.
PGM | Low-voltage ICSP programming enable pin.
RB4 37 41 14 14 [l{e] TTL Digital I/O.
RB5 38 42 15 15 [I{e] TTL Digital IfO.
RBB/PGC 39 | 43 16 16 TTLST
RB6 [lfe] Digital IfO.
PGC | In-circuit debugger and ICSP programming clock.
RB7/PGD 40 | 44 17 17 TTLST
RBT o Digital IO.
PGD o In-circuit debugger and ICSP programming data.
Legend: | =input O = output 110 = input/output P = power
— =MNotused TTL=TTL input ST = Schmitt Trigger input

MNote 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Senal Programming mode.
3: This buffer is a Schmitt Trigger input when cenfigured in RC Oscillator mode and a CMOS input otherwise.

21

PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Pin Name PDIP | PLCC | TQFP | @FN | VOWP Buffer Descrintion
PinZ | Pin# | Ping | Ping | Type Type P
PORTC is a bidirectional VO port.
RCOMIOSOMICK 15 16 32 34 5T
RCO e Digital 110,
T1080 o] Timer1 cscillator cutout.
TACKI | Timer1 external clock input.
RCUTI0SICCR2 16 1a 33 35 5T
RCA1 e Digital 110,
T10S1 | Timer1 escillator input.
CcCcp2 e Capture2 input, Compare2 cutput, PWM2 cutput.
RC2/CCP1 17 19 36 36 5T
RC2 le Digital 1/0.
CCP1 e Capturet input, Comparei cutput, PWM1 cutput.
RCASCK/SCL 18 20 37 kN 5T
RC3 e Digital 1/0.
SCK e Synchronous serial clock inputioutout for SPI
made.
SCL e Synchronous serial clock inputioutout for 12C
mode.
RCAISDISDA 23 25 42 42 5T
RC4 le Digital /0.
sol | SPI data in.
SDA 0 12C dafa O
RCSISDO 24 26 43 43 5T
RCS e Digital 110,
sSoo o] SPI data out.
RCETAICK 25 27 44 44 5T
RCE C Digital 112,
TX o] USART asynehronous fransmit.
CK e USART1 synchronous clock.
RCTIRX/DT 26 29 1 1 5T
RCT e Digital 110,
Rx | USART asynchronous receive.
oT e USART synchronous data.
Legend I = input O = gutput IO = inputiocutput P = power

—=Motuged TTL=TTL input

ST = Schmitt Trigger input
This buffer iz & Schmitt Trigger input when configured as the external interrupt.

2: This buffer is & Schmitt Trigger input when used in Serial Programming mods.

3: This buffer is a Schmitt Trigger input when cenfigured in RC Oscillator mode and & CMOS input otherwise.

22

PIC16F8T4A/BTTA PINOUT DESCRIPTION (CONTINUED)

Pin Name POIP |PLCC | TQFP | @FN | LOWP Buffer Description
Pin# | Pin# | Pin& | Pin® | Type Type P
PORTD iz a bidirectional VO port or Parallel Slave
Pori when interfacing fo a microprocessor bus.
RDOPSPO 19 21 38 38 STATLE
RDO e Digital 1D,
FSPO e Farallel Slave Port data.
RO1/PSP1 20 22 39 a9 STTTLR
RD1 e Digital 110,
PSP1 e Parallel Slave Port data.
ROD2ZIPSP2 21 23 40 40 STTTLR
RODZ2 IO Digital 110.
PSP2 e Parallel Slave Port data.
ROAPSP3 22 24 41 41 STTTLE
RD3 IO Digital 110.
PSP3 e Parallel Slave Port data.
RO4/PSP4 7 30 2 2 STTTLE
RD4 e Digital 110,
PSR4 e Parallel Slave Port data.
RODS/PSPS 28 31 3 3 STATLE
RDS 1O Digital 110,
PSPS e Farallel Slave Port data.
ROE/IPSPE 26 32 4 4 STTLE
RDA e Digital 110,
PSPE e Parallel Slave Port data.
ROTIPSPT 30 33 5 5 STTTLR
RD7 e Digital 110,
PSPT e Parallel Slave Port data.
PORTE is a bidirectional 170 port.
RED/RDI&NS B g 25 25 STTLE
RED e Digital 1D,
RD I Read confrol for Parallel Slave Port.
ANI I Analog input 5.
RE1/WRJIANE 9 10 26 26 STTTLE
RE1 IO Digital 110.
WR I Write contral for Parallel Slave Port.
AMNEG | Analog input &.
REZTSIANT 10 11 27 27 STATLE
RE2 e Digital 110,
Cs5 | Chip select control for Parallel Slave Port.
ANT I Analog input 7.
Ves 12,31 (13,34 | 6,29 | 6 30, P — Ground reference for logic and 10 pins.
31
Voo 1,32 (12,35 7,286 | 7,8, P —_ Positive supply for logic and /0 pins.
28,29
NC —_ 1,17, | 12,13, 13 —_ —_ These pina are not internally connected. These ping
28,40 33,3 should ke left unconnected.
Legend: | =input O = output O = input/output P = power

—=Motuged TTL=TTLinput
MNote 4: This buffer iz a Schmitt Trigger input when configured as the external interrupt.

¥

ST = Schmitt Trigger input

This buffer is & Schmitt Trigger input when used in Serial Programming mode.

3 This buffer is a Schmift Trigger input when configured in RC Oscillator mode and a CMOS input othenwise.

23

7.2 Programming Software

As a result of our researches and discussions after considering various software
we decided on using MPLAB v6.42 as our IDE. As it is a comprehensive editor,
project manager and design desktop for application development of embedded
designs using

Microchip PICmicro microcontrollers. In addition, a few of the many MPLAB IDE

system features are presented to help finish applications quickly.
7.3 Intermediate Hardware

We are going to use custom parts separately purchased to use as noise filters
and voltage adjusters. Also we will need digital-to-analog converter and several
logic chips to format the output and a simple logic selection circuit to direct
dynamically selected outputs.

=everal Adjusted Inputs
o

ComFuture
By-pass —— Eluetooth
Capacitor ™ [Controller

il

The above circuit model illustrates the By-pass capacitor that we will use as a
primitive noise filter.

24

8. Proof of Concept

In order to prove that our general purpose bluetooth controller works
properly for typical industrial devices, we will implement a higher level library for
a specific device such as a remote controlled car, a robot or an air conditioner.
The client application will run on the device, receiving orders from the application
server and giving feedbacks to the server. By the use of this device, we will prove
that any device can be automated using our controller. Although the proof of
concept part is not a part of our project, we will make use of it in the presentation
of our product and provide the classes we added as a sample for the future
users.

For instance, in case of controlling a car, the car can travel in a room
without hitting the walls, directed by a computer and no human interaction
needed at all. Furthermore, various sensors can be placed on top of the car for a
wide variety of purposes, this way the car can be used for many different
purposes like spraying insecticides, other chemical pesticides that threatens
health.

It is also possible to use a robot which has already added sensors on it
and define some actions for it as a combination of a server and client

applications. This approach is also promising as a testing and evaluation tool.

25

9. Conclusion

We choosed our intended tools and built our guidelines in this report. We
made throughout research about our hardware and project requirements and

chose our hardware which was a great experience in our project.

This initial design report is prepared to establish a connection between our
design and implementation. The information given here such as diagrams and
other design products are produced in order to guide us through our way in the
implementation of our project. Despite being an initial design, this document is a
milestone that will
help us make our prototype and real design report. We believe that this report will

contribute to our project in a quite useful way.

10. References

(1) Dynamic Class Loading in java
http://www-h.eng.cam.ac.uk/help/tpl/languages/javal/javaplugins.html

(2) Dynamically Extend Java Applications

http://www.javaworld.com/javaworld/jw-08-2001/jw-0810-extend.html

(3) PIC16F877A PDIP modeled PIC documentation.

(4) MPLAB IDE documentation.

(5) Java OBEX API documentation.

26

