CoreAccess Detailed Design Report

TABLE OF CONTENTS
1. INTRODUCTIONottt ettt ettt et st be et sat et st e sse e beeneesbeensesane e 4
1.1. Purpose of ThisS DOCUMENLcc.eiiiiiiiiiiiieiieie ettt e 4
1.2, ProjeCt DESCIIPHION ...cuviiiiieiieeieeiee et eite ettt ettt et e s aeeteessaeeseessseessaeesseensaesnsaenssensnas 4
1.3, PrOJECt FEATUIESeeieieieetieie ettt ettt et sttt e et esateebeesnneenneens 4
1.4. GOAals aNd ODJECTIVES. ...ccuuiiiiiiiieiieeiieette et eete et et eeteeseteebeessaeeseessaeesseesssesnsaessseenseensnes 5
1.5. MOAUIES OF COTEACCESS ..cuvieniieniieiieeiie ettt ee ettt ettt ettt e st e et e st e e bt e sateebeesneeeneans 5
1.6. Process MOAELooiiiiiiiiiiiieee ettt st 6
1.7. Hardware and Software ReqUIr€ments...........ccoeevuerienieriiiniinieeienieneeeese e 6
1.7.1 Hardware ReqUITEIMENTScc.eevuiieiieiiieeiieiie et eiee et eieeere et e sveeseeseaeesreeesseenseeenneas 6
1.7.2 Software REqUITEMENTSc.coouiiiiriiniiiiirieieetese ettt 6
2. DESIGN CONSTRAINTS ...ttt ettt ettt st e sttt e it e sbeentesneesaeenseas 7
2.1, TimME CONSIAINESeetieeiiieiieetieite et ee sttt et e et e iteebeesteeebeesseeebeesabeenseesnseenseesnseeseenneas 7
2.2. Hardware CONSIIAINTScoueeteruieriieieeiiesieeteeite st ettt et et e st ete st e saeesseeneeseeenbesaeesseenneas 7
2.3, SOFtWATE CONSITAINESeetiiiiiieiieiiieetie ettt ettt ettt st e et e s b e et e st e ebeesnbeebeesnbeenseesnnas 7
2.4. Performance CONSLIAINEScc.eeruirieriieieeierieeieeie sttt ettt et seee bt enbeeaeesaeensesaeens 7
3. MODELLING ...ttt ettt ettt ste st esse et e sseeseensesseenseensesseenseensesnsenseensenns 8
3.1, Data MO ...ttt ettt ettt 8
3.1.1. Entity - Relationship Diagram.............cccceiiiieiiiiiiiiiiieiee e 8
3.1.2. Description 0f ER Tablescccuieiiiiiiieiiiiiecieeiieeit et 10
3.2, Functional MOdelcoouiiiiiiiieiee ettt e 13
3.2.1. Data FIOW DIQ@Iamccccvieiiiiiiiiiiieiieeieecte ettt sve e ssveessaesaseeneesenas 13
3.2 1. 1. DFD LVl 0.ttt e e 13
3.2.1.2. DFD LEVEL 1ot st e 14
3.2.1.3. DFD LeVel 2 (1.0) cuieiieieeieieee ettt ettt 15
3.2.1.4. DFD LeVel 2 (2.0) cueeiieeiieieieee ettt 16
3.2.1.5. DFD LeVEl 2 (3.0) uoiieeiieeiie ettt ettt e e e e e 17
3.2.1.6. DFD LeVel 2 (4.0) oottt 18
32.1.7. DFD LeVEL 2 (5.0) ceeieeiiiieiie ettt e e 18
3.2.1.8. DFD LeVel 2 (6.0) c..eoiuiiiiiieieeeee ettt 19
3.2.1.9. DFD LeVel 2 (7.0) cueeiieieeieieee ettt nes 20
3.2.2. Data DIiCtIONATIESccueeteeiieriieiieiieettete et eite sttt ettt ettt et enteesteseeenbeeneesneenees 21
4. OVERALL ARCHITECTUREc.eoiiiiitieieeectee ettt 34
4.1, List Of MOAUIESccueeiiiiieieee ettt 34
4.2, Architecture DIa@ramccccoviiiiiiiiiiieiie ettt ettt ettt e et e e 35
4.3. Details Of MOAUIEScc.eeiiiiiiiiieieeeee ettt 36
5. COREACCESS USER INTERFACEoooiiieiiieeeeeeete ettt 39
5.1, USer FUNCHONALIEY ..eueviieiiieeiie ettt et eeenaeesaaeeenneeens 39
5.2. Content Manager FUNCtionality...........coceevueriiiniinieniinicieeicnecieeeeee e 48
5.3. System Administrator FUnCtionalitycccceeeeerieeiiiiiiieiienie et 50
6. UML DIAGRADMS ...ttt ettt sttt e st e st e e stesse e s e essesseensesasesseensesnaensens 55
6.1. USE CasSe DIAZIAIMSvveeieiieiiiieeiiie et eieeeee et te et e et e e et e e seaeesaaeesssaeessseeessseesnssees 55
6.1.1. Use Case Diagrams of the USeT.........cccueriiiiiiiinieiiiiinicieetceeeeeeseeeeee e 55
6.1.1.1. POSItIONING USE CASE....ceerurieiiiieiiiieeiiiieeiiieeeiieeeieeesieeesteeesseeensseeennseeennseeennes 55
6.1.1.2. Search by Attributes Use Casecccueveruiriiriiiienienieeieeiese et 55
6.1.1.3. Search by Category USE CaSeccceeriieriieriieiieeieeiieeeeeieeeveereeseaeesaeeseveenes 56
6.1.1.4. Search on Map Use Case........cccuerieriiriinienieeienieeieeesieee ettt 57
6.1.1.5. Display Results Use Case.........cccueeruieriieiiieiiieiieeieesieeeee et eveeveesneesaeesnveenes 58
6.1.2. Use Case Diagrams of the Administrator............ccceeveevieiiiniinienenieneeneeeeeeeeenee 59

CoreTech -1-

CoreAccess Detailed Design Report

6.1.2.1. LOZIN USE CASC ...uvieuvieiiieiieeiiieieeeieeieeeiteeteesiteeseeseveetaessseesseessseensaesssesnseessnas 59
6.1.2.2. Manage Map USe CaSE.......ccocuirieiriieiiiniiiieenieeeesee ettt 59
6.1.2.3. Manage Activity Place Use Caseccceevueerrieeiierieeiiecieeieeeve e 60
6.1.2.4. Manage Vehicle Use Case.......cceeuiriiriiriinienieeienieenieeeeeieesie et 61
6.1.2.5. Manage Ontology Use Case........ccueeeruiieriiieeiiieeriieerieeereeeeeesaeeesveeeeveesneneas 61
6.1.2.6. Manage Content Managers UsSe Case........ccceeruienieriieiniieiieneeiieenieeeeeeeenee 62
6.1.2.7. LOZ USE CASE ...veeeuvrieeiiiieeiieeeiee ettt esiee et e eiteestteesaaeesnsaeessseeensseeensseeesseesnnnes 62
6.1.3. Use Case Diagrams of the Content Managercccoceeveevireeneniieneeneenieseenneenne 63
6.1.3.1. LOZIN USE CASC ...eeeeieeeiieiieeiiieieeeieeieeeite et eseveebeeseaeeteessaeesseessneensaessseenseensnas 63
6.1.3.2. Manage ACtiVILY USE CaSE.....ccceriiruiriiriiiieieniieieniteste ettt 64
6.1.3.3. Manage Activity Place Use Caseccceevveeriieeiienieeieenee et 64

6.2. Class DIAZIAMS.couiriiriiiiinieriteteet ettt ettt sttt et sttt et e te e as 66
6.2.1. PDA Class DIagramccccuiiiiiiiiiiiieeiiie ettt eiteeeite e st s e steeesiveeeeseeenseeenes 66
6.2.2. Request Handler Class DIagramcoccoceriirienieniinienenicneeieeeeseeeeee e 68
6.2.3. Activity Search Class DIagramc.cccceevvieiiieniieiiienieeiee e eiee e eee e ereeseve e 70
6.2.4. Transportation Class DIagram..........ccoceeverviiriinieneniinieeeeeseeeee e 71
6.2.5. Web Service Class DIagram..........ccccuieriieiierieiiienieeieesiee et 72
6.2.6. Database Class DIagram.........ccccecueeiiriereriinieieeieee ettt 72
6.3. SEQUENCE DIAGTAMSeeiuiiiiiieiiieiie ettt ettt ettt et e ebe e ateesbeessaeenseenseesnseenens 73
6.3.1. Search by AttrIDULESveeiiiieeiie e e e e e e e e e 73
6.3.2. Search DY Cat@@OTY ...ccueeeiieiieeiieiiie ettt sttt e st snte e b e enseenes 75
6.3.3. S€ArCh ON IMAD.....ciiiiiieiie ettt et et e e nba e e naee e 76
6.3.4. RetrieVe POSTHIONoouiiiiiiiriieiceiectestt ettt st s 77
6.3.4.1. Via GPS RECEIVET......eiiuiiiiiiiiieiie ettt e 77
6.3.4.2. Via Manually Entering..........cceccuieiiiiniiiiieiieeiieeie ettt 78
6.3.4.3. Via BrOWSING MAD ..ccvviiiiiieeiiieciieeciie ettt ettt aee s e e eavee e nneeeneees 78
6.3.5. See Detailed INfOrmMationcoceiieriiriiniinieiceee e 79
6.3.6. See Transportation ON IMAPcc.eeeruiieeiiieeiiieeeieeeeiee e ere e eee e s e e sreeeeeaee e 80
6.3.7. Web Service COmMMUNICATION.c.eerterieriiertieienitente ettt eiee et e et eee s enreeaee 81
6.3.7.1. PDA WED SEIVICEeeiuiiiiiiiiiiiieeie ettt e 81
6.3.7.2. AdMInistrator Web SEeTVICEcccueriiriiriiniiiiiierieeieceeete e 81
6.3.7.3. Content Manager Web SEIVICEccocvvieeiiiieiiieeiieeie et 82
6.3.8. Handle XIMLc..ooiiiiiiiiieiieieee ettt ettt st e 82
6.3.9. FINA VENICIES......eiiiiiiiiiiee et 83
6.3.10. FINA RESUILS....cuviiiiiiiiiiiiieieeeeeee et 84
6.3.11. Content Manager Databasecccceeevieeiiiieiiiieriie e 85
6.3.12. AdminiStrator Database...........cceueerierieniiiiieienieieet ettt e 85
6.4, ACLIVILY DIAGIAMS ..eeeivieiieiiiiiiieeeiee et ettt e et e e st e st e e s aeeestaeessaeessaeesssaeessseeessseeensseenns 87
6.4.1. User ACtiVIty DIQ@Iamccecviiriiiiiieiiieeiieiee ettt ettt ettt et e b e e 87
6.4.2. Web Service Activity DIagramccccveeeiiieiiiieeiiie et eree e sree e 88
6.4.3. Administrator and Content Manager Activity Diagram............cccoecveevierieenieennnnnne. 89
6.5. Collaboration DIAGIAMSccceeeiiuiiiiiieeiieeecieeeeteeerteeeeteeetaeesteeesaeeessseeessseeensseeesaeens 90
6.5.1. Search by AHITDULESoccuiiiiieiiecie ettt 91
6.5.2. SEATCh DY CatC@OTY ...eeiiiiieiiieeciie ettt et e et e st e e s tae e s te e e e beeessseeessseeesaeeenns 92
6.5.3. SArCh ON MAPiiiiiiiieiieciee ettt ettt et eneas 93
6.5.4. Transportation Manipulation on Server Part............cccocovveviiiiniiienieeie e 94
6.5.5. Activity and Place on Server Partcccoociieiiiiiiieiieiiieee e 95
6.5.6. Administrator and Content Manager Interface Communication...............ccceeeeuneennne 96

7. SYNTAX DEFINITION ..ottt sttt sttt s nae e 96
7.1. XML File RePreSentation..........ccccuieeiiieeiiieeeiieesiieesieeesieeeiveessseeesseeesseeessseeessneesnnseeens 96

CoreTech 2.

Detailed Design Report

CoreAccess
7.2. XSD Of the SYSTEIM ..cecuuiiiiiiieiiie ettt e e et e e et estae e s e e snteeesnsaeenanes 101
8. CONCLUSION ...ttt ettt ettt et e st e bt e st e e bt e sabe e bt e snbeenbeesnseenbeasnseeseans 111
0. APPENDIX ...ttt ettt st a e et h et ettt et a et et 111
9.1. Updated Gantt Chart..........coc.oveeiieiiniiertenteeetese ettt 111
-3-

CoreTech

CoreAccess Detailed Design Report

1. INTRODUCTION

1.1. Purpose of This Document

After releasing the initial report for the product CoreAccess, CoreTech has spent no
time to form a complete and detailed design report. By gaining adequate experience and
gathering relevant feedback from our previous requirement analysis report and initial design
report, we were ready for detailed design report. The main purpose of the detailed design report
was to show all the design processes about the project before the implementation for the project
to be efficient and stable. Like initial design, we included several diagrams to make the project
clear and easy to understand.

CoreTech is aware that a successful project can only survive if it has a proper design.
Keeping this principle in mind, we did hard work to make every point clear. By forming a high
quality design report, we think we will not encounter any difficulties at the implementation
phase at second semester.

1.2. Project Description

CoreAccess is a Mobile GIS (Geographic Information System) Application, mainly dealing
with social activities. These social activity places include cinema, concert hall, theatre, sport
centers and the transportation opportunities among these activities. After learning the position
of the user (via GPS (Global Positioning System) receiver, via marking on map or just entering
his / her position manually) and the position of the cultural activity he/she chose by using PDA,
this information is collected and processed. Finally, the result is shown to the user visually with
transportation alternatives.

1.3. Project Features

Our product CoreAccess will mainly provide the followings:

e Search Activity or Place: The user can search any specific category (cinema, theatre,
concert hall, sport centers), any specific activity attribute (name, place, date, etc.) or just
browse the map for any activity or place. In addition to these search facilities, user can
make search by entering an address keyword for an address search.

e Ontology Help: One useful property which CoreAccess serves is the ontology. By the
help of ontology, user will be offered some alternative activities, if he/she does an
unsuccessful search. Surely a user, who faces with a set of alternatives related to his/her
search item, will be happier than a user who just sees a message like “The item you
searched is not found!!!”

e Visual Result: When a user does any search using CoreAccess, he/she will be faced
with a visual result. User will be able to show his/her search items on the map, with a
shortest path drown. Certainly, some useful operations such as rotating, scaling,
zooming in/out, scrolling the map will be provided.

e Transportation: The results will come with several transportation alternatives.
Between two points one vehicle is not the only solution. Combination of vehicles for
the specific distance is also supplied. User will be given a list of transportation

CoreTech -4 -

CoreAccess Detailed Design Report

combination alternatives. According to the selection of the user, details of the vehicles
and their paths will be shown. Moreover, CoreAccess will make estimations about the
time and cost among these alternatives. Without a doubt, this is a very advantageous

property.

e Al/Algorithms: In transportation functionality, there will be severe use of shortest path
and graph algorithms. A map consists of thousands of nodes or sometimes more, so our
algorithms have to be efficient.

e Web Services: Platform independency of CoreAccess lies on Web Services mostly.
Once we are successful in implementing our project with Web Services, our main
application can be called from anywhere.

e Multilingual Support: CoreAccess will come with 5 languages, namely Turkish,
English, German, French, and Spanish.

1.4. Goals and Objectives

While we are designing our project, these main goals and objectives are considered:

e Organizing a complete project with every aspects,

e Programming PDA effectively and user friendly,

e Making the PDA — Server connection via Web — Service,

e Implementing ontology for cinema and transportation,

e Generating and implementing effective shortest path algorithms,

e Manipulating map data in GIS part.

1.5. Modules of CoreAccess

We have decomposed CoreAccess into modules. These are:

e Web Service Module
e GUI Module
e Administrator Module

e Content Manager Module

We have constructed our UML diagrams around the concept of these modules. While
expanding our design, data flow diagrams, use case diagrams and state transition diagrams of
our analysis report helped us a lot. Written details of these modules will be given in detailed
design report.

CoreTech -5-

CoreAccess Detailed Design Report

1.6. Process Model

We have chosen Iterative Model for CoreAccess as we mentioned at our analysis report. We
thought we can release some prototypes at implementation stage and according to success of
these prototypes we can return back to the design. Actually, we realized we have made the right
decision to have chosen this model. We tried to do our design considering these matters.

1.7. Hardware and Software Requirements

1.7.1 Hardware Requirements

There is no change in our hardware requirements when compared with our analysis report. In
this design phase, we have discovered the importance of amount RAM in our server machine
because we will store the vector map in RAM for fast processing. We have proposed 1 GB
DDRAM in the analysis report and this amount will be sufficient.

1.7.2 Software Requirements

In the initial design report, we have talked about an external product, namely GeoMedia. At
that time, there were license problems but now we have the product. We have spent some days
for discovering it. InterGraph employees had told us that API comes with Geomedia, however,
the other MOBGIS groups and we have seen that GeoMedia is only a desktop application for
drawing and managing vector maps. GeoMedia does not supply an API for usage. It stores
maps in MS Access tables in a closed format. We will find out the structure of these tables and
write our own map editor.

For the server side development, we are using .Net 2005, and our development language is C#.
Development on the PDA side has no choice other than .Net for compatibility with Windows
CE. We have developed a prototype of the prototype for our TA Oral Dalay on 5.1.2006. We
have successfully developed a PDA application which uses the TerraServer (http://terraserver-
usa.com) open web services which is a service of MSN. .Net Smart Device application meets
our necessities very well. Our premature application can search a place and display the result in
24 different zoom levels for 4 different map types.

CoreTech -6-

CoreAccess Detailed Design Report

2. DESIGN CONSTRAINTS

2.1. Time Constraints

CoreAccess project has to be finished at the end of May 2006. Moreover, we have to release a
prototype at the end of this semester. As long as, the group members follow the schedule, the
project could be completed successfully.

2.2. Hardware Constraints

In our department, there are only 4 PDA’s for testing our application. However, we will use
emulator for PDA programming part. It does not affect our implementation very much.
Moreover, we have some concerns about the GPS data. Since we do not have a GPS device, we
have to simulate some sort of GPS data for determining the position of the user. On the other
hand, interpreting the GPS strings is a very trivial job. After the comments made about analysis
report by the instructors, we have prepared a detailed GPS Research Report which can be
accessed via our web page.

2.3. Software Constraints

We are planning to use GeoMedia which is developed by InterGraph Company. We had a
meeting in which the product and its libraries for GIS data manipulation were introduced. At
last, we have taken the license of GeoMedia. However, it does not have an api for PDA side.
Therefore we are going to write the map manipulation functions and application for PDA user.
If we could not find an appropriate vector map, we will design a map in GeoMedia by
ourselves.

2.4. Performance Constraints

Performance constraints have two aspects, first the PDA side, second the server side. It is clear
that PDA has limited capabilities. Because of this reason, we don’t let PDA do complex and
tiring calculations, it only takes user requests and displays the responses to those requests. For
the visual capabilities, since vector maps are light visual objects, we don’t expect any
problems. On the server side, there will be complex calculations and lots of database
interactions. Especially while finding transportation alternatives and shortest paths, there may
be cases such that every node of a city has to be traversed. Due to this obstacle, when our
server application is first initialized, city map will be loaded to RAM and never get out until
map data is changed (behaves just like RAM DISK systems). By this way, disk access will be
eliminated, which is the main source of slow calculations.

CoreTech -7-

CoreAccess Detailed Design Report

3. MODELLING
3.1. Data Model

3.1.1. Entity - Relationship Diagram

Staff

ISA

Administrator Content
Manager
@> Modifies 2 ks
A i Activity
Activity Places
has_> Logs <;;I 3 in
Tvpe Map

Vehicle Tvpe

Belongs_to

Connected
to

Vehicle passes Node

CoreTech -8-

CoreAccess Detailed Design Report

2P =
BmEEC

Activity

@ categor}:

Staff

Registered
Day

password

L Borders Up X Borders Up Y
Activity Places ———__

- G
Borders Down X @

(2>
~ Node ’“‘Hﬂ; User
&

Vehicle —
Vehicle Type

Global Position

Connected To

=]

CoreTech -9-

CoreAccess

Detailed Design Report

3.1.2. Description of ER Tables

Staff

Attribute Data Type | Description

S ID (key) Integer Uniquely defines the staff

Name String The name of the staff

Login Name String The name for login process

Password String The password for entering the system

Company String The company of the staff if he/she is a
content manager

Salary String Salary of the staff

Registered Day Date The date of the register of the staff

Activity

Attribute Data Type | Description

A 1D (key) Integer Uniquely defines the activity

Name String The name of the activity

Place String The place of the activity

Date Date The date of the activity

Category String The category of the activity (cinema, sports)

Time Time The time of the activity

Activity Places

Attribute Data Type | Description

AP 1D (key) Integer Uniquely defines the activity place

Name String The name of the activity place

Address String The address of the activity place

Phone String The phone of the activity place

Latitude Double The latitude of the activity place

Longitude Double The longitude of the activity place

Type

Attribute Data Type | Description

T ID (key) Integer Uniquely defines the type

Name String The name of the activity type

Map

Attribute Data Type | Description

M ID (key) Integer Uniquely defines the map

Borders Up X Double The up — x point of the border

Borders Up Y Double The up —y point of the border

Borders Down X Double The down — x point of the border

Borders Down Y Double The down — x point of the border

File Path String The path information on the map

CoreTech

-10 -

CoreAccess Detailed Design Report

Node

Attribute Data Type | Description

N ID (key) Integer Uniquely defines the node

Latitude Double The latitude of the node

Longitude Double The longitude of the node

Type Double The type of the node

User

Attribute Data Type | Description

U ID (key) Integer Uniquely defines the user

IP String The ip of the user

Global Position String The package containing latitude and
longitude of the user

Vehicle

Attribute Data Type | Description

V ID (key) Integer Uniquely defines the vehicle

Path String The path which the vehicle follows

Cost Double The cost of the vehicle

Time Time The time spent for the travel

Vehicle type

Attribute Data Type | Description

VT 1D (key) Integer Uniquely defines the vehicle type

Type Name String The name of the vehicle type

Cost_Multiplier Double The value showing the cost for a vehicle in
a unit distance

Time Divider Double The value showing the time for a vehicle in
a unit distance

Logs

Attribute Data Type | Description

L ID (key) Integer Uniquely defines the logs

Date Date The date of the log

Modifies

Attribute Data Type | Description

S ID (key) Integer References : Staff

A ID(key) Integer References : Activity

Modifies 2

Attribute Data Type | Description

S 1D (key) Integer References : Staff

A ID(key) Integer References : Activity

CoreTech

-11 -

CoreAccess Detailed Design Report
Works In

Attribute Data Type | Description

S 1D (key) Integer References : Staff

AP ID(key) Integer References : Activity Places
On

Attribute Data Type | Description

A ID (key) Integer References : Activity

AP ID(key) Integer References : Activity Places
Has Type

Attribute Data Type | Description

A 1D (key) Integer References : Activity

T ID(key) Integer References : Type
Searches

Attribute Data Type | Description

U ID (key) Integer References : User

A ID(key) Integer References : Activity

L ID(key) Integer References : Logs

Occurs _In

Attribute Data Type | Description

AP ID (key) Integer References : Activity Places
M ID(key) Integer References : Map

Occurs In 2

Attribute Data Type | Description

N _ID (key) Integer References : Node

M ID(key) Integer References : Map
Connected To

Attribute Data Type | Description

N1 _ID (key) Integer References : Node

N2 ID(key) Integer References : Node
Distance Double The distance between nodes
Passes

Attribute Data Type | Description

V ID (key) Integer References : Vehicle

N ID(key) Integer References : Node

CoreTech

-12 -

CoreAccess Detailed Design Report
Belongs To

Attribute Data Type | Description

V 1D (key) Integer References : Vehicle

VT ID(key) Integer References : Vehicle Type

3.2. Functional Model

3.2.1. Data Flow Diagram

3.2.1.1. DFD Level 0

LEVEL 0 DIAGRAM

USER

Result Map ——————m

COREACCESS 0.0

¥
]

ADMINISTRATOR CONTENT MANAGER
A A
STAFF DATABASE
L &= o = 2
E % 3 =L g = 53 =
s 2 g L3=- 82F E3 £ o g
SIS £z 3 Ny T 3
o0 2 g0 oS = _E T
B < 55
E Z
Z .
.
"
W Ty
GPS Data

User Request

A
Y
GPS DATA
E 1 ERE P
z = g = =]
z H L o> 5
= = = Z o
& < = 5 &
= & o = T =
T F 52
Y ¥
DATABASE

CoreTech

-13 -

CoreAccess Detailed Design Report

3.2.1.2. DFD Level 1

LEVEL 1 DIAGRAM

ADMINISTRATOR CONTENT MANAGER USER

STAFT DATABASE

Result Map ——m

b
]
=
=
7]

o

Process
Results

|NEE UIEo [
istrative
F
LD S TR0 e
T
-

Activity Process

L name Passwd

1\| 4«
=
£ ES USER
(Response g £5 INTERFACE
E 22 X
UserName 3 - g

Password

Display
Horeen

BT Sl

CM Information

PROCESS Display Slcre-sn CM | _
Result List (XML)

23 &
STAFF . 2%
Initial Staff Query (XML 8=
v S
Initial Staff Query o3 GPS
[~ S DATA
) ——

Final Staff Query Result

p

(XML HANDLE
XML
Final Staff Query Resul 4.0 Ggfjita]]&
Result Li

potemdieypy

Map Date——

stafl
Query Result

PROCESS
USER

Node List

Staff Query

MANIPULATE
GIS DATA
3.0

{Iser Query Result

|] s (Juery

Map Query
Result

o010y iy

DATABASE

CoreTech -14 -

CoreAccess

Detailed Design Report

3.2.1.3. DFD Level 2 (1.0)

LEVEL 2 DIAGRAM (1.0 - ADMIN INTERFACE)

UserName

_Logn User ID/ Password

Passwd

Response———

Login Info .
0.
v
GENERATE Login Status——3
__Administrative, ADMIN —Display Screen o
Commands INFORMATION Admimstrative
113 Commands
Results
-Admin Infermation—————————"3=
CoreTech -15-

CoreAccess

Detailed Design Report

3.2.1.4. DFD Level 2 (2.0)

LEVEL 2 DTAGRANM (2.0 - USER INTERFACE)

equest Info

GPS Data

Lser Request M

INSERT GPS
MANUALLY
22

(XML)

Result List

Select Resul

GPE Data &

Queries | { XML

[nfowith Activity

FORM XML
QUERY
2.4

DISPLAY
SELECTED
WITH
DETAILS
2.6

Y

CoreTech

- 16 -

CoreAccess Detailed Design Report

3.2.1.5. DFD Level 2 (3.0)

LEVEL 2 DIAGRAM (3.0 - PROCESS STAFF QUERY)

Admin
Information SEND
ML B
HANDLER Initial Sf'ijf]i Query
M (DECOMPOSE) (XML) —>
Information 11
RETRIEVE
—— Init . FROM St aff Query ————————
Initial Staff Query DATABASE
32
SEND
ML
—Staff Query HANDLER . .
Result (COMPOSE) Final Staff Query Result ——3»

33

Display Soeen—3n

SEND TO

INTERFACES
__ Final Staff Query Result FOR
(XML) DISPLAY

34
Diplay Soem (W

CoreTech -17-

CoreAccess

Detailed Design Report

3.2.1.6. DFD Level 2 (4.0)

LEVEL 2 DIAGRAM (4.0 - HANDLE XML)

—— Tnitial Staff Query (ML) Tnitial Staff Query ——3»

GPS Data & Queries I
(XML)

GPS Data & Queries IT—»

Final Staff Query Result 3
(XML)

__ Manipulated
Map Data

COMPOSE
QUERY
42

Result List
(XML) >

— Final Staff Query Result

—Rezult Lis

3.2.1.7. DFD Level 2 (5.0)

LEVEL 2 DIAGRAM (5.0 - MANIPULATE GIS DATA)

DOUBLE
MAP DATA
5.1

SHORTEST
PATH

5.2

SARLIPI00)

CoreTech

- 18 -

CoreAccess

Detailed Design Report
3.2.1.8. DFD Level 2 (6.0)

LEVEL 2 DIAGRAM (6.0 -PROCESS USER QUERY)

User Query—»
GPS Data & MANAGE | Manipulated
—GPSD ONTOLOGY :
Queries 1T 6.1 Queries
Log Query—2»
GENERATE Node List >
Ny ._ NODE & . DOUBLE
—Usgr Query RESULT foital Node, NODE
= LIST 18 LIST
6.3

6.4

Result List ———2m

BUILD
—Map Query, MAP
Result) 6.6

Map Data

L 4

CoreTech

-19 -

CoreAccess

Detailed Design Report

3.2.1.9. DFD Level 2 (7.0)

LEVEL 2 DIAGRAM (7.0 - CM INTERFACE)

UserName
Password CM
—Uname/Passwim

Response Ch——

GENERATE

LOGIN

STATUS CM

12

Uy
e

2%
0=
g:
2

GENERATE i olav S FINAL Login Status CM——=
Activity M — Dy ﬂg_Mmm DISPLAY CM
Process INFORMATION 74 Process -
13 Results -~
M Information > o
CoreTech 220 -

CoreAccess

Detailed Design Report

3.2.2. Data Dictionaries

Name: Login UserID/Passwd

Alias: Admin Username — Password

Where & How ADMINISTRATOR output

itis used: CHECK LOGIN (1.1) input

Description: “ sends administrator’s username and password for checking”
Name: UserName Password

Alias: Admin Username- Password

Where & How CHECK LOGIN (1.1) output

itis used:

Description: “ checks username and password of the admin from staff database”
Name: Response

Alias: Check Result

Where & How CHECK LOGIN (1.1) input

itis used:

Description: “ sends the info about the username password match from database
Name: Login Info

Alias: Login Info After Check

Where & How GENERATE LOGIN STATUS(1.2) input

itis used: CHECK LOGIN (1.1) output

Description: “forms the login information after login check”
CoreTech -21 -

CoreAccess

Detailed Design Report

Name: Administrative commands

Alias: System commands

Where & How ADMINISTRATOR output

itis used: GENERATE ADMIN INFORMATION(1.3) input

Description: “written commands to interface by administrator”

Name: Login Status Display

Alias: -

Where & How GENERATE LOGIN STATUS(1.2) output

itis used: FINAL DISPLAY (1.4) input

Description: “ sends the final login info for display”

Name: Login Status

Alias: User check

Where & How ADMINISTRATOR input

itis used: FINAL DISPLAY (1.4) output

Description: “information about validity of the user ”

Name: Administrative Commands Results

Alias: System Returned Result

Where & How ADMINISTRATOR input

itis used: FINAL DISPLAY (1.4) output

Description: “returned information to the administrator whether the changes are done
or not ”

CoreTech -22-

CoreAccess

Detailed Design Report

Name: Admin Information

Alias: System Data

Where & How SEND XML HANDLER (DECOMPOSE) (3.1) input

itis used: GENERATE ADMIN INFORMATION(1.3) output

Description: “gathered information from user interface which is written to the Browser
by system user”

Name: Display Screen

Alias: Visible result

Where & How SEND TO INTERFACES FOR DISPLAY (3.4) output

itis used: FINAL DISPLAY (1.4) input

Description: “generated result screen to the administrator”

Name: Result List(XML)

Alias: Result screen

Where & How COMPOSE QUERY (4.2) output

itis used: LIST THE RESULTS (2.5)input

Description: “ generated result screen to the user about his/her query ”

Name: GPS Data & Queries [(XML)

Alias: Written data

Where & How DECOMPOSE QUERY (4.1) input

itis used: FORM XML QUERY (2.4) output

Description: “Gathered info from user interface”

CoreTech -23-

CoreAccess

Detailed Design Report

Name: Request Info

Alias: Info for User

Where & How USER output

itis used GET GPS DATA (2.1) input

Description: “sends user request for any activity”
Name: User Request

Alias: GPS Data Request

Where & How GET GPS DATA (2.1) output

itis used:

Description: “sends GPS data request to GPS receiver”
Name: GPS Data

Alias: GPS Data Response

Where & How GET GPS DATA (2.1) input

itis used:

Description: “sends GPS data from GPS receiver”
Name: User Request M

Alias: GPS Data Request Manually

Where & How GET GPS DATA (2.1) output

itis used: INSERT GPS MANUALLY (2.2) input
Description: “sends GPS data request for manual insertion”
CoreTech -24 -

CoreAccess Detailed Design Report
Name: GPS Data M

Alias: GPS Data Response Manually

Where & How GET GPS DATA (2.1) input

itis used: INSERT GPS MANUALLY (2.2) output
Description: “sends GPS data from manual insertion”

Name: Info with GPS

Alias: Data with GPS

Where & How GET GPS DATA (2.1) output

itis used: SEARCH ACTIVITY (2.3) input

Description: “sends info for other processes with GPS Data ”
Name: Info with Activity

Alias: Data with Activity

Where & How SEARCH ACTIVITY (2.3) output

itis used: FORM XML QUERY (2.4) input

Description: “sends activity info for other processes”

Name: Select Result

Alias: Select Item from Result List

Where & How LIST THE RESULTS (2.5) output

itis used: DISPLAY SELECTED WITH DETAILS (2.6) input
Description: “selects item from result list for further details
CoreTech -25-

CoreAccess

Detailed Design Report

Name: Result Map

Alias: Final Map Data

Where & How USER input

itis used: DISPLAY SELECTED WITH DETAILS (2.6) output
Description: “shows the final map to user”

Name: CM Information

Alias: Content Manager Data

Where & How GENERATE CM INFORMATION (7.3) output

itis used: SEND XML HANDLER (DECOMPOSE) (3.1) input
Description: “gathered content manager info”

Name: Initial Staff Query (XML)

Alias: XML Query for Decomposition

Where & How SEND XML HANDLER (DECOMPOSE) (3.1) output
itis used: DECOMPOSE QUERY (4.1) input

Description: “sends staff query in XML format for decomposition”
Name: Initial Staff Query

Alias: Query Response after Decomposition

Where & How DECOMPOSE QUERY (4.1) output

itis used: RETRIEVE FROM DATABASE (3.2) input
Description: “receives staff query after decomposition”

CoreTech -26-

CoreAccess

Detailed Design Report

Name: Staff Query

Alias: -

Where & How RETRIEVE FROM DATABASE (3.2) output

itis used:

Description: “sends staff query to database”

Name: Staff Query Result

Alias: Staff Query from Database

Where & How SEND XML HANDLER (COMPOSE) (3.3) input
itis used:

Description: “receives staff query results from database”

Name: Final Staff Query Result

Alias: Query for XML Composition

Where & How SEND XML HANDLER (COMPOSE) (3.3) output
itis used: COMPOSE QUERY (4.2) input

Description: “sends final staff query for XML composition”
Name: Final Staff Query Result (XML)

Alias: Query Response after Composition

Where & How COMPOSE QUERY (4.2) output

itis used: SEND TO INTERFACES FOR DISPLAY (3.4) input
Description: “receives final staff query after decomposition”
CoreTech -27-

CoreAccess

Detailed Design Report

Name: Display Screen CM

Alias: Visible result for CM

Where & How SEND TO INTERFACES FOR DISPLAY (3.4) output
itis used: FINAL DISPLAY CM (7.4) input

Description: “generated result screen to the content manager”
Name: GPS Data & Queries 11

Alias: Query Info after Decomposition

Where & How DECOMPOSE QUERY (4.1) output

itis used: MANAGE ONTOLOGY (6.1) input

Description: “sends the user query for further process”

Name: Manipulated Map Data

Alias: Processed Map Data

Where & How DRAW PATH (5.3) output

itis used: COMPOSE QUERY (4.2) input

Description: “sends the manipulated map data for XML composition and display”
Name: Result List

Alias: Result List before XML Composition

Where & How GENERATE NODE & RESULT LIST (6.3) output
itis used: COMPOSE QUERY (4.2) input

Description: “sends the result list for XML composition”

CoreTech -28-

CoreAccess

Detailed Design Report

Name: Node List

Alias: Nodes for Map

Where & How DOUBLE NODE LIST (6.4) output

itis used: FIND SHORTEST PATH (5.2) input
Description: “sends node information for map manipulation”
Name: Map Data

Alias: Extracted Map

Where & How BUILD MAP (6.6) output

itis used: DOUBLE MAP DATA (5.1) input
Description: “sends the received map data from database”
Name: Map Data I

Alias: -

Where & How DOUBLE MAP DATA (5.1) output

itis used: FIND SHORTEST PATH (5.2) input
Description: “sends a copy of map data for finding shortest path”
Name: Map Data II

Alias: -

Where & How DOUBLE MAP DATA (5.1) output

itis used: DRAW PATH (5.3) input

Description: “sends a copy of map data for drawing path”
CoreTech -29-

CoreAccess

Detailed Design Report

Name: Path Coordinates

Alias: Positions of Path

Where & How FIND SHORTEST PATH (5.2) output
itis used: DRAW PATH (5.3) input

Description: “sends path coordinates for drawing path”
Name: Manipulated Queries

Alias: Processed Queries

Where & How MANAGE ONTOLOGY (6.1) output
itis used: CREATE SQL QUERIES (6.2) input
Description: “sends the manipulated queries to form SQL queries”
Name: User Query

Alias: -

Where & How CREATE SQL QUERIES (6.2) output
itis used:

Description: “sends user query to database”

Name: Log Query

Alias: -

Where & How CREATE SQL QUERIES (6.2) output
itis used:

Description: “writes the logs to the database”
CoreTech -30-

CoreAccess

Detailed Design Report

Name: User Query Result

Alias: Result from Database

Where & How GENERATE NODE & RESULT LIST (6.3) input
itis used:

Description: “receives user query result from database”

Name: Initial Node List

Alias: Map Nodes

Where & How GENERATE NODE & RESULT LIST (6.3) output
itis used: DOUBLE NODE LIST (6.4) input

Description: “sends map nodes for making two copies”

Name: Node List Copy

Alias: -

Where & How DOUBLE NODE LIST (6.4) output

itis used: RETRIEVE MAP (6.5) input

Description: “sends map nodes for retrieving map”

Name: Map Query

Alias: Map Retrieving

Where & How RETRIEVE MAP (6.5) output

itis used:

Description: “sends map query to database”

CoreTech -31-

CoreAccess

Detailed Design Report

Name: Map Query Result

Alias: Map from Database

Where & How BUILD MAP (6.6) input

itis used:

Description: “sends the map data from database for building map”

Name: Uname/Passwd

Alias: Content Manager Username — Password

Where & How CONTENT MANAGER output

itis used: CHECK LOGIN CM(7.1) input

Description: “ sends content manager’s username and password for checking”

Name: UserName Password CM

Alias: Content Manager Username- Password

Where & How CHECK LOGIN CM (7.1) output

itis used:

Description: “ checks username and password of the content manager from staff
database”

Name: Response CM

Alias: Check Result for CM

Where & How CHECK LOGIN CM (7.1) input

itis used:

Description: “ sends the info about the username password match from database ”

CoreTech -32-

CoreAccess

Detailed Design Report

Name: Login Info CM

Alias: Login Info CM After Check

Where & How GENERATE LOGIN STATUS CM (7.2) input
itis used: CHECK LOGIN CM (7.1) output

Description: “forms the login information after login check”
Name: Activity Process

Alias: Activity Work

Where & How CONTENT MANAGER output

itis used: GENERATE CM INFORMATION(7.3) input
Description: “written commands to interface by content manager”
Name: Login Status Display CM

Alias: -

Where & How GENERATE LOGIN STATUS CM(7.2) output
itis used: FINAL DISPLAY CM (7.4) input

Description: “ sends the final login info for display”

Name: Login Status CM

Alias: User check for CM

Where & How CONTENT MANAGER input

itis used: FINAL DISPLAY CM (7.4) output
Description: “information about validity of the user ”
CoreTech -33-

CoreAccess Detailed Design Report

Name: Process Results

Alias: Activity Process Result

Where & How CONTENT MANAGER input

itis used: FINAL DISPLAY CM (7.4) output

Description: “returned information to the content manager whether the changes are
done or not ”

4. OVERALL ARCHITECTURE

4.1. List of modules

GPS module

PDA module

Content Manager module
Administrator module
Web Service module
Data Object Handler
Logger module

GIS Engine

Ontology module
Pathfinder module
Activities module
Map module
Transportation module
Database module

CoreTech -34 -

CoreAccess Detailed Design Report

4.2. Architecture Diagram

| can easily
manrage any
content.

Adﬂmst:ratur Module

4] /
Data{?tﬁerct Handler

ntnlngy Wod.

 Activities Module
Transportation Wodule

L

3 ﬂwﬂ%{ 3
’S;'EE

Myst

CoreTech -35-

CoreAccess Detailed Design Report

4.3. Details of Modules

Main details of the modules will be explained in the following part. However, detailed
functionalities of the modules are clear in the diagrams, especially the interaction between
them.

GPS Module: GPS module’s responsibility is to make the connection between the PDA and
GPS receiver. Moreover, it is responsible of parsing the strings of NMEA 0183 protocol and
returning them to PDA module as a data object which consists of global position information
such as latitude, longitude and time attributes of the user. NMEA 0183 protocol serves lots of
different kinds of strings, but “recommended minimum” sentence, namely $SGPRMC, meets
our necessities very well. Detailed information about the contents of GPS module can be found
in our “GPS Research Report” which is accessible in our website
(www.cclub.metu.edu.tr/~mustafa/coretech).

PDA Module: PDA module’s responsibility is to supply the connection between the user and
web service module of server side. It has a friendly graphical user interface which takes in the
commands of the user and displays the related outputs. Basic operations such as zooming in/out
the vector map are inline facilities of PDA module and connection with the server is not
necessary in these cases. All of the other requests of user need connection with the server side.
Requests of the user are taken through the GUI of PDA module, then packaged with XML
Handler component as XML and sent to the server side via the web service interface of the
server application. Next, it takes the response of the server again in XML format, decomposes
it and displays to user as maps and written data.

Content Manager Module: Content manager module’s responsibility is to supply the
connection between the content manager and web service module of server side. It has a
graphical user interface which takes in the commands of the content manager and returns the
acknowledgement of the operation to content manager. As explained before, content manager
has restricted abilities. He/She is responsible of managing the activities of activity places where
he/she is assigned. Moreover, he/she can update contact information of activity places. All
these operations need connection with the server side. This connection is made through the web
service interface of the server side. Messaging standard is XML again, just as explained in the
PDA module description. Since content managers will want to do their jobs from anywhere,
application of this module will be accessible as a web page which connects with the web
services.

Administrator Module: Administrator module is very critical since it deals with the
administration of the server side. It provides the administrator with a friendly GUI which can
be seen in the GUI Design part of this report. It acts in a similar way with the content manager
module; it supplies the connection between the administrator and web service interface of the
server side. Communication protocol is again XML. However, this time, application will not be
accessible as a web page because administrator has some complex abilities such as managing
the map visually. Therefore, this module will be a standalone application which makes the
connection itself. Authentication will be done of course at the beginning.

Web Service Module: Web service module is the open window of our server application to
outside world. All of the capabilities of our server side will be deployed as web services. This
will bring us the platform independency. Authentication will be done again in web service
module for the administrator and content manager. Once our WSDL is parsed by the clients,

CoreTech -36 -

CoreAccess Detailed Design Report

our server side will be available just like an API as long as they stick to the data specification
standards of our web services. To sum up, it can be said that this module is the interface of
server side for clients.

Data Object Handler: Data object handler works in a two-sided way. Its first duty is to take
the requests of clients (namely, PDA module, client manager module and administrator
module) via web service module, decompose them and create understandable data objects for
the GIS Engine. Secondly, it will just do the reverse operation. That is, it will take the data
objects of the GIS Engine which consist of the responses of the server and create the package
for the client side and pass it to the clients (again PDA, client manager and administrator
modules) via web service module.

Logger Module: Logger module lies between the data object handler and database module. Its
duty is to log the queries of the user with his/her global position and ip. Logger module has its
own table in the database. Database module handles the process of entering the logs that has
been constructed and sent by logger module to logger table. These logs will serve statistical
data of the whole application to administrator.

GIS Engine: The core module of our system is the GIS engine which sits in the middle and
controls the data flow mechanism. As it can be clearly seen from the diagram, data object
handler, logger module, ontology module, pathfinder module, activities module, map module
and transportation module are connected to GIS engine. GIS engine takes the data objects from
the data object handler, and then according to the data, it communicates with the related
module when necessary. For example, if the user requested transportation alternatives to an
activity place, then GIS engine sends the request to the transportation module, gets the response
and sends it back to the user. It is the brain of our project.

Ontology Module: Main purpose of this module is to prevent the user from facing with blank
screens instead of alternative solutions. Ontology module is only connected with GIS engine. If
the response for the original query of the user is empty, then GIS engine will call ontology
module and make it produce alternative results. For example, if the user wanted to see a “love
movie” but there is not any on the scene, then “love comedy movie” or “love play” would be
alternative recommendations.

Pathfinder Module: This module is in connection with GIS engine and transportation module.
Its main duty is to find the paths between given points. In fact, its duty can be divided into two
parts: obligatory and optional. Its obligatory duty is to find the general shortest path between
the users’ global position and found activity place. This shortest path is transportation method
(vehicle) independent. Pathfinder module’s optional duty gets into action when user wants to
see transportation alternatives for an activity place. This time, pathfinder works for specific
vehicles. Behind, there are implementations of shortest path and graph algorithms.

Activities Module: This module is responsible of managing the activities and activity places.
GIS engine redirects the data objects that are concerned with activities to this module. Then,
activities module gets into connection with database module, sends the queries and gets back
the responses. Finally, it sends these results back to GIS engine. Messaging is done via objects
and strings. For the content manager and administrator module, it has extra properties such as
adding, updating and removing activities or activity places.

CoreTech -37-

CoreAccess Detailed Design Report

Map Module: Map module is just like the activities module. It lies between the GIS engine
and database module. According to the request taken from the GIS engine, map module orders
related map data from the database module and sends the result back to GIS engine. For the
administrator and content manager, there are extra methods for editing the map data.

Transportation Module: Transportation method is responsible for the vehicles and their paths.
Managing vehicles and their paths are only visible to administrator. User queries are taken
from the GIS engine and sent to database module. Database module takes the response from the
SQL tables and passes them to transportation module. Transportation module’s duty is
completed when responses are sent back to GIS engine.

Database Module: As it is clear from its name, database module is responsible of the
connection between the database management system (MySQL in our case) and other modules
(logger, activities, map and transportation modules) that need database access. Database
module takes the queries from the mentioned modules, commits them via the database
connection, gets back the result set and forwards the related results to interested modules.

CoreTech -38-

CoreAccess Detailed Design Report

5. COREACCESS USER INTERFACE

5.1. User Functionality

We have two different users for “CoreAccess”. Main users are PDA users who run application
from a PDA connected to GPS and internet. However, some PDA users may not have GPS
receivers. For this reason, we have added extra positioning methods which are explained in
detail in the following part. Second group of users are internet users. Since our server
application will serve the information via web services, this will not bring us any additional
load. All we have to is designing a web page which calls our web services, then internet users
can also benefit from our GIS application. The only difference is, internet user does not have
GPS receiver. There is not any other difference between the functionalities of PDA user and
internet user. The functionalities of users are explained in detail in the following sections.

e Select Positioning Method: This is the first step of our application. Before making
any queries, we have to know the position of the user. User has four choices for
determining his/her position. First one is determining user’s global position “via GPS
receiver”, second one is “via entering address keyword”, third one is “via browsing on
map” and the last one is “via manually entering global position”. We serve any kind of
possibilities for positioning, because main purpose of our application depends on
global position of user. In some cases user may not have GPS receiver, so other
alternatives are important also.

E Pocket PC 2002
Ermdator Haip

Select Positioning Method

CoreTech -39-

CoreAccess Detailed Design Report

The details of these methods are:

0 Via GPS Receiver: This is the first option. If user has a GPS receiver
connected to PDA, then this option is enabled. GPS serves the most accurate
positioning information among our other positioning methods. The only thing
that user has to do is selecting this option. Then NMEA 01803 strings will be
read from the serial port, SGPRMC sentences, which are the “recommended
minimum” sentences that contain longitude, latitude and altitude information
(detailed information can be found in our GPS research report), will be
interpreted by our GPS string interpreter class. Once this option is selected,
user’s position will be updated automatically in specific time intervals like 10
seconds. Additionally, this is the only option that web users are unable to select.

0 Via Address Keyword: This option is added by the advice of our instructors
and we believe it is very crucial. When user does not have a GPS receiver, (s)he
can enter some keywords which may be consisting of streets, avenues, towns,
etc. Then search query is sent to server and vector map of that place is shown to
user. For example, user may enter “100.y1l Pazar1” or “Necatibey Caddesi”,
then a map with its center having the found place is returned to user. User can
now easily determine his/her exact position by browsing on the map,
navigating, zooming in and out. All properties of map menu are available to
user at that time. This is the best option for web users also.

0 Via Browsing on Map: In fact, this option is similar to the previous one. The
only difference is, now user does not specify any address keyword. When this
option is selected, city map of Ankara for example is displayed to user. Then
the user is able to determine his/her exact position by browsing on the map,
navigating, zooming in and out. Again, all properties of map menu are available
to user at that time. This option is also beneficial for web users. When user
decides a point on the map, the latitude and longitude information of that point
is determined and sent to server as the global position of user.

0 Via Manually Entering Global Position: This is the last option and its main
purpose is to meet our testing demands when we don’t have GPS receiver, in
fact. However there may be some users who are sure about their latitudes and
longitudes especially by the help of observing Google Earth in these days. We
can not claim that this option is helpful to users in general, so maybe we will
hide this property in the final release of our product. Its working mechanism is
very easy, user only fills in the latitude and longitude text fields. Then this
information is sent to server as global position of the user.

e Search Activity: User’s global position is taken, now the search menu appears to the
user. The application area of our project is social activities. These activities are cinema,
theatre, music and sport. There are three different search options in this menu. First one
is “search by category” option, second is “search by attributes” option and the last one
is “search by browsing map” option. The results of all these three options are identical,
they will return a result list. This is very important for modular programming.
Graphical representation of this situation can be found in our early State Transition
Diagrams. This result list will contain the major identities of found places, which will
be explained in the following part.

CoreTech -40 -

CoreAccess Detailed Design Report

The details of these three menus are:

0 Search by category: If user wants to do an activity, but no matter the place,
he/she can search for the appropriate places. The only necessity is to determine
a category name between the cinema, theatre, music and sport categories. In
fact, this option is for users who do not have any idea about what to do. For this
reason, user may want to see the social activities around him. For instance, if a
user in METU campus decides to go to cinema and select “cinema” category in
this menu, our application will find the nearest cinemas around him. Results for
this example may be first METU cinema (U3), then Bilkent and finally Tiize
Armada. Moreover, he/she can view from the map.

Bh Pocket PC 2002 |Z||:|z |

Emulator Help

l.fﬂ_r.wg" CoreAccess

Select Category

) Cinema

{1 Theatre

{1 Sparts Center
{1 Cancert Hal

{1 Exhibition Certer

| By Category | Ey Attributes | o Map |

Search by Category

CoreTech -41 -

CoreAccess Detailed Design Report

0 Search by attributes: This option is for users who have at least some idea
about what to do. User is able to enter his criterias for the activity he/she wants
to do. These criterias may be;

= Activity name,

= Activity place,

= Activity category,

= Let activity date between preferred dates.

User is able to specify none, one or many of these criterias. The number of
entered criterias increases the detail level of search. Then, according to entered
criterias, search is successfully done and results are shown to user as a list
sorted according to smallest distance value.

Ez Pocket PC 2002

Category [Cinerna

Hate
0[]

[B category | By nrivutes [onms |

Search by Attributes

CoreTech -42 -

CoreAccess

Detailed Design Report

o0 Search by browsing map: This option is for users who do not want to use text
based menus for searching. In this menu, according to users’ global position,
local map is shown to user. Moreover, users can also enter some address
keywords and then system will bring the related piece of map. User position is
signed on the map. He can browse, zoom in/out, rotate map and select the
activity place. Visible activity places may vary according to zoom level of the
map. After deciding on the activity place from the map, following options will
be the same as previous search methods.

5 Pocket PC 2002

Emulator Help

= pidsbury
emond,

L

1

Bids Owimblorne B!,.I-Em
g Three Hill
e
Drumhellar,
) x . E
'-russﬂ.eld—@—oRuseh

,Calg’hry] Franda

-
Y %Te‘]'c tiel

Strathmore

High River

\ Milo
gl.l.‘i‘ew Yulcan

klah‘qT
Stavely

L

o

Elkford |l

“Llaresholm

Place: Search

| By Catagory | Ey Attributes | COn Map |

Search

on Map

CoreTech

-43 -

CoreAccess Detailed Design Report

e Select from Result List: All three search options mentioned above come to this menu.
The results are displayed to user as a list sorted from nearest to furthest. There may be
more than one result, on the other side search may return empty list if even our
ontology definitions fail to find a result. The activities and places are listed with their
keywords in this menu. User can select one or more items from this menu. Next, he has
two options on the selected items. User can either see the details of the activity and
place in written form or see the places on the map. The details of these menus are
explained in the following sentences.

E: Pocket PC 2002

i Sinemas| Bah
ODEOMN-Migros

Metropal Kizilay

Ankapol Kizllay

Megapol Kizilay

Bl Ferer Kiz
Kavaklidere Tunali 18 km
[GeeDetals| [Seeonvan |

Result List

CoreTech - 44 -

CoreAccess Detailed Design Report

e Display Written Details: This menu shows the details of the selected activity or place.
The written details in this menu include:

Activity name,

Activity place,

Activity date and time,

Activity place’s address and phone,

Extra properties of the place like having parking place, children playground,
etc,

Link to transportation options.

O O0O0O0O0

@]

E: Pocket PC 2002

E:F CoreAccess

Written Details

User can easily go back to returned results menu and display another item’s details.
Transportation options are not shown automatically because user may not want to see
them. Therefore, there is a link for transportation options in this menu. If user selects it,
then transportation menu will appear.

e Transportation Menu: This menu is a sub menu of “display written details” menu
because it is an optional menu. If user selects it, the transportation options between the
user’s global position and activity place’s global position will be shown to user. This
menu has both written part and visual part which consists of the shortest path displayed
on vector map. The written part includes the followings for the selected transportation
option:

0 Names of the vehicles (since there may be combination of vehicles as a result),

CoreTech - 45 -

CoreAccess Detailed Design Report

Vehicle information (for ex: 132: ODTU — Kizilay),

Estimated distance,

Estimated time (for the work hours, this variable may be treated differently),
Cost of the vehicle combination.

©0Oo0o0o

The transportation methods mentioned here may be “bus”, “dolmus”, “metro”,
“tramway”’, “taxi” and finally “on foot”. We have the path of each transportation
method in our database. There may be cases when there is more than one possible way
to reach activity place, or there may not be any public transportation vehicles available
at that time to desired place and taxi would be the only solution. For all cases, “taxi” is
the final option in CoreAccess.

Secondly, as we have mentioned above, user is able to see the combination of vehicles
on the map. This time, shortest path for the selected combination will be drawn on
vector map. For finding shortest paths, we will use efficient shortest path and graph
algorithms. Again, user is able to do all the functionalities of map menu like zooming
in / out, navigating, etc. Moreover, the distance of the paths may be shown on the map.
This is a good option for comparing the distances of the paths. With the help of this
property, user can manage his time efficiently. In the same manner as previous
“Display Distance” option, estimated time and cost values may be shown on the map
also. This property will increase the time and cost efficiency of the user’s choice.

CoreTech -46 -

CoreAccess Detailed Design Report

e Display Items on Map: This menu is second sub menu of “result list” menu. In this
menu user is able to see his selections on the map. User may select more than one place
in the previous selection menu. On the map, his global position and selected activity
places will be shown with a placemark. The paths directed from his global position to
activity places will also be drawn in different colors. Furthermore, user can make
following operations on the map:

0 Zoom in/out: Map can be zoomed in / out.
O Rotate: Map can be rotated either clockwise or counter clockwise.

0 Browse Map: User does not have to stick to the result map. He is able to
browse the map by going upwards, downwards, left and right.

E: Pocket PC 2002

Display Items on Map

User can easily go back to returned results menu and display another item’s details on
map.

CoreTech -47 -

CoreAccess Detailed Design Report

e Select Language: Our user application is multilingual. This is a very easy thing to do
in fact, we don’t expect a locale problem.

E: Pocket PC 2002

Select Language

5.2. Content Manager Functionality

The duty of content manager is to change the contents of their company’s social activities. For
instance, the content manager of a cinema can add the new films which are on screen. Content
manager may be responsible of managing several places’ activities. The followings are the
capabilities of the content manager’s functions:

e Login: A content manager has to login to the system first with his id and password. A
content manager may have the ability to modify only one place’s activities or a number
of places’ activities.

e Add/Modify/Delete Activity: If new activities are available, content manager has the
responsibility to add new activities and move the past activities to history. There may
be cases when content manager needs to delete or modify the activity. The properties
of the activities need to be entered are:

0 Activity Name
0 Activity Time
0 Activity Place (hall)

CoreTech - 48 -

CoreAccess Detailed Design Report

0 Activity Cost
0 Activity Type

¥

£ Content Manager Application

fnc‘liuily rCumpanyInfu |

Activity

casors [cinoma [

e e[

Name: | |

e [i]s] [le] s [<]
Time: []

Comment:

Managing Activities

e Add/Modify short description about the activity: Content manager can add brief
information about the activity. Thus, users can have some idea before attending any
activity.

e Add/Modify phone number/address/e-mail address: Content manager can add or
modify those important attributes of the activity place.

Content Manager Application |Z| [ﬁl fgl

Activity | Company Info |

Company Info

Activity Place Name: | |

Address: | |

E-Mail: | |

Fax: | |

Phone: | |

Managing Company Info

CoreTech

- 49 -

CoreAccess Detailed Design Report

5.3. System Administrator Functionality

System Administrator has the highest level rights. He is able to do anything that user and
content manager can do. Apart from those rights, he is responsible for uploading map data,
ontology information, determining the relation between instances in the ontology.
Functionalities of system administrator are explained below extensively:

e Login: In order to accomplish main activities, system administrator has to login to the
system for security. This feature enables the protection of database contents of the
application. Only system administrator has the right to modify and add the contents of
the ontology and map data.

e Upload/Delete/Modify Map: In this functionality, system administrator can upload
map, delete map, modify map. Some new areas that were not in the coverage area of
CoreAccess can be added to extend the coverage area. In the same manner, some areas
may be discarded or modified.

£ CoreAccess Admin Application

Map |

Ontology

’ R — Map
Actiity Place
Vehicle
Content Manager |u
Help :
Load M
Logs ET T
A
S Add Nodes
Avonma ._:f_i:.
Bam;r}r Point \{iq\ 8

el ;
ﬁnrﬁanq Ham “\Bedlan
g, W

Adress Keyword:

v Search |

Admin - Manage Map

e Add/Modify/Delete Node: Nodes are very important in CoreAccess. All maps are
processed as connected nodes. Activity places are special nodes. Apart from activity
places, there are lots of nodes to describe roads. Vehicles’ paths are constructed by
series of connected nodes. As a result, its system administrator’s responsibility to
manage all nodes.

e Add/Modify/Delete Vehicle: System administrator can add, modify or delete a vehicle.
As explained in the previous part, vehicles’ paths are defined by connected nodes.
System administrator can change the path of the vehicle by adding new nodes or

CoreTech -50 -

CoreAccess Detailed Design Report

removing existing nodes. Moreover, system administrator can manage the type (which
may be one of “bus”, “dolmus”, “metro”, “tramway” or “taxi”), time divider and
cost_multiplier of the vehicle. time divider and cost multiplier are vehicle specific
properties. These allow the system to estimate cost and duration of a path for selected
transportation method.

£ CoreAccess Admin Application |:||E|E|

Ontology

Activity Place | Yehicle

[Wehicle |
Content Manager Wehicle Type:

Vehicle Ho:
Vehicle Speed: | kmh

Gity
Region: Bahceli || Determine Path
vehicle Path:

gy
f-:_' £ _\E../

Admin - Manage Vehicle

e Define/Modify/Delete Ontology: System administrator can define different ontologies
for activities, especially for movies and plays.

CoreTech -51-

CoreAccess Detailed Design Report

£ CoreAccess Admin Application

Map [

[Ontology |
Activity Place
Vehicle

" Content Manager

= [1=
e e Ontology Type

|| Browse... |

Ontology

| ADD

Admin - Manage Ontology

e Add/Modify/Delete Activity Places: Content manager can manage activities but its
system administrator’s responsibility to manage activity places. The attributes that have
to be filled are name, address, phone number, e-mail address, Global Position and Node
of the activity place.

£ CorehAccess Admin Application

i Map
Ontology e
Chctviypace | Activity Place
Wehicle
Content Manager
S s Hame: | |
L
e Adress | |
Phone [|
Latitude | Longitude
Label [|

Admin - Manage Activity Place

CoreTech -52-

CoreAccess Detailed Design Report

e Manage Content Managers: Its system administrator’s responsibility to add new
content managers or delete old ones. System administrator gives user id and password
to content managers and defines their abilities. Therefore, content managers have
limited right to access and modify the database elements.

£ CoreAccess Admin Application IZ”E] E|
Map
.t Content Manager Info
Activity Place g
Yehicle S | |
Content Manager Sl
Help First Name: | |
Logs
Last Name: | |
Job Title: | |
ID: | |
Password: | |
Phone: | | o
Address: | |
Delete
E-Mail: | |
Modify
Fax: | |
Activity Place Name: | |

Admin - Manage Content Managers

e View Logs/History: One of the most usable properties of CoreAccess is logging.
CoreAccess logs all of the user activities. When user makes a search or requests details
of any activity/place, CoreAccess stores this information to database. The attributes of
the logs are: user ip, global position of the user, time and date, search details, requested
activity’s details, etc. System administrator is able to see and print these logs any time.
By this way, statistical data will be taken and managers and companies will be informed
about the usage statistics.

CoreTech -53-

CoreAccess Detailed Design Report

£ CoreAccess Admin Application

Ontology

Activity Place Logs
Vehicle
Content Manager From: |1n |v| |12 |v| |2nus |v|

ple] fels] s [+

Results:

R
Do o
=

= S

=1

=

Admin - View Logs

e Help Menu: All applications should have a help menu, so this is for the administrator.

£ CoreAccess Admin Application

iMap
 Ontology |
Activity Place
Vehicle
m | || Search
T

Logs

Help

Admin - Help Menu

CoreTech -54 -

CoreAccess

Detailed Design Report

6. UML DIAGRAMS

6.1. Use Case Diagrams

6.1.1. Use Case Diagrams of the User

6.1.1.1. Positioning Use Case

==

Flow of Events for the Positioning Use-case
Objective To allow the user to get GPS Data from 3 ways
Precondition - . .
\/ia CPS
Main Flow 1. User has 3 ways to get GPS Data. ViaGPS Receiv
2. First option is simply getting the GPS Data from a GPS Receiver
connected to PDA.
3. Second option is browsing the map to find the location of the user.
4. Last option is mainly for users who know exact position of
himself/herself by entering manually.
Via Browsing M:
Post-condition The user has the GPS information now. The system knows where the
user is.

6.1.1.2. Search by Attributes Use Case

USE

Via Manually
-~ T O Entering

CoreTech

-55-

CoreAccess

Detailed Design Report

Flow of Events for the Search by Attributes Use-case

Objective

To allow the user to search the activities with a specific attribute.

Precondition

The GSP Data should be received.

Main Flow

1.
2.

User interacts with the activity attributes interface.

User can view all the attributes for a specific activity. Actually there
are some fixed attributes such as “activity name”, *““activity place”,
““activity date™, etc.

User can make search for the attributes he/she desires.

User can add/update/delete attributes.

Some extra features can be selected in addition to attributes.

Post-condition

3
4
5
T

he user managed the search by activity attributes.

6.1.1.3. Search by Category Use Case

Flow of Events for the Search by Category Use-case

Objective

To allow the user to search the activities with a category.

Precondition

The GSP Data should be received.

Main Flow

1.
2.

User interacts with activity category interface.

User can view the four current categories, namely ““cinema”,
“theatre”, “concert hall”” and ““sport center””.

User can select category among these four categories.

User can search the database for the selected category.

Some extra features can be selected in addition to activity category.

Post-condition

3
4
5
=

he user managed the search by activity categories..

View Category

CoreTech

- 56 -

CoreAccess Detailed Design Report

wextendss _ _ — — = Update Position
gy == a

6.1.1.4. Search on Map Use Case

)
L
Rotate / Scale Map

Flow of Events for the Search by Category Use-case

Objective To allow the user to search the activity place on map..
Precondition The GSP Data should be received.
Main Flow User interacts with search on map interface.

User can view the map and mark the activity place on the map.
User can enter a keyword for searching an address.
User can update the position he/she has already done.

On the map the zoom in and zoom out applications can be applied.
On the map rotate application can be applied.
On the map scale application can be applied.

1
2
3
4.
5. User can browse the map according to his/her wish.
6
7
8
T

Post-condition he user managed to browse the map for a specific activity.

CoreTech -57 -

CoreAccess Detailed Design Report

6.1.1.5. Display Results Use Case

<<extendS>)_ ————————
“xextend T
eyends ~~{ Zoom In/Out Map
N
N
N
N
N
\\
Estimated View >y Rotate/Scale Map
Distance

-~ «extends»
< Show on Map
Choose Vehicle
View Estimated Time

USER

View Estimated Cost

Flow of Events for Display Results by Category Use-case

Objective To allow the user to view the search result list.
Precondition The result list for the searches should be returned.
Main Flow 1. User interacts with result list interface.

2. User is faced with results when he/she makes a query.

3. After the results are displayed, user chooses one item from the result
list.

4. When an item is selected, either the written details of the selection
item or the map display of it is seen on the screen.

5. If user chooses the written details of the item, he/she comes across
with the written information about the results. It contains activity
name, place, date, time, address and phone number of the activity
place, estimated distance etc. In addition to this, transportation
options can be seen if user desires. The transportation options
include choosing the transportation vehicle, viewing the estimated
time and cost for the distance. User can switch to map view from this
view.

6. If user chooses the map display of the selected result item, he/she
can observe the activity place and the routine on the map. User can
do browse, zoom in, zoom out, rotate and scale operations on the
map. Switching to written details of the selected item is possible as
told above.

Post-condition The user managed to see the query results.

CoreTech -58 -

CoreAccess Detailed Design Report

6.1.2. Use Case Diagrams of the Administrator

6.1.2.1. Login Use Case

f M

\V/
_Q

Flow of Events for Login Use-case

Objective To allow the administrator to get into the system.

Precondition -

Main Flow 1. Administrator interacts with the login interface..

2. Administrator is requested to enter h @M Nysername and
password for getting into the system.

3. After entering his/her information, the validity of these is
checked.

4. If the information is false, the administrator is simply rejected,
warned and prompted to enter the information again.
5. If the information is true, the administrator is allowed to get into
II—\\ I\n I NI the SyStem.
Post-condition he administrator is in the system now.

6.1.2.2. Manage Map Use Case

«extends» «extends»
A ViewMap List b --—------———___ Update Map)& ------------ Add Node
N N xextends»
\ N

N . (<é>qends>>\ \\
N N Delete Node
N
AUTHENTICATED ADMIN \\\\
@

Flow of Events for Manage Map Use-case

Objective To allow the administrator to manage the map.

Precondition The administrator should be logged in.

CoreTech -59-

CoreAccess Detailed Design Report

Main Flow Administrator interacts with the map managing interface.
Administrator can view all the map lists.

Administrator can add new map to the map list.

Administrator can update a specific map.

Updating the map can be done by adding/modifying/deleting nodes.

Administrator can delete a specific map from the map list.

dJouswn =

Post-condition he administrator did map managing work.

6.1.2.3. Manage Activity Place Use Case

Flow of Events for Manage Activity Place Use-case

Objective To allow the administrator to manage activity place.
Precondition The administrator should be logged in.
Main Flow 1. Administrator interacts with activity place interface.
2. Administrator can view the entire activity place list.
3. Administrator can add new activity places.
4. Administrator can update a specific activity place.
5. Administrator can delete a specific activity place.
Post-condition The administrator is managed to do activity place operations.
View Place Li
Add New PI:
CoreTech - 60 -

AUTHENTICATED ADMIN

CoreAccess Detailed Design Report

6.1.2.4. Manage Vehicle Use Case

Flow of Events for the Manage Vehicle Use-case View Yehicle |
Objective To allow the administrator to manage the vehicles.

Precondition The administrator should be logged in.

Main Flow . Administrator interacts with vehicle interface.

1

2. Administrator can view the entire vehicle list.
3. Administrator can add new vehicles.

4. Administrator can update a specific vehicle.
5. Administrator can delete a specific vehicle.

Post-condition The administrator did vehicle managing work.

Add New Vehi

AUTHENTICATED ADMIN
6.1.2.5. Manage Ontology Use Case

Flow of Events for the Manage Ontology Use-case

Objective To allow the administrator to manage the ontologies.
Precondition The administrator should be logged in.
Main Flow 1. Administrator interacts with ontology interface.
2. Administrator can view the entire ontology list.
3. Administrator can add new ontologies.
4. Administrator can update a specific ontology.
5. Administrator can delete a specific ontology.
Post-condition The administrator did ontology managing work.

CoreTech -61 -

CoreAccess Detailed Design Report

6.1.2.6. Manage Content Managers Use Case

ew Conten
-]
\ 7 Manager List A 4

b
~ Delate Content
Manager Infa

cextendse
________ pdate Content
Manager Info
"

AUTHENTICATED ADMIN

View Content
Manager Statistics

Flow of Events for the Manage Content Managers Use-case

Objective To allow the administrator to manage the content managers.

Precondition The administrator should be logged in.

Main Flow Administrator interacts with content manager interface.
Administrator can view the entire content manager list.
Administrator can add new content managers.
Administrator can update a specific content manager.
Administrator can delete a specific content manager.
Administrator can view the content manager statistics.

Uk wdE

Post-condition The administrator did content manager managing work.

6.1.2.7. Log Use Case

V7

Monitor User Log
onitor Activity
Log
onitor Activity
Flace Log

onitor Category
Log

AUTHEMTICATED ADMIN

CoreTech -62 -

CoreAccess

Detailed Design Report

Flow of Events for the Log Use-case

Objective

To allow the administrator to manage the logs.

Precondition

The administrator should be logged in.

Main Flow

arONOE

Administrator interacts with log interface.
Administrator can monitor the relevant user log.
Administrator can monitor the activity logs.
Administrator can monitor activity place log.
Administrator can monitor category logs.

Post-condition

The administrator did log managing work.

6.1.3. Use Case Diagrams of the Content Manager

6.1.3.1. Login Use Case

Q

W——s§

Flow of Events for Login Use-case

Objective To allow the content manager to get into the system.
Precondition -
Main Flow 1. Content manager interacts with the login interface.
2. Content manager is requested to enter his/her username and
password for getting into the system.
3. After entering his/her information, the validity of these is checked.
4. If the information is false, the content manager is simply rejected,
warned and prompted to enter the information again.
5. If the information is true, the content manager is allowed to get into

the system.

Post-condition

The content manager is in the system now.

Login

CoreTech

-63 -

CoreAccess Detailed Design Report

6.1.3.2. Manage Activity Use Case

C o htivity List

Flow of Events for Manage Activity Use-case

Objective To allow the content manager to manage the activities.
Precondition The content manager should be logged in.
Main Flow 1. Content manager interacts with the activity interface.
2. Content manager can view the entire activity list.
3. Content manager can add a new activity to the list. Add New Activity

4. Content manager can update a specific activity.

AUTFPIEHT? Eyﬁyrgqq.PwRRfA%étgglng/modlfylng/deletlng the
escr |on
Post-condition The content manager managed to do activity work.

6.1.3.3. Manage Activity Place Use Case

Flow of Events for Manage Activity Place Use-case

Objective To allow the content manager to manage the activity places.

Precondition The content manager should be logged in.

CoreTech -64 -

CoreAccess

Detailed Design Report

Main Flow

Content manager interacts with the activity places interface.
Content manager can update the activity places.

Content manager can update the phone numbers of activity places.
Content manager can update the addresses of activity places.
Content manager can update the e — mails of activity places.

arONOE

Post-condition

The content manager managed to do activity places work.

CoreTech

-65 -

CoreAccess Detailed Design Report

6.2. Class Diagrams

6.2.1. PDA Class Diagram

simplamentation classs cimplamentation classs
WebServiceCaller XMLQueryHandler

rwebServicalid

FeallCject calls +parsexXmi)

rmethodObject +generateXmi{) | <unspecified=

HealiSendcal) +oetParameter(} | <unspecified:

+resultartived]) +oetMapDatal) © sunspecified=

+petActivigMamal) © string
+gathiapNamel) : string
+oetTransportationDatal) © <unspecified>

simplementation classs simplementation classs X :
SearchTypeMenu DetailedinfoScreen toetResuls) | <unspecified>
+eearchCategory Fourrentitem
FesarchByMamea FbackButton
FviewMap +setCurentltemy)
HinitilizeGui() rrdis playDetail()
+actionPearformead]) +huttonPrassed() calls
- - wimglementation classs
simplementation class» ’E Par;ﬁanSdectimHenu
Langtt::aluhnager has has Clatitude : double
reuranianguage Hongitude - double
lavailableLanguage _apsCiption
-fileMame -miapOptian
+getlabelsFor(} uses -manualEntry
+satlabel() wimplemantation classyPDAGUI etOption]]
:5;“[3”9”393” FsearchTypelenu : SearchTypehlenu +HiemSelecied|)
+|g dfanguage{} lsearchCategory | SearchCategory seflatiudel)
padLanguages() FsearchByMame : SearchByAlributes +setlongitude()
FresultScrean : ResultScreen
-mapScreen : MapScreen
[dedailedinfoScreen : DetailedinfoScreen LS
FpositionSelectionMeny ; PositionSelectionhenu
reguestMap
+ioResuliScreent) _ _
: i +oDetailedinfoScreen() wimplementation classs
wimplemeniation classs oPasitionSelection) GPSinterpreter
MapScreen +tohapSoraan) -from_lattidute : doubla
-inadadhap +tonSearchTypeMenul) -from_logitude : double
-zoomLevel : doubla has_—+oSearchCategory() +getlattitude() - double
-mapWidth : int / +inSearchByMamel) +getlongitude() : double
FmapHeight @ int +initialize() -recievePositionDataf} : bool
-selactediiam +sendDataToXMLQueryHandlar() has
-isRoadsDisplayed : bool +requasthap])
-lattitudeField
-longitudeField
FhackBution b h
+zoomini} s e
+zoomOut() aimplementation classs
el Jpl) ResultScrean
+rnaveDown() E—To—
+miovelefi]) i
+moveRight(} wimplementation class» wimptemantation classs ﬁ?;;;m:ﬂum
tindicatorPressed) SearchCategory SearchByAttributes -see0nMapButton
+rotatehdap() kcinema =AM TR p——
'+t atitudad) Lspart date A ngyRI
+setl ongitude]} Hbeatre -time a Bsult]) .
+dlisplay() [P—— place +oetResultSet(} | <unspecified>
sendPlacelnfoToXMLQueryHandler(} Fmtlize G0 ETE—E setResuSet) .
+gelSelected() | <unspecified=
HactionPeardormed() +actionPerformed +buttonPressad(]
5E5

N

wimplementation classs aimplemertation class»
Map uses MapVersionChecker
Fnodes VErsion
Ftransportation -updateDate
:L;:'st soheckMapVersion()
o +updatelMap()
Fouitdings _readMapt)
pstadiums writeMap()
HoadMapi) selVersion)
reloseMap() getviersion() | sunspecifisd>
+getCurreniDizplay() +getlpdateDate() : <unspecified=
+manipulatelap()

CoreTech - 66 -

CoreAccess Detailed Design Report

The classes in this part are PDA Gui and some interaction classes which communicates via web
service with server. In order to manage user interface forms a class called PDAGuUI is designed.
This class contains methods which send signal to other forms in order them to be activated.
Other classes that depend on the received signal from PDA Gui are in the following. PDA Gui
class has these classes. They are:

e PositionSelectionMenu: This class is for selecting the way of gathering position of
user. These ways are via GPS device, via indicating from map and via manual entry of
latitude and longitude.

e SearchTypeMenu: This class is for determining search option. The presented options
in CoreAccess are “search by category”, “search by activity name” and “browse on map
for activity”. Please refer to Analysis report for detailed explanation about choices.

e SearchByAttributes: This class is for starting search by activity name and some
propoperties of activity such as date, time, etc.

e SearchCategory: This class is for starting search by category which are theatre,
cinema, sport and concert.

e ResultScreen: This class is for displaying the results in a list. When user selects an
item from this list, s/he can see the details of the item or see the item on the map.

e DetailedInfoScreen: This class is for illustrating details of activity or place which is
selected from result screen.

e MapScreen: This class is for displaying the item selected from result screen on the
map. In this way user can see the direction and distance of the activity and browse on
the map.

e LanguageManager: This class is for enabling multilingualism. User can change
language in every screen in PDA. PDAGui class controls “change language” signal
which comes from this class when it is called.

e GPSiInterpreter: This class is for getting information from GPS. This class accesses to
the GPS device and gets latitude and longitude of the user from GPS device and sends it
to the PDA.

e Map(In PDA part): This class is for storing map in PDA. If user runs the program first
time, map is loaded to the PDA via this class. If it is not first time, the version is
checked. If the original map was changed, it is loaded again. If not, it is remains as it is.

e MapVersionChecker: This class is for checking the version of map. As it is mentioned
above, It is interacts with Map class. Keep the version of the map and controls the new
map version. If the versions are different, it informs that to the PDA.

e XMLQueryHandler: This class is for handling the XML files which come to web
service and which are sent to the PDA. The gathering information from PDA are added
to the XML file and generateXml() function of this class is called. When an XML file
come from web server, parseXml() method is called and the file is parsed in that class
and the information sent to the PDA.

e WebServiceCaller: This class is for calling web service. After XML file generated the
web service is called and communication is built.

CoreTech -67 -

CoreAccess

Detailed Design Report

6.2.2. Request Handler Class Diagram

calls

simplementation classs
XMLQueryParser

wimplemeantation classs
WebSarviceCommunicationPaoint

+wehServicaCalled|)
+atart()

+stop(}
+directCallTo()
+adminlnvacation()
+Husarlmvocation()
+ocminvecartion()
+aendResult()

+USER_QUERY : int
+ADMIMN_QUERY : int
+Ch_QUERY :int
-resultObject | RequestObject

+parseXMLRequest() | RequesiObject
l-parseAdminRequest() | ReqguestObject
-parseUserRequest() | RequestObject
FparseCMRequest() | RequesiObject
HormSearchActivityObject()
HamSearchLocationObject()
HomLoginRequest()
-formModifylMapRegquesti)
HomiodifNodeRequest()
HaombodiitahiclaReqguest()
HombodifyActivityRequest()
FiomModifyCMRequest()
~formiodifyCniclogyRequest()
+generateXMLResponsa()

\creales

Lname ! string
Hype - int
HsalMName()
+gethamel) @ siring
tsetType()
+getType() ©int

Hstart()

wimplementation classs
DatabaseManager

dbHostMName : string

FdbPort @ string

FdblUserMame : string
FdbPasswd | string
FrequestObject | ReguestObject

+eonnectDB()
HmakeSOLQueany()
HoetResultSetFarhap()
+sendRowiapl)
+getResultSetForModes()
+buildModeObjects()

\ seadBy CPort: ot
«implementation classs -usemame : string
RequestOhbject Fpasswd | string

wimplementation classs
Logger
FdbHost © string

latatiticaType «int

+seiDBHost()
+seiDBPort()
+satlsarMame()
+sellogType()
[+processLog()
+oonnectToDB()
+savelogsToFila()

. . simplemantaticn classs
wimplementation class» MapMeodificationRequest wimplementation classy
SearchRequest Crapiame | sting IdentificationRequest
-maphlame : slring L rmodificationType © int Lusername ; sting
-destionation : string binaryMap : string -passwd © siring
-positionLongitude : double l-nade Hiype - int
-pt:gltlonLautude - double Lvehicle +authenticater)
activity +performiodification]) +setUseriame()
+tran|::_oortaua18&armf] +oethaphame() +satPasswd()
tlocationSearchi) +gelvehicle() +dacriptPasawd()
HactivitySearch() +gatMode()
+getDestionation() +gatBinaryhap()
HgetPositionLongituda() +addMode(}
+getPositionLatitude) +addVehicle()
+dalateMode()
+daletelehicla()
H+modifyMNaoda()
+modifyVehicle()
CoreTech - 68 -

CoreAccess Detailed Design Report

This Part is for generating object according to the request come from user. We have an main
class called RequestObject. Some classes are inherited from the RequestClass. These objects
are in the following:

e SearchRequest: This class represents search request of user about. According to the
received information, the object initializes itself with the attributes.

e MapModificationRequest: This class represents the modification request for map. The
database gathers nodes according to instance of this class.

e IdentificationRequest: This class represents the authentication request of
Administrators and Content Managers. According to the password and id of the staff, it
decides whether give permission or not to enter to the system.

When the request object is created, it is firstly sent to Logger in order it to be saved in the
database for statistical information.

XMLQueryParser class is responsible for parsing the received xml messages and forming the
request objects using the information in xml.

DatabaseManager is the responsible class in dealing with database. According to the
RequestObject arrived it forms the required sql queries. Other duties of this class are explained
below.

WebServiceCommunicationPoint is the class which receives web service calls from the
clients. It directs the received xml message to XMLQueryParser class. It returns the result of
the request also in xml format.

CoreTech - 69 -

CoreAccess

Detailed Design Report

6.2.3. Activity Search Class Diagram

creates |

simplementation class:
DatabaseManager

-dbHostMName : string
-dbPart ; string
-dblUserMame - siring
-dbPasswd : string

&

wimplemeantation classs tOhject © Re tObigct
}?u:thrlty jsg:::c-tDJBﬁ{? b et -xin'lplarm.ntatiun class»Place
Fhame | string +makeSQLOuery() -name : string
-date : string +getResuliSatForMapi) rtype - int
-nma:slrltr'g . +sendRowiap() -:unigltzda_- ;jduglble
=COMIMEn : sring +getResuliSetForModes|) Hlatlitude = dau _E
_Flggce in.r;tnng +buildNodeObjects() -n;c_l&_?lumbar tint
HIype -activities
HaocationMode : ModeDhjact +getNamel) : string
H+addComment() +sethamal)
+geiggg{r;1&nt[j ; slring Hgetlatituded) | double
el +setlatitede()
HgetDate() © siring +geflongifudead) - double
e o e
ype() s in ealTy
+set'|T‘llrneH I ol has, +getTypal) - int
+getTimel) © string HaddActivity()
+modify() +searchinActivities()
+setMame() +oontainsActivity() © bool
+gethlame() ; string gethctivities() : <unspecified=
simplementation classs -
aimplementation classs LSEs ActivitySearcher uses al 0“:“"—'""'9“13“‘3'” class»
Sorter RN - ntologyManager
-criteria LactivityCategory :;:gﬁgnac:;:;:::gy
robjects -startPlace matcl‘F:g tion
+acoObject]) activities : P
rsortObjects() FnsertACiviT) *oadOntology()
+oetSortadlist() | object insertPlace() +indRelated Term()
startSearchi)

This part is the class diagram of the server module which finds the activities which the user
queries. As mentioned above DatabaseManager deals with database communication. It firstly
creates ActivitySearcher class. DatabaseManager also creates Activity and Place instances
according the database query result. Each created class inserts itself to ActivitySearcher object.
Then ActivitySearcher finds the appropriate activity and its place according to the request
object. Moreover, it uses OntologyManager class in order to find related activities in case of
not finding any suitable activity. At the end Sorter class gets the results from ActivitySearcher
and sorts the activities according to a criteria such as alphabetic order of activity name.

CoreTech -70 -

CoreAccess

Detailed Design Report

6.2.4. Transportation Class Diagram

creates_— |
/_'_._.__’—"'—’—.‘-Fr—r._

aimplemeantation classy
NodeObject

-nodebame - siring
-longtitude - double

Hatitude : double
LeonnectedEdges @ Modalink
=label © string

+HraceEdges()
Hgetlabel() @ string
Hsatlabell)
+getlongitude() : double
Hsetlongitude()
+gellatitude) : double
Hsetlatitudel)
HgetClosastModea()

USES

simplemeantation class»
ShortestPathFinder

Lnodelist
Lslartdode
-searchCriteria
-lastMNode

-transportationOption ; int

HaatStariNodeal)
+setlastMode()
+setSearchCriterial)
+HindShortestPath()
+eendFinalModas()

#oalculateDistance!) : double

83

wimplementation classy
DatabaseManager

~dbHestMame - string

~dbPFort © string

~dblseame ; string
FdbPasswd : string
requastObject | ReguestObject

HoonnectDE)
+makeS0LCuery()
+oetRasultSetForidap()
HsandRowhapi)
+getResultSetForModes()

+buildNodeObjects()

creates

'
cimplementation classys
Graph

-nodes

-EE"WS
-starthlode
-activities
-places
FinsertModer)
HmsertLink()
+gethodes()
getStartode])
+insertionComgleted()
HimsertActivity])
HnsertPlace()

calls

simplementation classs
Map

Lnodes @ NodeObject

~-mapMame : siring

-higight ;- int

Swdth int

+addMode()

+setBinaryMap()

+addehicla()

+hindMapWithNodes()

creates

wimplementation class:
ModeLink

Fdistance ; double

HromMode : NodeObject
FHoMode : ModeOlbject
HsetDistance()
+oetDistance() : doubla
HsaiToMadel)

+getToMode() : NodeObject
+eetFrombode()
H+oetFromMode() - NodeOhbject

aimplemantation class»Transportation

Fiype :int

=id ©int

Fname - siring
Fpath - NodeObject
ime : string

lno : string

+addvahicla()
+sedTimel)
+zatiol)

+delete()
calla / +setiPath)

HindApproprate TransporiationBetweenModes|)
+galTransporatitonAddedMap() : Map

This part is the class diagram of the server module which finds the transportation options and
indicates the paths of these vehicles. Again DatabaseManager has an active role. It creates

CoreTech

-71 -

CoreAccess Detailed Design Report

Graph, NodeObject and NodeLink object. Each created NodeObject and NodeLink inserts
itself into created Graph object. Then Graph object sends its nodes to ShortestPathFinder in
order to find the shortest path. Also the nodes are sent to Transporatation class.
Transportation class adds some vehicle objects if necessary. Then these nodes are merged in
Map class to form the complete map.

6.2.5. Web Service Class Diagram

«implemantation classs
CTAeMentEhon Cases WebServiceCommunicationPoint
Adminlnterface
CmapPane] calls +webSarviceCalled() Mcalis aimplementation dass»
HoginPane! +start() \ ContentManagerinterface
LactivityPanel +stop() -mapPanel
HocationPanel tdireciCallTol) LactivityPanel
LtransportationPanel +admininvocation() LoontactinfoPanal
FontologyPanel +userinvocation() FsendActivityModiicationRequesl()
FhistoryPanel Feminvocartion() +sendContactinfoModification Request])
FeontentManagerPanel +sendResullf) +sandMapRequest()
+sendMapRequest() calls +changePanel()
HsendLoginRequest() +receiveResponse()
HsendActivilyRequest() I I I
+sendLocationRequesty) aimplemeantation classs
+sendOntologyRequest() W&hS-elmrineCaII&r
HsendHistoryRequest() W"‘"CEU"'
HsendTransportationRequesi() -callObject .
H+sandCMReguest() -methodObject
+changePaneali) FoallService()
+receiveResponse() HresultAmived()
WebServiceCommunicationPoint class received calls from Adminlnterface and

ContentManagerinterface. These interface classes generates the queries according to written
information gathered from the staff.

6.2.6. Database Class Diagram

wimplemeantation classs
DatabaseManager
simplementation class» FdbHosName : string aimplementation class»
ContentManagerDatabaseModule -gmsmng . AdminDatabaseModule
— I lame - string e
+5:;:;550n[) cals” [dbPassnd . stiing N ief:fk:ogs[}
HeaguestObject : RequesiObject
S Feomeatns N
modifyActivity() rmaksSQLQuery() deleteMapi)
-+ deleteActivity() Iﬂmﬁ:‘:{‘;map“ - addNodel)
HH
emodityContacinkol) +geiResulSetForodes() GettoNioded)
L deleteContactinfol *buildNodeObjects(} L addVehicle()
+addDescription ForActivity() +modifyWehicle()
HdeleteDescriptionForActivity() +deleteVehicke()
+stariDatabaseCOperation|) radd Ontology()
HmedifyOntologyl)
HdeleteOntology()
add Activityl()
L madifyActivity()
L deleteActivity(}
HyiewHistory)
Hadd ML)
madifyCM()
L deleteCM()
+selSession()
HgetSassion()
+stariDatabaseOperation()

For staff queries, DatabaseManager passes the request objects to
ContentManagerDatabaseModule and AdminDatabaseModule objects. These objects forms
the staff specific queries and manages the returned result sets in a way that it can be send as

xml message.

CoreTech =72 -

CoreAccess Detailed Design Report

6.3. Sequence Diagrams

6.3.1. Search by Attributes

LPDA User PDAGuI | | :PosiionSelegtionteny | | : SearchTypebenu | SearchBytrbutes || : XML QueryHandier || ; WebServiceCalier | | : ResuliSareen

[
<<rreate=> |
|

|
i

|
|
|
|
- |

initialize

|

|
toPositionSelectionMenu

intializeGui |

> actiorPerformed

initializeGui

T
|
|
|
|
|
|
|
|
|
|
|
|

selectOption I
|
|
|

m

I

toSelectionTypeMenu :
|

|

seleciCategorny

L
| :> actionPerformed

I |
loSaarclhByNama |
e — == fom o= '
| initializeGui |
|
enlerﬁ'c.ﬂvilyData
T
|
|
| —I— :> actionPerformed
seql\dDaiaToKMLQuaryHandlér
f——————= tomm e — ————————
| generateXml
T —
: | callService
|
| | parsaXml
i I D ddResult
al Ui
toResultSlcreen
T —— R A — e
| displayResult
| bl
| clickOnToMainMenu L]
L L] I toSearchTypelenu —
B o e B e
inia |

In order to perform a search according to the attributes of the wanted place or activity, PDA
user accesses to the PDAGuUI. When PDAGuI is started, it initializes itself. In this initialization
all of the user interface components are created and their content are organized. After
completing the initialization, PDAGuUI is ready to go to PositionSelectionMenu. To show and
make the necessary preparation, initilizeGui method of PositionSelectionMenu is called. Now
user interface is visible and shows the position selection alternatives to the user. For the details
of position selection please see “4.3.4. Retrieve Position” part. When the user selects an
option and clicks the next button, an ActionListener in PositionSelectionMenu catches this
action and invokes actionPerformed method. In the actionPerformed method the position
information is retrieved and it is sent to PDAGuUi which is the responsible class for coordinating
the user interfaces. Now the system has the position information of the user.

CoreTech -73 -

CoreAccess Detailed Design Report

The next step is the selection of search type. For this purpose, initializeGui method of
SearchTypeMenu is called. Upon receiving this call, SearchTypeMenu makes necessary
initializations and shows the interface to the user. User selects an option; in this case this option
is Search-By-Attributes. This select event is caught. Since the search type is Search-By-
Attributes, toSearchByName method of the PDAGuI is called. This call triggers initializeGui
method call for the SearchByAttributes object. In this method, the arrangements of the contents
of SearchByAttributes menu are completed and the menu is shown to the user in order to get
the attributes of the wanted destination or place. When the user finishes entering the attribute
information, he or she clicks on the search button which invokes the actionPerformed method
of SearchByAttributes class. The gathered information is organized and sent to the PDAGui
class via sendDataToXMLQueryHandler method. PDAGui passes this information to
XMLQueryHandler by invoking its generateXml method. XMLQueryHandler rearranges the
search information in XML format. This new format of search query is sent to
WebServiceCaller by invoking callService method. WebServiceCaller initiates a call to Server
and gets its result. For the details of web service communication please see the part “4.3.7.
Web Service Communication”.

The returned search result is in XML format and should be converted to human understandable
format. Therefore, parseXml method of the XMLQueryHandler is called. As
XMLQueryHandler parses the messages, it invokes the addResult method of ResultScreen. This
method is called multiple times because for each item of the search result addResult is called.
When all of the results are sent to ResultScreen, toResultScreen method of PDAGuI is called. In
fact, we could directly call the displayResult method of ResultScreen instead of indirectly
calling toResultScreen. However, we have chosen the second one for the sake of consistency of
user interface management. PDAGuUI calls the displayResult method of ResultScreen and
ResultScreen shows the result as a list.

In order to perform another query, user clicks on “go to main menu” button. This action
triggers the call of toSearchTypeMenu. When PDAGuUI receives this call, it will invoke
initializeGui method of SearchTypeMenu object. An important point here is that we skipped
choosing the position selection method in the second and next searches in order not to bother
the user with the unnecessary repetition of choosing position selection method. However, if the
user wants, he or she can change the position selection method from the settings menu.

CoreTech -74 -

CoreAccess Detailed Design Report

6.3.2. Search by Category

- PDA User : PDAGUI : it jonMen : SearchTypehlenu : SearchCategary L XML QueryHandles LW i r ResultScreen

I
: <<preate>> |

— Sy

:) Inltialize
|

|
toPositionSglectionMenu

initializeGui :

selectOption

toSelectionTypeMenu

initializeGui

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:> actionPerformed
|
|
|
|

selectCategory

L
| > actionPerformed

1
toSearchByiame

|

|

e ————— T '
initializeGui |

1

|
5elechCategury

-
i > actionPerformed

F———————= T Ce— ===
| generate?(rnl
t t —
: | callService
|
: | parseXml
I ===
h | addResult
toResultStreen
S i AE—— O —
| displayResult
} =]
IclickOnToMair\h.lenu L]
T —
L | toSearchTypeMenu
== e | b kbt I bbbl
initiglize Gui |

| |

Retrieving position information is similar to the one on Search By Attributes. We included it in
the diagram for the completeness of the search.

Now we have the position information (If the position selection method is “via GPS”, then the
position information is continuously updated).

Again similar to the previous section, initializeGui method of SearchTypeMenu is called in
order SearchTypeMenu to prepare itself and show the search type selection menu. In this
sequence user selects Search-By-Category. SearchTypeMenu obtains this choice and calls
toSearchByCategory method of PDAGui which calls initializeGui method of SearchCategory
class. SearchCategory class prepares a menu on which a number of categories are shown to the
user. The user selects one of the options (cinema, theatre, concert hall, sports center). This
information is retrieved by actionPerformed method of the SearchCategory class and is sent to
PDAGui via sendDataToXMLQueryHandler method. PDAGui forwards the category
information to XMLQueryHandler by invoking generateXML method. We preferred sending

CoreTech -75 -

CoreAccess Detailed Design Report

the query indirectly through PDAGuUI because we wanted to preserve the coordinator role of
PDAGuUI so that information flow between user interface and internal part of our system is
easily maintainable. XMLQueryHandler puts the category information into XML format and
passes the data to WebServiceCaller by invoking callService method. WebServiceCaller calls
the web service method of server and returns the result by calling parseXML method of
XMLQueryHandler in order to parse it and retrieve the necessary information.

The steps for forming the result screen are the same as the steps in Search-By-Attributes. We
included it for the completeness of the search.

6.3.3. Search on Map

‘ _PDA User : PDAGUI ‘ KMLQuernHandler ‘ ‘ L WebSenviceCaller

| : PositionSelectionienu

‘ ResultScreen

‘ SearchTypelenu ‘ MapScreen
T

I
: <<create>> |

T
| ' | | i
s o | | : L ! :
: I | : I
> initialize | : : | :
! I | : I
: I | " I
toPositionSelectionMenu : ! | :
|
initializeGui | : I I |
| |
salectOption | I | [
: | I :
| |
! I 1 I
> actionPerformed : I !
' |
toSelectionTypeMenul : | | :
f——————== | |
initializeGui : I I |
| |
selectCategory | | !
— | | |
|
I | I
i - . I
| actionPerformed : |
I i
oSearchByMame | | :
SRR Fom— oo ! !
| initializeGui | | :
| |
seleciCategory | :
i : 1
I ! '
I
| _{ > indicatorPressed : |
| | I
! I | I
. I
| : sendPositioninfoToXMLQueryHandler I
| I
| : genarataXML | :
| | ! I
| | callService : I
| | ! I
| parseXml |
| K———————o !
| addResult I
toResultScreen .
]
& __________________ |— ______ N - -—TT-"===——-
| dlsolalyFlesuIt
L : clickOnToMainMenu]
|
1 +—t
ke | I toMapScreen
T_-_Eiti_aIEe_Gﬁ___l— _______________ T T T
| — T |
I ! I
I ! I
| [|
| : L J

The explanation of retrieving position selection method is skipped. Please refer to “4.3.1.
Search by Attributes” for the explanation.

In this sequence diagram, after the SearchTypeMenu is initialized, the user selects Search-On-
Map option. SearchTypeMenu informs PDAGuI about this request by calling toMapScreen. At
this moment user browses the map by applying zoom-in/zoom-out or scroll down/up/right/lett.
When the user finds the place he is looking for, clicks on the place which will initiate the

CoreTech -76 -

CoreAccess Detailed Design Report

search. The coordinates of the place is sent to XMLQueryHandler with generateXML method.
XMLQueryHandler converts the coordinate information in the XML format defined by the
XSD given in attachment. Then it sends this XML message to WebServiceCaller with
callServiceMethod. Another duty of XMLQueryHandler is to parse the result of the search
query received by WebServiceCaller. As the results are parsed, they are added to ResultScreen.
When the result processing is finished, toResultScreen method of PDAGuI is called to switch to
result menu.

The user can select on of the results from the result list to see it on map. In this case,
ResultScreen invokes toMapScreen method of PDAGui. Then, PDAGuUi will initialize

MapScreen for displaying the result on map by initializeGui method. Upon receiving this call,
MapScreen will arrange the viewed part of the map and display it.

6.3.4. Retrieve Position

In this part, how position information is gathered is explained. There are three ways of
gathering position: from GPS, manual and from map.

6.3.4.1. Via GPS Receiver

FPositionSelectionieny : GPSinterpreter

T !

|
|
> actionParformed

gedlatitude
lattitude C
% ________________
getlongitieda
longitude |
s —

T o
| |
| |
| |

This process is realized automatically transparent to the user when the user makes a search.
PositionSelectionMenu is informed about the position request. Then getLatitude and
getLongitude methods are called respectively.

CoreTech -77 -

CoreAccess Detailed Design Report

6.3.4.2. Via Manually Entering

S PDA LUser : PositionSeleciionMeany
| [
e 1
D actionPerformed
enterLongitute
enterLafitude
pressOKButton

H:_‘; gatlongitude

H:J gail atitude

-

This process is mainly used for testing purposes. The user enters the longitude and latitude
values. These values are assigned to the properties of PositionSelectionMenu for retrieval of
position information later.

6.3.4.3. Via Browsing Map

- PositionSelectionhMenu PDAGuUI MapScreen

|
|
L

actionPerformed

toMapScreen

display

) indicatorPressad
> getXCoordinate
> getlYCoordinale
latiude > calculatel atitudeAndLongitude
- —— i

CoreTech -78 -

CoreAccess Detailed Design Report

When the GPS device is not available, user can select the position on the map. We will also add
a functionality providing users with a text based search option which enables to benefit from
well-known places while searching his/her position.

In order to show map to the user, PositionSelectionMenu invokes toMapScreen method of
PDAGuUi. Then, PDAGuUI calls the display method of MapScreen. After browsing the map, the
user selects a place. The position is obtained by getXCoordinate and getYCoordinate methods
of MapScreen. According to these values, by calling calculateLattitudeAndLongitude
longitudes and latitudes are calculated and sent back to PositionSelectionMenu.

6.3.5. See Detailed Information

L PDAUser PDAGUI ResultScreen - iledn

|
|
|
I
select!tem
[

pre-s.sDeté iledInfoBution

> buttonPressed

displayDetail
|

pressDnBau:J-cBulL":m

toDetailedinfoScreen

> buttonPressed

oResultScraen

displayResult

—————

| T
| |

T

| T

|

|
This sequence diagram describes which calls are performed when the user wants to see the
details of results in the result list. The details includes the name, contact information, address
and comments about the place or activity.

On the ResultScreen user selects an item and clicks on detailed info button. This invokes
buttonPressed method of ResultScreen. ResultScreen sends the information of selected item to
PDAGui with toDetailedInfoScreen. PDAGui forwards this information to DetailedInfoScreen.
When DetailedinfoScreen receives displayDetail call, it performs necessary initializations
according to selected result information and displays them to the user. When the user clicks on
back button in order to see the details of other results or in order to see a result on map,
DetailedInfoScreen calls toResultScreen method of PDAGui. Then PDAGuI will make visible
ResultScreen again.

CoreTech -79 -

CoreAccess Detailed Design Report

6.3.6. See Transportation on Map

‘ L PDAUser ‘ ‘ PDAGuUI ‘ ‘ ResuliScreen | :MapScreen ‘ : PDAMap ‘ : Map\ersionChecker ‘ ‘ LEMLQueryHandler ‘ WebSeniceCaller
T T T T
| | |
| | | |
. | | | | : | !
| : | i - H H
I | I
™ | |
selectltem | |
1]
— | |
pressSee0nMap | 1
| |
| |
| |
buttonPressed 1
|
requestiMap | :
T !
getCumrentDispla: M
—
checkMapVersion
generateXml
callService
parseXmi
setVersion
updateMap
loadMap :
display(map} |
pressCnBackBution
o T i
> buttonPressed | i
|
toResultScreen i |
' Es—pula_yae:ur _________ :
|
|

L
L |

| — |

| 1 |

| 1 |

| 1 |

From the ResultScreen user may want to see the transportation information to a place in the
result list. This transportation information defines the possible paths to the destination by also
indicating the vehicle types available along with their time and cost estimations.

By selecting and clicking on SeeOnMap button, the user initiates the transportation display
process. ResultScreen calls requestMap method of PDAGui with the information of selected
item as parameters. PDAGuI forwards this information to MapScreen and tells it to display the
corresponding map. We will use caching of maps in order to increase the speed. Therefore, we
should consider whether the map available in PDA should be updated or not. This task is
independent of MapScreen. MapScreen just request the map from PDAMap with
getCurrentDisplay method which consults MapVersionChecker for checking the version of the
map. If the version is not sufficient (the map needs update), MapVersionChecker calls
generateXML method of XMLQueryHandler. WebServiceCaller calls the server and returns the
map. The version of the current map updated and displayed to the user.

When the user clicks on back button, PDAGuI is informed with toResultScreen method and
calls displayResult method of ResultScreen. Then, the results available at the beginning will be
shown. Now the user can select another result from the result list for obtaining further details.

CoreTech - 80 -

CoreAccess Detailed Design Report

6.3.7. Web Service Communication

We have built our architecture over web services in order to avoid platform and language
dependence. Thanks to web services, we are also planning to make our software available to
everyone. In this way, with any program supporting web services an application which uses our
server side can be developed. In this section we describe how our client applications access to
the server.

6.3.7.1. PDA Web Service

WabServiceCaller : Vi nicati in

wabSarviceCalled

resultArrived

-

WebServiceCaller calls webServiceCalled method of WebServiceCommunicationPoint with
which resides on server side. The request information which is in XML format is passed as
parameter. WebServiceCommunicationPoint delivers this request to related modules. When the
result arrives, the result is sent back to WebServiceCaller.

6.3.7.2. Administrator Web Service

Adminintarface : Vi miynicati in

webSamnvicaCalled

receiveResponse

L

Admininterface calls webServiceCalled method of WebServiceCommunicationPoint with
which resides on server side. The request details which is in XML format is passed as
parameter. WebServiceCommunicationPoint delivers this request to related modules. When the
result arrives, the result is sent back to WebServiceCaller.

CoreTech -81-

CoreAccess Detailed Design Report

6.3.7.3. Content Manager Web Service

ContentManadgerlntelfzce : i i in

wabServiceCalled

recaivaResponsal)

webServiceCalled method of WebServiceCommunicationPoint which is on server side is called
by ContentManagerinterface invokes. The request details which is in XML format is passed as
parameter. WebServiceCommunicationPoint delivers this request to related modules. When the
result arrives, the result is sent back to WebServiceCaller.

6.3.8. Handle XML

parseXmiRequast

sendResult

Since WebServiceCommunicationPoint receives the request in xml format and sends the result
again in xml format, xml data should be processed. This is achieved by XmlQueryParser.
XmlQueryParser parses the xml data by parseXmlRequest and sends the result of request to
WebServiceCommunicationPoint by sendResult method.

CoreTech -82-

CoreAccess Detailed Design Report

6.3.9. Find Vehicles

XmlQueryParser || :RequestObject ‘Logger :DatabaseManager || :ModeObject || Modelink 2Graph H ShortestPathFinder | | Tansportation (Map ‘ MapManipulator
| =<create>> i | 1 |] | 1 |
. L I | | I | | 1 I I

I | | I | | 1 I]
I | | I | | 1 I I
_
| | I I I 1 I I
5‘|ar | | I I I 1 I I
saveLogs ToFile I ‘ ! ! ! ! !
% n \ I I 1 I I
connectDB ! ! ! ! ! !
L | | | 1 ! 1
makeSgiQuery ! | | | |
| —
<<create>> : : : :
<<greate>> : : : :
inseriNode : : : :
| 1 ! 1
soresies= I 1 I I
| inserLink : : : :
‘ inserionCompleted : : : :
| M create] ! !
I ! s
} T findSortestPath
} T } . bindMapWithNodes
| 11
} 1 } } findAgpropriateTransportationBetweenhode:
|
} | } } bindMapWithNodes
1
}] } } highlight
|
|]
| : } generateXmiResponse L L]
T 1 | T T - T T
I | | I | | 1 |
| | | I | | 1 I an

T
I T
I |
I |
[

In this part, the sequence in server side for finding the vehicles. When XMLQueryParser gets
the request in xml format, it creates RequestObject to be used by other modules. One of these
modules is logger module. RequestObject calls saveLogsToFile method of Logger and Logger
extracts the necessary information and saves the request. The other module which uses
RequestObject is database module. RequestObject first connects to the database via connectDB
method. Then it invokes makeSqlQuery method of DatabaseManager so that necessary sql
queries are created according to the request information. DatabaseManager gets the required
information from database and creates Graph, NodeObject and NodeLink objects. Inserting the
NodeObject and NodeLink objects into Graph is also responsibility of DatabaseManager. In
order to indicate that insertion process is finished, it lastly calls insertionCompleted method of
Graph. Then Graph class constructs a vector map from these links, and also sends the node
related objects to ShortestPathFinder in order it to find the shortest path via the method
findShortestPath. Next, Graph notifies Transportation for finding the appropriate
transportation vehicles. Both Transportation and ShortestPathFinder passes the path and
transportation knowledge to Map object. Lastly, MapManipulator highlights the path to the
destination and calls generateXML method of XMLQueryParser which converts the constituted
objects to XML format.

CoreTech -83 -

CoreAccess Detailed Design Report

6.3.10. Find Results

KmlQueryParser | | RequesiObject Logger ‘DatabaseManager Activity Plags Agtivil reher || :OntologyManager ‘ ‘Sorter ‘
I <<createxs | I | | I I 1 I
L ! | " | I I 1 I

| I | I I 1 I
A 1 | | | | |
starl | | | | 1 |
| 1 | | | 1 |
savelLogsToFile | | | 1 |
n I I 1 I
connectDB | | 1 |
I 1 I 1 I
makeSqlQuery | 1 |
| 0 1 I
werregiess 1 |
1 |
<<greate>> 1 |
1 |
insertActivity : :
T <<greate>> : :
insertPlacs : :
insertionCompleted : :
| A
IoadCJmology{rnathp'lQn}
L findRelateditem
L] |
| | I sortObjects(criteria)
I |
! generateXmiResponse :
I I I
| | |
I | |
I | |
I | I
I I I

Constructing the request objects is the same as in “4.3.9 Find Vehicle”. They are included for
the completeness of the process only.

This time DatabaseManager builds different objects. These are ActivitySearcher, Activity and
Place objects. As Place and Activity objects are created they are inserted into ActivitySearcher
by insertPlace and insetActivity methods respectively. When the creation of the objects is
finished, DatabaseManager calls insertionCompleted method. If the exact match is not found,
ActivitySearcher requests related items by first loading the ontology by loadOntology method
and next calling findRelatedltem method of OntologyManager. According to the new relations
activity search is performed again. Then the results are sent to Sorter class in order it to sort
them according to different criteria such as cost, time, distance etc. Lastly, Sorter class calls
generateXmlResponse method of XMLQueryParser class so that the response objects are
translated into xml form to be send thorough web service.

CoreTech -84 -

CoreAccess Detailed Design Report

6.3.11. Content Manager Database

AmiGueryParses ‘ : RequestObject || ; DatabaseManager | | : ChDatabasebdoduls

T
I
: <=create>> |
1

e

|
|
|
|
|
start |

I
I
I
I
I
I
cannaciDB :
makeSglCueary :

=<oreatess

> stariDatabaseOperation

?eneratexmlﬁespunﬁe

N

-
=T |

I I

I I

I I

Similar to the other processes XMLQueryParser generates RequestObject. RequestObject
initializes itself by start method. RequestObject next calls connectDB and makeSqlQuery
method of DatabaseManager. Then DatabaseManager extracts the information from database
and sends them to CMDatabaseManager. After CMDatabaseManager completes its job, it
calls generateXmlResponse method of XmlQueryParser which performs the conversion
between response objects and xml.

6.3.12. Administrator Database

: BequestObject || : DatabaseManager | _AdminDatabasehodule L AmlCueryParser

T
|
|
|
el

T |

I |

o | |

start | I

I |

connectDBE I |

. | I

makeSglCuery I |

= —

B |

=<greale=> |

I

|

.
stariDatabaseOperation
T neneraleXmliResponse

|
I
|
I

o
|
|
|
|
|
|
|

CoreTech -85-

CoreAccess Detailed Design Report

After RequestObject is created by start method, RequestObject initializes itself. Next it sends
signal to DatabaseManager to connect to database and the parsed data is passed to
DatabaseManager by makeSqlQuery. DatabaseManager sends the extracted data to
CMDatabaseManager for further process of the data. When this process is finished,
generateXmlResponse method is called and XmlQueryParser converts the response objects into
xml format.

CoreTech - 86 -

CoreAccess

Detailed Design Report

6.4. Activity Diagrams

6.4.1. User Activity Diagram

User Interface Module

Activate PDA

Select Position

WebService Module

Handle XML file

J

Call WebService

Manage Database

In this activity diagram, User Interface Module interacts with Webservice Module. PDA user
activates the system with an external force for instance run the application in PDA. Then, user
selects his/her position with one of three selection options which are selection position from
map while zooming in/out and scaling, from GPS device and entering the latitude and

CoreTech

-87 -

CoreAccess Detailed Design Report

longitude manually. After setting position information properly, user passes to the following
screen which is searching. In this phase, user has 3 selection options which are searching by
attributes, searching by category and searching on map. In the first two options, user has to fill
some fields. For instance, if user wants to search an activity according to date, he/she only fills
date field in search by attributes and do the search. However, it is a bit different in searching on
map. In this option, map is directly displayed and user can navigate on that map by zooming
in/out, scaling, etc. When user indicates a point on map and searches for activity places, the
information of the point is collected in an XML file. At this point, WebService Module occurs.
WenService is called and gathered XML data is handled by an XML parser. Parsed objects sent
to the database and manipulated. After relevant processes are done in database manager side,
the results return to the PDA user with the help of WebService. List of items are illustrated on
the PDA screen. In that case, user has two possible options. One of them is picking one item
from the list and seeing the detailed information of selected activity place or activity. The other
one is viewing transportation options for an activity place. From both interfaces, user can return
to the result screen. For a new search, user has to jump to the selection menu from result list.

6.4.2. Web Service Activity Diagram

WebService Module User Interface Module

Display Result

Call Webservice

Manage Database

o

G.-'I nipulate GIS Dala> (&an:h H;:‘ti\-ih) Q_Dg Hislory)

Database

IQE:amla Oua@

Retum Result

Generate XML File

CoreTech - 88 -

CoreAccess Detailed Design Report

The above diagram demonstrates the process on activity and GIS data in server part. This
diagram contains has 3 modules interacted with themselves which are WebService module,
user interface module and database module. The process sequence starts by calling the
webservice. The retrieved information in XML format parsed and relevant data structures are
generated in managing database side. The next step is generating sql queries in order to be sent
to database. In this phase, there are 3 different search queries according to the contents. They
are activity information result returned query, map data result returned query and queries about
history of searches. After formation of the search queries, they are sent to the database in order
to be executed. At the end the result list is packed as an XML file and displayed in the PDA
screen of user.

6.4.3. Administrator and Content Manager Activity Diagram

The following diagram illustrates the admin and content manager. Admin/Content Manager
Interface module and Webservice Module have an interaction between each other. In order to
enter the system, admin and content manager login to the system. After login, a screen for
changing the map, activity place, activity appears. They can fill the text fields on the screen and
send it to the webservice. Since we use webservice, we sent the data in the XML format. After
parsing the received information, database manipulates these data and returns results for
instance activity insertion success. Like the above diagrams this diagram packed the result in
an XML format and sends it to the user interface. Admin and Content Manager can make
different modifications in database.Finally they can exit from the system by logging out.

CoreTech -89 -

CoreAccess Detailed Design Report

Admin/Content Manager Interface Webservice Module
Module

FiHandle XML file

Initialize Web Interface

Call WebSarvice

Manage Database

Fill the Text Fields

i

Display Result

6.5. Collaboration Diagrams

Our application CoreAccess supply the user so many options in finding the appropriate activity
place and activity itself. Therefore, different collaboration diagrams are generated in order to
illustrate the actions and event of the user. Moreover, the system has some signals that wake up
a module. Thus, system functions in an order. In addition to these, system administrator and
content manager can activate some modules. In the following diagrams, the processes and
operations are explained clearly.

CoreTech -90 -

Detailed Design Report

CoreAccess

6.5.1. Search by Attributes

:SearchTypahManu

| :PositionSelectionMenu |

Handler()
-sendDataToXMLOLEY
8 TinitializeGuil) —»

- Screen|) —»
a0toResult () pep————y—

+—29displayl)
:Detalledinfa
4 +
ﬁ%g?
=R &
a 4 Dnfsauonosiesuon dm@'% -y iy
i o {(Jazienius | R %,
s e T 580l e
g = =z % EX q}_",'
§5 g b
[=
] § {
58
T,
o
. & e
g &
[a] ¥
4
.
NO
i)
T
:__J:i R"’f!:b;_.b
ETTES it s,
9%(}[- 5D ey
Toge, EE %"
U Oy & 83
AL
WebServiceCallar

This collaboration diagram illustrates one of the user activities which is searching an activity
with one of the attributes which are the name, place, date, time etc. Before searching, user has
to determine its position via GPS device, manually or via map. After that, user can search type
which are search by attributes, search by category and search activity on map and activate
toSearchByAttributes() method in PDAGui class. Then, detailed search begins. After typing the
attributes, data is sent to the XMLQuery handler class. In there XML file is generated with
relevant information. Subsequent to this, WebSevice is called. Server is responsible for the
tasks between the time sent XML and the time returned results as XML. Returned results are
parsed in XMLQueryHandler class and listed results are seen on the result screen. With the
help of the user external force, toDetailedInfo() method is activated and the interface switch to
the DetailedInfo. User can returned to the result list again and can see the transportation options
and the place of activity on map by calling requestMap() method in PDAGui. The
MapVersionChecker is activated before viewing the map on the pda screen. If there is not
coherence between current map version in the pda and last updated one, new map is requested
from server by calling callService method. At the end of the processes done on server, new

CoreTech -91 -

Detailed Design Report

CoreAccess
map is gathered and illustrated on the pda screen. Moreover, for multilingualism user has

option for selecting language.

6.5.2. Search by Category

!

PositionSelectionMenu |
T '\LP. =
°“%9§® s
m
."%)9 %‘ ﬂﬂa{\d\g‘in
- ,.,
[Dasiesirc | - R X Bt i
Q'g-_,: l:‘.l'e.‘5 ricd ﬁa A
OB
%&yﬁ ’3{) “— M? .’_ﬁﬁeﬂc‘ 1_\‘?!
POAGUI &
'Q@;
ﬂa‘s&.’gpw
o T
=R
2 RO
o & Doz i
. ﬁ%aﬂ L 'ﬁg’% xS
hﬁﬁﬁ = = %d‘% %
K 5 5§ %A%ﬁ%’
® g3 EX
= .o) ol
MapScraan 2 F p
o @
55
¥
v
te
=, &
ggg sz-acdResttl) * [ReciScrean
=
NG
a HXMLQuenyHandler
K
v s ® Q.
23 (XN
o, 55 i
U @, S EJ
o ol

‘WebServiceCallar
MapWarsionChecker

This diagram illustrates one of the types for searching activity which is based on the category
which are cinema, theatre, concert hall, sport center and exhibition hall. Data flow is like the
above. One important difference is that user does not know about a specific activity. Instead of

SearchByAttributes class, SearchCategory class is put in the diagram.

-9) -

CoreTech

CoreAccess Detailed Design Report

6.5.3. Search on Map

17 indicatorPressed() —w

PositionSelectionMenu I
SearchTypehleny
*
‘MapSerean % L .
2% &
=z 2 @9‘?
= 325 o
D == *
> 5 ¥ Y '(% 3
:c?'b g -'b"?q;r%% & aﬂa\s‘f“{k Langua anager
&;‘)
il - PDAGUI
PDAMap :Detailedinfo
% '\‘_., v 25idisplay]) —
T E E% K%W:PRESUITSCMEH{}
L3 % RN
ag £ %%
BE i 4+ (InuepuogasEguonIsogo); 9 o
£33 Z wpljezpeiL %%
2 5 = = '%0%{)@
g Y 5 "
= &
o
&
=]
g
& ResultScreen
s
oo
'?-“'?ﬁd
L 7 bi]
¥MLQueryHandler iz eﬂ-'ﬂa.a,.»&
r&@‘ﬁ,’fﬁ -
WabServiceCaller

This diagram demonstrates the last type of search which is search on map. It has same data
flow. However, the accessing order of map is different. When user selects a type in
SearchTypeMenu class, MapScreen class is activated. User can navigate and make a search on
the map by zooming in/out, scaling. When indicatorPressed() method is activated by an
external force, it sends information to the XMLQueryHandler. XML file is generated and sent
to the server. Webservice is called. The following step is displaying the result list on the screen.
Therefore addResult() method in ResultScreen class and toResultScreen() method in PDAGui
is activated. After listing, seeing detailed info is same as above.

CoreTech -93-

Detailed Design Report

CoreAccess

6.5.4. Transportation Manipulation on Server Part

A:starlf) —»
3i<<creates> —w
L; .\.\f XML CueryParser FeaussiObiog
gt "
2 'i:g 5
w E q\:_ _lé
%% §& M “
E @ ™ :
¥ o<
S ® f & 5 é
® B :
2% 55? § 5 :
= 1 :
& :, :
h o 3 :
§ £
WebSeniceCommunicationPoint .,,% :
-
%
=
5
)
=
&
Map
7
L'e]
t B
=
7 =
§ :
£
=
:
% -
§ ShortestPathFinder .
g q-—13'.iiﬂd$hmtastl'—‘ h
‘- sl
weeﬂ\“ﬁd
e
Taﬂﬁﬂolﬁﬁ

This part of application is about the transportation manipulation in webservice side. When
webservice is called by the pda user, WebServiceCaller class initiates the processes in server
part. Received XML file is parsed in XMLQueryParser and RequestObject which is an activity
is created. After that, search queries of coming objects are generated and sent to the database.
While database searches for query results, it generates nodeobjects and nodelinks in order to
find shortest path and distance between activity place and user. At the end of this process,
graph of the paths is obtained. With the help of the extracted graph, shortest path and
transportation options are found. Found paths are matched in Map class and MapManipulator
highlight the indicated paths. At the end of map manipulation, this map data is packed in
XMLQueryParser as XML file and sent to the user with WebServiceCommunicationPoint. The
result list is received by the pda user. Finally, CoreAccess holds some statistics about search

items for feedback.

-94 -

CoreTech

CoreAccess Detailed Design Report

6.5.5. Activity and Place on Server Part

d:start() —w

Ji==creale>> —p

1 ; ? AML CuaryParser ‘ReguestObject
EL 5
%2 g
%2 &
!
= - a\}_
23 5é
= FE
L Yy

|W9h$erulcaﬂomunlcallnnpnlm

(Jasundsay T xXeIEEuaEg L —e

OntologyManager

The above diagram represents the requested activity manipulation in server side. The coming
XML file from Pda wuser to WebServicecCommunicationPoint class sent to the
XMLQueryParser. The file is parsed and a new RequestObject is created. New query for
searching activity is generated with this object. The relevant activities with their places are
found and listed. Moreover, if result list is empty, CoreAccess consults to the ontology
reasoner in order to serve alternative choices to user. After all searches are done the activities
are sorted according to the some attributes such as path distance, alphabetic order, etc.
Moreover our system keeps some logs about the searched activities and items for feedback

CoreTech -95-

CoreAccess Detailed Design Report

6.5.6. Administrator and Content Manager Interface Communication

Sostari(} —w»

sAdminInterface

| ContentManagerinterface |

4reccreate=> —p

4 c<BERNEHE

‘EMDatabaseModule

«— (pswdwoguoneledpeseqeieps 4+ {)p=ig|dwonuonelsd DeseqeElERG

In this collaboration diagram, the interaction between content manager and admin is
demonstrated. Content manager and admin communicate with the system via the
ContentManegerInterface and Adminlnterface classes. The entered data to the interfaces are
sent to the server as an XML file. In this phase, XMLQueryParser class parses the file and
generates a request object according to the received information. After the queries are formed
according to the generated object, queries are sent to the database and manipulated. At the end,
the results are obtained and form a return XML file in XMLQueryParser. The file is sent to the
user interfaces of the content manager and admin via webservice.

7. SYNTAX DEFINITION

7.1. XML File Representation

In this part, we have defined the structure of the XML messages that will be used in providing
the communication between server and the other clients. Our design lies on web service
technology so we used XML in order to make processes communicate with each other. The
message syntax is composed of User Requests, Administrator Requests, Content Manager
Requests, and Responses for Users, Administrators and Content Managers. Details of the
message syntax can be found below:

CoreTech -96 -

CoreAccess Detailed Design Report

<?xml version="1.0" standalone="yes"?>
<MessagingSyntax>

<l-- USER REQUESTS -->

<SearchlLocationRequest name= currentPosition=
destinationPosition=""">

</SearchLocationRequest>

map=

<SearchCategoryRequest name= currentPosition=

map=""""></SearchCategoryRequest>

<TransportationAlternativesRequest fromPos= toPos=

map="""></TransportationAlternativesRequest>

<MapRequest name= zoomLevel= position="""></MapRequest>

<DistanceCalculationRequest map= locl=

loc2="""></DistanceCalculationRequest>

<l-- ADMIN REQUESTS -->
<LoginRequest type="CM | A" name=

passwd=""'> </LoginRequest>

<ViewActivityListRequest session="""></ViewActivityListRequest>

<ModifyActivityRequest name= mapName= session=""">
<AddActivity>activityData</AddActivity>
<DeleteActivity></DeleteActivity>
<RenameActivity newName="'"></RenameActivity>
<ModifyActivityDescription>
<DeleteDescription descName="""></DeleteDescription>
<UpdateDescription newDescp="""></UpdateDescription>
<AddDescription newDescp=""'></AddDescription>
</ModifyActivityDescription>
</ModifyActivityRequest>

<ViewMapListRequest session="""></ViewMapListRequest>

<ModifyMapRequest name=""" session=""">
<UploadMap>mapData</UploadMap>
<DeleteMap></DeleteMap>

<ModifyNode name=""">
<AddNode>nodeData</AddNode>
<DeleteNode></DeleteNode>
<RenameNode newName=""'"></RenameNode>
</ModifyNode>
</ModifyMapRequest>

<ViewPlaceListRequest session=""'></ViewPlacelListRequest>

<ModifyPlaceRequest name= mapName= session=""">
<UploadPlace>mapData</UploadPlace>
<DeletePlace></DeletePlace>

<ModifyPlace newName="""></ModifyPlace>

</ModifyPlaceRequest>

CoreTech -97 -

CoreAccess Detailed Design Report

<ViewVehicleListRequest session=""></ViewVehicleListRequest>

<ModifyVehicleRequest name= mapName= session=""">
<AddVehicle>vehicleData</AddVehicle>
<DeleteVehicle></DeleteVehicle>

<RenameVehicle newName=""'></RenameVehicle>

</ModifyVehicleRequest>

<ViewOntologyListRequest session="""></ViewOntologyListRequest>

<ModifyOntologyRequest name= mapName= session=""">
<AddOntology>ontologyData</AddOntology>
<DeleteOntology></DeleteOntology>
<UpdateOntology>ontologyData</UpdateOntology>
</ModifyOntologyRequest>

<ViewCMListRequest session=""'></ViewCMListRequest>
<ViewCMStatisticsRequest session="""></ViewCMStatisticsRequest>

<ModifyCMRequest name=""' session=""">
<AddCM> CMDATA AS XML </AddCMm>
<DeleteCM></DeleteCM>
<UpdateCM> CMDATA AS XML </UpdateCM>
</Modi fyCMRequest>

<MonitorRequest>
<UserLog></UserLog>
<ActivitylLog></ActivitylLog>
<ActivityPlacelLog></ActivityPlacelLog>
<CategorylLog></CategorylLog>
</MonitorRequest>

<I-- CONTENT MANAGER REQUESTS -->
<LoginRequest type="'CM" name="" passwd=

> </LoginRequest>

<ModifyActivityRequest name= mapName= session=""">
<AddActivity>nodeData</AddActivity>
<DeleteActivity></DeleteActivity>
<RenameActivity newName=""'></RenameActivity>
<ModifyActivityDescription>
<DeleteDescription descName="""></DeleteDescription>
<UpdateDescription newDescp="""></UpdateDescription>
<AddDescription newDescp=""'></AddDescription>
</ModifyActivityDescription>
</ModifyActivityRequest>

<ModifyActivityPlaceRequest name= mapName= session=""">
<UpdatePhoneNumber phone="""></UpdatePhoneNumber>
<UpdateAddress address="""></UpdateAddress>
<UpdateEmail email="""></UpdateEmail>

</ModifyActivityPlaceRequest>

CoreTech -98 -

CoreAccess Detailed Design Report

<I-- RESPONSE FOR USERS -->

<SearchlLocationResponse>

<Place name=""" type= phone=
<Address>address</Address>
<Path color=""">

nodeL istSeperatedByCommas

</Path>
<DrawPoint langitude=
<Distance type=""" quantity=

</Place>

email= currentPosition=""">

latitude="" color=""></DrawPoint>

""'></Distance>

</SearchLocationResponse>

<SearchCategoryResponse name= currentPosition="">
<Categorylnfo name=""">
<Place name=""" type=""" phone=
<Address>address</Address>
<Path color=""">
nodeListSeperatedByCommas

</Path>

<DrawPoint langitude="" latitude="""
color="""></DrawPoint>

email=""" position=""">

<Distance type=""" quantity=""'></Distance>
</Place>
<Activity name=""" type=""" time=""" date=""">

<descr>descr</descr>
</Activity>
</Categorylnfo>

</SearchCategoryResponse>

<TransportationAlternativesResponse fromPos=""" toPos=""">

<VehicleList>
<Vehicle name=

(LT time:ull type:ull fromPOS:"" toPOS:IIII min:Illl

cost=""">
<Path color=""">
nodeListSeperatedByCommas
</Path>
<Distance type=

</Vehicle>

quantity=""'></Distance>

</VehicleList>

</TransportationAlternativesResponse>

<MapResponse name= zoomLevel=
<MapData>mapdata</MapData>
</MapResponse>

position=""">

<I-- RESPONSE FOR ADMIN -->
<LoginResponse type=""CM | A" isSuccessful=
""">message</LoginResponse>

session=

<ViewActivityListResponse isSuccessful=""">

CoreTech -99 -

CoreAccess Detailed Design Report

phone=

cost=""">

<Activity name="" location=""" type=""" address=""" date=""" time=""
>description</Activity>

</ViewActivityListResponse>

<ModifyActivityResponse name= isSuccessful=""">
message

</ModifyActivityResponse>

<ViewMapListResponse isSuccessful="">
<MapData name=""" zoomLevel=""">mapdata</MapData>
</ViewMapListResponse>

<ModifyMapResponse name= isSuccessful=""">
message

</Modi fyMapResponse>

<ViewPlacelListResponse isSuccessful=""">

<Place name=""" type= phone= email=
<Address>address</Address>
<Path color=""">

nodeListSeperatedByCommas

</Path>
<DrawPoint langitude="" latitude=""" color="""></DrawPoint>
<Distance type=""' quantity=""'></Distance>

</Place>

</ViewPlaceListResponse>

destinationPosition=""">

<ModifyPlaceResponse isSuccessful=""">
message
</ModifyPlaceResponse>

<ViewVehiclelListResponse isSuccessful=""">
<Vehicle name="" time="" type="" fromPos=

toPos= min=
<Path color=""">
nodeListSeperatedByCommas
</Path>
<Distance type=
</Vehicle>

</ViewVehicleListResponse>

quantity=""'></Distance>

<ModifyVehicleResponse isSuccessful=""">
message
</ModifyVehicleResponse>

<ViewOntologyListResponse isSuccessful=""">
<Ontology name="" location=""">ontology</Ontology>

</ViewOntologyListResponse>

<ModifyOntologyResponse isSuccessful=""">
message
</ModifyOntologyResponse>

CoreTech

- 100 -

CoreAccess

Detailed Design Report

company=

session=

phone=

</Messag

<ViewCMListResponse isSuccessful=""">
<CM name=""" passwd=""" email=
regDay="""/>

phone=

</ViewCMListResponse>

<ViewCMStatisticsResponse isSuccessful=""">
<Action name=""" query=""'" cmlD="""></Action>

</ViewCMStatisticsResponse>

<ModifyCMResponse isSuccessful=""">
message
</Modi fyCMResponse>

<MonitorResponse isSuccessful=""">
<UserLog>log</UserlLog>
;AétivityLog>Iog</ActivityLog>
;AétivityPIaceLog>Iog</ActivityPIaceLog>
;éétegoryLog>Iog</CategoryLog>

</MonitorResponse>

<l-- RESPONSE FOR CONTENT MANAGERS -->
<LoginResponse type=""CM | A"
"""">message</LoginResponse>

<ViewActivityListResponse isSuccessful=""">
<Activity name="" location= type=
>description</Activity>

</ViewActivityListResponse>

<ModifyActivityResponse isSuccessful="">
message
</ModifyActivityResponse>

<ModifyActivityPlaceResponse isSuccessful=""">

message
</ModifyActivityPlaceResponse>

ingSyntax>

7.2. XSD of the System

<?xml ve
<xs:sche

elementFormDefault="qualified"

instance

rsion="1.0" encoding="UTF-8"7?>

ma xmIns:xs=""http://www.w3.
xmIns:xsi="http://www_w3.

">

address=""" date=""" time=

address=""" id=""

isSuccessful=

org/2001/XMLSchema"*
org/2001/XMLSchema-

CoreTech

- 101 -

CoreAccess Detailed Design Report

<xXs:import namespace=""http://www.w3.0rg/2001/XMLSchema-instance"
schemalocation=""xsi .xsd"/>
<xs:element name="SearchLocationRequest'>
<xs:complexType>
<xs:attribute name='"'currentPosition” use="'required'/>
<xs:attribute name="'destinationPosition" use="required'/>
<xs:attribute name="map' use="required"/>
<xs:attribute name="name'" use="required'/>
</xs:complexType>
</xs:element>
<xs:element name="SearchCategoryRequest'>
<xs:complexType>
<xs:attribute name="currentPosition”™ use="‘required'/>
<xs:attribute name="map" use="required"/>
<xs:attribute name="name" use="‘required"/>
</xs:complexType>
</xs:element>
<xs:element name=""TransportationAlternativesRequest'>
<xs:complexType>
<xs:attribute name="fromPos" use="'required'/>
<xs:attribute name="map" use="required"/>
<xs:attribute name="toPos" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""MapRequest''>
<xs:complexType>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name="position' use="required"/>
<xs:attribute name='"zoomLevel" use="required'/>
</xs:complexType>
</xs:element>
<xs:element name="DistanceCalculationRequest'>
<xs:complexType>
<xs:attribute name="locl" use="required'/>
<xs:attribute name="loc2" use="'required"/>
<xs:attribute name="map" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="LoginRequest">
<xs:complexType>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name="passwd' use="required'/>
<xs:attribute name="type' use="required'/>
</xs:complexType>
</xs:element>
<xs:element name="ModifyActivityRequest'>
<xs:complexType>
<xs:sequence>
<xs:element ref="AddActivity'/>
<xs:element ref="DeleteActivity'/>
<xs:element ref="RenameActivity'/>
<xs:element ref="ModifyActivityDescription'/>
</xs:sequence>
<xs:attribute name="mapName"™ use="'required'/>
<xs:attribute name="name" use="'required"/>
<xs:attribute name='"'session" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""AddActivity" type="'xs:NCName"/>
<xs:element name="DeleteActivity'>
<xs:complexType/>

CoreTech -102 -

CoreAccess Detailed Design Report

</xs:element>
<xs:element name="RenameActivity'>
<xs:complexType>
<xs:attribute name="newName"™ use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyActivityDescription">
<xs:complexType>
<Xs:sequence>
<xs:element ref="DeleteDescription'/>
<xs:element ref="UpdateDescription'/>
<xs:element ref="AddDescription'/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name=""DeleteDescription’>
<xs:complexType>
<xs:attribute name="‘descName' use="required"/>
</xs:complexType>
</xs:element>
<xs:element name=""UpdateDescription'>
<xs:complexType>
<xs:attribute name="newDescp' use="required"/>
</xs:complexType>
</xs:element>
<xs:element name=""AddDescription'>
<xs:complexType>
<xs:attribute name="newDescp' use="required"/>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyCMRequest"'>
<xs:complexType>
<Xs:sequence>
<xs:element ref="AddCM"/>
<xs:element ref="DeleteCM"/>
<xs:element ref="UpdateCM"/>
</Xs:sequence>
<xs:attribute name="name' use="required'/>
<xs:attribute name=''session”™ use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name=""AddCM" type="'xs:string'/>
<xs:element name="DeleteCM">
<xs:complexType/>
</xs:element>
<xs:element name=""UpdateCM" type="'xs:string"/>
<xs:element name="ModifyMapRequest''>
<xs:complexType>
<Xs:sequence>
<xs:element ref="UploadMap"'/>
<xs:element ref="DeleteMap'/>
<xs:element ref="ModifyNode"/>
</xs:sequence>
<xs:attribute name="name' use="required'/>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="UploadMap" type='"'xs:NCName'/>
<xs:element name="DeleteMap''>
<xs:complexType/>
</xs:element>

CoreTech -103 -

CoreAccess Detailed Design Report

<xs:element name=""ModifyNode'>
<xs:complexType>
<XS:sequence>
<xs:element ref="AddNode'/>
<xs:element ref="DeleteNode"/>
<xs:element ref="RenameNode"/>
</Xs:sequence>
<xs:attribute name="name'" use="required'/>
</xs:complexType>
</xs:element>
<xs:element name=""AddNode" type=''xs:NCName'/>
<xs:element name=""DeleteNode'>
<xs:complexType/>
</xs:element>
<xs:element name="‘RenameNode''>
<xs:complexType>
<xs:attribute name="newName"™ use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyOntologyRequest'>
<xs:complexType>
<Xs:sequence>
<xs:element ref="AddOntology"/>
<xs:element ref="DeleteOntology'/>
<xs:element ref="UpdateOntology'/>
</xs:sequence>
<xs:attribute name="mapName"™ use="‘required'/>
<xs:attribute name="name" use="required'/>
<xs:attribute name='"'session”™ use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="*AddOntology" type="'xs:NCName"/>
<xs:element name="DeleteOntology'>
<xs:complexType/>
</xs:element>
<xs:element name=""UpdateOntology" type="Xxs:NCName'/>
<xs:element name=""ModifyPlaceRequest'>
<xs:complexType>
<Xs:sequence>
<xs:element ref="UploadPlace"/>
<xs:element ref="DeletePlace"/>
<xs:element ref="ModifyPlace"/>
</xs:sequence>
<xs:attribute name=""mapName"™ use="'required'/>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name='"'session" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""UploadPlace" type=""xs:NCName"/>
<xs:element name=""DeletePlace'>
<xs:complexType/>
</xs:element>
<xs:element name="ModifyPlace'>
<xs:complexType>
<xs:attribute name="newName' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ModifyVehicleRequest">
<xs:complexType>
<Xs:sequence>
<xs:element ref="AddVehicle"/>

CoreTech -104 -

CoreAccess Detailed Design Report

<xs:element ref="DeleteVehicle"/>
<xs:element ref="RenameVehicle"/>
</Xs:sequence>
<xs:attribute name=""mapName"™ use="'required'/>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name='"'session" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""AddVehicle" type="xs:NCName'/>
<xs:element name="DeleteVehicle">
<xs:complexType/>
</xs:element>
<xs:element name="RenameVehicle'>
<xs:complexType>
<xs:attribute name="newName' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="MonitorRequest'>
<xs:complexType>
<XS:sequence>
<xs:element ref="UserlLog'/>
<xs:element ref="ActivitylLog"'/>
<xs:element ref="ActivityPlacelog"/>
<xs:element ref="CategorylLog"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ViewActivityListRequest'>
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name=""ViewCMListRequest">
<xs:complexType>
<xs:attribute name=''session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewCMStatisticsRequest'>
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewMapListRequest'>
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewOntologyListRequest'>
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewPlacelListRequest">
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewVehicleListRequest'>
<xs:complexType>
<xs:attribute name='"'session" use="'required'/>
</xs:complexType>

CoreTech - 105 -

CoreAccess Detailed Design Report

</xs:element>
<xs:element name=""ModifyActivityPlaceRequest'>
<xs:complexType>
<Xs:sequence>
<xs:element ref="UpdatePhoneNumber'/>
<xs:element ref="UpdateAddress"/>
<xs:element ref="UpdateEmail"/>
</Xs:sequence>
<xs:attribute name="mapName"™ use="'required'/>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name='"'session" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""UpdatePhoneNumber">
<xs:complexType>
<xs:attribute name="phone" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""UpdateAddress'>
<xs:complexType>
<xs:attribute name="address" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="UpdateEmail'>
<xs:complexType>
<xs:attribute name="email" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="SearchLocationResponse''>
<xs:complexType mixed=""true'>
<XS:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded"™ ref="Place'/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="'SearchCategoryResponse''>
<xs:complexType mixed=""true'>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded" ref="Categorylnfo'/>
</xs:sequence>
<xs:attribute name="currentPosition” use="‘required'/>
<xs:attribute name="name" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="'Categorylnfo">
<xs:complexType mixed=""true'>
<xs:choice minOccurs="0" maxOccurs="unbounded'>
<xs:element ref="Activity"/>
<xs:element ref="Place"/>
</xs:choice>
<xs:attribute name="name" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""TransportationAlternativesResponse'>
<xs:complexType mixed=""true">
<XS:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded" ref="VehicleList"/>
</xs:sequence>
<xs:attribute name="fromPos" use="'required'/>
<xs:attribute name="toPos" use="‘required'/>
</xs:complexType>

CoreTech - 106 -

CoreAccess Detailed Design Report

</xs:element>
<xs:element name=""VehicleList">
<xs:complexType mixed=""true'>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded” ref="Vehicle"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name=""MapResponse''>
<xs:complexType>
<xs:complexContent>
<xs:extension base=""MapData''>
<xs:attribute name="name'" use="‘required'/>
<xs:attribute name="position' use="required"/>
<xs:attribute name='zoomLevel" use="required'/>
</Xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="LoginResponse'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="'xs:NCName''>
<xs:attribute name="isSuccessful' use="'required'/>
<xs:attribute name='"'session" use="'required'/>
<xs:attribute name="type'" use="required'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyActivityResponse''>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful' use="'required'/>
<xs:attribute name="name"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyCMResponse'">
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful' use="'required'/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyMapResponse"'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful' use="'required'/>
<xs:attribute name="name" use="‘required'/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""ModifyOntologyResponse''>
<xs:complexType>

CoreTech -107 -

CoreAccess Detailed Design Report

<xs:simpleContent>
<xs:extension base="'xs:NCName''>
<xs:attribute name="isSuccessful’ use="‘required'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ModifyPlaceResponse'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful’ use="‘required'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ModifyVehicleResponse'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful' use="‘required'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""MonitorResponse"'>
<xs:complexType mixed=""true'>
<xs:choice minOccurs="0" maxOccurs="unbounded'>
<xs:element ref="ActivitylLog"/>
<xs:element ref="ActivityPlacelLog"/>
<xs:element ref="CategorylLog"/>
<xs:element ref="UserLog"/>
</xs:choice>
<xs:attribute name="isSuccessful' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name=""ViewActivityListResponse'>
<xs:complexType mixed=""true'>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="Activity"'/>
</xs:sequence>
<xs:attribute name="isSuccessful’ use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name=""ViewCMListResponse'>
<xs:complexType mixed=""true'>
<XSs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="CM"/>
</xXs:sequence>
<xs:attribute name="isSuccessful' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name=""CM">
<xs:complexType>
<xs:attribute name="address" use="'required'/>
<xs:attribute name="'company" use="‘required'/>
<xs:attribute name="email" use="‘required'/>
<xs:attribute name="id" use="'required'/>
<xs:attribute name="name' use="required'/>
<xs:attribute name="passwd' use="‘required'/>
<xs:attribute name="phone"™ use="‘required'/>

CoreTech - 108 -

CoreAccess Detailed Design Report

<xs:attribute name="regDay' use="‘required"/>
</xs:complexType>
</xs:element>
<xs:element name="ViewCMStatisticsResponse'>
<xs:complexType mixed=""true'>
<XS:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded”™ ref="Action"/>
</Xs:sequence>
<xs:attribute name="isSuccessful' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="Action’>
<xs:complexType>
<xs:attribute name="cmID" use="required'/>
<xs:attribute name="name" use="‘required"/>
<xs:attribute name="query" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewMapListResponse'>
<xs:complexType>
<xs:complexContent>
<xs:extension base="MapData''>
<xs:attribute name="isSuccessful’ use="‘required'/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name=""ViewOntologyListResponse'>
<xs:complexType mixed=""true'>
<XS:sequence>
<xs:element minOccurs=""0" maxOccurs="unbounded" ref="0Ontology"/>
</Xs:sequence>
<xs:attribute name="isSuccessful' use="'required'/>
</xs:complexType>
</xs:element>
<xs:element name="Ontology'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="location" use="required"/>
<xs:attribute name="name" use="‘required'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ViewPlaceListResponse'>
<xs:complexType mixed=""true'>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded" ref="Place'/>
</xs:sequence>
<xs:attribute name="isSuccessful' use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="ViewVehicleListResponse">
<xs:complexType mixed=""true">
<XS:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded” ref="Vehicle"/>
</xs:sequence>
<xs:attribute name="isSuccessful' use="required'/>
</xs:complexType>
</xs:element>

CoreTech - 109 -

CoreAccess Detailed Design Report

<xs:element name=""ModifyActivityPlaceResponse'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="isSuccessful' use="'required'/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name=""UserLog" type=''xs:string'/>
<xs:element name="ActivitylLog" type="'xs:string"/>
<xs:element name="ActivityPlacelLog"” type="'xs:string"/>
<xs:element name="CategorylLog" type=''xs:string"/>
<xs:element name="Place'>
<xs:complexType>
<XS:sequence>
<xs:element ref="Address'/>
<xs:element ref="Path"/>
<xs:element ref="DrawPoint"/>
<xs:element ref="Distance'/>
</xs:sequence>
<xs:attribute name="currentPosition"/>
<xs:attribute name="destinationPosition"/>
<xs:attribute name="email" use="'required'/>
<xs:attribute name="name" use="‘required"/>
<xs:attribute name="phone"™ use="‘required'/>
<xs:attribute name="position'/>
<xs:attribute name="type'" use="required'/>
</xs:complexType>
</xs:element>
<xs:element name="'Address" type='"xs:NCName'/>
<xs:element name="DrawPoint''>
<xs:complexType>
<xs:attribute name="color"™ use="required'/>
<xs:attribute name="langitude'" use="required"/>
<xs:attribute name="latitude" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Activity'>
<xs:complexType mixed=""true'>
<XS:sequence>
<xs:element minOccurs="0" maxOccurs=""unbounded" ref="descr'/>
</xs:sequence>
<xs:attribute name="address"/>
<xs:attribute name='"date" use="‘required'/>
<xs:attribute name="location"/>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name='"phone"/>
<xs:attribute name="time" use="required'/>
<xs:attribute name=""type' use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="descr' type="xs:NCName'/>
<xs:element name="Vehicle">
<xs:complexType>
<XS:sequence>
<xs:element ref="Path"/>
<xs:element ref="Distance"/>
</xs:sequence>
<xs:attribute name='"cost" use="‘required'/>
<xs:attribute name="fromPos" use="‘required'/>

CoreTech -110 -

CoreAccess Detailed Design Report

<xs:attribute name="min" use="required"/>
<xs:attribute name="name" use="‘required'/>
<xs:attribute name="time" use="required'/>
<xs:attribute name="toPos" use="‘required'/>
<xs:attribute name='"type' use="required"/>
</xs:complexType>
</xs:element>
<xs:complexType name="MapData'>
<Xs:sequence>
<xs:element ref="MapData'/>
</xs:sequence>
</xs:complexType>
<xs:element name="MapData'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=""xs:NCName''>
<xs:attribute name="name'/>
<xs:attribute name="zoomLevel'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="'Path">
<xs:complexType mixed=""true'>
<xs:attribute name="color" use="‘required'/>
</xs:complexType>
</xs:element>
<xs:element name="Distance'>
<xs:complexType>
<xs:attribute name="'quantity' use="required"/>
<xs:attribute name="type" use="required'/>
</xs:complexType>
</xs:element>
</xs:schema>

8. CONCLUSION

Preparing the complete design report of CoreAccess was a very profitable milestone for
CoreTech. Designing the project with several diagrams in the initial design helped us with
making our minds more clear about project. Then in the complete design, we have prepared the
graphical user interfaces of our project. Moreover, we have explained the diagrams clearly. As
a result, we believe we did good work by forming the complete design report and we will have
the benefit of it soon.

9. APPENDIX
9.1. Updated Gantt Chart

Updated Gantt Chart can be found at the next page.

CoreTech -111 -

=}

Task Name Duration Start Finigh

]
vember 2005 [December 2005 [January 2006 [February 2008 [March 2008 [April 2008 [May 2008 [Juy
a 40710131619222528010407/101316192225283103060912151821242730020508111417202326010407101 316192225283 1030609121518212427300306091215182 124273002
1 Demo Preparation 69 days Mon 07.11.06 | Tue 17.01.06 | P vy
2 E Example Uzer interface that runz on the PDA emulaters 10 days Mon 07.11.05| Wed 16.11.05
3 [EC] Research on GIS 20 days Mon 14.11.05| Sat03.12.05
4 E Research on vector maps 20 days Mon 14.11.05| Sat03.12.05
5 E Research on entelogy (OWL, OWLS, OWL instance) 20 days Wed 16.11.05 Mon 05.12.05
[E Running a sample program on the real POA 4 days Wed 07.12.05 Sat10.12.05
7 E Studying tutorialz on Protege 12 days Thu 08.12.05| Mon 19.12.05
g E Study on web services 10 days Tue 27.12.05| Thu 05.01.06
9 E Implementation of a zimple webservice caller 5 days Sun 08.01.06| Thu 12.01.06
10 [EC] Developing user interfaces of PDA User S days Sun 281205 Thu28.12.05
11 Adding links between user interfaces 4 days Fri30.12.05| Mon 02.01.06
12 Prototype of Prototype 6 days Sun 01.01.06 Fri 06.01.06
13 E Studying on documentation of TerraServer 3 days Sun 01.01.08| Tue 03.01.08
14 E Calling an arbitrary method of TerraServer 2 days Mon 02.01.08 | Tue 03.01.06
15 E Improving the prototype by calling a sequence of mel 2 days Wed 04.01.06 Thu 05.01.06
16 E Implementing zoom functionality 2 days Thu 05.01.06 Fri 06.01.06
17 Implementing Basic Browsing for Map on PDA & days Sun 08.01.06 Tue 17.01.06
18 E Adding navigation functionality 3 days Sun 08.01.06| Tue 10.01.08
19 E Adding =cale functionality 2 days Wed 11.01.06 | Thu 12.01.06
20 [EC] Demo Integration 3 days Fri13.01.08 | Tue17.01.08
21 Milestone 0 days Tue 17.04.06 | Tue 17.01.06 17.01
22 Detailed Design Report 32 days Wed 07.12.05 Sun 08.01.06
23 E Reviewing Intial Dezign 4 days Wed 07.12.05 Sat10.12.05
24 E Drawing Adminiztrator Interface 5 days Tue 13.12.05| Sat17.12.05
25 E Drawing Content Manager Interface 5 days Tue 13.12.05| Sat17.12.05
26 E Checking & Updating UML Diagrams 3 days Wed 28.12.05 Fri30.12.05]
27 E Checking & Updating Data Modelz 3 days Wed 28.12.05 Fri30.12.05]
28 [EC] Checking & Updating Flow Models 3 days Wed 28.12.05 Fri30.12.05 B
29 E Forming the complete report 4 days Wed 04.01.06 Sun 08.01.06
30 E Milestone 0 days Sun 08.01.06| Sun 08.01.08
31 Management of the Project 90 days Thu 02.02.06 Fri 26.05.06
iz E Updating Web Page 50 days Thu 02.02.06 Fri 26.05.06
33 [EC] Adding Recent Reports 80 days Thu 02.02.08 Fri 28.05.06
34 E Configuration Management and Development Plan 22 days Wed 08.03.06 Thu 06.04.06
35 E Test Plan Specification 28 days Fri24.03.06 Fri2g8.04.06
36 Development of the Project 101 days Tue 24.01.06 Wed 31.05.06
ar Implementation of Modules 80 days Wed 25.01.06 Fri 05.05.06
38 GPS Module Implementation 14 days Thu 16.02.06 Sat 04.03.06
39 E Examining the Examaple GPS Applications 10 days Thu 16.02.06| Tue 28.02.06
40 E Deciding Simulation Model of GPS 3 days Fri24.02.06| Tue28.02.06
41 E Implementing Virtual GPS 5 days Tue 28.02.06| Sat04.03.06
42 Milestone 0 days Sat04.03.06 Sat 04.03.06 04.03
43 PDA Module Implementation 439 days Wed 25.01.06 Wed 29.03.06
44 E User Interface Design in PDA (C# . net) 7 days Wed 25.01.06 Thu 02.02.06
45 E Implementing Language Manager 7 days Fri03.02.06| Sat11.02.06
45 E IMap Manipulation and Sterage on PDA 32 days Thu 16.02.06 | Wed 25.03.06
47 Wilestone 0 days Wed 28.03.06 | Wed 25.03.08 29.03
438 Content Manager Implementation Module 19 days Wed 15.02.06 Thu 09.03.06
49 E Adding functionality of Add/Remove Nodes 19 days Wed 15.02.06 Thu 09.03.06
50 [Enhancement of User Interfaces & days Tue 21.02.06| Thu 02.03.06
51 Mileztone 0 days Thu 09.03.06| Thu 05.03.06

o Task Name Duration Start Finish [February 2006 March 2006 [April 2008 [May 2008 [June 2006
[i} 21[24]z7]z0]02[0s [08[11[12[17[20 2328 |01 [o2[o7 [10[12[18[19[22 [25]22]2 1|03 |08 [oa[12[15[12]21 [22[27[20]03 08 [oa[12[15[18[21 [24]27 [30 [0z 05 [0a[11
52 Server Side Implementation 62 days Tue 07.02.06 Thu 27.04.06 L v
53 GIS Engine Module 18 days Fri 10.02.06 Fri 03.03.06 L . 4
54 E Graph Generation for Path Finding 13 days Fri10.02.06 Fri24.02.06
55 E Matching the Nodes with Map Labels G days Sat 18.02.06 Fri24.02.06
56 E Combining the Resultz of PathFinder and Tr 10 days Mon 20.02.06 Fri 03.03.06
57 Activity Module 11 days Thu 09.03.06 Thu 23.03.06
58 [EL| Creating Activity Databaze 7 days Thu 09.03.08 Fri17.03.06
59 E Filing Activity Database 6 days Thu 16.03.06 Thu 23.03.06
&0 Pathfinder Module 15 days Thu 23.03.06 Wed 12.04.06
61 E Implementation of Dijkstra’s Algorithm 7 days Thu 23.03.06 Fri 31.03.06
52 E Providing Links between Nodes 1 day Wed 12.04.06 | Wed 12.04.06
63 Transportation Module 10 days Wed 12.04.06 | Sun 23.04.06
54 E Adding Vehicle Support 7 days Fri14.04.06| Sat22.04.08
65 E Time Estimation Support g days Wed 12.04.06 Fri21.04.06
] E Cost Estimation Support 7 days Mon 17.04.06 | Sun 23.04.06
67 E Wilestone (First Release) 0 days Sun 23.04.06 Sun 23.04.06
63 Ontology Module 37 days Tue 07.02.06 Fri 24.03.06
69 E Developing Cinema Ontology 4 days Tue 07.02.08 Fri 10.02.06
70 E Developing Transportation Ontelogy g days Wed 15.03.06 Fri24.03.06
71 E Reasoning on Ontology g days Wed 15.02.06| Thu 23.02.06
72 Logger Module 24 days Wed 15.02.06 Thu 16.03.06
73 E Storing Coming Information into DB 8 days Tue 07.03.06 Thu 16.03.08
74 E Adding Graphical Dizplay 4 days Wed 15.02.06| Sat18.02.08
75 Administrative Module 16 days Thu 09.03.06 Thu 30.03.06
76 E Adding Map Editing Option G days Thu 09.03.06 Thu 16.03.06
7 E Adding Management Property of CM Accou 7 days Thu 16.03.06 Fri24.03.06
72 [EL| Developing Statistics Screen 7 days Wed 22.03.06| Thu 30.03.08
79 Map Module 10 days Wed 12.04.06 Sun 23.04.06
80 E Forming Vector Map 8 days Wed 12.04.06 Fri21.04.06
21 [EL| Defining Activity Places on Map 9 days Thu 12.04.08 | Sun 23.04.08
82 E Milestone 0 days Thu 27.04.06 Thu 27.04.06
a3 Database Module Implementation 10 days Wed 26.04.06 Fri 05.05.06
24 [EC| Defining Schema of DB 4 days Wed 26.04.06 Sat25.04.08
85 E Writing SQL Statements 5days Wed 26.04.06| Sun 30.04.08
86 E Implementing DB Component 5 days Mon 01.05.06 Fri 05.05.06
ar Integration of Modules 32 days Wed 12.04.06 Thu 18.05.06
i) E GPS Receiver - PDA Interaction 25 days Wed 12.04.06 | Wed 10.05.06
a5 E Server Modules Integration 25 days Wed 12.04.06 | Wed 10.05.08
80 [EL| Database- Server Connection 27 days VWed 12.04.06 Fri 12.05.06
21 E Integration of Logger Module 27 days Wed 19.04.06| Thu 18.05.06
82 E Integration of Ontology Module 26 days Thu 20.04.06 Thu 18.05.06
93 E Integration of PathFinder to Map 27 days Wed 19.04.06| Thu 18.05.06
04 E Integration of Trangpertation to Map 26 days Thu 20.04.06 Thu 12.05.06
95 Milestone (Secend Releaze) 0 days Thu 18.05.06 Thu 18.05.06
95 Testing the System 99 days Tue 24.01.06 Mon 29.05.06
97 E Implementation Alpha Testing 94 days Tue 24.01.06 Tue 23.05.06
93 E Integration Alpha Testing 27 days Wed 19.04.06| Thu 18.05.06
99 E Beta Testing 27 days Thu 27.04.06 Mon 25.05.06
100 Documentation Support 18 days Mon 08.05.06 Mon 29.05.06
101 E Taking Snapshots 1 day Mon 08.05.06| Mon 08.05.06
102 |[Fd Inztallation Guide 5days Thu 11.05.06 | Tue 16.05.06
103 | Uzer Manual & days Tue 09.05.06| Wed 17.05.08
104 E Help Documentation 5days Wed 24.05.06| Mon 28.05.06
105 Mileztone 0 days Mon 29.05.06| Won 25.05.06

