
PAGODA SYSTEMS

ULApag

CENG 491

INITIAL
DESIGN
REPORT

Ercan Üret --- 1298045
Çağatay Turkay --- 1298355
Selçuk Tunç --- 1298348
Sinan Mutlu --- 1298025

TABLE OF CONTENTS

1. INTRODUCTION .. 4
1.1 PURPOSE OF THE DOCUMENT ... 4

1.2 SCOPE OF THE DOCUMENT .. 4

2. SYSTEM OVERVIEW .. 4
3. SYSTEM ARCHITECTURE .. 6

3.1 DATA STRUCTURES & TECHNICAL DETAILS OF THE EDITOR 6

3.1.1 Object Class .. 7

3.1.1.1 Library Object .. 8

3.1.1.2 Scene Object .. 9

3.1.2 Library Class...11

3.1.2.1 Shared Library ...12

3.1.2.2 Current Library ..13

3.1.3 Sound Manager Class ...14

3.1.4 Text Manager Class...15

3.1.5 Scene Class ..15

3.1.6 Frame Class..16

3.1.6.1 Normal Frame..17

3.1.6.2 Key Frames ...18

3.1.6.3 Step Frames ..19

3.1.7 Object Base Class...19

3.1.8 Timeline Class...20

3.1.9 Event Handler ...24

3.1.10 Math Library Class...25

3.1.11 File Operations ..26

3.1.12 Window Management, Rendering & User Input28

3.1.13 Overall Class Relation Diagrams ..29

3.2 Run Time Environment..31

3.2.1 FrameBuffer Class ..32

3.3 FILE FORMATS ..38

3.3.1 .obj File ..38

Page 2

3.3.2 .objh File ..39

3.3.3 .ulp File ..39

3.3.4 .pgd File..40

4. USER INTERFACE DESIGNS ..41
5. CONCLUSION ..42

Page 3

1. INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document is the initial design report of the ULApag. The purpose of this

document is to initiate the design specifications of the project and establish a

basis for the detailed design processes.

We have built the design of the project roughly; meaning that not every single

detail of the design is reported here and there may be some additions and

modifications later.

We have decided most of the data structures that will be used in project. In

this report we will present our project’s technical details with some diagrams

to reveal our system architecture.

1.2 SCOPE OF THE DOCUMENT

This document specifies the design issues related to design tool and run time

environment. The data passed between the modules and external storages are

discussed. Also we have discussed all properties of the editor structures. This

document will provide the all system components and the relations among

them.

2. SYSTEM OVERVIEW

Our main aim was to design an education tool based on animations and

visualizations. With this project, user will be able to create 3D animations in

order to help their customers in assembling any mechanical component.

System has been designed with two main parts; design tool and run time

environment. Our customers will be able to create 3D animations and their

customers will use run rime environment to see the animations that are

prepared with the design tool.

Page 4

One of our targets is to design an education tool that will be easy to use for

both the developers and their customers. User will be faced with a partitioned

scene like in most 3D modeling tools. These partitions will be different camera

views for the user. This editor will basically provide a library and a timeline

structure to the user.

There will be two internal parts of the library; current library and shared

library. Current library will hold information about objects created on the

current scene. There are two ways to add an object to current library, user will

either import from a 3ds file or add an object from the shared library. Shared

library will include very frequently used objects that have been already

imported.

The animation creation process is the most critical part of our program. The

animation is all about timing and the best way control time in an editor is using

a timeline. Timeline consists of little rectangles each of which representing a

frame in the current animation. By making suitable changes in shape location

and rotation of objects in consecutive frames, the user will create animations.

The structure of the program will be detailed according to these major parts in

the following sections.

Page 5

3. SYSTEM ARCHITECTURE

As our system is structured in two main parts, we will cover them in separate

subheadings. In Figure-D1 a Level-0 DFD for our whole project can be seen. We

now move on to elaborate our data structures one by one.

Figure-D1 Level-0 DFD

3.1 DATA STRUCTURES & TECHNICAL DETAILS OF THE EDITOR

In this section the data structures involved in our program are discussed. Each

program component is taken into consideration as a separate part, a class. We

will include our diagrams directly into this section, instead of having them in a

separate chapter. Before beginning the details of the classes, we will give our

two general DFDs. and in Figure-D2 we have a more detailed DFD of our editor.

At the end of this section, before the details of the classes, we have general

class diagrams for explaining the general relations and callbacks between

classes. These diagrams are included in chapter 3.1.13.

Page 6

Figure-D2 LEVEL – 1 DFD for the Editor

3.1.1 Object Class

This class is the class which holds information about the objects which are

imported from 3d Studio Max files. It will hold all the necessary information to

draw an object onto the current scene. This information will be the object’s

coordinates (vertex, texture), normal vectors, faces and materials. This class

will have a draw method which draws the object into the related sub-window.

Page 7

Also this class will include a name or id which will be used to identify the

object. This class will have two inherited classes called libraryObject and

sceneObject. A class diagram explaining the class structures and inheritance

relations are included in figure-c1.

Figure-c1 The Object Class and Inheritance Relations

3.1.1.1 Library Object

This inherited class will hold information about objects which are in the

library. The objects in the library will only hold the original coordinates of the

imported object which is probably drawn at the origin (people tend to draw

objects at the origin, in 3D modeling tools). The library objects will be a

database for our program and when dragged to the screen instances of it will

be created on the screen. In addition to the fields of its super-class object; this

Page 8

class holds the physical location and filename of the object; this associated file

will be our own representation of the object. This file format will be .obj.

(Details of an .obj file will be covered in the “File Formats” section.) . We

chose .obj because it is a very popular and easy to use file format. In addition,

many of the 3D drawing tools support saving in .obj format (Unfortunately, 3ds

Max and Maya don’t support .obj format). Also, this class will include the path

of the object in the library, one path address for its position in the current

library part and one other path address for its position in the shared library

part. Our library will be constructed in a tree structure and this class will hold

where in the tree the object takes place. When the tree leaf in which a

particular object lies is opened, all the information which is kept in the file

named “filename” will be loaded into the memory. We could have loaded all

the files which are lying in the shared library at the first execution of the

program but with thousands of objects in the shared library, this could take up

so much memory space and also the first execution of the program could take

very long. When the user wants to add an object to the current scene, the

object’s data will be copied into the newly created instance of sceneObject.

We need the data of the library object included in its variables, because we

need to display the object in a mini-display at the top of the library. When a

specific object is selected in the library, a small drawing of it will be drawn in

the mini-display. That is why the super-class object has a member method

draw() which will be inherited by both of its sub-classes.

3.1.1.2 Scene Object

A scene object is an object which lies on the current scene. It is an instance of

a particular object which is included in the current library.

These scene objects will have their own modelView matrices. And methods

associated with them which apply all kinds of modifications like rotation,

scaling, translation, selection and composition. Whenever a modification

request arrives at the current object, the modelView matrix of the current

Page 9

object (or objects, in case of a composition) is updated. By having a separate

modelView matrix for each object, we will be holding all kinds of

transformation matrices in each object’s data; this gives us the information of

how much an object has been transformed between two consecutive key

frames. Using this data we will apply tweens and transformations of objects.

Each object has a list of other objects which are in composition with itself. We

call this list “composition partners list”. Whenever a new object is added to a

composition, it is added to all the individual composition partners’ lists in all of

the objects in the current composition. Whenever a modification is applied to

an object which is currently a member of a composition; this modification is

applied to all the other objects which are included in the current object’s

partners list. If the current object is not a member of any composition, then

the composition partners list will be empty and the current modification is

solely applied on the current object. The member method draw() of its super-

class object; will draw the sceneObjects to the main sub windows.

The scene objects will contain a list which is representing their behavior in the

timeline. For each frame, the object is present in, a modelView matrix

representing the orientation of the object will be added to this list. When the

object is being drawn with the draw() method, the object will know on which

frame it is being drawn and apply the appropriate modelView matrix. This

method will give us the optimality to have only one instance of an object. We

will be able to modify the object, apply tweens and draw the object easier.

The physical instance of the object will only exist in the Object Base class and

for all the other classes we will keep pointers to these objects. For example, to

render the object between frames one and fifty, we will use the values of the

timeline array of the object from index one to fifty. As we have only one

instance of the object for the whole timeline, any change on the objects’

attributes will be applied directly to all of the object’s instances on the

timeline.

Page 10

3.1.2 Library Class

Our library class will be responsible for a number of tasks. These include;

importing a 3ds file, managing the shared library records on the disk, managing

all the objects added to the scene and to the library. We will have two

different parts in our library: the shared library and the current library. Their

only difference will be the sources they get data from so we will not have two

different classes for these parts. We will use .NET’s tree component to

organize the structure of these libraries. And shared library and current library

will be two distinct folders in this tree. In the library class, we will have two

object lists; one for shared library objects and one for the objects of the

current library. Both of these lists contain pointers to library objects. A DFD

can be seen in Figure-D3 explaining the data flow in these library components.

We also added a use – case diagram explaining the usage of the library

components. This figure can be seen at the end of the details of this class

(Figure – u1). We have added a class diagram for the Library Class (Figure-c2).

Figure-D3 Level-2 DFD for the Library Module

Page 11

3.1.2.1 Shared Library

The shared library list will be constructed when the program is executed. We

will have a header file which will hold information about the files which have

already been added to the shared library. This header file will be explained in

the file formats section. The data of all the objects which are included on the

shared library will not be loaded at the first execution, but instead only the

header file will be loaded to construct the tree view into the library panel. As

we will have a small display in our library panel, we will need to load the data

of the objects in the library, our preferred method for handling this difficulty is

already explained in the library object part, so we are not covering it again

here. The main function of shared library is being a cumulative resource for

the current file. The user will add an object from the shared library to the

current library and then use it in the current scene, so will have methods to

copy the object pointers from the shared library list to the current library list.

This method will be called via two different callbacks; first, by dragging from

the shared folder to the current folder and secondly by dragging from the

shared library to the current library, when this action is done, the newly added

object is automatically added to the current library.

When the user wants to add an object to the shared library, user will carry a

selected object from the current library to the shared library. At this moment

the header file will be updated to reflect the changes by the addition of a new

object. Also a new obj file is written to the disk which holds the data of the

new object. So when the user closes the program and opens a new project

after a while, this object will reside in the shared library.

Page 12

Figure-c2 Library class

3.1.2.2 Current Library

The current library holds the list of objects which are currently drawn on the

screen and which are newly imported into the library but not used in the

animation already.

One other feature of the current library will be importing from 3ds files to our

internal format. At first the 3ds files will not be converted directly to obj files,

(we will use obj files to store our objects on the disk) but first reside in the

memory in our library object objects. Then whenever the user wants to add

the object to the shared library, these library objects are written to the disk

immediately. All the above file operations will be done by the file operator

class which will be discussed later.

When the user wants to create a new instance of an object he/she will simply

drag the file from the library menu into the scene. The newly created object

will be added to the current frame’s scene and a reference link will be added

to the current library’s data. The current library will hold information about

the instances of a specific object. This will also be displayed in a tree fashion.

When you click on an object you will get the list of the instances of this object

which are displayed on the scene. So one way to reach and select the objects

on the scene will be selecting these references in the library. The user will be

able to assign names to each of these objects. By default an instance of the

current object will be given a name “the objects name + its order” i.e. if you

want to add a “box” object to the current scene and you already have three

boxes in your scene, this new box will be given the name “box04”. To

Page 13

accomplish these functionalities we have to keep lists for each objects’

instances, whenever a new object is created on the scene, a scene object

pointer is added to the object’s list which resides in the library class. The

library class will not have further capabilities than this organizing and

importing feature.

Figure- u1 Use case for the Library Components

3.1.3 Sound Manager Class

This class will mainly use the methods of the fmod library. Fmod library gives

us all the necessary tools to load a sound file, adjust its volume and play the

sound. This class will only hold the path of the selected sound file and load the

file to memory when desired. Also it will hold the data to play it whether in a

loop or for a single time. It will be able to call the necessary functions from the

fmod library. A key frame will have a sound object associated with it if the

user wants to add sound to a key frame. The library gives us the ability to play

multiple sounds simultaneously, so that we will use this feature to have some

background music and load different speeches on it. The path of the sound file

and properties of it will be input by the user from the user interface. A class

Page 14

diagram showing the properties of the sound manager class can be seen in

Figure – c3.

Figure-c3 Sound Class

3.1.4 Text Manager Class

Each key frame can have a text object associated with it. This text object will

hold complementary text for the current animation. In this class we will hold

all the necessary information about the text’s font, size, color and the text

itself. The specifications and the text itself will be obtained from a text panel

in the user interface. A class diagram showing the properties of the sound

manager class can be seen in Figure – c4.

Figure-c4 Text Class

3.1.5 Scene Class

Each frame will hold a scene on it. When we are talking about displaying a

frame, we are talking about drawing all the objects specified by the current

scene. A scene object will hold the object list, camera list and light list. The

object list will contain pointers to objects in Object Base class. The camera

Page 15

and light modifications will be handled by Open Scene Graph’s functions. The

scene class will also have a draw() method, which will render its data to the

screen, when called, this method will make no further modifications on the

object and will directly render them with respect to its lists. This draw method

will pass from which frame it is called so whilst rendering the object, the

object will know which modelView matrix to apply. A class diagram showing

the properties of the sound manager class can be seen in Figure – c5.

Figure-c5

3.1.6 Frame Class

This class will be holding the data of a unique frame in the timeline. The

animation will be the concurrent displaying of frames with the specified frames

per second. As we have covered in our previous reports, we will have different

frame types, namely; normal frame, key frame and step frame. We will cover

these frame types one by one. These will be implemented in an inheritance

relation. All of these frame types are sub-classes of the frame class; moreover

step frame will be the subclass of key frame.

The common attribute of a frame will be its scene data. All of these types of

frames will and should include data about its scene information. As stated

above the scene class will hold data about all the objects, lights and cameras.

Another attribute which is common to all frames will be the update facility.

When specific modifications are input by the user, i.e. translation, scaling etc,

the selected objects’ properties will be updated according to the update

parameters which will be passed via callbacks from the user interface. As each

Page 16

object will have its own methods to deal with modifications, this modifications

will be passed to the scene class, and from the object list in the scene class, to

individual scene objects. A class diagram explaining the class structures and

inheritance relations are included in figure-c6.

Figure-c6 Frame Class and Inheritance Relations

3.1.6.1 Normal Frame

We were first thinking to have no separate classes for normal frames, because

normal frames will carry no specific information. The data of normal frames

are fully dependent on the data of the key frames it is between. So at first we

planned to calculate their data from its surrounding key frames while

displaying the normal frames, but afterwards we thought that this would cease

the overall performance of the animation so we decided to add frame objects

Page 17

for each normal frame. A normal frame will not have any additional attributes.

It will contain a scene class which is associated with the current frame and

when its draw method is called the current frame is rendered to the screen.

The user will not be able to make any changes in normal frames. The

modifications on key frames will directly affect normal frame attributes via

tween applications. The details of how tween operations will be accomplished

will be covered later in the report.

3.1.6.2 Key Frames

Key frames are frames which will be the key points in our animation

implementations. All the preferred modifications will be done in key frames, in

contrast to normal frames, key frames will be modifiable. The user will be able

to do all the modifications on key frames. These modifications include, as

stated before, selection, deletion, composition and transformations.

When the program first starts, the timeline will include a single key frame. This

beginning frame will be at time position zero in the timeline. It will not include

any objects, cameras, lights or tweens. Whenever the user adds an object or

from the other components, the lists will be populated. With only a single

frame existent, the user will not be able to create any tweens, because tweens

are defined between two key frames. When the user wants to add a new key

frame, let’s say, at position five, the three frames between the first frame and

the fifth frame will be created as normal frames and the content of the first

key frame is copied into all these normal frames and the newly added key

frame at the fifth position. As for now, there is no tween defined, all of the

frames contain the same scene information.

Let’s go into detail of how tweening will be handled. In a key frame object we

will have two separate lists of which objects are active in a tween operation.

One of these lists will be for the tween relations defined between the current

and the previous key frames and the other list will be for the current and the

next key frames. When the user wants associate a tween with an object (it

Page 18

means that the current key frame is not at the end of the timeline, it means

there is a number of key frames further in the timeline); first the object’s

pointer is added to the current key frame’s tween-with-next-frame list, and

then to the tween-with-previous-frame list of the next key frame in the

timeline. Whenever an object is removed from the current frame, it should be

removed from all the tween lists of the current, previous and next key frames.

The user will be prompted with a warning massage when an object involved in

a tween operation is tried to be deleted, the user will be asked to remove the

tween on that object manually, then delete or these operations will be done

automatically. These lists will be modified and managed by the timeline class,

which has access to all the frames on the current timeline. The pointers in

object class which are discussed in object class part will be used to achieve this

pointer management in tweening. The details of tweening will be therefore

covered in the timeline class.

3.1.6.3 Step Frames

The step frames will be frames related to the output of the program, which

will be run by the RTE. Steps are turning points in our last assembly animation

and when the user wants to advance in the result animation in RTE, the user

will jump from one step frame to the other. Each step frame is also a key

frame, so that step frame will be a sub-class of key frame. Instead of having a

separate class we could have added only a simple list pointing to step frames

but we think that step frames can have some additional attributes which we

cannot foresee from now.

3.1.7 Object Base Class

The object Base class will be a main class for managing all the objects which

are being rendered to the scene. The object Base will contain the physical

objects, not pointers to them. As this class will have access to all the objects,

Page 19

this class will provide all the control over the objects. These controls will be

done by having a selected objects list and with respect to the inputs from the

user, the selected objects will be affected from the modifications. Whenever a

new object is added to any of the frames of the current timeline, a new object

instance is created in this class’s object list. As each object has its own

methods to handle modifications, the Object Base is responsible for choosing

the true object to be affected by any of the modifications. A class diagram

showing the properties of the sound manager class can be seen in Figure – c7.

Figure-c7 Object Base Class

3.1.8 Timeline Class

The timeline class will hold the frame list as its data field. As this class will

have a general access to all the frames in the object, it will be responsible

from all the modifications and animation creation sequences. A class diagram

showing the properties of the sound manager class can be seen in Figure – c8.

Figure-c8 Timeline Class

The timeline class will hold frames which are each having a scene object in

them. And as stated above the scene class will have pointers to the objects

Page 20

which are existent in the current frame’s scene. This data hierarchy means

that the timeline class will have access to all the objects drawn on any frame

of the timeline. So that, we will send any modification request to individual

objects within this class. Moreover and more importantly we will deal with

tweens, which will be our main tool for creating animations, will be achieved

within this context.

When a call from the event handler comes, the timeline passes this to the

object or objects and the modification is achieved.

The most important functionality of this class will be achieving tween

operations. To handle tween operations, we will need the properties of the

object involved in the tween operation. What we need to define the behavior

of an object in a specific object is its modelView matrix. To accomplish tweens

we need to define the behavior of an object between two key frames. So, we

first get the object’s matrix from two consecutive key frames. After that we

have to find how much difference has occurred by comparing these two

matrices. As all the modifications will be cumulated in the object’s matrix, the

difference between these two matrices gives us the parameters of the change

in the object’s attributes. After we have the difference matrix in our hand, we

have to apply this modification matrix step by step to each normal frame which

lies between these two consecutive key frames. To illustrate, let’s say that in a

key frame our box object is at position (0, 0) and at time eleven, there is

another key frame and our box is at position (10, 0). Also assume that this box

is involved in a tween. Between these two key frames we have ten normal

frames. In each of these normal frames, the box must make the 1/10 of the

total translation, if it makes this translation in one frame, it will appear as

moving and will reach the destination point of (10, 0). To calculate these

modifications, we first subtract the matrix of box at frame one from the matrix

of frame eleven. This gives us the total modification matrix, by dividing this

matrix to the number of normal frames between these two key frames; we

have a new modification matrix. This matrix; in our case, will be a matrix to

translate the object one unit length in the positive x direction. After this

Page 21

matrix is applied for ten times consecutively, the box will be at the final

destination. The same sequence will hold for the rotation and scaling tweens.

When the user modifies an object, the timeline class will check whether this

object has been involved in any tween and if it does, the above procedure is

applied. To apply this procedure, the object’s matrix is taken from the nest

key frame and the current matrix is taken from the current object. After that

the tween calculation method takes these matrices and finds a new matrix to

achieve this tween. Then this tween matrix is applied to all of the normal

frames in-between the two key frames. This process is applied whenever an

object involved in a tween is modified or a new object is made a part of a

tween. When an object which was a part of a tween is deleted, the normal

frames between the current key frame and the previous key frame are

affected. The object’s matrix should be updated and must be equal to its

matrix defined in the previous key frame. Also when a normal frame is inserted

in-between two key frames, the tween matrix should be changed and applied

again because instead of “modification / # of normal frames”, we will now

have “modification / # of normal frames + 1”. To reflect this slight but crucial

change, we have to apply this new matrix to all of the normal frames. The

same procedure also applies for deletion of objects. There will be some more

special cases while dealing with tween operations, therefore we will very

careful while implementing this part.

One important duty of this class will be managing the timeline. Possible user

requests can be adding/removing a key frame, adding /removing normal

frames, setting up a fps value and quick view method, to see the current

project while it is being constructed. Whenever a change is made to the

timeline, the object’s attributes have to be modified to reflect the new

changes as described above.

The quick view method will play the animation sequence, which has been built

so far, in our main sub-window. In this method, the timeline frames’ scene

classes will be rendered to the scene consecutively. This rendering will be in a

simpler way than what the RTE will display. This quick view will be done with

Page 22

objects not having any textures or materials enabled. This can surely be done

in wireframe mode.

We have to cover how this class handles frame management. When a new key

frame is added, the time between these two key frames will be filled with

normal frames. All these normal frames and even the new key frame itself are

filled with the data of the previous key frame. Adding a new key frame doesn’t

only affect the timeline but also the objects. Remember from the object class

definition that every object include its own timeline behavior matrices as its

field. We have to add the new key frame and normal frame values and expand

the object class’s timeline list. This is done here for each object existent in the

current key frame.

A Level-2 DFD can be seen in Figure-D4. This DFD is a supplementary visual for

what has been covered in this section; it explains how the data flows in the

timeline component.

Page 23

Figure-D4 Level-2 DFD for the Timeline

3.1.9 Event Handler

This class will be responsible for handling all the callback coming from the user

interface and user input peripherals. We will have a large number of user

inputs coming from the user interface and each of these operations will be

handled by different classes and the system will give different responses. In

order to handle these callbacks in an organized manner, we will have a main

event handler class. This class will have a unique function for directing the

Page 24

appropriate callback to the correct module. For example, when the mouse

button is pressed in order to select an object, the mouse pressed event will be

passed to the event handler class and this class will call the Object Base’s

selection function and the object in consideration will be selected. This class

will assign different ids for each callback coming from the user and with

respect to this id choose the correct function. We have a DFD to visualize the

behavior of this class, which can be seen in Figure - D5. As this class will not

act as a standard class but as a collection of handler functions, we have not

added this as a class diagram.

Figure-D5 Level 2 DFD for the Usage of the Event Handler

3.1.10 Math Library Class

This class will contain all the necessary mathematical operations in our

project. Matrix multiplications, matrix addition, vector operations, vector –

Page 25

matrix operations, constructing essential modification matrices, other matrix

operations and all types of mathematical operators which are not defined in

the standard math library will be implemented here; this class will be available

to all the classes which are doing some sort of mathematical operations.

This class will be implemented as static and as many of the classes will need to

use this class, we will not need to create lots of instances of this class. A class

diagram showing the properties of the sound manager class can be seen in

Figure – c9.

Figure-c9 Math Library Class

3.1.11 File Operations

We will have a number of file operations in our project, these will include:

- Reading a 3ds file for importing purposes

- Writing obj files for storing objects stored in the library

- Writing a header file to organize the files included in the shared library

- Reading obj files to load object data

- Saving the current project into the disk

- Writing the output file which will be played by the RTE

We are now giving details of some of these operations.

For reading a 3ds file, we will use 3ds Max’s SDK. There are lots of importers

written to fulfill our needs but we will write an importer for our own needs but

get help from these ready-made importers.

Page 26

An obj file is very easy to read and write, so this file format will be very easy

for us to handle, brief information on obj files are given in the file part.

While saving the current project on the disk, we will have to save each part

separately. For the content of the current library we will write separate obj

files for each library object. To hold the scene and object data, we will write

the contents of the Object Base’s objects’ data and the positions of the camera

and lights for each frame in the timeline. All the data we need to present the

current animation project will be saved in the file. A class diagram showing the

properties of the sound manager class can be seen in Figure – c10.

Figure-c10 File Operations Class

For the output of the editor which will be played by our RTE, we will have a

detailed file which looks similar to the saved editor file. As the RTE will be a

limited version of the editor, the data it will require is more or less the same

as the editor.

This class will call the necessary file operation when requested from the user.

A use-case diagram illustrates the available operations related to this class

(Figure – u2).

Page 27

Figure- u2 A use-case diagram for File Operations

3.1.12 Window Management, Rendering & User Input

The window management will be done via .NET’s MFC components. We will use

MFC to create a main window and sub-windows in it. Also we will use MFC

components to create our user interface; therefore we will have pre-made

components to handle user input on those fields, i.e. buttons, checkboxes, etc.

For rendering we will depend on our Open Scene Graph Engine. It will handle

all the light, camera, material and texturing business. We will have different

cameras associated with each of the sub-windows. Moreover, we will use osg to

get user input from the rendering screen. For example, to detect mouse motion

or mouse clicks we will use osg’s functions. After getting the required

parameters from these functions, we will call the event handler class to handle

this user input.

Page 28

3.1.13 Overall Class Relation Diagrams

In this section we have a general class diagram, covering all the classes covered

in the above sections. The first diagram (Figure-c11) covers the relation

between the classes object, library, object base and file operations.

Figure-c11

Page 29

The second class diagram covers the relations between frame, timeline and

scene classes (Figure-c12).

Figure-c12

Page 30

3.2 Run Time Environment

Run time environment application is a complete product of design tool which is

our animation editor. Since run time environment is complete product can be

also seen as an output of animation editor with all its executable files,

(probable dynamically linked libraries) and animation file which will be

designed in .pgd file format that is described in this document in detail.

Due to its being just one product or output, run time environment has the

capability of running just one specified animation file so that it has no option

to run a different animation file. Behind this application, all run time

environment subfolders, apart from the file names, all executable files (and

probable dynamically linked libraries) will be same.

It is crucial to note that in our program design tool (or animation editor) is our

main program that’s why it has all capability and functionality that run time

environment has. Design tool can run the animation which is just created, can

stop the motion, travel in the current frame, view the objects and scene from

different aspects, can zoom in and zoom out. Considering all these

functionality, our run time environment is very similar to a part of design tool.

Our run time environment is using many classes and functions of design tool.

Main difference between the run time environment and design tool is run time

environment is currently reading the frames from the specified file for

animation, but design tool with the help of timeline class is calculating the

normal frames and runs the animation which means design tool is reading

frames from the memory. Due to this slight difference, run time environment

has an additional class to the classes described above which is called

FrameBuffer Class.

Run time environment is currently designed to use Sound Manager, Text

Manager, Scene, EventHandler, Frame, ObjectBase and FrameBuffer classes.

Page 31

3.2.1 FrameBuffer Class

FrameBuffer class has a buffer mission in adjusting file read speed and frame

display rate. Class has a frame-list constructed of Frame class which is the

actual buffer, a waiting frame indicator to quickly select which frame will be

next in a condition of just after transition from step-by-step mode to assembly

animation mode, an ObjectBase class to keep all objects physically, next and

previous step frame indicators as Frame class, and file reading methods.

File reading starts with FrameBuffer class. With the start of reading a file,

firstly file heading attributes such as buffer size (number of frames to be kept

in frame-list), frame per second information (number of frames in a second is

going to be displayed and probable, but not certain yet, properties like regular

frame displaying or not) are read by FrameBuffer class.

After reading heading attributes BufferFrame gets objects specified in the file

to the Objectbase class and keep them physically in the class.

 After all, buffering frame operations start, BufferFrame class reads the frames

from file and fills the frame-list. While reading the frames, methods of the

class check each frame if it is a step frame or not. And if it is a step frame

methods automatically find and set the previous and next step frames of

current frame. This is because, in a condition of user’s selection of previous or

next chapter to play, buffer automatically draws the scene of frame to the

screen and shows a waiting icon on mouse arrow while BufferFrame class

empties existing frame-list and fills it up again reading from the next frame of

specified step frame and when buffer is full, BufferFrame begins its routine

reading and sending frames for rendering coherently again.

Reading frames to buffer and sending them for display algorithms stated below.

These are separate operations that are handles coherently.

Page 32

Buffer Read Algorithm

 Buffer starts reading a file, after reading a frame checks if frame is step

frame or not. If it is step frame, methods find and read next and previous step

frames of current step frame in order to smooth transition to next chapter.

This operation continues until buffer is full.

Page 33

Buffer Sending a Frame Algorithm

 Buffer sends frames continuously and checks at each step if buffer is

available for reading new frames if available starts the buffer read algorithm.

And at each step mode of run time environment, if it is in step-by-step mode

buffer sending goes into a waiting mode if it is not object drawing algorithm

continues.

Page 34

 It is explicitly stated before that run time environment has two run time

options namely; step-by-step and assembly animate. In the assembly animate

mode user just watches the animation so FrameBuffer class and frame drawing

methods work coherently but when user selects step-by-step mode, animation

holds the currently displaying frame and reach the scene camera position

information. After getting this information, all .NET interface functionalities

and mouse functionalities such as zoom in, zoom out, left, right, up, down,

backward, forward movements are a matter of camera position. Apart from

camera, all current objects in the scene are going to be rendered as same.

A use case below shows these activities (Figure-u3).

Figure-u3

Page 35

 In the use case user manages the functionalities of interface and mouse

this information is sent to EventHandler class and EventHandler class apply this

to the camera matrices.

 Camera is going to be used to travel inside the scene according to user

inputs.

Camera matrix is designed as an osg::Matrixd matrix and defined as the product

of two osg::Matrixd cameraRotation and osg::Matrixd cameraTranslation

matrices. Rotations will be applied to cameraRotation matrix, translations will

be applied to cameraTranslation and the product of two (camera =

cameraRotation * cameraTranslation) constructs the camera matrix. With the

help of camera matrix, camera movements are accrual by Open Scene Graph

Viewer class setViewBymatrix() method. After user selecting the animation

assembly mode firstly the waiting frame comes to the scene and BufferFrame

routine goes on.

 Finally data flow diagrams are stated below.

DFD Level 1

Page 36

DFD Level 2

Page 37

3.3 FILE FORMATS

We will have a number of file formats used in our project. We will cover them

one by one:

3.3.1 .obj File

This file format is a very common and popular file format used very widely in

3D applications. We will use this format to keep our objects in our library. Here

is a brief overview of how this file will look:

Vertex data

- geometric vertices (v)

- texture vertices (vt)

- vertex normals (vn)

- parameter space vertices (vp)

 Elements

- point (p)

- line (l)

- face (f)

- surface (surf)

Grouping

- group name (g)

- object name (o)

Display/render attributes

- material name (usemtl)

- material library (mtllib)

Here is a sample representation of a simple cube in .obj format:

Page 38

 v 0.000000 2.000000 2.000000

 v 0.000000 0.000000 2.000000

 v 2.000000 0.000000 2.000000

 v 2.000000 2.000000 2.000000

 v 0.000000 2.000000 0.000000

 v 0.000000 0.000000 0.000000

 v 2.000000 0.000000 0.000000

 v 2.000000 2.000000 0.000000

 f 1 2 3 4

 f 8 7 6 5

 f 4 3 7 8

 f 5 1 4 8

 f 5 6 2 1

 f 2 6 7 3

3.3.2 .objh File

This file will be positioned in the same directory of our shared library. It is used

to manage and organize the obj files. It will hold the number of objects in the

shared library and the names and paths of the objects in the shared library.

3.3.3 .ulp File

This file is our editor’s save file. The data it will contain is as follows:

- The list of objects in the current library (the path and names of .obj

files in the current library)

- The list of all the objects in the Object Base class with all the data of

each object (coordinates, attributes and timeline details)

- The list of frames in the timeline (with their individual scene data and

object lists and also camera and light positions)

Page 39

3.3.4 .pgd File

This file will be used by our RTE and be the product of our program. In terms of

content it will more or less be the same as our .ulp file.

- The list of all the objects in the Object Base class with all the data of

each object (coordinates, attributes and timeline details)

- The list of frames in the timeline (with their individual scene data and

object lists and also camera and light positions. Also data of the key

frames which are holding sound and text attributes)

- Additional attributes for the RTE

Page 40

4. USER INTERFACE DESIGNS

We have made rough sketches of our user interface. We have done these

sketches in a drawing tool called SmartDraw. Here is a sample user interface

for our editor (Figure-gui1).

Figure-gui1

Page 41

 And here is a sample screenshot from our run-time-environment (Figure-gui2).

Figure-gui2

5. CONCLUSION

This report gives detailed design specifications of our project. We have tried to

cover all the topics but there is a number of missing parts and gaps in our

design. We haven’t been able to concentrate on these gaps, but we are of their

existence. We will try to cover these details better in the final design. This

report is with its content; will be a great source for us while writing our final

design reports and while implementing the project in the second term.

Page 42

	
	
	
	
	
	
	
	
	1. INTRODUCTION
	1.1 PURPOSE OF THE DOCUMENT
	1.2 SCOPE OF THE DOCUMENT
	
	2. SYSTEM OVERVIEW
	
	
	3. SYSTEM ARCHITECTURE
	3.1 DATA STRUCTURES & TECHNICAL DETAILS OF THE EDITOR
	3.1.1 Object Class
	3.1.1.1 Library Object
	3.1.1.2 Scene Object

	3.1.2 Library Class
	3.1.2.1 Shared Library
	3.1.2.2 Current Library

	3.1.3 Sound Manager Class
	3.1.4 Text Manager Class
	3.1.5 Scene Class
	3.1.6 Frame Class
	3.1.6.1 Normal Frame
	3.1.6.2 Key Frames
	3.1.6.3 Step Frames

	3.1.7 Object Base Class
	3.1.8 Timeline Class
	3.1.9 Event Handler
	3.1.10 Math Library Class
	3.1.11 File Operations
	3.1.12 Window Management, Rendering & User Input
	3.1.13 Overall Class Relation Diagrams

	
	3.2 Run Time Environment
	
	3.2.1 FrameBuffer Class

	3.3 FILE FORMATS
	3.3.1 .obj File
	3.3.2 .objh File
	3.3.3 .ulp File
	3.3.4 .pgd File

	
	
	
	4. USER INTERFACE DESIGNS
	5. CONCLUSION

