MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT of COMPUTER ENGINEERING

CENG 491-COMPUTER ENGINEERING DESIGN 1

‘BluePost’

DETAILED DESIGN REPORT

by

YAZILIM

Duygu CEYLAN — ¢1394782 Seda CAKIROGLU - 1394816
Ertay KAYA — ¢1356948 Hiiseyin OGUNCLU - e1395318

Gozde OZBAL — ¢1395326

TABLE OF CONTENTS

1. INTRODUCTION ...ttt bbb bbbt eb et n et e b e 3
L1 PROJECT TITLE ..ottt ettt sttt 3
1.2 PROBLEM DEFINITION ...ttt 3
1.3 PROJECT SCOPEoiiitiiiiieieiete ettt ettt eb ettt b et nes 3

2. ARCHITECTURAL DESIGN.... .ottt s 5
2.1. SYSTEM MODULES ..ottt 5

2.1.1 File Uploading MOTUIE:c..cviiieeie et 6
2.1.2 Format Conversion MOGUIE:coiiiiiieieieie s 17
2.1.3. Sending Data to the Board via Bluetooth Module: ..o 20
2.1.4. Register Process MOAUIE: ..o e 26
2.1.5. Retrieving Data from User via Bluetooth Evaluation Kit Module:cccoovnee. 30
2.1.6. Sending Data to User via Bluetooth Evaluation Kit Module:.............ccocooiiiinnnenn, 34
2.1.7. VGA ProCess MOUUIE:coueiieiicieie ettt 37
2.2. STRUCTURE CHART AND MODULAR DEPENDENCIES.........cccccoeiiiiiineceene 43
2.2.1. STUCTUIE CRNAIT: ...ttt bbbt 43
2.2.2. Modular Dependencies and FIOW:ccocoiiiiiiiininiee s 43
2.3. FUNCTIONAL DESIGN ..ottt 45
2.3.1. Data FIow Diagrams (DFDS):.....cccoveiiiiiiie ettt 45
2.3.2. DAta DICTIONAIY: ...eeuviiiieie ettt ettt sbe e be e nreenes 54
2.3.3. ProCess SPECITICALIONS:ciiuiiiieiiiieie ettt ns 64
2.4. BEHAVIORAL DESIGN ..ottt 71
3.3.3. State TranSition DIAGIAM:vcieiieiereeierieee e e sre e e re e sreeeesressaesreeeesseeneens 71

3. SYSTEM DESIGN ...ttt ettt ettt e et 73

3.1. USE CASES & USE CASE DIAGRAM ..ottt 73
R U S O =SSR 73
KN U LT O K B = [o o SR 75

3.2. CLASS AND SEQUNCE DIAGRADMS. ..ottt 76
3.2.1. File Uploading Module Class DIagramcccoeeeerinenenieninesese e 76

4. HARDWARE DESIGN......c.oitiiiitiiiseiee ettt sttt es 92

5. SYNTAX SPECIFICATIONS. ...ttt 103

REFERENCES ...ttt bbbttt nn e 107

1. INTRODUCTION

1.1 PROJECT TITLE

Our project title is “BluePost”.

1.2 PROBLEM DEFINITION

As you all know, paper posters are very common in daily life because of the fact that they are
inexpensive and easy to install. However, they lead to some disadvantages as well. Most
important of all, they do not provide the opportunity to make a change in the content of the
poster once it is installed. In addition, it is possible for a person to forget about the details of the
event unless the information is noted. Besides, it is not easy to inform other people about the
event when paper posters are used. Furthermore, paper posters are easy to damage. To illustrate,
when a person rips the poster, the information is lost and it is costly to bring it back. So the

thought of using digital posters for everyday use arises.

1.3 PROJECT SCOPE

We defined the functionalities of our system by internet search and a questionairre about the

desires and needs of the users as we have already discussed in the earlier documents.

Because user-friendliness of a system is an important issue, we will develop a computet-based
user interface which will give many opportunities to the user such as configuring the images to
be displayed and the time duration of each image. The user will also specify the content of the

message that will be sent to the bluetooth devices.

As for the technical details about the project, we will design and implement the hardware and
software required to make a monitor or television into a digital poster with bluetooth capabilities.
Our system will be connected to a bluetooth converter card and a monitor via VGA. We will
develop the necessary software for tasks like uploading poster images and event data. By the
means of this software package each costumer will be the administrator of his/her own system.
The user will be able to upload several images to display them as a slide-show. S/he will be able
to specify the time each image will be displayed. When the user wants to make a change in the

content, s/he will not need to re-upload all the images. Instead, s/he will upload a new image in

place of the image s/he wants to change. The time duration may also be changed. The user must
enter a pin number in order to complete the image uploading process, which is specific for every
Bluetooth converter card. The software will do the uploading of the images via Bluetooth

automatically.

Once the digital poster is ready, people will be able to see the poster on the monitor and follow a
procedure on their Bluetooth devices in order to get poster event data as a calendar event (iCal
VEVENT).

The project that we will develop may easily be used in places where all kinds of social and
cultural activities are held including cinemas, concerts, theaters etc. Also, this project can be
used for educational purposes. As an illustration, there are a lot of student clubs that give
seminars and meetings. With the help of our project, it will be much easier for the sudents to
become aware of these activities and share the information with each other. The project may also
be used for commercial purposes. For example, when there is a campaign in some product, the
comsumers will easily be informed about it. Another important area where this product can be
used is charity campaigns. In that case, information like bank account numbers should be sent to
the bluetooth devices. We believe that as the project evolves, it will be much more widely used

in different areas.

2. ARCHITECTURAL DESIGN

2.1. SYSTEM MODULES

Our system consists of mainly two parts, getting the necessary data from the user and processing
this data. Through the user interface, the user will specify the images that are to be displayed.
The images selected by the user will be moved to a directory. Then each image in this directory
will be processed to extract the pixel information. This pixel information will be combined by
the user input specifying the time duration and the order of each image in the slide show. The
combined information will be used to create a hex formatted file in the “Format Conversion
Module”.

Additionally, the user will enter the message about the event details that will be sent to the

bluetooth devices. This message will be written to a .txt formatted file.

The txt formatted and the hex formatted file will be sent to the board via bluetooth when the user
clicks on the “Send via Bluetooth” button in the user interface. To complete the uploading
process the user must enter a pin number, which is specific to the bluetooth evaluation kit
attached to the board. This pin number will be stored in the Flash Memory of the XSA Board and
will be determined before the product release during the programming of the FPGA. Sending

Data to the Board via Bluetooth Module is responsible for this process.

When the data arrives to the bluetooth evaluation Kit, the process of the Retrieving Data from
User via Bluetooth Evaluation Kit Module will retrieve it. This process involves converting
serial bluetooth data to parallel data. Once the data is retrieved through the parallel port of the
XSA board, it is written to the SDRAM of the board via the Register Process Module.

The pixel information will then be used by the VGA Process Module to display images on a

monitor in a slide show manner.

Meanwhile, the txt file stored in the SDRAM will be used to send messages about the details of
the event to bluetooth devices. For this purpose, first the data stored in the SDRAM is sent to the
parallel port of the XSA board via the Register Process Module. Then Sending Data to User

via Bluetooth Evaluation Kit Module will be used which in turn converts parallel data to serial
data.

Each module will now be described in detail:

2.1.1 File Uploading Module:

This module is responsible for creating the user interface of our system and organizes the images
selected and the message entered by the user. The user interface we designed can be used by the
computer users in order to upload images for a slide show that is reachable by the bluetooth

device users.

Below, we will explain the user interface while uploading the images and sending the overall

slide show to the bluetooth device.

When a user starts our desktop application, s/he will first see a page as below:

< BluePost

Project Message Send

hoose & File To Be Uploaded attach,..

Slide Mumber |1 w

Tire Duration SEC

Here, the user can add the image files from his computer by pressing the “Attach” button and
when

this button is pressed, the below page will be seen.

< . BluePost

Project Message Send

Choose & File To Be Uploaded < | ¥ | attach...

Slide Mumber
Time Duration |:| seC

v 2eEE

Laak in: |||i'| Ornek Resimler

Recerit o .
eCer Kis.ipg

@ %1 pY¥kOFlirMIEDS 3xsnPEw20b0a-SuJCPvMU_FFn9ospCuSiae

Masalskd

i

=
-5

, Ginbatim. jpg

TEEeN

Belgelerim
Ej < il | »
Bilgisayarim File narme: || | [Attach J

-
m Files of type: | Just Trmages w | Cancel

The user will be able to select only jpg and gif images.

Before the user adds an image for the slide show, he should also state the slide number of the
image to be uploaded as all the images will be presented in a slide show after all the process
ends. Displaying too much images on an advirtesement has the disadvantage of boring and
distracting the target costumers. Taking this fact and the limitation of memory on our main
board into account, we decided to let the user select 10 images at most. Thus the slide number
input is an integer between 1 and 10 inclusively. The other input requested from the user is the
time duration of the image during the slide show, in seconds as a unit. When all the stated inputs

are ready, the user should press the ADD button.

When ADD button is pressed, some controls about the new image and the location of the image
in the slide show are made. (For this purpose, the file “bilgi.txt” will be scanned whose definition
is made in the following paragraphs.) For example, if the user selects a different image for a
previosly defined slide, (Then this slide number would exist in the file “bilgi.txt”.) s/he will be

given the following warning:

ou have already selected an image for slide2
ADocuments and SettingshadministratorDeskioplcandani ks, jpg

[Zhange Image J[Cancel]

After receiving this error message, the user can change the image for the specified slide number

by pressing the “Change Slide” button or cancel the operation by pressing the “Cancel button”.

The images selected by the user are stored in a directory with the initial name “new folder” and
when the user saves his/her work, this directory is given the name provided by the user. This
directory is created in another directory named “posterspace”. The path of the “posterspace”
directory is predetermined by the user during installation of our software product. Additionally,
when a new image is added, the slide number and the time duration of this image will be written
to a txt file named “bilgi.txt”. This file will be kept in the same folder with the images and each
line in this file has the following format:

<slide number> <image file name> <time duration>

As for the menu bar in the user interface, by means of the “Project” section, the user can create a

new project, open an existing project or save the project created previously.

When a project is opened, the user will see a window as below:

£ BluePost
Project Message Send

Eu:Ii.I: Sli;:ies

Add Mew Slide

Choose A File To Be Uploaded attach...
Slide Mumber |1 W

Tirme Duration | | sec

In this window, a new image can be added to the existing project by following the same steps

stated before for adding a new image.

The user can also make the necessary modifications for an image by clicking on the image and

when clicked, the user will see the below window:

£ Modify Slide

spacetzandaniduy gui 0S5 CHa480 JPG
Choose A File To Be Uploaded <|:- = |5 o Attach...

Slide Mumber
Tirne Duration SeC

Moadify H Delete H Cancel

After making the changes, the user should press Modify button or he can delete the selected
image by pressing the Delete button. Then the relevant information in “bilgi.txt” will also be

modified or deleted.

When a project is made, and the user wants to save it, the user clicks “Save” from the Project

menu bar. And when clicked, the below window will be seen:

£ Save Project

Project Marne | [Save H Cancel]

Here the user should write the Project Name he desires and should press Save button for the
project he created previously to be saved. If another slide show with the specified name exists,
the name entered will be modified. For example, if the user enters “Slides” as the name and there
already exists a slide show with the same name, the current project will be renamed to
“Slides(2)”. If the user enters the name “Slides”again for a different slide show, that show will be

renamed to “Slides(3)”.

From the Message menu bar, the user can write the message to be viewed by the bluetooth
device users. This message will be written to a txt file named “mesaj.txt” and this file will be

kept in the same directory with the images.

When all the previous steps are completed, the user should press “Send” in the menu bar for the
bluetooth process to take place(sending the images and the text). The user will be requested to
enter a pin number which is unique to the bluetooth evaluation board and when s/he enters the

correct pin number, sending process begins. Here, “Format Conversion” module is initiated.

The following activity diagrams illustrate the process of this module:

10

Activity Diagram for Adding an Image:

Select Image

Specify time
duration and slide
number

v

v

Display Error: Sawe Image inthe
Do yout want to current working
change image? directory
i Change image for
. 0] [Ye =4
Cancel operation @<>$ thfa specified Update bilgi.txt
slide number
Update bilgi.txt
A 4 ¢ Yy

11

Activity Diagram for Opening a Slide Show:

\/

Select "Open"
option

Select project
from browse
window

Open Project

12

Activity Diagram for Editing a Slide Show:

Open Project

[Add newslide]

Add Image

Delete Image

\De\e‘-e

[Edit existing slide

5\'\(5@

Select Image

Specify time

durationandslide
number

Display Error:
Do yout want to
change image?

Cancel operation

Change image for

the specified
slide number

Update bilgi.txt

Sawe Image in the
current working
directory

Y
Update bilgi.txt

13

Show Empty

Text Area

[message not saved

Activity Diagram for Entering Message:

Select
"Message"
option

message saved before] | Show Text Area

with Message

Write Message

Save Message

14

e Activity Diagram for Saving a Slide Show:

\l/

\

Select "Sawe"
Option

Specify name

i

[name doesn't exist]

[name exists] Add indicator

to name

Rename the
current
directory

Activity Diagram for Sending a Slide Show:

Select "Send"
option

Enter PIN
number

[incorrect PIN]

i[correct PIN]

Format
Conversion
Module

Sending Data to
the Board via
Bluetooth Module

16

2.1.2 Format Conversion Module:

When the user selects the images to be displayed and specifies the details of the slide show, we
will create a file in hex format whose contents will include the pixel data for each image and the
slide show configuration details. Format conversion module is responsible for the creation of this
file.

This module will create a hex file, which when sent to the board, will be capable of telling the
board the user preferences via our interface. By uploading this file to the board, as described in

the Bluetooth Module, data in it can be processed easily.

As we have described in the “User Interface Design”, our system allows the user to upload
several images, their appearance order and time duration for each image. Moreover, system also
lets the user make modifications about time duration and order of an image and new image

uploading instead of an existing image in the slide show.

The hex format file that will be created contains structured data that specifies the process of the
user. Each line in the file will contain a memory address followed by data, which is going to be

written to that memory address. The basic structure of the hex file is like below;

o First line specifies the number of images that the user has uploaded,

e Next ten lines specify the time duration of the images selected by the user (As explained
earlier, the user can select up to ten images. If the user has selected less images, the time
duration of the remaining slides is written as “0”.)

o After that, if the number of images is different than 0, file continues with the image order
and a hex stream that is identical to its canvas for every image. When the pixel data of the
current image is written completely, “FF” will be written to the next line indicating the

completion of the current image.

For creating this file, we decided to use object-oriented classes that are implemented by Java. At
the beginning of our process, the header of the image files will be read and the basic data about
them like their dimensions, resolutions and types will be obtained.

This process will support only .JPEG and .GIF formats. Therefore, we only allow the user to

upload an image in one of these formats.

17

In the process of forming the identical hex streams of image files, the images will be resized
first. The reason of resizing process is obtaining an 800*600 pixel*pixel image for our VGA
port. By this way, we can centralize the scene of the image regardless of its own dimensions.
One of the other advantages of this process is giving the user the chance of exchanging an image
with another one even it has different dimensions. Additionally, with fixed sizes, each image will
occupy same memory space and we will be able to determine the beginning address of each

image easily which will help us a lot during slide show transitions in the VGA process.

The next step of format changing process is reading every pixel of the image files and assigning
a value between 0-512 for its color. (Our XSA board VGA port processes 512 colors at
maximum.) According to our research, we found that we should use 16-bit RGB value whose 3
bits will be used for red, 3 bits for green and 3 bits for blue components for a pixel for a
considerable resolution on the monitor. Thus we will use 9 bits (2 bytes) for color identification.
According to our scaling specifications, we concluded that the hex format file that includes one
image would have a size of approximately 960 KB (2*800*600 Byte).

By this module design, we aim to obtain a more flexible system for the user. The following

activity diagram illustrates the process of this module:

18

[update]

Manage Image
Data

[initial upload]

Update Data

[update order/time]

Update
Order/Time
Update
*bilgi. tt'

[update text]

[one more update]

Update Image
Folder

[one more update]

[update image]

Update Image

[no more update]

[modified]

[image upload/update]

Resize

rocess Pixels
Write Hex
o (R

[no more upload]

Upload Text

Upload Image
Folder

v

Process Data

Read
*bilgi. txt'

Write
time&address
hex data

-

Take Image
from Image Folder

[one more image]

[no more image]

Hex Data
is Formed

[one more image]

hd : Hex
[created]

Fil

[order/time update]

[filled]

19

2.1.3. Sending Data to the Board via Bluetooth Module:

This module is responsible for sending the hex file created in the “Format Conversion” module
and the txt file containing the message about the details of the event that will be sent to Bluetooth

devices created by the “File Uploading” module to the Bluetooth Evaluation Board.

Because we use Java for the user interface design, we decided to use the Java APIs in order to be
able to embed the bluetooth operations in our user interface code. Mainly we will create a “Java
Client Application”. This application will search for devices and when the BlueRadios
Evaluation board is discovered, it will search for the services proived by this Board. Using the
“Serial Port” service of the board, the application will establish a connection and start data

transfer. The details of this process is discussed below.

Bluetooth System Requirements
The underlying Bluetooth system upon which the Java APIs will be built must meet certain

requirements:

o The underlying system must be "qualified,” in accordance with the Bluetooth
Qualification Program, for at least the Generic Access Profile, Service Discovery
Application Profile, and Serial Port Profile.

« The system must support three communication layers or protocols as defined in the 1.1
Bluetooth Specifications, and the implementation of this APl must have access to them:
Service Discovery Protocol (SDP), Radio Frequency Communications Protocol
(RFCOMM), and Logical Link Control and Adaptation Protocol (L2CAP).

« The system must provide a Bluetooth Control Center (BCC), a control panel much like
the application that allows a user or OEM to define specific values for certain

configuration parameters in a stack.

Packages
The Java APIs for Bluetooth define two packages that depend on the CLDC

javax.microedition.io package:

« javax.bluetooth: core Bluetooth API

This package provides classes used in device management, device and service discovery,

20

and obtaining a connection.

« javax.obex: APIs for the Object Exchange (OBEX) protocol

Application Programming

The anatomy of a Bluetooth application has certain parts. The client application is composed of
five main tasks: stack initialization, device management, device discovery, service discovery,

and communication.

1. Stack Initialization

The Bluetooth stack is responsible for controlling the Bluetooth device, so we need to initialize
the Bluetooth stack before we can do anything else. The initialization process comprises a
number of steps whose purpose is to get the device ready for wireless communication.
Unfortunately, the Bluetooth specification leaves this process to vendors, and different vendors
handle stack initialization differently. On one device, it may be an application with a GUI

interface, and on another it may be a series of settings that cannot be changed by the user.

There are commercial software products that provide stack initialization process. These products
can be analyzed in two categories. The first type of products build everything on top of the
bluetooth hardware. However these products do not support all the Java APIs packages and no
other application can easily access the bluetooth communication services. The products of the
second type run on top of external stacks like Microsoft Service Pack2. These products work by

JNI(Java Native Interface) calls to the stack.

After analyzing certain software products, we decided to wuse BlueCove
(http://code.google.com/p/bluecove/”) in our project since it is free. It supports javax.bluetooth
package and Serial Port Profile. However, BlueCove supports only Microsoft Service Pack2 (or

newer) stack.
BlueCove acts as a bridge between the Java application and the bluetooth hardware. Microsoft
stack API is a socket-style API that allows only C-based applications to operate. BlueCove

enables an integration between the Java applications and Microsoft API via JNI.

In order to use BlueCove, bluecove.jar files are added to the classpath which include the

21

javax.bluetooth package. During installation intelbth.dll file is generated by running the C codes
that come with BlueCove. This dll file is put into the System32 directory which enables the
integration between the Microsoft Stack and the Java application. Afterwards, the application is

written using the classes defined in javax.bluetooth package.

2. Device Management

The Java Bluetooth APIs contain the classes LocalDevice and RemoteDevice, which provide the
device-management capabilities defined in the Generic Access Profile. LocalDevice depends on
the javax.bluetooth.DeviceClass class to retrieve the device's type and the kinds of services it
offers. The RemoteDevice class represents a remote device (a device within a range of reach)
and provides methods to retrieve information about the device, including its Bluetooth address

and name. The following code snippet retrieves that information for the local device:

// retrieve the local Bluetooth device object
LocalDevice local = LocalDevice.getLocalDevice();
Il retrieve the Bluetooth address of the local device
String address = local.getBluetoothAddress();

Il retrieve the name of the local Bluetooth device

String name = local.getFriendlyName();

When a remote device is discovered, the same information about it can be obtained as below:

// retrieve the device that is at the other end of

[the Bluetooth Serial Port Profile connection,

/I L2CAP connection, or RFCOMM connection
RemoteDevice remote = RemoteDevice.getRemoteDevice(
javax.microedition.io.Connection c);

// retrieve the Bluetooth address of the remote device
String remoteAddress = remote.getBluetoothAddress();

// retrieve the name of the remote Bluetooth device

String remoteName = local.getFriendlyName(true);

3. Device Discovery

Because wireless devices are mobile they need a mechanism that allows them to find other

22

devices and gain access to their capabilities. The core Bluetooth API's DiscoveryAgent class and

DiscoveryL.istener interface provide the necessary discovery services.

A Bluetooth device can use a DiscoveryAgent object to obtain a list of accessible devices, in any

of three ways:

The DiscoveryAgent.startinquiry method places the device into an inquiry mode. To take
advantage of this mode, the application must specify an event listener that will respond to
inquiry-related events. DiscoveryListener.deviceDiscovered is called each time an inquiry finds a
device. When the inquiry is completed or canceled, DiscoveryListener.inquiryCompleted is

invoked.

If the device doesn't wish to wait for devices to be discovered, it can use the
DiscoveryAgent.retrieveDevices method to retrieve an existing list. Depending on the parameter
passed, this method will return either a list of devices that were found in a previous inquiry, or a
list of pre-known devices that the local device has told the Bluetooth Control Center it will

contact often.

In our application, we will use the first method. When a device is discovered, we will check if it

is BlueRadios Evaluation Board or not. If so, we will pass to the next stage, service discovery.

4. Service Discovery

Once the local device has discovered at least one remote device, it can begin to search for
available services - Bluetooth applications it can use to accomplish useful tasks. Because service
discovery is much like device discovery, DiscoveryAgent also provides methods to discover
services on a Bluetooth server device, and to initiate service-discovery transactions. Note that the
API provides mechanisms to search for services on remote devices, but not for services on the

local device.

The BlueRadios Evaluation Board offers “Serial Port” service, so will search for this service.
When this service is found, a ServiceRecord (included in javax.bluetooth) object is created and
this object is used in establishing a connection.

5. Communication

For a local device to use a service on a remote device, the two devices must share a common

23

communications protocol. So that applications can access a wide variety of Bluetooth services,
the Java APIs for Bluetooth provide mechanisms that allow connections to any service that uses
RFCOMM, L2CAP, or OBEX as its protocol. If a service uses another protocol (such as TCP/IP)
layered above one of these protocols, the application can access the service, but only if it
implements the additional protocol in the application, using the CLDC Generic Connection

Framework.

BlueCove supports RFCOMM protocol and BlueRadios Evaluation Board offers “Serial Port”
service, thus we will use this service in order to transfer data from our application program to the
bluetooth board.

Serial Port Profile
The RFCOMM protocol, which is layered over the L2CAP protocol, emulates an RS-232
serial connection. The Serial Port Profile (SPP) eases communication between Bluetooth
devices by providing a stream-based interface to the RFCOMM protocol. Some capabilities

and limitations to note:

« Two devices can share only one RFCOMM session at a time.
« Up to 60 logical serial connections can be multiplexed over this session.
« A single Bluetooth device can have at most 30 active RFCOMM services.

« A device can support only one client connection to any given service at a time.

For a client to communicate using the Serial Port Profile, each must perform a few simple

steps.

To set up an RFCOMM connection to a server the client must:
1. Initiate a service discovery to retrieve the service record

2. Construct a connection URL using the service record

3. Open a connection to the server

4. Send and receive data to and from the server

When service discovery step is taken in our application, the bluetooth board will appear as

“BlueRadios Serial Port” and we will make use of this service in order to establish a connection.

24

When connection is done successfully, we will open a DataOutputStream and start processing
the hex file and the txt file that need to be transferred to the bluetooth board. We will read each
file line by line and write the current line to the stream until all data in the files have been

transferred. The following activity diagram illustrates the process of this module:

LOCAL DEVICE REMOTE DEVICE

C Stack Initialization)

Discover
Remote Devices

\l/ discowvered

G)iscover Service on Remote Devices) Accept
Connection

Send Data

®

25

2.1.4. Register Process Module:

The Memory Process Module will deal with sending the information that will come from the
parallel port of the board to the SDRAM of the board and vice versa. In XSA-3S1000 Board,
most of the Parallel Port inputs and outputs are directly connected to the CPLD Part of the board.
The CPLD will be programmed so that it acts as an interface between the Parallel Port and the

FPGA so it can pass bitstream from the Parallel Port to the FPGA and vice versa.

The following steps will be held while sending the information from Parallel Port to FPGA:

1. The information from the Parallel Port will be sent to the FPGA through the CPLD.

2. The FPGA will store the retrieved information from the CPLD to one of its registers
that we call Parallel Port Register (i.e. the register that we will store the information gathered
from Parallel Port).

Usage Note: After these steps are completed Parallel Port Register content can be sent and
stored in the SDRAM.

In order to send data from the parallel port of the XSA board to the FPGA, data will be put on
the DO, D1, ... , D7 data pins of the parallel port. This data will pass through the CPLD and end
up in A15-A8 Flash address lines. Finally the data will arrive to the FPGA. In FPGA this data
will be stored in a register of length 8 bits. This data will be combined with the next coming 8
bits of data to produce a data bus of 16 bits wide since the data bus in our applications is 16 bits
wide. Similarly the data received will be combined with two 8-bits of data to produce an address
information of 24 bits wide. Because in our hex file, each line contains an address followed by
data that is going to be written to that address, the first 24 bits of data received (We represent
host addresses as 24 bits address bus.) will be the address so this data will be stored in the
address bus of the Bluetooth Controller which is connected to the address bus of the SDRAM
controller. Then the next 16 bits of data will be received, a byte at a time. This data bus will be
connected to the data bus of the SDRAM in the Bluetooth Controller host side. This way, a write
operation will be requested and the 16 bits data will be written to the SDRAM address specified
by the address bus. After writing the hex file contents to the SDRAM, we will start writing the
txt file contents. Since the beginning and ending addresses of the hex file content is
predetermined, we will write the txt file content starting from the end of the hex file content.
Since we know the number of images and the bytes contained in each image, we will understand

when we have read all the image data and the txt data is in progress next. Thus when we receive

26

16 bits of data, a byte at a time, from the parallel port, we will increment the current address by
one and put the received data to the data bus of the Bluetooth Controller. This way, SDRAM

Controller will get both the address and data bus contents and the write operation will be done.

The following activity diagram illustrates this process:

Sending Data from

Parallel Port to CPLD

[unsuccessful
sending]

Sending Data from
CPLD to FPGA

[successful
sending]

Data stored in FPGA
Parallel Port Register

27

While sending information from the FPGA to the Parallel Port, the module will follow the

following steps:

1. The information from SDRAM will be retrieved by FPGA in order to be sent to the
Parallel Port.

2. The CPLD will be programmed so that it acts as an interface between the Parallel Port
and the FPGA so it can pass bit streams from the FPGA to the Parallel Port and vice versa.

3. The information from the FPGA will be sent to the Parallel Port throurgh CPLD.

When FPGA wants to send data to the parallel port, it drives the A2, A1, and A0 address lines of
the Flash. This in turn drives the S5, S4, S3 status lines of the parallel port and thus data comes
to the parallel port. We will assign the values of these status lines to the D7, D6, and D5 data
lines of the parallel port. We will put a 0 and 1 to the D4 data line in turns. This data will arrive
to the RB7-RB4 pins of the pic. Because the RB4 pin have a different value with each coming
data, the RB7-RB4 interrupt (This interrupt is raised when one of the RB7-RB4 pins chages
value.) is guaranteed to be raised. Thus the pic will be notified every time we send data to the
parallel port of the XSA board.

The following diagram explains this process:

28

Retrieving Data from
SDRAM to FPGA

Sending Data from

FPGA to CPLD

=
J

Sending Info from
CPLDto Parallel Port

[unsuccessful
sending]

[successful
sending]

Putting Data fromthe
Status Lines to the Data
Lines of the Prallel Port

29

2.1.5. Retrieving Data from User via Bluetooth Evaluation Kit Module:

As we have described before, because our XSA board doesn’t have a serial port, we need to
change serial data to parallel data for sending user data gathered by the user interface to the XSA
board. Similarly, we need to convert parallel data to serial data for sending messages, whose
contents will be stored in the SDRAM of the XSA board, to Bluetooth devices.

According to our design principles and search on net, we decided to use an additional pic that we
will design for this purpose. This pic is going to have a very simple design. It will contain a
parallel port, a serial port and an energy supply.

By this basic design, after canalizing the bluetooth data to this new additional board by using its
serial port, data will be sent to our main board by using the parallel port of this additional board.
As you can guess, a similar process can be applied for transforming data from our main board’s
parallel port to our additional board’s serial port.

For the new board design we will use PIC 16F877 since we are familiar to this pic from the
Embedded Systems course. The design of this new additional board contains 2 main steps,
hardware and software designs.

For hardware design we will first create the circuit of the board that basically contains a structure

shown below:
10 KOhm
—|:|— MCLR rB7 |)
RB6
zzz Parallel
VDD
re Output
Vss
RB2
RB1
5V - RBO | /
33 pF) T
Serial
I} CLKOUT Input Rx
I CLKIN
MAX 232
4 MHz
BlueRadios
== CRYSTAL Evaluation Board

30

In this diagram there are some components that need to be explained:

e Cyristal: Crystal is responsible for the generation of two clock inputs to the pic.
(CLKOUT and CLKIN) These clock inputs are necessary for the proper working of the
pic.

e MAX 232: We have to convert -12V and 12V RS232 logic levels to OV and 5V in order
to process RS232 signals correctly in the pic. MAX 232 simply does this conversion.

e MCLR: This is the reset to the pic. There is a 10 Kohm resistor which is connected to
ground through a switch. When the switch is closed (The reset button on the pic is

pushed.), OV will be supplied to the MCLR pin and the pic will be reset.

After the hardware design step, for creating PCB(Printed Circuit Board) of our board, we are
going to follow basic steps that include some chemical and structural processes. Steps are;

e Printing out to circuit on a photograph paper by a laser printer,

e Pasting the print out on a copper plate by ironing,

e Wiaiting it in a chemical solution for a specified time duration,

e And finally combining serial port, parallel port and power supply with our copper plate

by soldering.

Once the design of the pic is finished, we will start programming the pic. For this purpose, we
are going write C code in which we will take data from serial port registers and put them into
parallel port registers and vice versa. For the C code we will write, we will use a compiler called
Source BoostC. BoostC is a C compiler that works with PIC16. This is an ANSI-C compatible
compiler that supports signed data types, structures, unions, pointers etc. When we build our C
code with this compiler, we will have an asm file. At this step, we will use MPLAB to generate a

hex file from the asm file and load this hex file to the pic.

By this new additional board, we will easily provide the connection between Bluetooth devices
and our main board. The process of retrieving data from the bluetooth evaluation board using this
new pic is described below:

For receiving data from Bluetooth device, we are going to use the serial port. When data is sent
through the serial port to the pic, the 1 bit info will be put in RCREG register and the board will
take an interrupt by the RCIF flag bit. At every interrupt, we will take the data from RCREG and

put it in a register we choose. After taking 8 different interrupts, we will achieve collecting an 8-

31

bit data in the register which is convenient for sending through the parallel port to XSA. Then we
will put this data to PORTB and it will be automatically sent to XSA board through parallel
port.
First we should enable interrupts in our software. This is done by setting GIE and PEIE of
INTCON register. Then the following steps will be taken:
Initializing the SPBRG register for baud rate.
Enabling asynchronous serial port by clearing bit SYNC and setting SPEN.
Setting RCIE for interrupt enabling.
Enabling reception by setting CREN.
If RCIF and RCIE is 1, an interrupt occurs. After we should;
a. Read 1 bit data from RCREG and write it in another register REG_2.

a M w D e

(At every write process we will shift the data in register by one bit to the right.)

6. After 8 interrupts, the data which is convenient for parallel port is ready.

For transforming data to the parallel port of XSA, steps are;

1. Reading data in REG_2.

2. Writing it in PORTB.

3. Clearing REG_2 register.
By this way data in PORTB will be automatically send to XSA’s parallel with converter board’s
hardware design.

The following activity diagram illustrates this process:

32

Initialize
SPBRG

Clear SYNC
&
Set SPEN

SR
SetRCIE

| [RCIF and RCIE is 0]

[RCIFand RCIE is 1]

S
Shift REG 2 Read RCREG
toright 1 bit \)

)
Write last bit

of REG 2
——

[8 bits are not completed])
[8 bits are completed]

Write REG_2
inPORTB

O

33

2.1.6. Sending Data to User via Bluetooth Evaluation Kit Module:

As we know, XSA board sends the information through its parallel port by 3-3-2 bits. Because it
only sends three bits data at each step, we decided to use RB4-RB7 interrupt of 16F877 for
detecting whether the info comes or not. We decided to add one more bit info in front of 3 bits
information from XSA. This bit will have a value of 0 and 1 interchagebly so that the RB4-RB7
interrupt is generated with each coming data. (This interrupt is generated when one of the RB4-
RB7 pins changes value.) Thus detection of the new info is guaranteed. At each send operation
from XSA, we put 0 if the previous transform is done by 1 and we put 1 if the previous transform
is done by 0. By this way, although the three bit info may be the same with the previous
transform we can detect it. When data is sent through parallel port of XSA, converter board will

raise an interrupt because of the new data in RB4-RB7.

After that point, we will read the new data, and collect them in a new register that we choose.
After three different interrupts, we will collect the 8-bit data from the parallel port. As a final
step, we are going to send the data in the register bit by bit using USART asynchronous receiver

to the Bluetooth serial port.

In order to carry these operations, first we should enable interrupts in our software. This is done
by setting GIE and PEIE of INTCON register.

For receiving data through the parallel port of XSA, steps are;
1. Setting RBIE of INTCON for enabling RB7-RB4 interrupt.
2. Defining RB7-RB4 pins as input.
3. Controlling RBIF flag bit of INTCON for determining if any value change occurs in
RB7-RB3 bits.
4. If RBIF is 1, an interrupt occurs. After that we should;
a) Read data from R4-R6 and write it in another register REG_1.
b) Clear flag bit RBIF.
(At every write process we will shift the data in register. For the first and second
write we shift it 3 bits and for the third write shift it 2 bits to the right.)

After three interrupts, we will transform it one by one through the serial port.

34

For transferring data through the serial port, steps are;

Initializing the SPBRG register for baud rate.

Enabling asynchronous serial port by clearing bit SYNC and setting SPEN.

Setting TXIE for interrupt enabling.

Setting TXEN for transferring.

Reading the last bit of REG_1, putting it in TXREG and shifting data in REG_1 one bit

o M w D

to the left.

After 8 transform we achieve sending received data from XSA’s parallel port to Bluetooth’s

serial port.

The following activity digram illustrates this process:

35

Set RBIE

Define RB7-RB4
as input

[RBIF=0]
[RBIF=1]
Read
RB6-RB4

[first or second interrupt]

[third interrupt]

Shift REG_1 to

Shift REG_1 to
right for 3 bits

right for 2 bits

Write RB6-RB4
n REG_1

Write RB5-RB4
in REG_1

Clear RBIF

[8 bit are not completed]

[8 bits are not sent yet]

[8 bit are completed]

Clear SYNC
&

Set SPEN

[All bits are sent]

36

2.1.7. VGA Process Module:

The VGA module provides the functionality of displaying images on a monitor. This module

consists of the following basic parts:

v Generating vertical and horizontal sync signals which indicate the end of a frame and line
respectively.

v Reading data from the memory to the pixel buffer

v Putting data from the pixel buffer to the pixel register and shifting the pixel register
content so that the current pixel is in the least significant position

v" Color mapping of the current pixel

The image(s) uploaded by the user will be stored in the SDRAM of the board. The screen width
(We will use w=800 pixels per line.) and the screen height (We will use h=600 lines per frame.)
will be constant variables assigned by us. For images which have less pixels per line or less lines
per frame, extra pixels will be blanked. Images with more pixels will be resized. Since the screen
width and height will be constant, for each image we will show the same number of pixels per
line and same number of frames per line, either blanked or not. In other words, for each image
we will store information of equal number of pixels. The pixel width of our system will be 16
bits and we will use 3 of these bits for the red color component, 3 for the green color component
, and 3 for the blue color component. Knowing the number of pixels and the width of a pixel, we
will be able to determine how many memory words each image will occupy in the SDRAM. We
will begin storing the images in the SDRAM, from an address again specified by us. Since we
will know the starting address and the size of each image, we will be able to determine the
starting and ending addresses of each image stored in the memory. We will use this information

for the transitions between the images in a slide show manner.

A horizontal sync signal indicates the end of a line. The period of horizontal scan line is
calculated by the formula:

horizontal scanline period = (number of pixels per line * CLK_DIV)/frequency + 6us
CLK_DIV in this formula is a clock divisor used to adjust the frequency. Our board has a fixed

frequency of 100 MHz and we will use a CLK_DIV of 2 to obtain a frequency of 50 MHz.

Putting the values of the variable in the formula for our system, we obtain a horizontal scanline

37

period of 22 ps. Of this time interval 16 ps is active, meaning a line of pixels is shown. The
remaining 6 ps consists of the front porch (1 ps), inserted before the sync signal, back porch (1
ps) inserted after the sync signal and the sync signal (4 ps) itself. Since the screen height (h), in
other words lines per frame, is known we can calculate the time period of a frame from the
formula:

frame-period = (number of lines per frame * CLK_DIV) / horizontal frequency + 1424

s

Inserting the values of the variables for our system we get a frame period of 14.624 ms. Front
porch occupies 0.34 ms of this period, back porch occupies 1.02 ms, and the sync pulse occupies
0.064 ms.

For the horizontal and the vertical scanlines, the pixels should be blanked when the horizontal
and vertical sync signals are generated to indicate the end of a line or a frame. For this purpose
we will have a counter and increment it every clock cycle. The period of the scanlines can be
calculated in terms of clock cycles by just multiplying the values found above with the system
frequency, 50 MHz. For example, a horizontal scanline is active for 16 ps, which is equal to 800
clock cycles. When the counter value reaches 800, we should start generating the horizontal sync
signal for 50 MHz * 4 ps = 200 clock cycles. Meanwhile we should blank the pixels for the time
period when the scanline is not active, which is 22-16 = 6 ps (front porch + signal + back porch).
Thus when the counter reaches 800 we should start blanking the pixels until the counter reaches
800 + 6*50 = 1100. After that the counter is reset to zero. Similarly, the vertical scanline is
active for 13.2 ms, which is equal to 660000 clock cycles. Thus we should have another counter
and when the value of this counter reaches 660000 we should start generating the vertical sync
signal. The vertical scanline is not active for 14.624-13.2 = 1.424 ms, which is equal to 71200
clock cycles. Thus we should start blanking the pixels when the counter reaches 660000 and

continue blanking until the counter becomes 731200, then the counter is reset to zero.

The user will specify the time interval for which each image will be displayed. This information
will arrive to the board together with the images via bluetooth and we will store this information
in registers. Let’s assume that the first image will be shown for t seconds. This means that we
will show the first frame for count = t / frame-period times. Thus, we will keep another counter
and increment the value of the counter every time we start a new frame of the same image. While

showing the same image, the value in the counter will be smaller than count. Meanwhile, at the

38

end of a frame the memory address of the pixels will be set back to the starting address of the
same image. Once the counter reaches the value count, we will reset the counter to zero and
begin showing the next image, which also means that the memory address will now point to the
starting address of this next image. We will repeat this process for all the images. When the last
image in the slide show is displayed for the specified amount of time, we will begin showing the

slide show again.

When displaying an image, we will read the pixel data from the memory to a pixel buffer. This
buffer will generate two signals, full and empty, indicating whether the buffer is full or empty.
When the buffer becomes empty, new data is read from the memory. The pixel data in the buffer
is put into a pixel register. A memory word is 16 bits and we will store pixels as 8 bits. This
means that the pixel register will contain two registers at a time. The content of the pixel register
is shifted so that the current pixel is in the least significant position. Once the current pixel is at
the correct position, the r , g, and b components are read and sent to the digital-to-analog-
converter of the vga port where the color information is extracted and the pixel is shown.

The following activity diagrams illustrate the process of this module:

39

e Activity Diagram for Address Generation:

setting address to
the starting address
of the current image

setting counter
to zero

incrementing
address

setting address to [counter 1= coury)f [counter == count] setting address to
eo

the starting address the starting address
of the current image / /@axt image

incrementing setting counter
counter to zero

[no system error]

[system error]

finish
operating

e Activity Diagram for Vertical and Horizontal Blanking Signals:

setting blank,

horizontaland vertical
counters to zero

incrementing
horizontal counter

[800<counter<1000

incrementing

vertical counter

660000<counter<663200]

generating
horizontal sync

generating
horizontal sync

[800<counter<1100]

setting blank_h
toone

horizontal counter
reaches 1100

[660000<counter<731200]

setting blank_v
toone

vertical counter
reaches 1100

[no systemerror]

[system error]

finish
operating

41

e Activity Diagram for the Complete VGA Process:
Horizontal and vertical Address
syncgeneration and Generation
blanking
Reading data from
memory to pixel buffer
piel count =0
Reading data from
buffer to pixel
register
[buffer empty] [pixel count=1] /" gpift pixelregister
pixel count =0
[horizontal blank or vertical blank] [! horizontal blank and !vertical blank]
Blanking pixel Showing

current pixel

[no system error]

[system error]

42

2.2. STRUCTURE CHART AND MODULAR
DEPENDENCIES

2.2.1. Structure Chart:

The following chart is the structure chart of our architecture and illustrates the modules and their

relations with each other.

BluePost

File Uploadin || Architecture \
p g VGA Process

Sending Data to
Format users via BEK
Conversion

Sending Data to
Board via
Bluetooth

Retrieving Data
from Users via
BEK

Register Process

2.2.2. Modular Dependencies and Flow:

In the 'BluePost Architecture’ most of the modules work in a sequential order (one after another)
except for the "Sending Data to Users via BEK Module", beginning with "File Uploading
Module" till "VGA Process Module™.

The workflow starts with "File Uploading Module". By using this module, the user uploads the
image files and enters the event information. Afterwards, the module forms a directory that
includes the uploaded image files, a file named "mesaj.txt" that contains the event information
and a file named "bilgi.txt" that contains the information about order and shows duration of each

uploaded image and completes its process.

43

After "File Uploading Module", "Format Conversion Module™" takes the role and reaches the
directory formed by the previous module. In this module a .hex file (“slideshow.hex") is formed

according to the image files and "bilgi.txt" file and saved in the same directory.

The .hex file formed by Format Conversion Module and the "mesaj.txt" file formed by File
Uploading Module are sent to Bluetooth Evaluation Kit with the process of "Sending Data to
Board via Bluetooth™ module. This module also reaches the directory formed by "File Uploading
Module™ and sends the "slideshow.hex™ and "mesaj.txt" files to the kit by doing the necessary

bluetooth operations like device discovery,service discovery, and establishing connection.

Once the bluetooth data arrives to the bluetooth evaluation board, this data is sent to the 16F877
pic through serial port. Here, “Sending Data from User via Bluetooth Evaluation Kit Module”
starts working. Serial data is received by the use of USART interrupt and the data received is
collected as 8 bits and sent to the parallel port of the pic. From here, data arrives to the parallel
port of the XSA board. “Register Process Module” sends data from the parallel port of the XSA
board to FPGA so that it can be stored in the SDRAM by the “Memory Operations” module.

The "VGA Process Module” reads the contents of the hex file from the SDRAM of XSA3S1000
board and according to r, g, b values of each pixel, it displays the images in the .hex data on the

VGA monitor according to the show duration data of each image in the .hex file.

Meanwhile, “Register Process Module” reads the contents of the txt file from the SDRAM, and
sends this data on three status lines to the parallel port. Here this data is combined with one more
bit (A bit whose value is toggled so that RB7-RB4 interrupt will be generated in the 16F877 pic.)
and assigned to the D7-D4 data lines of the parallel port. From here, data comes to the parallel
port of the 16F877. In this pic, data is received by the use of RB7-RB4 interrupt and sent to the
serial port of the pic bit by bit. Then this data is sent to the serial port of the Bluetooth Evaluation

Borard. At this board, this data will be sent to bluetooth devices as bluetooth messages.

44

2.3. FUNCTIONAL DESIGN

2.3.1. Data Flow Diagrams (DFDs):

LEVEL 0:

Computer User

';"‘o
0/‘
% "
0]60,. .
im n
BLUEPOST age o
monitor
&
©°
Q
o

Bluetooth Device
User

Monitor

45

LEVEL 1

Computer User

User
Interface

4.0
on Process
via VGA

Synchronizati

Ay
13003on1q 3x)
A

Bluetooth
Dewvice

Sending to

hex data

Processing
Bluetooth
Data

txt formatted

J0)1uom

] omei

Monitor

Bluetooth Device

User

information file—

1y
ey, /

95

Conwersion

Sending via

Bluetooth

46

LEVEL 2 FOR USER INTERFACE:

) ‘@%@/ Image
X .
Directory
Formation 0 20
Ilfjg Ury tio
file
Computer User Forma_t
oo™ Conwersion
\\ o
'0,3%
9 Ixt f,
oy, infyp, Matted
Tma tiop £;
2 - fil
oo txt File
o% Formation
%
7.0

Sending via
Bluetooth

13

Authentication verification
signal

47

LEVEL 2 FOR FORMAT CONVERSION:

7.0

1.0 o

Sending via
Bluetooth

User
Interface

Formatted ()
File %,
Formation ?
/;\

r-g-b Values
Extraction

48

LEVEL 2 FOR MEMORY PROCESS:

6.0

Processing
Bluetooth

SDRAM
Controller

3.3

Write
Operation

Operations

4.0

Read
Operation

Synchronizatio
n Process via
VGA

time /

information

Sending to
Bluetooth
Socket

49

LEVEL 2 FOR SYNCHRONIZATION PROCESS VIA VGA:

%,
s, Esy
%,, g
2,
3.0 2
z}:p’
Memory
Process

pixel register
content

Pixel Buffer
Operations

Vertical

Sync %
Genrerator
by val
o ’Ik %\0 . “‘a\
Slgnal \)\a“\‘ LA
4.5

g RN Blank Signal

€. a® Processing

%%

Horizontal

Sync

Generator

C_
“s‘l“

Connection
with the
Monitor

J10)TUO I
uo dgewl

Monitor

50

LEVEL 2 FOR SENDING TO BLUETOOTH DEVICE:

3.0

Memory
Process

%\ Serial

Parallel to data
Serial
Converter

Changing to
txt File Data

53

Serial to
Bluetooth
Conwerter

Bluetooth
Device User ixt bluetootl

file

o1

LEVEL 2 FOR PROCESSING BLUETOOTH DATA:

HEX file bluetooth
data
6.1
/;\<
Bluetoothto

i i Serial
Sending via _
Bluetooth information Conwersion

bluetooth data

Y
2
¢ e
A
23
3.0 %; %
* >
Memory %0y,
Process). :
["'e,. Serial to
% %, .y Parallel
~ g Conwversion
%
“ 3
%,
§ .,
6%(
K >
% Y
% Parallel vg,.\sv
K Datato &
FPGA Q‘;

et

¢S
xan

LataY

52

AWM

LEVEL 2 FOR SENDING VIA BLUETOOTH:
2.0 1.0

Format User
Conwersion Interface
X
O
o

Device
Discovery

[eusdis
WO} BIJLIAA

7.4

Establish
Communication

Discover
BlueRadios

Discower
Senvice

bluet()ot
hame

W
information
bluetooth data

Processing
Bluetooth Data

2.3.2. Data Dictionary:

Name r
Input to 4.6 Connection with the Monitor
Output from 4.2 Color Mapping
Description The red color signal.
Format std_logic_vector composed of 3 bits*
Name g
Input to 4.6 Connection with the Monitor
Output from 4.2 Color Mapping
Description The green color signal.
Format std_logic_vector composed of 3 bits
Name b
Input to 4.6 Connection with the Monitor
Output from 4.2 Color Mapping
Description The blue color signal.
Format std_logic_vector composed of 3 bits
Name address
Input to 3.3 Write Operation
3.4 Read Operation
Output from 3.1 SDRAM Controller
Description The row and column address of the data to be read or the
address to which data will be written given to the SDRAM.
This data is obtained from host address and is provided to the
SDRAM.
Format VHDL unsigned type composed of 12 bits
Name blank signal
Input to 4.5 Blank Signal Processing
Output from 4.3 Vertical Sync Generator
4.4 Horizontal Sync Generator
Description The blanking signals produced by the vertical and the
horizontal sync generators are combined to produce a global
blank signal and the read signal. When the blank signal is
high, the pixel should not be displayed.
Format std_logic : YES when blanking is necessary within a scanline
or within a frame, NO otherwise
Name bluetooth name
Input to 7.3 Discover Service
Output from 7.2 Discover BlueRadios
Description This is the bluetooth name of the BlueRadios Evaluation board

used to discover the services provided by the evaluation board.

54

Format | This is a string and our device has the name “BlueRadios”. |
Name clock signal
Input to 3.3 Write Operation
3.4 Read Operation
Output from 3.2 Clock operations
Description The clock signal obtained from the oscillator that is used to
clock the SDRAM operations.
Format std_logic : Main clock input.
Name configuration input
Input to 1.0 User Interface
1.2 Image Directory Formation
Output from This is an input to the system.
Description This is the input entered by the user about the time intervals
for which each image will be displayed in a slide show.
Format The user enters an integer in the range 1-10 for slide number
and an integer, specifying seconds, greater than 5 for time
duration.
Name configuration file
Input to 2.0 Format Conversion
2.2 HEX Formatted File Formation
Output from 1.0 User Interface
1.2 Image Directory Formation
Description This is a file containing the slide number, time duration and
the image file name for each image selected by the user.
Format This file is txt file. Each line in this file looks like:
<slide number> <image file name> <time duration>
Name data
Input to 3.3 Write Operation
Output from 3.1 SDRAM Controller
Description The data to be stored in the SDRAM. The bluetooth data
coming to our main board (hex data and information data) will
arrive to the SDRAM Controller and the controller will pass it
to the SDRAM through this bus.
Format This is the data bus composed of 16 bits, that contains data
that’s going to be written to a memory word. This data is
represented as “unsigned” in VHDL code.
Name end of frame signal
Input to 4.1 Pixel Buffer Operations
Output from 4.3 Vertical Sync Generator

55

Description The signal indicating the end of a frame.
Fomat std_logic: YES when the end of a frame is reached, NO
otherwise.
Name full
Input to 3.0 Memory Process
3.1 SDRAM Controller
Output from 4.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations
Description The signal indicating whether the pixel buffer is full or not.
Fomat std_logic: YES when the pixel buffer is full, NO otherwise.
Name gate signal
Input to 4.3 Vertical Sync Generator
Output from 4.4 Horizontal Sync Generator
Description The signal which is used to update the counter of the vertical
sync generator correctly.
Format std_logic : YES at the end of each scanline, NO otherwise.
Name global blank signal
Input to 4.6 Connection with the Monitor
Output from 4.5 Blank Signal Processing
Description The signal indicates when the red, green, or blue video signals
are blanked. This signal is produced by the blank signals
coming from the vertical and horizontal sync generators.
Format std_logic : YES when a pixel should be blanked,NO otherwise.
Name hex data
Input to 6.2 Memory Process
3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data
6.2 Serial to Parallel Conversion
Description The data contained in the hex file which will be sent via
bluetooth and processed by “serial to parallel conversion”
operations will arrive to the parallel port of the board and will
be sent to the FPGA so that it can be stored in the SDRAM.
This signal represents the data bus that contains data that will
be sent to the FPGA from the parallel port of the XSA board.
Format This parallel data is composed of 8 bits and it is declared as

“unsigned” in VHDL code. When the 8 bit data arrives to the
FPGA, it will be combined with the next coming 8-bit data and
will be passed to the 16-bit data bus of the SDRAM.

56

Name

HEX file bluetooth data

Input to 6.0 Processing Bluetooth Data
6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth
7.4 Establish Communication
Description The HEX file formed in “Format Conversion” will be send to
our board via bluetooth. “HEX file bluetooth data” represents
this incoming data. This data contains both the configuration
input and image pixel data.
Format This data is arrives in Hex format.
Name HEX file serial data
Input to 6.2 Serial to Parallel Conversion
Output from 6.1 Bluetooth to Serial Conversion
Description When “HEX file bluetooth data” comes to the bluetooth
evaluation board, it is sent to “Serial to Parallel Converter” as
serial data.
Format This data arrives bit by bit and bit and when combined, these
bits represent the HEX formatted data.
Name HEX formatted file
Input to 7.0 Sending via Bluetooth
7.4 Establish Communication
Output from 3.0 Format Conversion
2.2 HEX formatted file formation
Description This file contains information about the configuration input
entered by the user and the pixel data for the images uploaded.
The format of this file is described in detail in “Process
Specifications.”
Format This file is written in Hex format.
Name hex parallel data
Input to 6.3 Sending Parallel Data to FPGA
Output from 6.2 Serial to Bluetooth Conversio
Description When “hex bluetooth data” comes to the bluetooth evaluation
board, it is sent to “Serial to Parallel Conversion” operations
and then arrives to the XSA parallel port. This signal
represents the data bus that carries data to the parallel port of
the XSA board from the pic (designed by us) that converts the
bluetooth serial data to parallel data.
Format This data arrives to the parallel port as a data bus of 8 bits and

is represented as “unsigned” in VHDL.

57

Name host address
Input to 3.1 SDRAM Controller
Output from 4.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations
5.0 Sending to Bluetooth Device
5.1 Sending to Parallel Port
6.0 Processing Bluetooth Data
6.2 Serial to Parallel Conversion
Description The address of the data to be read from or to be written to
produced by the FPGA applications.
Format This is a bus defined of type unsigned composed of 24 bits.
Name hsync _n
Input to 4.6 Connection with the Monitor
Output from 4.4 Horizontal Sync Generator
Description This signal derives the horizontal sync input of the monitor.
Format std_logic : This signal becomes positive when the visible area
is in progress within a scanline and negative to indicate the
start and end of a scanline.
Name image n
Input to 1.2 User Interface
1.2 Image Directory Formation
Output from It is an input to the system.
Description The images stored in the PC, available for selection to be
displayed on the monitor.
Format The images can be in jpg or gif formats.
Name image bitstream
Input to 4.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations
Output from 3.0 Memory Process
3.4 Read Operation
Description The image bitstream read from the SDRAM to the VGA port.
Format VHDL unsigned type. The bitstream is read as words of 16

bits. Since we will have 16-bit pixels, the bitstream will be
read as pixels.

58

Name image file n
Input to 7.0 Format Conversion
2.2 r-g-b values extraction
Output from 1.0 User Interface
1.2 Image Directory Formation
Description The image files uploaded by the user which will go through
the format conversion process.
Format The format of the image can be jpg or gif.
Name image on monitor
Input to It is an output of the system.
Output from 8.0 Synchronization Process via VGA
4.6 Connection with the monitor
Description The image displayed on the monitor
Name information
Input to 1.1 User Interface
1.1 Txt file formation
Output from It is an input to the system.
Description The information entered by the user related to the event date
and time.
Format User enters a message and this message will be stored in a txt
formatted file named “mesaj.txt”.
Name information bitstream
Input to 5.0 Sending to Bluetooth Device
5.1 Sending to Parallel Port
Output from 3.0 Memory Process
3.4 Read Operation
Description The bitstream read from the SDRAM, which contains the
message about the event data, ready to be processed by the
bluetooth functionalities of the system so that a bluetooth
message can be sent to devices.
Format This data comes on a data bus composed of 16 bits and
contains the message file which was written in txt format.
Name information bluetooth data
Input to 7.3 Processing Bluetooth Data
6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth

7.4 Establish Communication

59

Description

The bluetooth data recieved from the bluetooth device
containing the information about the event, namely the data in
the “txt formatted information file”.

Format This data arrives as txt file.
Name information data
Input to 3.0 Memory Process
3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data
6.3 Sending Parallel Data to FPGA
Description The time and place information of the event sent from the
parallel port of the board to the FPGA so that it can be stored
in the SDRAM.
Format This parallel data is composed of 8 bits and it is declared as
“unsigned” in VHDL code. When the 8 bit data arrives to the
FPGA, it will be combined with the next coming 8-bit data and
will be passed to the 16-bit data bus of the SDRAM.
Name information parallel data
Input to 6.3 Sending Parallel Data to FPGA
Output from 6.2 Serial to Bluetooth Conversion
Description When “information bluetooth data” comes to the bluetooth
evaluation board, it is sent to “Serial to Parallel Conversion”
operations and then arrives to the XSA parallel port. This
signal represents the data bus that carries data to the parallel
port of the XSA board from the pic (designed by us) that
converts the bluetooth serial data to parallel data.
Format This data arrives to the parallel port as a data bus of 8 bits and
is represented as “unsigned” in VHDL.
Name information serial data
Input to 6.2 Serial to Parallel Conversion
Output from 6.1 Bluetooth to Serial Conversion
Description When “information bluetooth data” comes to the bluetooth
evaluation board, it is sent to “Serial to Parallel Converter” as
serial data.
Format This data arrives as a txt formatted file.
Name list of devices
Input to 7.2 Discover BlueRadios
Output from 7.1 Device Discovery
Description In order to send bluetooth data from the user pc, our code will
request for a list of available bluetooth devices, and this list
contains the available devices to connect.
Format The availabe devices will be represented by the Java

RemoteDevice class and this list is an array of RemoteDevice
objects.

60

Name opBegun
Input to 3.3 Write Operation
3.4 Read Operation
Output from 3.2 Clock Operations
Description This signal becomes high with the rising edge of the SDRAM
clock input when a read or a write is requested. It initiates the
requested operation.
Format std_logic: YES when a read or a write operation is requested
and clock input is high, NO otherwise
Name parallel data
Input to 5.2 Parallel to Serial Conversion
Output from 5.1 Sending to Parallel Port
Description While sending bluetooth messages, the message content which
is stored in the SDRAM, needs to first come to the parallel
port of the XSA board. From the parallel port, this data will be
sent to the parallel port of the pic(designed by us). This data
bus represents the data that is sent from the parallel port of the
XSA board to the parallel port of the other pic.
Format The parallel port of the XSA board, keeps data in parallel port
registers as a byte. So this data is represented as a data bus
composed of 8 bits. It is represented by unsigned type in
VHDL.
Name pin number
Input to 1.0 User Interface
1.3 Authentication
Output from This is an input to the system.
Description The pin number, which is specific to the bluetooth converter
card, the user must enter in order to send images to the board.
Format The user enters an integer.
Name pixel register content
Input to 4.2 Color Mapping
Output from 4.1 Pixel Buffer Operations
The data in the pixel buffer is shifted to the pixel register and
the contents of this register are processed to produce color
Description signals.
Format std_logic_vector composed of 16 bits
Name read control signal
Input to 3.2 Clock Operations
Output from 3.1 SDRAM Controller
Description The signal indicating a read request from the memory.
Format std_logic : YES when a read operation is pending, NO

otherwise.

61

Name

read done signal

Input to 3.1 SDRAM controller
Output from 3.4 Read Operation
Description The signal shows that the current read operation is completed.
Format std_logic: YES when the current read operation is finished.
Name read signal
Input to 4.1 Pixel Buffer Operations
Output from 4.5 Blank Signal Processing
Description The signal which indicates when to read more data from the
pixel buffer.
Format std_logic: YES when the buffer is empty, NO otherwise.
Name serial data
Input to 5.3 Serial to Bluetooth Conversion
Output from 5.2 Parallel to Serial Conversion
Description The parallel data obtained from the parallel port of the XSA
board, will be sent to the pic (designed by us) responsible for
sending this data to the serial port on it. The pic will get the
parallel data and send to it to its own serial data. This signal
represents the data that arrives to the serial port of this pic.
Format Since this signal represents the serial data, it will be processed
by bit by.
Name service record
Input to 7.4 Establish Communication
Output from 7.3 Discover Service
Description We will discover the services offered by the bluetooth
evaluation board get a record for the service, namely “Serial
Port” service. This record will be used in connection.
Format This record is represented by the Java ServiceRecord class.
Name time information
Input to 4.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations
Output from 3.0Memory Process
3.4 Read Operation
Description The time information stored in the SDRAM which is obtained
from the configuration file and which is used to determine
which image should be displayed at a specific moment.
Format VHDL unsigned type. The information is read as data words of

16 bits.

62

Name txt bluetooth file
Input to This is an output of the system.
Output from 5.0 Sending to Bluetooth Device
5.3 Serial to Bluetooth Conversion
Description From the serial port of the pic(designed by us) data is sent to
the bluetooth evaluation board. The evaluation board receives
this data and sends it as a txt message to bluetooth devices.
This signal represents the txt file ready to be sent to the
bluetooth devices containing information about the event.
Format The file will be in txt format.
Name txt formatted information file
Input to 7.0 Sending via Bluetooth
7.4 Establish Communication
Output from 1.0 User Interface
1.1 Txt File Formation
Description The file created by the information entered by the user about
the details of the event.
Format txt formatted file
Name verification signal
Input to 7.0 Sending via Bluetooh
7.1 Device Discovery
Output from 1.0 User Interface
1.3 Authentication
Description A verification signal indicating that the user has entered the
correct pin number.
Format Java Boolean type
Name vsync_c
Input to 4.6 Connection with the Monitor
Output from 4.3 Vertical Sync Generator
Description This signal derives the vertical sync input of the monitor.
Format std_logic: This signal becomes positive when the visible area
within a frame is in progress and negative when the end of a
frame is reached.
Name write control signal
Input to 3.2 Clock Operations
Output from 3.1 SDRAM Controller
Description The signal indicating the write request to the memory.
Format std_logic: YES when a write operation is pending, NO

otherwise.

63

Name write done signal
Input to 3.1 SDRAM Controller
Output from 3.3 Write Operation
Description The signal indicating that the current write operation is
completed.
Format std_logic: YES when the current write operation is completed.

* . When wires are described as signals in VHDL, they are defined with the type std_logic. With
this type the signal can be set to low (0), high (1), or high impedence. std_logic_vector is an
array of the std_logic type. It represents a bus which has a dimension associated with it. Type
unsigned is again an array of std_logic used to declare variables. This type also has a
dimension.

2.3.3. Process Specifications:

1.1 txt File Formation:
This process gets the message related to the poster event entered by the user via the user
interface. Afterwards, this message is written in a txt file named “mesaj.txt”. This file is kept in

the directory formed by “1.2 Image Directory Formation”.

1.2 Image Directory Formation:

When the user selects jpg or gif images for creating a slide show, this process creates a directory
and the selected images are kept in this directory. The directory is created with the name “new
folder” and when the user saves the slide show the directory is renamed to the name specified by
the user. As the user selects an image and specifies a slide number and time duration, this
process writes this data (format: slide number — image file name — time duration) in a
configuration file named “bilgi.txt”. This file is in txt format and it is also kept in the directory

that is used to store the images.

1.3 Authentication:

The bluetooth evaluation kit attached to the main XSA board will have a predetermined pin
number and in order to send data to this kit one has to enter this pin number. Thus when the user
decides to send the contents of the slide show, s/he is requested to enter a pin number by this
process. If the pin number matches with the pin number of the bluetooth evaluation kit, a

verification signal is raised so that bluetooth operations can start.

64

2.1 r-g-b Values Extraction:

When the user decides the send the slide show contents to the board, this process is initiated first.
The selected images that are stored in this directory formed by “1.2 Image Directory Formation”
are first resized to 800 * 600 dimensions first so that each image occupies same space in the
SDRAM and there’s a consistency in the display process. Then each resized image is processed
and the r, g, and b color information of each pixel in an image is obtained. These values are send
to “2.2 HEX File Formation”.

2.2 HEX File Formation:
This process starts by reading the configuration file produced by *“1.2 Image Directory
Formation”. The data in the configuration file is written in a new file named “slideshow.hex” in
hex format. The data in the configuration file will be stored in the first 16 memory words of the
SDRAM. This process will write the hex data in the following format:

address — configuration data that is going to be stored in this SDRAM address
To be more specific, the format will be like:

address — number of images

address — time duration of the 1% slide

address — time duration of the 2" slide

address — time duration of the 10" slide

The user may have selected less than 10 images, in that case the time duration of the slides not
specified will be given the value zero. Here the address specifies one of the first 16 memory

words.

After the first phase is complete, the second phase in this process starts. In our design, each
image is stored in the predetermined address ranges of the SDRAM. Thus this process writes the
obtained pixel color information from “2.1 r-g-b Values Extraction” again in “slideshow.hex”
with appending the SDRAM address to which this data will be written. In other words the format
of the file is :

address - pixel data that is going to be stored in this SDRAM address

65

After the pixel data of an image is completely written, we will write “FF” to the next memory
location which will indicate the end of the current image. Thus the hex filw will contain the
following line, after the pixel data of each image is written:

address — FF

We will divide the SDRAM into two parts and the first part will contain the data related to the
VGA operations. Thus, here the address specifies an address location from the first part of the

SDRAM, excluding the first 16 memory words.

3.1. SDRAM Controller:

This process communicates with our applications running on the FPGA. The SDRAM operation
type (read from or write to the memory) is determined by the signals coming from these
applications. According to the type of the operation, this process raises either a write control or a
read control signal. The process is used for gathering data (if the operation is a read operation)
and address information from *“4.0 Synchronization Process with VGA”, “5.0 Sending to
Bluetooth Device”, and “6.0 Processing Bluetooth Data” and for dividing this host address
information into memory address rows and columns. If the operation is a write operation, the
data and address information is sent to "3.3 Write Operation Process” to be written in the
memory according to the address row and column information. If the operation is a read
operation the address row and column information is sent to 3.4 Read Operation" to read the

related data from memory.

3.2. Clock Operations:

This process uses the oscillator signal and creates a new signal for SDRAM by concerning the
delays between the SDRAM and FPGA. This created clock signals are used by SDRAM for read
and write operations. When the process retrieves the write control signal or read control signal
from "3.1 SDRAM Controller", it creates the new clock signal and opBegun signal and sends
this signal to either "3.3 Write Operation” or "3.4. Read Operation” according to write/read
control signals . The SDRAM write and read operations start immediately after the first rising

edge of this created clock.

3.3. Write Operation:
This process is used for writing the data information gathered from "3.1 SDRAM Controller"

using the address (row and column) information gathered from the same process. Before this

66

process starts to operate the address and data information gets ready in the address and data
buses of the SDRAM. After the clock signal and opBegun signal is gathered from "3.2 Clock
Operations™ this process starts to operate with the rising edge of the clock signal and writes the
data in the data bus to the address specified by the row and column information in the address

bus.

3.4. Read Operation:

This process is used for reading the data information from the SDRAM using the address (row
and column) information gathered from "3.1 SDRAM Controller”. Before this process starts to
operate the address information gets ready in the address buses of the SDRAM. After the clock
signal and opBegun signal is gathered from "3.2 Clock Operations" this process starts to operate
with the rising edge of the clock signal and reads the data from the SDRAM according to the
address specified by the row and column information in the address bus. We will use the "dual-
port" feature of the SDRAM Controller. The read data from the first part of the SDRAM will
always contain the following information: The first 16 memory words of the SDRAM will be
read first. These words will contain the time duration information of each frame uploaded by the
user. After these 16 words, the frame data will be read for each frame according to the address
information. All this read data will be sent to "4.0 Synchronization Process via VGA" as image
bitstream and time information. While VGA Controller gets time and image information from
the first part of the SDRAM, this process will read and send the event information to "5.0.

Sending to Bluetooth Socket" to be sent to bluetooth device users.

4.1 Pixel Buffer Operations:

This process reads data from the SDRAM and processes this data so that images are displayed on
a monitor. The process first reads time information kept in the first 16 memory words and stores
this data in variables later to use. Then this process starts reading pixel data from the first portion
of the SDRAM. The read data is stored in a pixel buffer. As long as the buffer is not full, this
process updates the address and initiates a read operation. When the buffer becomes full, the full
signal becomes high and no read operations occur until the full signal becomes low again. The
address is incremented in each clock cycle unless end of a frame is reached. If eof signal
becomes high, it is checked whether the time duration of the current image has passed. If so the
address is updated to the address of the next image and incrementing process starts again. If not,
the address is updated to the beginning address of the current image. Meanwhile, a pixel data is

put into the pixel register so that the pixel can be displayed. Because the pixel register is 16 bits

67

wide and we store each pixel as 2 bytes, the register can hold one pixel at a time. Thus a pixel
data is put into the register from the buffer and when that pixel is displayed another pixel is put
and so on. In this process the read signal coming from the “4.5 Blank Signal Processing” is taken
into account. This read signal makes sure that a pixel is read from the buffer when the global

blanking signal is low. (The pixel will not be blanked.)

4.2 Color Mapping:

This process gets the pixel in the pixel register and extracts the r, g, b values of the pixel and
sends these values to “4.6 Connection with the Monitor”. Because each pixel is 16 bits wide, bits
0-2 contain blue color information, bits 3-5 contain green color information, and bits 6-8 contain
red color information. And since these bits are packed in the lower nine bits, they directly map to
the RGB values.

4.3 Vertical Sync Generator:

This process produces the vsync_n signal that derives the vertical sync input of the monitor. This
process gets “gate signal” from “4.4 Horizontal Sync Generator” and updates its counter because
this gate signal shows that a scanline has finished. Because we resize the images to constant
dimensions (800 * 600), when the counter becomes 800, in other words all scanlines in a frame
have been displayed, this process raises the end of frame signal (eof) end sends it to “4.2 Color
Mapping.” Additionally, this process raises the vsync_n signal sends it to “4.6 Connection with
the Monitor”. The negative pulses on this signal indicate the start and end of frame so that the
monitor displays the scanlines between the top and bottom visible area. During this period, a
blanking signal is sent to “4.5 Blank Signal Processing”. In our design, vertical sync generator
period is 14.624 ms. Of this period, 13.2 ms is the visible area and the rest 1.424 ms (front porch
+ back porch + sync pulse) indicates the start and end of a frame. (Refer to the VGA process

module for details.)

4.4 Horizontal Sync Generator:

This process produces the hsync_n signal that derives the horizontal sync input of the monitor.
This process produces a gate signal at the end of a scanline and sends it to “4.3 Vertical Sync
Generator”. This process also raises the hsync_n signal and sends it to “4.6 Connection with the
Monitor”. The negative pulses on this signal indicate the start and end of a scanline so that the
pixels between the left and right edges of the visible screen area are displayed. During this period

a blanking signal is activated and sent to “4.5 Blank Signal Processing”. In our design, horizontal

68

sync signal period is 22 ps. 16 ps of this period is visible and the rest 6 ps (front porch + back
porch + sync pulse) indicates the start and end of a frame. (Refer to the VGA process module for
details.)

4.5 Blank Signal Processing:

This process gets blanking signals from “4.3 Vertical Sync Generator” and “4.4 Horizontal Sync
Generator” and these signals are logically or ed to produce a global blanking signal, which is
sent to “4.6 Connection with the Monitor”. These blanking signals are also used to determine
when to read more pixels from the buffer. A read signal is raised when the global blanking signal
is low and the current pixel in the pixel register has been processed and this signal is sent to “4.1

Pixel Buffer Operations”.

4.6 Connection with the Monitor:

This process gets the RGB components from the “4.2 Color Mapping” and global blanking
signal from “4.5 Blank Signal Processing”. The RGB components are displayed when the global
blanking signal is not high. This process also gets vsycn_n from “4.3 Vertical Sync Generator”
and hsync_n from “4.4 Horizontal Sync Generator”. These signals derive the vertical and

horizontal sync inputs of the monitor respectively.

5.1 Sending to Parallel Port:

For sending messages to the bluetooth devices, data about the message content should be first
read from the SDRAM and sent to the parallel port of the XSA board. This process generates
host address from which data will be read from the SDRAM. Because we know the starting
address of the message data in the SDRAM, we will start generating addresses beginning with
this address. Then the address will be incremented with each read operation. The read data from
the SDRAM will arrive to the FPGA. FPGA will send this data as 3 bits by deriving the A2, A1,
and A0 address lines of the Flash. Then the S3, S2, and S1 status lines of the parallel port will be
derived and data will come to the parallel port. Finally this process will assign these lines to the
D7, D6, and D5 data lines of the parallel port. A value of 0 and 1 will be put on the D4 data line.

5.2 Parallel to Serial Conversion:
This process retrieves the parallel data from “5.1. Sending to Parallel Port” and send this data to
Serial-Parallel Converter Board so that the parallel data is converted to serial data. Details of the

conversion process are explained in “Sending Data to User via Bluetooth Evaluation Kit

69

Module™ specifications. This converted serial data then sent to “5.3. Serial to Bluetooth

Conversion” process.

5.3 Serial to Bluetooth Conversion:
Once serial data arrives to the Bluetooth Evaluation board, this process sends the coming data to

the nearby devices as bluetooth messages (as a .txt file).

6.1 Bluetooth to Serial Conversion:
When the user wants to send slide show contents to the XSA board, the hex formatted file and
the txt file are sent via bluetooth operations. This data arrives to the bluetooth board and sent to

the 16F877 pic through serial port by this process.

6.2 Serial to Bluetooth Conversion:

When data arrives to the serial port of the 16F877 pic, this data is received by the use of USART
interrupt and when 8 bits of data is collected bit by bit, this 8-bit data is sent to the parallel port
of the pic. From here, this data arrives to the parallel port of the XSA board.

6.3 Sending Parallel Data to FPGA:

When the data sent by the user via bluetooth arrives to the parallel port of the XSA board, after
the serial to conversion operations, this process sends the coming data to the FPGA so that it can
be stored in the SDRAM. For this purpose, the data will be put on the DO-D7 pins of the parallel
port. Then this data will pass through the CPLD and arrive to the FPGA. While sending the hex
file format, first the address and then data that needs to be written to that address will arrive.
When an 8-bit data arrives to the FPGA, this data will be combined with the next two coming 8-
bit data to produce the address data composed of 24 bits. This address will be put to the host
address data bus of the SDRAM controller. Then, two coming 8-bit data will be combined to
produce data composed of 16 bits (hex data). Then this data bus will be transferred to the data
bus of the SDRAM controller. Then the write operation can start in the Memory Process module.
After all the hex data is transferred, the transfer of the txt data will start. (Because we know the
number of images and the number of bytes in an image, we will be able to recognize when all
hex data has been received.) This data will be stored starting with the end address of the hex data
in the SDRAM. Thus, with every two 8-bit data coming, the current address will be incremented
and the combined 16-bit data will be transferred to the data bus of the SDRAM so that a write

operation can start.

70

7.1 Device Discovery:

When the user decides to send a slide show content to the XSA board and enters the correct pin
number for the bluetooth evaluation board, a verification signal arrives and this process starts. In
order to establish a connection with the bluetooth evaluation board, this process searches for the

available bluetooth devices returns a list of the available devices.

7.2 Discover BlueRadios:
This process gets the list of available bluetooth devices from “7.1 Device Discovery” and finds
the bluetooth evaluation board attached to our main board in this list. It returns the name of the

bluetooth evaluation board, which will be “BlueRadios”.

7.3 Discover Service:

Once the bluetooth evaluation board is discovered and its name is retrieved, this process searches
for the available services provided by this evaluation board. We will use the “Serial Port” service
so when this process discovers this service, it returns a service record, which is passed to “7.4

Establish Communication”.

7.4 Establish Communication:

When the “Serial Port” service is found and the service record is obtained, this process first
establishes a connection with the bluetooth evaluation board. After the communication is
successfully established, this process starts sending data to the evaluation board. The data sent
consists of the HEX formatted file produced by “2.2 HEX Formatted File Formation”, and the txt
formatted information file produced by “1.1 txt File Formation.” The hex file contains
configuration and image data so the data sent by this process arrives to “6.1 Bluetooth Serial

Data” as image bluetooth data, configuration bluetooth data, and information bluetooth data.

2.4. BEHAVIORAL DESIGN

3.3.3. State Transition Diagram:

The following diagram illustrates the possible states and their transitions to other states.

71

Format
Conversation
State
A
Invoke ChangeFormat() Tum to User Interface
A 4
> "R f Sending D:
Input Taken Bluetooth
via Computer | Invoke CheckUser() Authentication
State State
-~ Wrong PIN is entered
i Display System Message
ValidPIN isentered
Invoke TransformData()
A 4
Data
_ Transformation
) Invalid Data Form to Board
Display System Message via
Bluetooth
State
Saving of Hex Format Images Saving of Message Data
Invoke Savelmages() Invoke SaveMessage()
A 4 A 4
Preservation
Data in
SDRAM
State
T Valid Hex Images in SDRAM
Synchronization Invoke Synchronize ()
for VGA <
State
A _Valid Message in SORAM
Invoke BluetoothTransferMessage()
A 4
Message Sending Sendngof | dentification of abluetoothdevice
Message Message
Invoke TransferMessage() via < Invoke SendMessage() Preparation
Bluetooth State
State
A

72

3. SYSTEM DESIGN

3.1. USE CASES & USE CASE DIAGRAM
3.1.1. Use Cases

Use Case 1: Uploading Poster and Information

This use case is for uploading the poster and event information via a computer or a bluetooth
device.

Actors: File Uploader

Pre-Condition: The user should have the right to upload files about the event.

Post Conditions: The poster and information is uploaded successfully to BLUEPOST SYSTEM.

Basic Flow:
1. File Uploader runs the file uploading software of BLUEPOST SYSTEM on his/her computer

in order to browse and upload the event image and information files.

2. After browsing the files people uploads the file to be stored in BLUEPOST SYSTEM via
interactive bluetooth.

Alternative Flow:
If the file formats that the File Uploader intends to send are not compatible or the files do not
contain any information or the File Uploader do not have the right to upload a file (pin error)

uploading is simply rejected.

Use Case 2: Store Poster and Information into the System

This use case is for storing poster images and information into the system.
Actors: BLUEPOST SYSTEM

Pre Condition: Poster images and event information have to be already uploaded by the File

Uploader correctly.

73

Post Conditions: The images and information is stored into the system and the images are ready
to

be displayed and the information is ready to be sent to Information Recievers.

Basic Flow:

1. The images and information that File Uploader wants to upload come to the system to be
stored.

2. The system stores the images and the information.

3. The poster and information is ready to be displayed and sent to the Information Recievers.

Use Case 3: Observing the Digital Poster from the Monitor

Actors: Information Reciever
Pre Condition: The user wonders about the event.
Post Condition: The user gets the information about the event and decides to participate in the

event.

Basic Flow:

The user observes the poster and information on the poster.

Use Case 4: Broadcasting Event Information from BLUEPOST SYSTEM to Information

Recievers

Actors: BLUEPOST SYSTEM and Information Reciever

Pre Conditions: An event information should already be stored in the BLUEPOST
SYSTEM, and a bluetooth connection should already be established between BLUEPOST
SYSTEM and Information Reciever.

Post Conditions: The event information has successfully transferred to Information Recievers.

Basic Flow:

1. Information Reciever establish a connection with BLUEPOST SYSTEM that is already ready
to establish a connection.

2. File transfer operation occurs.

3. Connection closes after successful completion of File Transfer.

74

Alternative Flows:

1. If connection is not established, file transfer request is simply rejected.

2. If connection is lost during file transfer operation, file transfer request is not completed

successfully.

3.1.2. Use Case Diagram

: Uploading Image
and Information by
BLUEPOST SYSTEM
File Uploading
Software

File Uploader

/BLUEPOST SYSTEM

Store Poster and
Information into
the System

Broadcasting Event
Information from
BLUEPOST SYSTEM
to Information
Recievers

Observing the
Digital Poster
from the Monitor

Information Reciever

75

3.2. CLASS AND SEQUNCE DIAGRAMS

3.2.1. File Uploading Module Class Diagram

Message

String: messageContent

+ Message(messageContent:String)
+writeMessage()

Open

String: projectName

+ Open(projectName:String)

Send

Integer: pinNo
String: projectName

+requestToSend(pinNo:Integer)

+saveMessage() \ + startSend()
A\
BluePost Save
String: projectName 1 |String:workspaceName
P String: projectName()
+ show Verification()
+errorDisplay () +save() _
+requestPIN(): Integer + nameFormation()
Image Uploader
String: image
Integer: slideNo
Integer: time
+ ImageUploader(image:String,
slideNo:Integer time:Integer)
+savelmage()
\ NAY
A 7
ImageAdder Image Modifier

+addimage(image,slideNo time)

+ modify Image(image,slideNo time)

76

BluePost Class:

Attributes of the Class:

Attribute Name Attribute Type | Description

projectName String This is the current slide show the user is working on.
If the slide show has not been saved yet, it has the
name “new folder”.

Methods of the Class:

Method Name Parameter Types Return Type Description

showVerification | void void A verification message is
displayed when the user adds or
modifies an image, or saves the
slide show.

errorDisplay void void When the user specifies an
already given slide number, an
error message is displayed.

requestPIN void void When the user enters a wrong
pin number to complete the send
process, user is forced to enter
another pin.

Message Class:

Attributes of the Class:

Attribute Name Attribute Type | Description

messageContent String This is the message entered by the user that is going
to be sent to the bluetooth devices. If the user has not
entered a message yet it has a null value.

Methods of the Class:

Method Name | Parameter Types | Return Type | Description

Message String void This is a constructor that creates a
message object with the specified
message content.

writeMessage void void This function displays a text area with
the current message content so that the
user can edit the current message. If
the message content is null, an empty
text area will be displayed.

saveMessage void void When the user enters a message to the

text area, this function updates the
message content with the text in the
text area.

Send Class:

Attributes of the Class:

Attribute Name

Attribute Type

Description

pinNo Integer This is the pin number entered by the user in order to
complete the send process. It should be equal to the
pin number of the bluetooth evaluation board.

projectName String This is the name of the slide show that the user

wants to send.

Methods of the Class:

Method Name Parameter Types | Return Type | Description

requestToSend Integer Boolean This function returns true if the pin
number entered by the user matches
the pin number of the bluetooth board.

startSend void void This function starts the sending process
of the current slide show. Here the
Format Conversion module starts
working.

Open Class:

Attributes of the Class:

Attribute Name | Attribute Type | Description

projectName String This is the current slide show the user is working on. If

the slide show has not been saved yet, it has the name

“new folder”.

78

Methods of the Class:

Method Name | Parameter Types | Return Type | Description
Open String void This constructs an Open object with the
given slide show name. If the slide show
name is not null, the current images in
the show are displayed. Otherwise, the
user can start adding new images to a
new slide show.
Save Class:
Attribute of the Class:
Attribute Name Attribute Type | Description
workspaceName String This is the name of the workspace our software is
running on. The slide shows created by the user will
be saved under this directory.
projectName String This is name the user has entered to save the current
slide show.
Methods of the Class:
Method Name | Parameter Types | Return Type | Description
save void void This function renames the current slide
show to the projectName attribute.
nameFormation | void void If a slide show that has the name of
projectName attribute, this function
changes the projectName as explained
in module description.
ImageUploader Class:
Attributes of the Class:
Attribute Name | Attribute Type | Description

image

String

Name of the image file the user as selected.

slideNo

Integer

The slide number specfied for the selected image.

79

Time

Integer

Time duration specified for the selected image.

Methods of the Class:

Method Name | Parameter Types Return Type | Description

ImageUploader | String,Integer,Integer | void This is a constructor that creates a
ImageUploader object with the
specified parameters.

savelmage void void This function saves the image that

comes from ImageAdder or
ImageUploader class to the current
slide show and updates “bilgi.txt” as
explained in module description.

ImageAdder Class:

Methods of the Class:

Method Name | Parameter Types Return Type | Description

addImage String,Integer,Integer | void This function adds a new image to the
current slide show, with the specified
parameters. If the slide number has
been specified before, an error
message is dispayed. If the user
selects to change the image, adding
continues.

ImageModifier Class:

Methods of the Class:

Method Name | Parameter Types Return Type | Description

modifylmage | String,Integer,Integer | void This function modifies an image in
the current slide show, with the
specified parameters. If the slide
number has been specified before, an
error message is dispayed. If the user
selects to change the image,
modifying continues.

Deletelmage String,Integer void The specified image is deleted from
the slide show and the slide number
will be freed so that the user can
select an image for that slide number.

80

3.2.2. File Uploading Module Sequence Diagram

:BluePost ‘ ‘ Images dder ‘ ‘

DOpen ‘ ‘ Imagehdodifier ‘ ‘ Idessage ‘ ‘ Bave ‘ ‘

Open(projecil¥ame)

addmage(image slideMNo, it

[slide[No specified]
errorDisplav()

[change Image]
€ e

ime)

addimage(image slidelo,tin

P
L

T
|
|
|
|
|
|
|
|
|
|

saveProjectfprojectName)

Y

saveMessage()

requesiToSend

fpintNe)

wl.ile incorrect PIN] requestPING
T

¥

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
' =’_[mme exists]
| mameFormation()
| -]
| save
| <_0:’
|
| |
| |
T T
| |
| |

Sequence of Events for File Uploading Module

Main Sequence

1.

2.

The user either starts a new slide show or opens a
previously saved slide show.

The user can add a new image to the slide show. If the
slide number is specified, a warning message is displayed.
If the user wants to change the image for the specific slide,
adding operation continues accordingly. (The for the
current slide is changed.) Otherwise the operation is
canceled.

The user can modify an image in the slide show. If the
new slide number entered for the image has been already
specified, a warning message is displayed. If the user
chooses to modify the image anyway, the operation
continues accordingly. (The for the current slide is
changed.) Otherwise the operation is canceled.

81

o s

The user can delete an image from the slide show.

The user can enter the message that is going to be sent to
the bluetooth devices. If no message has been saved, an
empty text area will be displayed. Otherwise, the current
message will be displayed. The user will make any
changes and save the message.

The user can save the current slide show. If the name
specified already exists, the name will be changed as
described in the module description and the current slide
show directory will be renamed.

The user can send the slide show contents to our main
board. S/he will be asked a pin number, if the pin number
matches with the pin number of the bluetooth board,
operation continues. Otherwise, user is asked to enter the
pin number again.

82

3.2.3. Format Conversion Module Class Diagram

Images

- name: String
-numb:Integer

+ getlmg_Header(void) return String

+ resize(void) void

+getPixel(x: Integer, y : Integer) return
String

Deals
1

FormatConverter

-nlmages : Integer
-order[n_images]: Integer
-time[n_images]: Integer

+ readSpec() void

1 1

Writes

A J

HexDataFile

-data :FILE

+signBegin() return boolean
+signBnd() return boolean

+ writeGen Data(time[] : Integer ,
i:Integer , address[]:Integer) return
boolean

Creates

Writes

800%600

PixelData

800%60 0

- r:integer
- g:Integer
- b :Integer
-value: Integer

+ writeData(void) return boolean
+ setValues(i :Integer, x : Integer, y:
Integer) return String

83

Images Class:

Attributes of The Class:

Attribute Name

Attribute Type

Description

numb Integer The identification number of the image.

name String Name of the image.

Methods of the Class:

Method Name | Parameters Types | Return Type Description

getimgHeader | void String Returns the header file
information of the image file.

resize void void Resize the image file.

getPixel Integer, Integer String Return RGB string of the
specified pixel.

FormatConverter Class:

Attributes of The Class:

Attribute Name | Attribute Type Description

nlmages Integer Number of images in the slide show.
order Integer(] The specified order of images in the slide show.
time Integer] The specified time durations of images in the slide

show.

Methods of the Class:

Method Name | Parameters Types | Return Type | Description

readSpec Void Void Reads “bilgi.txt’ file and initializes
class attributes.

HexDataFile Class:

Attributes of The Class:

Attribute Name | Attribute Type Description

data

FILE

The hex format file.

Methods of the Class:

Method Name

Parameters Types

Return Type Description

signBegin

Void

Boolean Puts a flag to the hex format file
to sign the beginning of a new

RGB stream.

84

signEnd Void Boolean Puts a flag to the hex format file
to sign the end of a RGB
stream.

writeGenData Integer[], Integer[] | Boolean Writes the general
specifications about slide show.

PixelData Class:

Attributes of the Class:

Attribute Name | Attribute Type Description

r Integer Red value of a pixel.

g Integer Green value of a pixel.

b Integer Blue value of a pixel.

value String Evaluated RGB value of a pixel.

Methods of the Class:

Method Name | Parameters Type Return Type Description

writeData String Boolean Writes value attribute in hex
format file.

setValues Integer, Integer Integer Initialize the attributes of the

class.

85

3.2.4. Format Conversion Module Sequence Diagram

readSpec()

<<create>>
bdf : HexDataFile

writeGenData(time[n_images],n_images,address[n_images>2])

loop n
getimgHeader()

[nimages]

image header data

resize()

signBegin();

loop n
[600]
\ loop n\
[800]
etPixel(xy)
pixel(xy)
<<create>>
- : PixelData
setValues(pixel(x,y)) ;
writeData()
- 1
<<destroy>> X
signEnd()

86

Sequence of Events for Format Conversion Module:

Main Sequence

1. The general specifications about slide show is read and written
to the hex format file.
2. For every image file in the slide show;

a. New image beginning sign is written to the hex format
file.

b. Image header is read.

b. Image is resized.

c. Every pixel of the image is written to hex format file after

its examination.
d. Image ending sign is written to the hex format file.

3.2.5. Sending Data to Board via Bluetooth Class Diagram

getFriendly Name
getDeviceClass
setDiscoverable
getDiscoverable

islnquiring
transactionlD

Device

LocalDevice DiscoveryAgent RemoteDevice
bluetoothManager bdAddrString
discoveryAgent FIuetoothStack bdAddrLong
bdAddrString Isteners) pageScanRepMode

- cachedRemoteDevices ageScanPeriodMode
getllsgcalDeVIcA(a foundRemoteDevices EageScan Mode
getDiscoveryAgent ;
remoteDevices deviceClass

clockOffset
friendly Name
serviceRecords

getBluetoothAddress - etFriend ly Name
getRecord DL G 0.1 getBIuetoIgthAddress
updateRecord 0.. r(itrrlte;veD_ewces getRemoteDevice
zaicenllqnqulmry authenticate
. authorize
searchServices encrypt
zeellneccfilsseerr\)/i::c:Search isAuthenticated
1 receive_HCI_Event_Inqu !sAuthorized
iy Result I isEncrypted
ServiceDiscovery receive_HCI_Event_Inqu
iry_Complete
receive_HCI_Event_Rem
discoverService ote_Name_Request_Com
initiateServiceDiscovery Transaction plete .
getRemoteDevice
1

87

LocalDevice Class:

Attributes of The Class:

Attribute Name Attribute Type

bluetoothManager | BluetoothStack

DiscoveryAgent | DiscoveryAgent

bdAddrString String

Methods of the Class:

Method Name Parameters Return Type Description

Types

getLocalDevice void LocalDevice return an object that
represents the local Bluetooth
device

getDiscoveryAgent void DiscoveryAge | Returns the discovery agent

nt for this device

getFriendlyName void String Retrieves the name of the
local device

getDeviceClass void DeviceClass Retrieves the DeviceClass
object that represents the
service classes, major device
class, and minor device class
of the local device.

setDiscoverable mode Boolean Sets the discoverable mode of
the device

getProperty Property String Retrieves Bluetooth system
properties.

getDiscoverable void int Retrieves the local device's
discoverable mode.

getBluetoothAddress | void String Retrieves the Bluetooth
address of the local device.

getRecord Connection ServiceRecord | Gets the service record
corresponding to a btspp
btl2cap or btgoep notifier.

updateRecord ServiceRecord | void Updates the service record in
the local SDDB that
corresponds to the
ServiceRecord parameter.

88

DiscoveryAgent Class:

Attributes of The Class:

Attribute Name Attribute Type
BluetoothStack BluetoothStack
listeners Vector
cachedRemoteDe | Vector

vices

foundRemoteDev | Vector

ices

Methods of the Class:

Method Name Parameters Return Type Description
Types
retrieveDevices int RemoteDevice | Returns an array of Bluetooth

(1

devices that have either been
found by the local device
during previous inquiry
requests or been specified as a
pre-known device depending
on the argument.

startinquiry int,DiscoveryL | boolean Places the device into inquiry
istener mode.
cancellnquiry DiscoveryList | boolean Removes the device from
ener int inquiry mode.
searchServices int, UUID int Searches for services on a
RemoteDevice remote Bluetooth device that
,DiscoveryList have all the UUIDs specified
ener in uuidSet
cancelServiceSearch | int Boolean Cancels the service search
transaction that has the
specified transaction ID.
selectService UUID, int, String Attempts to locate a service
boolean that contains uuid in the
ServiceClassIDList of its
service record.
getDiscoverablerecei | byte[] void Retrieves the local device's
ve_HCI_Event_Inqui discoverable mode. This
ry_Result method is called from
BluetoothStack.receive_HCI_
Event_Inquiry_Result
receive_HCI_Event_| | byte[] void Retrieves the Bluetooth

nquiry_Complete

address of the local
device.This method is called
from
<code>BluetoothStack.receiv

89

e_HCI_Event_Inquiry_Compl
ete

getRemoteDevice

long

RemoteDevice

Resolves a Bluetooth Address
to a RemoteDevice.

RemoteDevice Class:

Attributes of The Class:

Attribute Name Attribute Type

bdAddrString String

bdAddrLong long

pageScanRepMod | byte

e

pageScanPeriodM | byte

ode

pageScanMode byte

deviceClass DeviceClass

clockOffset short

friendlyName String

serviceRecords HashTable

Methods of the Class:

Method Name Parameters Return Type Description

Types

getFriendlyName boolean String Returns the name of this
device.

getBluetoothAddress | void String Retrieves the Bluetooth
address of this device.

getRemoteDevice Connection RemoteDevice | Retrieves the Bluetooth
device that is at the other end
of the Bluetooth Serial Port
Profile connection, L2ZCAP
connection, or OBEX over
RFCOMM connection
provided

authenticate void Boolean Determines if this
RemoteDevice should be
allowed to continue to access
the local service provided by
the Connections.

authorize Connection Boolean Sets the discoverable mode of
the device

encrypt Connection,bo | Boolean Attempts to turn encryption

olean on or off for an existing

90

connection.

isAuthenticated void Boolean Determines if this
RemoteDevice has been
authenticated.

isAuthorized Connection Boolean Determines if this
RemoteDevice has been
authorized previously

isEncrypted void Boolean Determines if data exchanges
with this RemoteDevice are
currently being encrypted.

3.2.6. Sending Data to Board via Bluetooth Sequence Diagram

:Local Device :Remote Device Server Client

[[\
D . R D . ‘

\

——remote-devieefound—— \
\

\

discover service | addservice record

| to database——p

\
\
\
\
\
\
\
accept connecti 0J1

|
|
| \ |

| \ ‘

\ \ \ \
\ | . send data >
| | | |
| \ \ |
| |

| |

| |

| |

\ |

Sequence of Events for BluetoothModule:

1. Local Device tries to discover the remote devices around.
2. The service is discovered.

« Remote Device accepts connection.

Main Sequence « The information transfer between the local and the remote
device occurs

91

4. HARDWARE DESIGN

The following block diagram is a brief overview of the hardware of our system. We have an
SDRAM Controller, which communicates with the VGA Controller, which is responsible for the
image display, and the Bluetooh Controller, which is responsible for the operations involving
bluetooth. SDRAM Controller is like a bridge between the SDRAM and other applications. The
Counter calculates the address from which the next pixel information is going to be read for the
VGA Controller. Similarly, Bluetooth Address Operations part calculates the address from which
next data is going to be read and the address to which next data is going to be written in the
Bluetooth Controller. The SDRAM Controller is composed of a “host side” which is connected
to our VGA and Bluetooth applications and an “SDRAM side” which is connected to the
SDRAM. Since the SDRAM should be in communication with two applications, we will build a
dualport module in the SDRAM Controller host side. With this module, the host side will be
divided into two and each of the smaller parts will act just like the original host side port. For this
reason, some signals related to the SDRAM are duplicated (ex. read control signal, write control
signal, earlyOpBegun etc.) and each copy is attached to the one of the two applications. The
duplicated signals ending with a “0” are attached to the VGA Controller and those ending with a
“1” are attached to the Bluetooth Controller. The host side of the SDRAM, gets the address

information from

92

BLUETOOTH

SDRAM CONTROLLER

VGA CONTROLLER

CONTROLLER clock vsync_n
clock hsync_n
read control O< full blank %
. signal 0 z
dataReady | —— | write control r 5'
signal 1 rst rst g Py
readyToSend | —— | read control read done wr b
signal 1 signalo
. pixel data image bitsream
next | «—— | Write done .
signall time data time information
read done
A f
send| < signall b
information ad
i rddata
bitsteam | +—— COUNTER
coming data | — | wrdata
rst
earlyOpBegun0 cke
clock
earlyOpBegunl
address1 address0
BLUETOOTH ADDRESS
OPERATIONS SDRAM

In this block diagram, there are some signals, which are not specified in the data dictionary since

these signals take place in the level-3 data flow diagrams. Here is the explanation of these

signals:

cke: This is a clock-enable signal of type std_logic. This signal arrives to the Counter
from the SDRAM Controller. When the next current read operation has started, a signal is
raised in the SDRAM Controller (earlyOpBegun), and this signal arrives to the Counter
so that the counter updates the address to the address of the next pixel, which is going to
be read.

coming data: This is the data bus for the Bluetooth Controller that holds the data to be
written to the SDRAM. It has a width of 16 bits and it is of type unsigned. This bus will
carry the data coming through our board via bluetooth, namely *“hex data” and
“information data” as specified in the level-2 data flow diagrams and the data dictionary.
This data will be passed to the SDRAM Controller so that it is written to the SDRAM.
dataReady: This signal is of type std_logic and becomes true (YES) when a byte of data
becomes ready to be written to the SDRAM after the serial to parallel conversion

operations. This initiates a write request in the SDRAM controller for the bluetooth port.

93

earlyOpBegun: This signal is of type std_logic and becomes high just after the indication
of the start of a read or a write operation so that the application can update the address
value for the next read or write operation.

next: This signal is of type std_logic and becomes YES when the current write operation
in the SDRAM Controller for the bluetooth port has been completed so that the Bluetooth
Controller can start processing the next byte of data to be written to the SDRAM.

pixel Data: This is the data bus for the SDRAM Controller for the VGA port that holds
the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned. It
holds data related to pixel information.

rdData: This is the data bus for the SDRAM Controller for the bluetooth port that holds
the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned.
readyToSend: This signal is of type std_logic and becomes true (YES) when the
Bluetooth Controller is ready to read data from the SDRAM in order to send bluetooh
messages. This initiates a read request in the SDRAM controller for the bluetooth port.
rst: This is a std_logic signal that resets the SDRAM Controller and causes the
initialization of the SDRAM when it becomes high. It also resets the internal circuitry for
generation the vertical and horizontal sync signals and the counter in the VGA
Controller.

send: This signal is of type std_logic and becomes true when the current read operation in
the SDRAM Controller for the bluetooth port has been completed. Thus the Bluetooth
Controller can process this read data.

time data: This is the data bus for the SDRAM Controller for the VGA port that holds
the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned. It
holds data related to timing operations such as the number of slides and the time duration
of each slide.

wr: This signal is of type std_logic and becomes true when the read operation of the pixel
data is complete so that the read data can be written to pixel buffer.

wrdata: This is the data bus for the SDRAM Controller for the bluetooth port that holds
the data to be written to the SDRAM. It has a width of 16 bits and it is of type unsigned.

94

The VGA Controller is responsible for first reading the information related to the order of the
slide show. This information is written in the first 16 memory words of the SDRAM. When a
read operation is in progress if the address corresponds to this first portion of the SDRAM, the
data is stored in “time information”. (Contents of the bus “time data” are passed to the bus “time
information”.) While this data is being read, the Counter increases the address field by 1 after an
“earlyOpBegun” signal is raised. This signal indicates that a read operation has begun and the
Counter can update the address for the next read operation. After this information is read, the
controller starts reading the pixel information from the rest of the SDRAM and this data is stored
in the “image bitsream” and put into the pixel buffer as long as the buffer is not full. (Contents of
the bus “pixel data” are passed to the bus “image bitstream”.) When the pixel buffer if full, “full”
signal becomes high, and the next read operation is requested when this signal becomes low
again. (The pixel buffer is 256*16 which means that it can hold 256 pixels. The data arrives to
the buffer with “in” data bus and when a pixel should be passed to pixel register, it is passed with
the “out” data bus. Data is passed to the pixel register, as long as no blanking is necessary. In this
case “rd” signal becomes high. When the “eof” signal becomes high, the buffer contents are
refreshed.) During this operation, the counter increments the address field by 1 unless end of a
frame is reached. When the “eof” signal becomes high, indicating that the end of a frame is
reached, the Counter checks whether the time duration for the current image has passed or not.
(This comparison is done easily, since the time duration for each slide has already been read, and
the period of a frame is shown.) If the time duration has passed, the address is updated with the
beginning address of the next image. If not, the address is updated with the beginning address of
the current image. When a pixel data is extracted from the buffer to the pixel register, the color
components are extracted in the Color Generation part of the controller and the pixel is
displayed. Meanwhile, Vertical and Horizontal Sync Generators generate appropriate signals for
indicating the end of a scan line and a frame. The current pixel is displayed as long as the pixel
should not be blanked. The following block diagram is a detailed overview of the VGA

Controller:

95

gate | —
P | clock VERTICAL SnC
% SYNC wsync_n vysnc_n——»
P | rst GENERATOR blank
|_> cke
» | clock gate
HORIZONTAL hsync_n hsync_n——»
| rst SYNC
GENERATOR Dlank
I— | ke ent|
reset _D—blank—>
- full
<teof— rst full
- |clock PIXEL BUFFER
o |w conroLLer 1 | <o |
» | in out |
—r>
S S Rl I
—b>»
image
bitstream
clock
wr

Here is the explanation of the signals that are not covered in the data dictionary:

e in: This is the data bus connected to the pixel buffer that holds the image bitsream
arriving to the VGA Controller. It is of type unsigned and has a width of 16 bits.
e out: This is the data bus connected to the pixel register that holds the data extracted from

the pixel buffer. It is of type unsigned and has a width of 16 bits.

As already explained, SDRAM Controller implements the dualport feature so that both the VGA
Controller and the Bluetooth Controller can access the SDRAM simultaneously. The SDRAM

96

Controller has two ports for the host side, one for each application. Thus, again some signals are
duplicated. There’s also the SDRAM side that is attached to the SDRAM itself. SDRAM
controller enables the communication between the host applications and the SDRAM itself, by
passing information from the host side to the SDRAM side. The data provided by the host
applications are passed to the data bus of the SDRAM side. The address provided by the host
applications is used to determine the row and column address of the memory word specified and
this information is passed to the SDRAM side by “sAddr” bus. When a read or write operation
begins, the controller raises the “opBegun” signal. This signal causes the "earlyOpBegun" signal
to become high with the following rising edge of the clock. The “earlyOpBegun” signal arrives
to both Counter and Bluetooth Address Operations, and the address is updated for the next
memory operation. When the current read operation is completed, the “read done” signal
becomes high. Likewise, when the current write operation is completed, “write done” signal is
raised. When the current operation is a read operation, the data read is put on the “sData” bus by
the SDRAM and the controller passes this data to the “data out” bus. Then for the VGA
Controller, the “data out” bus is copied either to “pixel data” or “time data” bus according to the
address. (Explained above.) For the Bluetooth Controller, “data out” bus is copied to the “rddata”
bus. For a write operation, Bluetooth Controller puts the data to be written to the “wrdata” bus.
This bus is passed to the SDRAM side of the SDRAM controller and then copied to “sData” bus
of the SDRAM. Here’s the more detailed block diagram for the SDRAM Controller:

DUALPORT SDRAM CONTROLLER

—> rez?g‘;f;%m clk | €— |clkix clock | < Oscillator
< |opBegun0 earlyOpBegun | <€ | earlyOpBegun
<—— [rdPendingd opBegun | ¢ opBegun sAddress » | DA
< done0
COM\%GSLLER - rfeaddoneo rdPending| | rdPending sData| 4—p- [DQ
- pixel data done dore sclkfb
< time data
addressO address| . | address sclk DCLK
- status0 wrdata » | Wrdata cke | —p | DCKE
cs_n|—p |DCS
readdore | €—— read done
ras_n » | DRAS
COUNTER <4— | earlyOpBegun0 dataout| — |dataout b
cas_n » | DCAS
read control rst] —p | rst -
signal 1 read control » | read control we| —— [DWE
opBegunl signal signal ba| — » |DBA
rdPendingl write control write control dgmh » |DQVH
oret st signd I DQML
read donel status| status dgml| - |1DQ!
rddata lock
BLUETOOTH : ocl
write done
CONTROLLER
wrdata write done SDRAM
address1
status1
write control
signal
earlyOpBegunl BLUETOOTH
reset rst ADDRESS OPERATIONS

97

The definitions for the new signals in this block diagram are as follows:

ba: This two-bits wide unsigned signal chooses one of the four memory banks in the
SDRAM.

cas_n: This std_logic signal is the column address strobe and when a data is needed
from the SDRAM, this signal is activated to specify the column where the data is.

clk: This signal, which if of type std_logic, is the master clock input coming from the
oscillator.

clklx: This std_logic signal is derived from the master clock input and it clocks the
host side of the circuit.

cs_n: This std_logic signal derives the chip select input of the SDRAM.

data out: This data bus holds the data read from the SDRAM. This data must be
processed by the host side logic on the rising clock edge after the done (or read done)
signal becomes high.

done: This std_logic signal becomes true when the current read or write operation is
completed. This signal remains high for a single clock cycle.

dgmh: This std_logic signal becomes high when the upper byte of the SDRAM data
bus is enabled.

dgml: This std_logic signal becomes high when the lower byte of the SDRAM data
bus is enabled.

lock: This std_logic signal becomes YES when the clkl1x signal is synchronized with
the master clock so that the host side circuit operations can be clocked.

opBegun: (revisited) This std_logic signal becomes high to indicate the initiation of a
read or write operation. In fact, the previously defined “earlyOpBegun” signal
becomes high immediately after this signal is activated.

ras_n: This std_logic signal is the row address strobe and when a data is needed from
the SDRAM, this signal is activated to specify the row where the data is.

rdPending: This is a std_logic signal and becomes true if there are any read operations
in the pipeline that have not delivered their data yet.

sAddress: This 12-bit wide bus contains the row and column address fields of the
SDRAM memory location. This information is extracted from the address coming
from the host side.

sclk: This std_logic signal is obtained from the master clock and derives the clock
input for the external SDRAM.

98

o sclkfb: This std_logic signal is a copy of the sclk signal with delays concerning the
passage of this data from the FPGA to the SDRAM and back to the FPGA. This
allows the synchronization between the FPGA and the SDRAM operations.

e sData: This is a 16 bit wide data bus. The data to be written exits from the FPGA and
the data read exits from the SDRAM through this bus.

e status: This std_logic_vector bus, which is four bits wide, holds the current status of
the SDRAM.

e we_n: This std_logic signal derives the write-enable input of the SDRAM and

becomes high when write operations will occur.

The Bluetooth Controller is responsible for the communication between the XSA board and the
BlueRadios Evaluation board. When a user wants to send the slide show contents, the hex file
and the txt file are sent to the BlueRadios Evaluation Board as already explained in the
description of the modules. Once this data arrives to bluetooth board, it needs to be transferred to
the XSA board. Because, data arrives to the bluetooth board serially and there’s no serial port on
the XSA board, we will make a serial to parallel conversion. For this purpose we design a
16F877 PIC, as described earlier. The bluetooth board will be connected to the serial port of the
pic and as data arrives to the pic, USART interrupt will be raised. When the interrupt is raised,
we will read the coming bit and store in a register. We will append the next coming seven bits to
the same register and obtain a data of 8 bits. Then we will put this data to the parallel port of the

pic, from where it will come to the parallel port of the XSA board.

The following block diagram shows the connection between the pic and the bluetooth board:

99

10 KOhm

—|:|— MCLR re7 |)
RB6
E:j Parallel
VDD
nes Output
VSS
RB2
RB1
5V - rBO | /
33 pF) T
Serial
I! CLKOUT |nput Rx
I CLKIN
MAX 232
4 MHz .
BlueRadios
— CRYSTAL Evaluation Board

In this diagram there are some signals that need to be explained:

e RB7...RBO0: These are the parallel port pins of the pic which will be connected to the
parallel port of the XSA board. When 8 bit serial data is received, this data will be put to
these pins so that they are transferred to the XSA board. Similarly, when data arrive from
the XSA board to pic, it will arrive on these pins.

e Rx: This is the serial data receiver pin. Data coming from the bluetooth board will be
received through this pin.

e Tx: This is serial data transmitter pin. While sending data from the pic to the bluetooth

board, data will be put to this pin.

While sending bluetooth data to the XSA board, we will receive bluetooth data bit by bit through
the serial port of the pic. When we have received 8 bits of data, we will put this data to the
parallel port of the pic. Then this data will arrive to the parallel port of the XSA board. Once data
comes to the parallel port of the XSA board, it will pass through the CPLD and arrive to the
FPGA as already described in the description of the modules. While retrieving the hex data, first
address data will arrive, then the data that is going to be written to that address. (The reason is
that, the hex file we create in the format conversion module has an address followed by data that

needs to be written to that address.) In our VHDL code, the address data bus is composed of 24

100

bits. Thus, after receiving 8 bits of data from the parallel port, we will receive the next two 8-bit
data and combine them to make a 24-bit data. This data will be put to the “address” bus by the
Bluetooth Address Operations. Then, the next two coming 8-bit of data will be combined to
obtain a 16-bit data. This data will be presented to the “coming data” bus. With the given address
and the data, the write operation can be carried out in the SDRAM Controller. This process will
be repeated until all the hex file is retrieved. (Since we know the number of images sent and the
number of bytes of each image, we will be able to recognize when all the hex file has been
retrieved.) After that we will start retrieving the contents of the txt file. The address range for the
hex data is predetermined by us and we will start writing the txt file contents at the end of this
address range. We will again combine the coming two 8-bit data to produce a 16-bit data and put
this into the “coming data” data bus. When the “earlyOpBegun” signal comes to the Bluetooth
Address Operations, the current address will be incremented and the address for the next write
operation will be defined. This way we will know to which address we will write the coming
data. Thus, at the end we will be able to store the data sent by the user to the SDRAM.

While VGA operations are in progress, we will send bluetooth messages to the nearby devices.
For this process, we will need to send the txt file content stored in the SDRAM to the bluetooth
board. For this purpose, we will need to first send data from the FPGA to the parallel port of the
SDRAM. The address from which data is read is obtained from the Bluetooth Address
Operations. Since we know the beginning address of the txt data, we will incerement the address
when the earlyOpBegun signal goes high. FPGA uses the S5, S4, S3 status lines of the parallel
port to send data to the parallel port. The FGPA, drives the A2, Al, A0 address lines of the Flash
and this in turn drives the S5, S4, S3 address lines of the parallel port. Then the data on these
lines will be put to the D7, D6, and D5 data lines of the parallel port. Then this data will arrive to
the pins RB7, RB6, RB5 of the pic. We will understand that data has come by the port change
interrupt. This interrupt is generated when a change occurs in one of the RB7-RB4 pins. In order
to guarantee that every data we send causes an interrupt, while mapping the S5-S3 pins to the
D7-D5 pins, we will put a 0 and 1 to the D4 pin interchangeably. This way, the value of the RB4
pin will change with each coming data and an interrupt will be raised. We will send 3 bits
followed by 3 bits followed by 2 bits of data from the FPGA. Similary, we will receive 3 bits
followed by 3 bits followed by 2 bits of data in the pic. This data will be combined to produce 8-
bit data. Then, the pic will send this data to bluetooth board, through the serial port bit by bit.
Thus we will be able to send the bluetooth message data to the bluetooth board. The following

block diagram describes the hardware used in this step:

101

Serial to Parallel

RB7
RB6
RB5

RBO

Parallel to Serial Converter

DO

S5
sS4
S3

S3S4 S5

D7-D0

\d

D7-DO

included above.

AA A

CPLD

coming data
information
bitstream

send
nex

readyToSend

dataReady
A15-A8

A15-A8

FLASH

A2 AZ2A0

vett ity

There are some signals that need to be explained in this diagram:

Al15-A8

<¢— |address

—» |earlyOpBegun

Here, “Serial to Parallel, Parallel to Serial Converter” refers to the pic whose block diagram was

D7-DO0: These are the data pins of the parallel port of the XSA port. They are used to

send and receive data.

S5,54,S3: These are the status lines that carry the data sent from the FPGA to the parallel

port in the XSA board.

A15-A8: When the parallel port sends data to the FPGA, these address lines are derived
with the data on D7-D0 and carried to the FPGA.
A2,A1,A0: When FPGA want to send data to the parallel port, these address lines are

derived which drive the S5,54,S3 lines of the parallel port and carry information.

102

5. SYNTAX SPECIFICATIONS

According to conversations between our group members, we decided not to limit our members
with strict syntax specifications. We only declared some basic rules for the understandability of
our code and easy analyzing.

The most important point of our specifications is using comments efficiently. For every new item
in the code (except local variables), we decided to force members to include comments about the
process in a detailed way. Moreover we expect the members to include a text file that tells the
capabilities and constraints of their code, for every new created package.

Near this, because we will use only two programming languages in our project, which are Java
and VHDL, we decided to use the syntax conventions of these languages for a more considerable
code-design.

For Java, the names of the classes will be mixed-case, starting with a capital letter. If the name is
composed of a phrase, each word in the phrase will start with a capital letter. (ex. ClassName)
The constant names will be all upper case. Words in phrases will be separated by underscores.
(ex: CONSTANT_NAME) Finally function and variable names will start with a lower-case word
and if the name contains other names, then those words will start with a capital letter. (ex:
functionName)

For VHDL, the names of the generic variables will be all in upper case, words in a phrase being
separated by underscores. (ex: LINES_PER_FRAME) The variable names assigned to the ports
will be lower case and words will be again separated by underscores. (ex: pixel_data_in)
Constant names will be similar to generic variable names. They will be upper case and the words
will be separated by underscores. (ex: HSYNC_START) Component, architecture, and entity
names will be lower case where words are distinguished again by underscores. (ex: component,

component_arc, sync) Procedure names will be defined similarly. (ex: map_pixel)

103

6. DEVELOPMENT SCHEDULE AND GANNT
CHART

Besides completing the required reports before the deadlines, we also planned our other work.

We have completed the design part of our project with this Final Design Report.

Besides the design process, we have started working on the implementation part of our project.
We started working on the prototype development by the end of November. First we analyzed
the design examples about the VGA port and started working on our own design. We
successfully made a transition between different images in a slide show manner. Then we
worked on reading data from the SDRAM according to the address ranges. We assigned the data
read from the first 16 memory words to one data bus and the rest of data to another data bus.
This is what we should do in order to distinguish the configuration data about the slide show
from the image data itself. We have little work to do about the usage of the VGA port and we

plan to finish this part by the end of February as indicated in the Gantt chart.

In addition, we started implementing the user interface. We have finished the parts we have
explained in the “File Uploader Module”. We are planning to complete the remaining parts by
the end of January. Meanwhile, we started working on the “Format Conversion” module. Now,
we are able to extract pixel information from image files. What is left is writing this information
in a .hex file and embedding this code in the user interface design. We will accomplish this task

before the prototype demonstrations.

For the prototype demonstrations, we are responsible for sending bluetooth messages when the
BlueRadios Evaluation Board is attached to our computer. We have to accomplish this task by

AT Commands. We are currently working on this part of our project.

We are planning to work on the design of the 16F877 pic during the vacation and we hope to
finish this task by the end of March as shown in the Gantt chart. Meanwhile, some of the group
members will work on programming the CPLD so that it acts as a bridge between the FPGA and
the parallel port. Once we design this pic, we will start working on programming this pic and

establishing a connection with this pic and the XSA board.

104

Besides these tasks, we have to send slide show contents to our BlueRadios Evaluation board.
We have started working on this part of our project. We found the Java Bluetooth Stack
(BlueCove) we will make use of. So far, we were able to discover the nearby bluetooth devices
and search for their services. What is left is establishing a connection with the BlueRadios
Evaluation Board and sending data by the serial port service. We are planning to focus on this

part after we progress in our pic design.

According to our process so far, we believe that sending data to our XSA board from the
bluetooth evaluation board and vice versa is one of the most challenging parts of our project. In
the beginning of the second term, we will focus on this part. Meanwhile, we will try to make

progress in the other parts.

In the second term, one other task we will work on is the web page design. We are planning to
work on this part at the end of March as indicated in the Gantt chart.
We are planning to finish the implementation of our project by the beginning of April. From then

on we will focus on testing.

105

1D _ Task Name [Oct 06 [Nov 06 [Dec '06 [Jan ‘07
o 18 2502 [09 1623 30|06 1320 [27 (04 11182501 [0B[15]22 2805 [12[19]26[05[12[18]26
1 m BLUEPOST PROJECT
2 m BluePost Project Proposal |
3| ANALYSIS e e
4 m Requirement Analysis I
5 m Literature Survey [
[m Meeting with Customers M
7 m Risk Analysis _I_
8 JEL) Project Scheduling and Tracking _|_
] m Project Quality Plan _H_ g
0| Analysis Report Writing u
e Milestone ‘V 06.11
27 |Eq DESIGN I i T T
13 |4 User Interface Design ,I_
14 m Format Conversion Design _ _
15 m Parallel To Senal Data Conversion Design j
16 |5Ed Synchronization Between Monitor and VGA Port Design _H_
7|4 Converting Serial Data To Parallel Design [
18 m Web Page Interface Design
19 m Initial Design Report
20 m Milestone
21 |[Ed Final Design Report
22 m Milestone
23 m Prototype Development
24 m Coding Prototype
25 |[Ed Prototype Demo
26 m IMPLEMENTATION ™ ._
27 m User Interface Implementation
28 |[d Format Conversion Implementation
29 m Farallel To Senal Data Conversion Implementation
30 m Synchronization Between Monitor and VGA Port Implementation |
kRl m Converting Serial Data To Parallel Implementation ._
32 m Web Page Inlerface Implementation
33 m Milestone
34 m TESTING _
35 m Unit Testing _
35 m Integration Testing
37 m Milestone
38 m Project Finalization
EEer | pplication Setup Develop
40 m User Manual Preperation
41 m Milestone
. — Pu—— i
Project: Projecti Task Progress Summary External Tasks Deadline
Date: Mon 06.11.06 Split Milestone L 2 Project Summary (PEESEENNNGE Exemal Milestone @
Page 1

106

REFERENCES

[1] XSA-3S1000 Board User Manual
http://www.xess.com/manuals/xsa-3S-manual-v1 0.pdf
[2] VGA Generator for the XSA Boards
http://www.xess.com/appnotes/an-101204-vgagen.pdf
[3] Spartan-3 Capabilities
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_fpgas
[4] Xilinx : Logic Design
http://www.xilinx.com/ise/logic_design prod/index.htm
[5] XSA Board SDRAM Controller

http://www.xess.com/appnotes/an-071205-xsasdramcntl.html

[6] VGA Generator Test Application with an Embedded Parallel Port Interface
http://www.xess.com/appnotes/an-103005-vgagen.html

[7] Bluetooth Radios, A Wireless World
http://www.blueradios.com/evaluationkit.htm

[8] Getting Started with Java and Bluetooth

http://today.java.net/pub/a/today/2004/07/27/bluetooth.html

[9] The Java APIs for Bluetooth Wireless Technology

http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth2/

[10] Sundar Rajan, “Essential VHDL : RTL Synthesis Done Right”, USA:Sundar Rajan,
1998.

[11] Downloading XESS FPGA and CPLD Software Tools : img2xes.zip
http://www.xess.com/ho07000.html

107

