

 MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT of COMPUTER ENGINEERING

CENG 491-COMPUTER ENGINEERING DESIGN 1

‘BluePost’

DETAILED DESIGN REPORT

by

Duygu CEYLAN – e1394782 Seda ÇAKIROĞLU - e1394816

Ertay KAYA – e1356948 Hüseyin ÖĞÜNÇLÜ - e1395318

Gözde ÖZBAL – e1395326

 2

TABLE OF CONTENTS

1. INTRODUCTION .. 3
1.1 PROJECT TITLE ... 3
1.2 PROBLEM DEFINITION.. 3
1.3 PROJECT SCOPE .. 3

2. ARCHITECTURAL DESIGN.. 5
2.1. SYSTEM MODULES ... 5

2.1.1 File Uploading Module:... 6
2.1.2 Format Conversion Module: .. 17
2.1.3. Sending Data to the Board via Bluetooth Module:... 20
2.1.4. Register Process Module: ... 26
2.1.5. Retrieving Data from User via Bluetooth Evaluation Kit Module: 30
2.1.6. Sending Data to User via Bluetooth Evaluation Kit Module:..................................... 34
2.1.7. VGA Process Module: .. 37

2.2. STRUCTURE CHART AND MODULAR DEPENDENCIES.. 43
2.2.1. Structure Chart: ... 43
2.2.2. Modular Dependencies and Flow: .. 43

2.3. FUNCTIONAL DESIGN .. 45
2.3.1. Data Flow Diagrams (DFDs):... 45
2.3.2. Data Dictionary:.. 54
2.3.3. Process Specifications:.. 64

2.4. BEHAVIORAL DESIGN.. 71
3.3.3. State Transition Diagram: ... 71

3. SYSTEM DESIGN ... 73
3.1. USE CASES & USE CASE DIAGRAM .. 73

3.1.1. Use Cases .. 73
3.1.2. Use Case Diagram... 75

3.2. CLASS AND SEQUNCE DIAGRAMS.. 76
3.2.1. File Uploading Module Class Diagram .. 76

4. HARDWARE DESIGN.. 92
5. SYNTAX SPECIFICATIONS.. 103
REFERENCES ... 107

 3

1. INTRODUCTION

1.1 PROJECT TITLE
Our project title is “BluePost”.

1.2 PROBLEM DEFINITION
As you all know, paper posters are very common in daily life because of the fact that they are

inexpensive and easy to install. However, they lead to some disadvantages as well. Most

important of all, they do not provide the opportunity to make a change in the content of the

poster once it is installed. In addition, it is possible for a person to forget about the details of the

event unless the information is noted. Besides, it is not easy to inform other people about the

event when paper posters are used. Furthermore, paper posters are easy to damage. To illustrate,

when a person rips the poster, the information is lost and it is costly to bring it back. So the

thought of using digital posters for everyday use arises.

1.3 PROJECT SCOPE
We defined the functionalities of our system by internet search and a questionairre about the

desires and needs of the users as we have already discussed in the earlier documents.

Because user-friendliness of a system is an important issue, we will develop a computet-based

user interface which will give many opportunities to the user such as configuring the images to

be displayed and the time duration of each image. The user will also specify the content of the

message that will be sent to the bluetooth devices.

As for the technical details about the project, we will design and implement the hardware and

software required to make a monitor or television into a digital poster with bluetooth capabilities.

Our system will be connected to a bluetooth converter card and a monitor via VGA. We will

develop the necessary software for tasks like uploading poster images and event data. By the

means of this software package each costumer will be the administrator of his/her own system.

The user will be able to upload several images to display them as a slide-show. S/he will be able

to specify the time each image will be displayed. When the user wants to make a change in the

content, s/he will not need to re-upload all the images. Instead, s/he will upload a new image in

 4

place of the image s/he wants to change. The time duration may also be changed. The user must

enter a pin number in order to complete the image uploading process, which is specific for every

Bluetooth converter card. The software will do the uploading of the images via Bluetooth

automatically.

Once the digital poster is ready, people will be able to see the poster on the monitor and follow a

procedure on their Bluetooth devices in order to get poster event data as a calendar event (iCal

VEVENT).

The project that we will develop may easily be used in places where all kinds of social and

cultural activities are held including cinemas, concerts, theaters etc. Also, this project can be

used for educational purposes. As an illustration, there are a lot of student clubs that give

seminars and meetings. With the help of our project, it will be much easier for the sudents to

become aware of these activities and share the information with each other. The project may also

be used for commercial purposes. For example, when there is a campaign in some product, the

comsumers will easily be informed about it. Another important area where this product can be

used is charity campaigns. In that case, information like bank account numbers should be sent to

the bluetooth devices. We believe that as the project evolves, it will be much more widely used

in different areas.

 5

2. ARCHITECTURAL DESIGN

2.1. SYSTEM MODULES

Our system consists of mainly two parts, getting the necessary data from the user and processing

this data. Through the user interface, the user will specify the images that are to be displayed.

The images selected by the user will be moved to a directory. Then each image in this directory

will be processed to extract the pixel information. This pixel information will be combined by

the user input specifying the time duration and the order of each image in the slide show. The

combined information will be used to create a hex formatted file in the “Format Conversion

Module”.

Additionally, the user will enter the message about the event details that will be sent to the

bluetooth devices. This message will be written to a .txt formatted file.

The txt formatted and the hex formatted file will be sent to the board via bluetooth when the user

clicks on the “Send via Bluetooth” button in the user interface. To complete the uploading

process the user must enter a pin number, which is specific to the bluetooth evaluation kit

attached to the board. This pin number will be stored in the Flash Memory of the XSA Board and

will be determined before the product release during the programming of the FPGA. Sending

Data to the Board via Bluetooth Module is responsible for this process.

When the data arrives to the bluetooth evaluation kit, the process of the Retrieving Data from

User via Bluetooth Evaluation Kit Module will retrieve it. This process involves converting

serial bluetooth data to parallel data. Once the data is retrieved through the parallel port of the

XSA board, it is written to the SDRAM of the board via the Register Process Module.

The pixel information will then be used by the VGA Process Module to display images on a

monitor in a slide show manner.

Meanwhile, the txt file stored in the SDRAM will be used to send messages about the details of

the event to bluetooth devices. For this purpose, first the data stored in the SDRAM is sent to the

parallel port of the XSA board via the Register Process Module. Then Sending Data to User

 6

via Bluetooth Evaluation Kit Module will be used which in turn converts parallel data to serial

data.

Each module will now be described in detail:

2.1.1 File Uploading Module:

This module is responsible for creating the user interface of our system and organizes the images

selected and the message entered by the user. The user interface we designed can be used by the

computer users in order to upload images for a slide show that is reachable by the bluetooth

device users.

Below, we will explain the user interface while uploading the images and sending the overall

slide show to the bluetooth device.

When a user starts our desktop application, s/he will first see a page as below:

Here, the user can add the image files from his computer by pressing the “Attach” button and

when

this button is pressed, the below page will be seen.

 7

The user will be able to select only jpg and gif images.

Before the user adds an image for the slide show, he should also state the slide number of the

image to be uploaded as all the images will be presented in a slide show after all the process

ends. Displaying too much images on an advirtesement has the disadvantage of boring and

distracting the target costumers. Taking this fact and the limitation of memory on our main

board into account, we decided to let the user select 10 images at most. Thus the slide number

input is an integer between 1 and 10 inclusively. The other input requested from the user is the

time duration of the image during the slide show, in seconds as a unit. When all the stated inputs

are ready, the user should press the ADD button.

 8

When ADD button is pressed, some controls about the new image and the location of the image

in the slide show are made. (For this purpose, the file “bilgi.txt” will be scanned whose definition

is made in the following paragraphs.) For example, if the user selects a different image for a

previosly defined slide, (Then this slide number would exist in the file “bilgi.txt”.) s/he will be

given the following warning:

After receiving this error message, the user can change the image for the specified slide number

by pressing the “Change Slide” button or cancel the operation by pressing the “Cancel button”.

The images selected by the user are stored in a directory with the initial name “new folder” and

when the user saves his/her work, this directory is given the name provided by the user. This

directory is created in another directory named “posterspace”. The path of the “posterspace”

directory is predetermined by the user during installation of our software product. Additionally,

when a new image is added, the slide number and the time duration of this image will be written

to a txt file named “bilgi.txt”. This file will be kept in the same folder with the images and each

line in this file has the following format:

 <slide number> <image file name> <time duration>

As for the menu bar in the user interface, by means of the “Project” section, the user can create a

new project, open an existing project or save the project created previously.

When a project is opened, the user will see a window as below:

 9

In this window, a new image can be added to the existing project by following the same steps

stated before for adding a new image.

The user can also make the necessary modifications for an image by clicking on the image and

when clicked, the user will see the below window:

 10

After making the changes, the user should press Modify button or he can delete the selected

image by pressing the Delete button. Then the relevant information in “bilgi.txt” will also be

modified or deleted.

When a project is made, and the user wants to save it, the user clicks “Save” from the Project

menu bar. And when clicked, the below window will be seen:

Here the user should write the Project Name he desires and should press Save button for the

project he created previously to be saved. If another slide show with the specified name exists,

the name entered will be modified. For example, if the user enters “Slides” as the name and there

already exists a slide show with the same name, the current project will be renamed to

“Slides(2)”. If the user enters the name “Slides”again for a different slide show, that show will be

renamed to “Slides(3)”.

From the Message menu bar, the user can write the message to be viewed by the bluetooth

device users. This message will be written to a txt file named “mesaj.txt” and this file will be

kept in the same directory with the images.

When all the previous steps are completed, the user should press “Send” in the menu bar for the

bluetooth process to take place(sending the images and the text). The user will be requested to

enter a pin number which is unique to the bluetooth evaluation board and when s/he enters the

correct pin number, sending process begins. Here, “Format Conversion” module is initiated.

The following activity diagrams illustrate the process of this module:

 11

• Activity Diagram for Adding an Image:

Select Image

Specify time
duration and slide

number

Save Image in the
current working

directory

Display Error:
Do yout want to
change image?

[Yes]Cancel operation
Change image for

the specified
slide number

[No]
Update bilgi.txt

Update bilgi.txt

 12

• Activity Diagram for Opening a Slide Show:

Select "Open"
option

Select project
from browse

window

Open Project

 13

• Activity Diagram for Editing a Slide Show:

Open Project

[Edit existing slide]
Select Image

[Add new slide]
Add Image

Specify time
duration and slide

number

Save Image in the
current working

directory

Display Error:
Do yout want to
change image?

[Yes]Cancel operation
Change image for

the specified
slide number

[No]
Update bilgi.txt

Update bilgi.txt

Delete Image

[Delete slide]

 14

• Activity Diagram for Entering Message:

Select
"Message"

option

[message saved before][message not saved] Show Text Area
with Message

Show Empty
Text Area

Write Message

Save Message

 15

• Activity Diagram for Saving a Slide Show:

Select "Save"
Option

Specify name

[name exists] Add indicator
to name

Rename the
current

directory

[name doesn't exist]

 16

• Activity Diagram for Sending a Slide Show:

Select "Send"
option

Enter PIN
number

Format
Conversion

Module

[correct PIN]

[incorrect PIN]

Sending Data to
the Board via

Bluetooth Module

 17

2.1.2 Format Conversion Module:

When the user selects the images to be displayed and specifies the details of the slide show, we

will create a file in hex format whose contents will include the pixel data for each image and the

slide show configuration details. Format conversion module is responsible for the creation of this

file.

This module will create a hex file, which when sent to the board, will be capable of telling the

board the user preferences via our interface. By uploading this file to the board, as described in

the Bluetooth Module, data in it can be processed easily.

As we have described in the “User Interface Design”, our system allows the user to upload

several images, their appearance order and time duration for each image. Moreover, system also

lets the user make modifications about time duration and order of an image and new image

uploading instead of an existing image in the slide show.

The hex format file that will be created contains structured data that specifies the process of the

user. Each line in the file will contain a memory address followed by data, which is going to be

written to that memory address. The basic structure of the hex file is like below;

• First line specifies the number of images that the user has uploaded,

• Next ten lines specify the time duration of the images selected by the user (As explained

earlier, the user can select up to ten images. If the user has selected less images, the time

duration of the remaining slides is written as “0”.)

• After that, if the number of images is different than 0, file continues with the image order

and a hex stream that is identical to its canvas for every image. When the pixel data of the

current image is written completely, “FF” will be written to the next line indicating the

completion of the current image.

For creating this file, we decided to use object-oriented classes that are implemented by Java. At

the beginning of our process, the header of the image files will be read and the basic data about

them like their dimensions, resolutions and types will be obtained.

This process will support only .JPEG and .GIF formats. Therefore, we only allow the user to

upload an image in one of these formats.

 18

In the process of forming the identical hex streams of image files, the images will be resized

first. The reason of resizing process is obtaining an 800*600 pixel*pixel image for our VGA

port. By this way, we can centralize the scene of the image regardless of its own dimensions.

One of the other advantages of this process is giving the user the chance of exchanging an image

with another one even it has different dimensions. Additionally, with fixed sizes, each image will

occupy same memory space and we will be able to determine the beginning address of each

image easily which will help us a lot during slide show transitions in the VGA process.

The next step of format changing process is reading every pixel of the image files and assigning

a value between 0-512 for its color. (Our XSA board VGA port processes 512 colors at

maximum.) According to our research, we found that we should use 16-bit RGB value whose 3

bits will be used for red, 3 bits for green and 3 bits for blue components for a pixel for a

considerable resolution on the monitor. Thus we will use 9 bits (2 bytes) for color identification.

According to our scaling specifications, we concluded that the hex format file that includes one

image would have a size of approximately 960 KB (2*800*600 Byte).

By this module design, we aim to obtain a more flexible system for the user. The following

activity diagram illustrates the process of this module:

 19

Manage Image
Data

[update] [initial upload]

Update Data

Upload Text

Upload Image

Specify
Order&Time

[one more image]

[no more upload]

Update
Order/Time Update Image

Process Data

Write
time&address

hex data

hd : HexDataFile
[created]

[image upload/update]

[order/time update]

[update order/time]

[update image]

Resize

Process Pixels

Write Hex
Pixels' Data

[one more image]

[no more image]

Hex Data
is Formed

hd : HexDataFile
[filled]

[no more update]

[one more update]

Update Image
FolderUpdate

'bilgi.txt'

[one more update]

Upload Image
Folder

Write
'bilgi.txt'

Read
'bilgi.txt'

Take Image
from Image Folder

hd : HexDataFile
[modified]

Upload Text

[update text]

 20

2.1.3. Sending Data to the Board via Bluetooth Module:

This module is responsible for sending the hex file created in the “Format Conversion” module

and the txt file containing the message about the details of the event that will be sent to Bluetooth

devices created by the “File Uploading” module to the Bluetooth Evaluation Board.

Because we use Java for the user interface design, we decided to use the Java APIs in order to be

able to embed the bluetooth operations in our user interface code. Mainly we will create a “Java

Client Application”. This application will search for devices and when the BlueRadios

Evaluation board is discovered, it will search for the services proived by this Board. Using the

“Serial Port” service of the board, the application will establish a connection and start data

transfer. The details of this process is discussed below.

Bluetooth System Requirements

The underlying Bluetooth system upon which the Java APIs will be built must meet certain

requirements:

• The underlying system must be "qualified," in accordance with the Bluetooth

Qualification Program, for at least the Generic Access Profile, Service Discovery

Application Profile, and Serial Port Profile.

• The system must support three communication layers or protocols as defined in the 1.1

Bluetooth Specifications, and the implementation of this API must have access to them:

Service Discovery Protocol (SDP), Radio Frequency Communications Protocol

(RFCOMM), and Logical Link Control and Adaptation Protocol (L2CAP).

• The system must provide a Bluetooth Control Center (BCC), a control panel much like

the application that allows a user or OEM to define specific values for certain

configuration parameters in a stack.

Packages

The Java APIs for Bluetooth define two packages that depend on the CLDC

javax.microedition.io package:

• javax.bluetooth: core Bluetooth API

This package provides classes used in device management, device and service discovery,

 21

and obtaining a connection.

• javax.obex: APIs for the Object Exchange (OBEX) protocol

Application Programming

The anatomy of a Bluetooth application has certain parts. The client application is composed of

five main tasks: stack initialization, device management, device discovery, service discovery,

and communication.

1. Stack Initialization

The Bluetooth stack is responsible for controlling the Bluetooth device, so we need to initialize

the Bluetooth stack before we can do anything else. The initialization process comprises a

number of steps whose purpose is to get the device ready for wireless communication.

Unfortunately, the Bluetooth specification leaves this process to vendors, and different vendors

handle stack initialization differently. On one device, it may be an application with a GUI

interface, and on another it may be a series of settings that cannot be changed by the user.

There are commercial software products that provide stack initialization process. These products

can be analyzed in two categories. The first type of products build everything on top of the

bluetooth hardware. However these products do not support all the Java APIs packages and no

other application can easily access the bluetooth communication services. The products of the

second type run on top of external stacks like Microsoft Service Pack2. These products work by

JNI(Java Native Interface) calls to the stack.

After analyzing certain software products, we decided to use BlueCove

(http://code.google.com/p/bluecove/”) in our project since it is free. It supports javax.bluetooth

package and Serial Port Profile. However, BlueCove supports only Microsoft Service Pack2 (or

newer) stack.

BlueCove acts as a bridge between the Java application and the bluetooth hardware. Microsoft

stack API is a socket-style API that allows only C-based applications to operate. BlueCove

enables an integration between the Java applications and Microsoft API via JNI.

In order to use BlueCove, bluecove.jar files are added to the classpath which include the

 22

javax.bluetooth package. During installation intelbth.dll file is generated by running the C codes

that come with BlueCove. This dll file is put into the System32 directory which enables the

integration between the Microsoft Stack and the Java application. Afterwards, the application is

written using the classes defined in javax.bluetooth package.

2. Device Management

The Java Bluetooth APIs contain the classes LocalDevice and RemoteDevice, which provide the

device-management capabilities defined in the Generic Access Profile. LocalDevice depends on

the javax.bluetooth.DeviceClass class to retrieve the device's type and the kinds of services it

offers. The RemoteDevice class represents a remote device (a device within a range of reach)

and provides methods to retrieve information about the device, including its Bluetooth address

and name. The following code snippet retrieves that information for the local device:

// retrieve the local Bluetooth device object

LocalDevice local = LocalDevice.getLocalDevice();

// retrieve the Bluetooth address of the local device

String address = local.getBluetoothAddress();

// retrieve the name of the local Bluetooth device

String name = local.getFriendlyName();

When a remote device is discovered, the same information about it can be obtained as below:

// retrieve the device that is at the other end of

// the Bluetooth Serial Port Profile connection,

// L2CAP connection, or RFCOMM connection

RemoteDevice remote = RemoteDevice.getRemoteDevice(

javax.microedition.io.Connection c);

// retrieve the Bluetooth address of the remote device

String remoteAddress = remote.getBluetoothAddress();

// retrieve the name of the remote Bluetooth device

String remoteName = local.getFriendlyName(true);

3. Device Discovery

Because wireless devices are mobile they need a mechanism that allows them to find other

 23

devices and gain access to their capabilities. The core Bluetooth API's DiscoveryAgent class and

DiscoveryListener interface provide the necessary discovery services.

A Bluetooth device can use a DiscoveryAgent object to obtain a list of accessible devices, in any

of three ways:

The DiscoveryAgent.startInquiry method places the device into an inquiry mode. To take

advantage of this mode, the application must specify an event listener that will respond to

inquiry-related events. DiscoveryListener.deviceDiscovered is called each time an inquiry finds a

device. When the inquiry is completed or canceled, DiscoveryListener.inquiryCompleted is

invoked.

If the device doesn't wish to wait for devices to be discovered, it can use the

DiscoveryAgent.retrieveDevices method to retrieve an existing list. Depending on the parameter

passed, this method will return either a list of devices that were found in a previous inquiry, or a

list of pre-known devices that the local device has told the Bluetooth Control Center it will

contact often.

In our application, we will use the first method. When a device is discovered, we will check if it

is BlueRadios Evaluation Board or not. If so, we will pass to the next stage, service discovery.

4. Service Discovery

Once the local device has discovered at least one remote device, it can begin to search for

available services - Bluetooth applications it can use to accomplish useful tasks. Because service

discovery is much like device discovery, DiscoveryAgent also provides methods to discover

services on a Bluetooth server device, and to initiate service-discovery transactions. Note that the

API provides mechanisms to search for services on remote devices, but not for services on the

local device.

The BlueRadios Evaluation Board offers “Serial Port” service, so will search for this service.

When this service is found, a ServiceRecord (included in javax.bluetooth) object is created and

this object is used in establishing a connection.

5. Communication

For a local device to use a service on a remote device, the two devices must share a common

 24

communications protocol. So that applications can access a wide variety of Bluetooth services,

the Java APIs for Bluetooth provide mechanisms that allow connections to any service that uses

RFCOMM, L2CAP, or OBEX as its protocol. If a service uses another protocol (such as TCP/IP)

layered above one of these protocols, the application can access the service, but only if it

implements the additional protocol in the application, using the CLDC Generic Connection

Framework.

BlueCove supports RFCOMM protocol and BlueRadios Evaluation Board offers “Serial Port”

service, thus we will use this service in order to transfer data from our application program to the

bluetooth board.

Serial Port Profile

The RFCOMM protocol, which is layered over the L2CAP protocol, emulates an RS-232

serial connection. The Serial Port Profile (SPP) eases communication between Bluetooth

devices by providing a stream-based interface to the RFCOMM protocol. Some capabilities

and limitations to note:

• Two devices can share only one RFCOMM session at a time.

• Up to 60 logical serial connections can be multiplexed over this session.

• A single Bluetooth device can have at most 30 active RFCOMM services.

• A device can support only one client connection to any given service at a time.

For a client to communicate using the Serial Port Profile, each must perform a few simple

steps.

To set up an RFCOMM connection to a server the client must:

1. Initiate a service discovery to retrieve the service record

2. Construct a connection URL using the service record

3. Open a connection to the server

4. Send and receive data to and from the server

When service discovery step is taken in our application, the bluetooth board will appear as

“BlueRadios Serial Port” and we will make use of this service in order to establish a connection.

 25

When connection is done successfully, we will open a DataOutputStream and start processing

the hex file and the txt file that need to be transferred to the bluetooth board. We will read each

file line by line and write the current line to the stream until all data in the files have been

transferred. The following activity diagram illustrates the process of this module:

Stack Initialization

Discover
Remote Devices

Discover Service on Remote Devices Accept
Connection

LOCAL DEVICE

discovered

REMOTE DEVICE

Send DataReceive Data

 26

2.1.4. Register Process Module:

The Memory Process Module will deal with sending the information that will come from the

parallel port of the board to the SDRAM of the board and vice versa. In XSA-3S1000 Board,

most of the Parallel Port inputs and outputs are directly connected to the CPLD Part of the board.

The CPLD will be programmed so that it acts as an interface between the Parallel Port and the

FPGA so it can pass bitstream from the Parallel Port to the FPGA and vice versa.

The following steps will be held while sending the information from Parallel Port to FPGA:

1. The information from the Parallel Port will be sent to the FPGA through the CPLD.

2. The FPGA will store the retrieved information from the CPLD to one of its registers

that we call Parallel Port Register (i.e. the register that we will store the information gathered

from Parallel Port).

Usage Note: After these steps are completed Parallel Port Register content can be sent and

stored in the SDRAM.

In order to send data from the parallel port of the XSA board to the FPGA, data will be put on

the D0, D1, … , D7 data pins of the parallel port. This data will pass through the CPLD and end

up in A15-A8 Flash address lines. Finally the data will arrive to the FPGA. In FPGA this data

will be stored in a register of length 8 bits. This data will be combined with the next coming 8

bits of data to produce a data bus of 16 bits wide since the data bus in our applications is 16 bits

wide. Similarly the data received will be combined with two 8-bits of data to produce an address

information of 24 bits wide. Because in our hex file, each line contains an address followed by

data that is going to be written to that address, the first 24 bits of data received (We represent

host addresses as 24 bits address bus.) will be the address so this data will be stored in the

address bus of the Bluetooth Controller which is connected to the address bus of the SDRAM

controller. Then the next 16 bits of data will be received, a byte at a time. This data bus will be

connected to the data bus of the SDRAM in the Bluetooth Controller host side. This way, a write

operation will be requested and the 16 bits data will be written to the SDRAM address specified

by the address bus. After writing the hex file contents to the SDRAM, we will start writing the

txt file contents. Since the beginning and ending addresses of the hex file content is

predetermined, we will write the txt file content starting from the end of the hex file content.

Since we know the number of images and the bytes contained in each image, we will understand

when we have read all the image data and the txt data is in progress next. Thus when we receive

 27

16 bits of data, a byte at a time, from the parallel port, we will increment the current address by

one and put the received data to the data bus of the Bluetooth Controller. This way, SDRAM

Controller will get both the address and data bus contents and the write operation will be done.

The following activity diagram illustrates this process:

Sending Data from
Parallel Port to CPLD

Sending Data from
CPLD to FPGA

[unsuccessful
sending]

Data stored in FPGA
Para llel Port Register

[successful
sending]

 28

While sending information from the FPGA to the Parallel Port, the module will follow the

following steps:

1. The information from SDRAM will be retrieved by FPGA in order to be sent to the

Parallel Port.

2. The CPLD will be programmed so that it acts as an interface between the Parallel Port

and the FPGA so it can pass bit streams from the FPGA to the Parallel Port and vice versa.

3. The information from the FPGA will be sent to the Parallel Port throurgh CPLD.

When FPGA wants to send data to the parallel port, it drives the A2, A1, and A0 address lines of

the Flash. This in turn drives the S5, S4, S3 status lines of the parallel port and thus data comes

to the parallel port. We will assign the values of these status lines to the D7, D6, and D5 data

lines of the parallel port. We will put a 0 and 1 to the D4 data line in turns. This data will arrive

to the RB7-RB4 pins of the pic. Because the RB4 pin have a different value with each coming

data, the RB7-RB4 interrupt (This interrupt is raised when one of the RB7-RB4 pins chages

value.) is guaranteed to be raised. Thus the pic will be notified every time we send data to the

parallel port of the XSA board.

The following diagram explains this process:

 29

Retrieving Data from
SDRAM to FPGA

Sending Data from
FPGA to CPLD

Sending Info from
CPLD to Parallel Port

[unsuccessful
sending]

[successful
sending]

Putting Data from the
Status Lines to the Data
Lines of the Prallel Port

 30

2.1.5. Retrieving Data from User via Bluetooth Evaluation Kit Module:

As we have described before, because our XSA board doesn’t have a serial port, we need to

change serial data to parallel data for sending user data gathered by the user interface to the XSA

board. Similarly, we need to convert parallel data to serial data for sending messages, whose

contents will be stored in the SDRAM of the XSA board, to Bluetooth devices.

According to our design principles and search on net, we decided to use an additional pic that we

will design for this purpose. This pic is going to have a very simple design. It will contain a

parallel port, a serial port and an energy supply.

By this basic design, after canalizing the bluetooth data to this new additional board by using its

serial port, data will be sent to our main board by using the parallel port of this additional board.

As you can guess, a similar process can be applied for transforming data from our main board’s

parallel port to our additional board’s serial port.

For the new board design we will use PIC 16F877 since we are familiar to this pic from the

Embedded Systems course. The design of this new additional board contains 2 main steps,

hardware and software designs.

For hardware design we will first create the circuit of the board that basically contains a structure

shown below:

PIC 16F877

MCLR

CLKOUT

CLKIN

RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

Tx

Rx

VSS

10 KOhm

5 V

Parallel
Output

4 MHz
MAX 232

Serial
Input

33 pF

CRYSTAL

 BlueRadios
Evaluation Board

 31

In this diagram there are some components that need to be explained:

• Cyristal: Crystal is responsible for the generation of two clock inputs to the pic.

(CLKOUT and CLKIN) These clock inputs are necessary for the proper working of the

pic.

• MAX 232: We have to convert -12V and 12V RS232 logic levels to 0V and 5V in order

to process RS232 signals correctly in the pic. MAX 232 simply does this conversion.

• MCLR: This is the reset to the pic. There is a 10 Kohm resistor which is connected to

ground through a switch. When the switch is closed (The reset button on the pic is

pushed.), 0V will be supplied to the MCLR pin and the pic will be reset.

After the hardware design step, for creating PCB(Printed Circuit Board) of our board, we are

going to follow basic steps that include some chemical and structural processes. Steps are;

• Printing out to circuit on a photograph paper by a laser printer,

• Pasting the print out on a copper plate by ironing,

• Waiting it in a chemical solution for a specified time duration,

• And finally combining serial port, parallel port and power supply with our copper plate

by soldering.

Once the design of the pic is finished, we will start programming the pic. For this purpose, we

are going write C code in which we will take data from serial port registers and put them into

parallel port registers and vice versa. For the C code we will write, we will use a compiler called

Source BoostC. BoostC is a C compiler that works with PIC16. This is an ANSI-C compatible

compiler that supports signed data types, structures, unions, pointers etc. When we build our C

code with this compiler, we will have an asm file. At this step, we will use MPLAB to generate a

hex file from the asm file and load this hex file to the pic.

By this new additional board, we will easily provide the connection between Bluetooth devices

and our main board. The process of retrieving data from the bluetooth evaluation board using this

new pic is described below:

For receiving data from Bluetooth device, we are going to use the serial port. When data is sent

through the serial port to the pic, the 1 bit info will be put in RCREG register and the board will

take an interrupt by the RCIF flag bit. At every interrupt, we will take the data from RCREG and

put it in a register we choose. After taking 8 different interrupts, we will achieve collecting an 8-

 32

bit data in the register which is convenient for sending through the parallel port to XSA. Then we

will put this data to PORTB and it will be automatically sent to XSA board through parallel

port.

First we should enable interrupts in our software. This is done by setting GIE and PEIE of

INTCON register. Then the following steps will be taken:

1. Initializing the SPBRG register for baud rate.

2. Enabling asynchronous serial port by clearing bit SYNC and setting SPEN.

3. Setting RCIE for interrupt enabling.

4. Enabling reception by setting CREN.

5. If RCIF and RCIE is 1, an interrupt occurs. After we should;

a. Read 1 bit data from RCREG and write it in another register REG_2.

(At every write process we will shift the data in register by one bit to the right.)

6. After 8 interrupts, the data which is convenient for parallel port is ready.

For transforming data to the parallel port of XSA, steps are;

1. Reading data in REG_2.

2. Writing it in PORTB.

3. Clearing REG_2 register.

By this way data in PORTB will be automatically send to XSA’s parallel with converter board’s

hardware design.

The following activity diagram illustrates this process:

 33

Initialize
SPBRG

Set RCIE

Clear SYNC
&

Set SPEN

Set CREN

Read RCREG

[RCIF and RCIE is 1]

[RCIF and RCIE is 0]

Write last bit
of REG_2

Shift REG_2
to right 1 bit

Write REG_2
in PORTB

[8 bits are completed]
[8 bits are not completed]

 34

2.1.6. Sending Data to User via Bluetooth Evaluation Kit Module:

As we know, XSA board sends the information through its parallel port by 3-3-2 bits. Because it

only sends three bits data at each step, we decided to use RB4-RB7 interrupt of 16F877 for

detecting whether the info comes or not. We decided to add one more bit info in front of 3 bits

information from XSA. This bit will have a value of 0 and 1 interchagebly so that the RB4-RB7

interrupt is generated with each coming data. (This interrupt is generated when one of the RB4-

RB7 pins changes value.) Thus detection of the new info is guaranteed. At each send operation

from XSA, we put 0 if the previous transform is done by 1 and we put 1 if the previous transform

is done by 0. By this way, although the three bit info may be the same with the previous

transform we can detect it. When data is sent through parallel port of XSA, converter board will

raise an interrupt because of the new data in RB4-RB7.

After that point, we will read the new data, and collect them in a new register that we choose.

After three different interrupts, we will collect the 8-bit data from the parallel port. As a final

step, we are going to send the data in the register bit by bit using USART asynchronous receiver

to the Bluetooth serial port.

In order to carry these operations, first we should enable interrupts in our software. This is done

by setting GIE and PEIE of INTCON register.

For receiving data through the parallel port of XSA, steps are;

1. Setting RBIE of INTCON for enabling RB7-RB4 interrupt.

2. Defining RB7-RB4 pins as input.

3. Controlling RBIF flag bit of INTCON for determining if any value change occurs in

RB7-RB3 bits.

4. If RBIF is 1, an interrupt occurs. After that we should;

a) Read data from R4-R6 and write it in another register REG_1.

b) Clear flag bit RBIF.

(At every write process we will shift the data in register. For the first and second

write we shift it 3 bits and for the third write shift it 2 bits to the right.)

After three interrupts, we will transform it one by one through the serial port.

 35

For transferring data through the serial port, steps are;

1. Initializing the SPBRG register for baud rate.

2. Enabling asynchronous serial port by clearing bit SYNC and setting SPEN.

3. Setting TXIE for interrupt enabling.

4. Setting TXEN for transferring.

5. Reading the last bit of REG_1, putting it in TXREG and shifting data in REG_1 one bit

to the left.

After 8 transform we achieve sending received data from XSA’s parallel port to Bluetooth’s

serial port.

The following activity digram illustrates this process:

 36

Set RBIE

Define RB7-RB4
as input

[RBIF=1]

Shift REG_1 to
right for 3 bits

Read
RB6-RB4

[RBIF=0]

[first or second interrupt]

Write RB6-RB4
in REG_1

Shift REG_1 to
right for 2 bits

Write RB5-RB4
in REG_1

Clear RBIF

[third interrupt]

Initiliaze
SPBRG

Clear SYNC
&

Set SPEN

Set TXIE

Set TXEN

Read REG_1
last bit

Put TXREG

Shift REG_1 to
left for one bit

[8 bits are not sent yet] [All bits are sent]

[8 bit are completed]

[8 bit are not completed]

 37

2.1.7. VGA Process Module:

The VGA module provides the functionality of displaying images on a monitor. This module

consists of the following basic parts:

9 Generating vertical and horizontal sync signals which indicate the end of a frame and line

respectively.

9 Reading data from the memory to the pixel buffer

9 Putting data from the pixel buffer to the pixel register and shifting the pixel register

content so that the current pixel is in the least significant position

9 Color mapping of the current pixel

The image(s) uploaded by the user will be stored in the SDRAM of the board. The screen width

(We will use w=800 pixels per line.) and the screen height (We will use h=600 lines per frame.)

will be constant variables assigned by us. For images which have less pixels per line or less lines

per frame, extra pixels will be blanked. Images with more pixels will be resized. Since the screen

width and height will be constant, for each image we will show the same number of pixels per

line and same number of frames per line, either blanked or not. In other words, for each image

we will store information of equal number of pixels. The pixel width of our system will be 16

bits and we will use 3 of these bits for the red color component, 3 for the green color component

, and 3 for the blue color component. Knowing the number of pixels and the width of a pixel, we

will be able to determine how many memory words each image will occupy in the SDRAM. We

will begin storing the images in the SDRAM, from an address again specified by us. Since we

will know the starting address and the size of each image, we will be able to determine the

starting and ending addresses of each image stored in the memory. We will use this information

for the transitions between the images in a slide show manner.

A horizontal sync signal indicates the end of a line. The period of horizontal scan line is

calculated by the formula:

horizontal scanline period = (number of pixels per line * CLK_DIV)/frequency + 6µs

CLK_DIV in this formula is a clock divisor used to adjust the frequency. Our board has a fixed

frequency of 100 MHz and we will use a CLK_DIV of 2 to obtain a frequency of 50 MHz.

Putting the values of the variable in the formula for our system, we obtain a horizontal scanline

 38

period of 22 µs. Of this time interval 16 µs is active, meaning a line of pixels is shown. The

remaining 6 µs consists of the front porch (1 µs), inserted before the sync signal, back porch (1

µs) inserted after the sync signal and the sync signal (4 µs) itself. Since the screen height (h), in

other words lines per frame, is known we can calculate the time period of a frame from the

formula:

 frame-period = (number of lines per frame * CLK_DIV) / horizontal frequency + 1424

µs

Inserting the values of the variables for our system we get a frame period of 14.624 ms. Front

porch occupies 0.34 ms of this period, back porch occupies 1.02 ms, and the sync pulse occupies

0.064 ms.

For the horizontal and the vertical scanlines, the pixels should be blanked when the horizontal

and vertical sync signals are generated to indicate the end of a line or a frame. For this purpose

we will have a counter and increment it every clock cycle. The period of the scanlines can be

calculated in terms of clock cycles by just multiplying the values found above with the system

frequency, 50 MHz. For example, a horizontal scanline is active for 16 µs, which is equal to 800

clock cycles. When the counter value reaches 800, we should start generating the horizontal sync

signal for 50 MHz * 4 µs = 200 clock cycles. Meanwhile we should blank the pixels for the time

period when the scanline is not active, which is 22-16 = 6 µs (front porch + signal + back porch).

Thus when the counter reaches 800 we should start blanking the pixels until the counter reaches

800 + 6*50 = 1100. After that the counter is reset to zero. Similarly, the vertical scanline is

active for 13.2 ms, which is equal to 660000 clock cycles. Thus we should have another counter

and when the value of this counter reaches 660000 we should start generating the vertical sync

signal. The vertical scanline is not active for 14.624-13.2 = 1.424 ms, which is equal to 71200

clock cycles. Thus we should start blanking the pixels when the counter reaches 660000 and

continue blanking until the counter becomes 731200, then the counter is reset to zero.

The user will specify the time interval for which each image will be displayed. This information

will arrive to the board together with the images via bluetooth and we will store this information

in registers. Let’s assume that the first image will be shown for t seconds. This means that we

will show the first frame for count = t / frame-period times. Thus, we will keep another counter

and increment the value of the counter every time we start a new frame of the same image. While

showing the same image, the value in the counter will be smaller than count. Meanwhile, at the

 39

end of a frame the memory address of the pixels will be set back to the starting address of the

same image. Once the counter reaches the value count, we will reset the counter to zero and

begin showing the next image, which also means that the memory address will now point to the

starting address of this next image. We will repeat this process for all the images. When the last

image in the slide show is displayed for the specified amount of time, we will begin showing the

slide show again.

When displaying an image, we will read the pixel data from the memory to a pixel buffer. This

buffer will generate two signals, full and empty, indicating whether the buffer is full or empty.

When the buffer becomes empty, new data is read from the memory. The pixel data in the buffer

is put into a pixel register. A memory word is 16 bits and we will store pixels as 8 bits. This

means that the pixel register will contain two registers at a time. The content of the pixel register

is shifted so that the current pixel is in the least significant position. Once the current pixel is at

the correct position, the r , g, and b components are read and sent to the digital-to-analog-

converter of the vga port where the color information is extracted and the pixel is shown.

The following activity diagrams illustrate the process of this module:

 40

• Activity Diagram for Address Generation:

setting address to
the starting address
of the current image

setting counter
to zero

incrementing
address

eof
[counter == count] setting address to

the starting address
of the next image

setting counter
to zero

setting address to
the starting address
of the current image

incrementing
counter

[no system error]

[system error]

finish
operating

[counter != count]

 41

• Activity Diagram for Vertical and Horizontal Blanking Signals:

setting blank,
horizontal and vertical

counters to zero

incrementing
horizontal counter

setting blank_h
to one

generating
horizontal sync

[no system error]

[system error]

finish
operating

[800<counter<1000]

[800<counter<1100]

incrementing
vertical counter

horizontal counter
reaches 1100

setting blank_v
to one

generating
horizontal sync

[660000<counter<731200]

[660000<counter<663200]

vertical counter
reaches 1100

 42

• Activity Diagram for the Complete VGA Process:

Address
Generation

Reading data from
memory to pixel buffer

pixel count = 0

Reading data from
buffer to pixel

register

[pixel count=1] Shift pixel register
pixel count = 0

Horizontal and vertical
sync generation and

blanking

[! horizontal blank and !vertical blank]

Showing
current pixel

[horizontal blank or vertical blank]

Blanking pixel

[buffer empty]

[system error]

[no system error]

 43

2.2. STRUCTURE CHART AND MODULAR
DEPENDENCIES

2.2.1. Structure Chart:

The following chart is the structure chart of our architecture and illustrates the modules and their

relations with each other.

BluePost
Architecture

Format
 Conversion

Sending Data to
Board via
Bluetooth Register Process

Retrieving Data
from Users via

BEK

Sending Data to
users via BEK

VGA Process
File Uploading

2.2.2. Modular Dependencies and Flow:

In the 'BluePost Architecture' most of the modules work in a sequential order (one after another)

except for the "Sending Data to Users via BEK Module", beginning with "File Uploading

Module" till "VGA Process Module".

The workflow starts with "File Uploading Module". By using this module, the user uploads the

image files and enters the event information. Afterwards, the module forms a directory that

includes the uploaded image files, a file named "mesaj.txt" that contains the event information

and a file named "bilgi.txt" that contains the information about order and shows duration of each

uploaded image and completes its process.

 44

After "File Uploading Module", "Format Conversion Module" takes the role and reaches the

directory formed by the previous module. In this module a .hex file ("slideshow.hex") is formed

according to the image files and "bilgi.txt" file and saved in the same directory.

The .hex file formed by Format Conversion Module and the "mesaj.txt" file formed by File

Uploading Module are sent to Bluetooth Evaluation Kit with the process of "Sending Data to

Board via Bluetooth" module. This module also reaches the directory formed by "File Uploading

Module" and sends the "slideshow.hex" and "mesaj.txt" files to the kit by doing the necessary

bluetooth operations like device discovery,service discovery, and establishing connection.

Once the bluetooth data arrives to the bluetooth evaluation board, this data is sent to the 16F877

pic through serial port. Here, “Sending Data from User via Bluetooth Evaluation Kit Module”

starts working. Serial data is received by the use of USART interrupt and the data received is

collected as 8 bits and sent to the parallel port of the pic. From here, data arrives to the parallel

port of the XSA board. “Register Process Module” sends data from the parallel port of the XSA

board to FPGA so that it can be stored in the SDRAM by the “Memory Operations” module.

The "VGA Process Module" reads the contents of the hex file from the SDRAM of XSA3S1000

board and according to r, g, b values of each pixel, it displays the images in the .hex data on the

VGA monitor according to the show duration data of each image in the .hex file.

 Meanwhile, “Register Process Module” reads the contents of the txt file from the SDRAM, and

sends this data on three status lines to the parallel port. Here this data is combined with one more

bit (A bit whose value is toggled so that RB7-RB4 interrupt will be generated in the 16F877 pic.)

and assigned to the D7-D4 data lines of the parallel port. From here, data comes to the parallel

port of the 16F877. In this pic, data is received by the use of RB7-RB4 interrupt and sent to the

serial port of the pic bit by bit. Then this data is sent to the serial port of the Bluetooth Evaluation

Borard. At this board, this data will be sent to bluetooth devices as bluetooth messages.

 45

2.3. FUNCTIONAL DESIGN

2.3.1. Data Flow Diagrams (DFDs):

LEVEL 0:

BLUEPOST image on
monitor

Computer User

Bluetooth Device
User

configuration input

information

txt

bluetooth fil
e

Monitor

image_n

pin number

 46

LEVEL 1:

1.0

User
Interface

3.0

Memory
Process

5.0

Sending to
Bluetooth

Device

4.0

Synchronizati
on Process

via VGA

7.0

Sending via
Bluetooth

6.0

Processing
Bluetooth

Data

Computer User

Bluetooth Device
User

configuration
input

inform
ation

txt form
atted

in form
ation file

im
ag

e
fil

e_
n tim

e

inform
ation

infor
mati

on

bits
tre

am

tx
t b

lu
et

oo
th

fi
lein

fo
rm

at
io

n
bl

ue
to

ot
h

da
ta

hex data

Monitor

im
ag

e
on

m
on

it
or

im
age_n

im
age

bitstream

2.0

Format
Conversion

HEX formatted
file

information
data

pin num
ber

pin num
ber

co
nf

ig
ur

at
io

n
in

pu
t

H
E

X
 fi

le
bl

ue
to

ot
h

da
ta

 47

LEVEL 2 FOR USER INTERFACE:

1.2

Image
Directory
Formation

1.1

txt File
Formation

Computer User

image_n

information

2.0

Format
Conversion

image file_n

configuration

input

7.0

Sending via
Bluetooth

txt formattedinformation file

1.3

Authentication

pin number
verification

signal

configurationfile

 48

LEVEL 2 FOR FORMAT CONVERSION:

1.0

User
Interface

2.1

r-g-b Values
Extraction

7.0

Sending via
Bluetooth

imagefile_n

HEX formatted

f ile

2.2

HEX
Formatted

File
Formation

configuration
fi le

pixel data

 49

LEVEL 2 FOR MEMORY PROCESS:

6.0

Processing
Bluetooth

Data

3.1

SDRAM
Controller

3.2

Clock
Operations

3.3

Write
Operation

3.4

Read
Operation

4.0

Synchronizatio
n Process via

VGA

5.0

Sending to
Bluetooth

Socket

write
 co

ntro
l

sig
nal

read control

signal

clock
signal

read done signal

clock signal

data

write done

signal

image

bitstream

inform
ation

bitst
ream

 inform
ation

data

hex data

time
information

ad
dr

es
s

address

full

opBegun

opBegun

host address
ho

st
 a

dd
re

ss

host

address

 50

LEVEL 2 FOR SYNCHRONIZATION PROCESS VIA VGA:

3.0

Memory
Process

4.1

Pixel Buffer
Operations

4.2

Color
Mapping

4.3

Vertical
Sync

Generator

4.4

Horizontal
Sync

Generator

4.5

Blank Signal
Processing

4.6

Connection
with the
Monitor

image
bitstream

pixel register
content

end of fr
ame

signal

gate

signal

hsync_n

vsync_n

read

signal

r

g

b

blanksignal

blank

signal

global

blank signal

im
age on

m
onitor

Monitor

time
information

full

host address

 51

LEVEL 2 FOR SENDING TO BLUETOOTH DEVICE:

3.0

Memory
Process

5.1

Changing to
txt File Data

5.2

Parallel to
Serial

Converter

5.3

Serial to
Bluetooth
Converter

inform
ation

bitst
ream

parallel

data serial
data

txt bluetooth
file

host a
ddres

s

Bluetooth
Device User

 52

LEVEL 2 FOR PROCESSING BLUETOOTH DATA:

7.0

Sending via
Bluetooth

6.1

Bluetooth to
Serial

Conversion

6.2

Serial to
Parallel

Conversion

3.0

Memory
Process

HEX file bluetooth
data

information
bluetooth data

H
E

X
 file

serial data

hex data

inform
ation

serial data
information

data

host address

6.3

Sending
Parallel
Data to
FPGA

he
x

pa
ra

lle
l d

ata

in
fo

rm
at

io
n

pa
ra

lle
l d

at
a

 53

LEVEL 2 FOR SENDING VIA BLUETOOTH:

7.3

Discover
Service

7.1

Device
Discovery

7.2

Discover
BlueRadios

6.0

Processing
Bluetooth Data

H
E

X
form

atted
f ile

txt fo
rm

att
ed

infor
mati

on

fil
e

bluetooth
name

list ofdevices

H
EX

 file

bluetooth

data

in
fo

rm
a t

io
n

bl
ue

to
o t

h
da

ta

1.0

User
Interface

2.0

Format
Conversion

v erif ica ti on
sig nal

7.4

Establish
Communication

servicerecord

 54

2.3.2. Data Dictionary:

Name address

Input to 3.3 Write Operation

3.4 Read Operation
Output from 3.1 SDRAM Controller
Description The row and column address of the data to be read or the

address to which data will be written given to the SDRAM.
This data is obtained from host address and is provided to the

SDRAM.
Format VHDL unsigned type composed of 12 bits

Name blank signal

Input to 4.5 Blank Signal Processing
Output from 4.3 Vertical Sync Generator

4.4 Horizontal Sync Generator
Description The blanking signals produced by the vertical and the

horizontal sync generators are combined to produce a global
blank signal and the read signal. When the blank signal is

high, the pixel should not be displayed.
Format std_logic : YES when blanking is necessary within a scanline

or within a frame, NO otherwise

Name bluetooth name
Input to 7.3 Discover Service

Output from 7.2 Discover BlueRadios
Description This is the bluetooth name of the BlueRadios Evaluation board

used to discover the services provided by the evaluation board.

Name r
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The red color signal.

Format std_logic_vector composed of 3 bits*

Name g
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The green color signal.

Format std_logic_vector composed of 3 bits

Name b
Input to 4.6 Connection with the Monitor

Output from 4.2 Color Mapping
Description The blue color signal.

Format std_logic_vector composed of 3 bits

 55

Format This is a string and our device has the name “BlueRadios”.

Name clock signal
Input to 3.3 Write Operation

3.4 Read Operation
Output from 3.2 Clock operations
Description The clock signal obtained from the oscillator that is used to

clock the SDRAM operations.
Format std_logic : Main clock input.

Name configuration input

Input to 1.0 User Interface

1.2 Image Directory Formation
Output from This is an input to the system.
Description This is the input entered by the user about the time intervals

for which each image will be displayed in a slide show.
Format The user enters an integer in the range 1-10 for slide number

and an integer, specifying seconds, greater than 5 for time
duration.

Name configuration file

Input to 2.0 Format Conversion

2.2 HEX Formatted File Formation
Output from 1.0 User Interface

1.2 Image Directory Formation
Description This is a file containing the slide number, time duration and

the image file name for each image selected by the user.
Format This file is txt file. Each line in this file looks like:

<slide number> <image file name> <time duration>

Name data
Input to 3.3 Write Operation

Output from 3.1 SDRAM Controller
Description The data to be stored in the SDRAM. The bluetooth data

coming to our main board (hex data and information data) will
arrive to the SDRAM Controller and the controller will pass it

to the SDRAM through this bus.
Format This is the data bus composed of 16 bits, that contains data

that’s going to be written to a memory word. This data is
represented as “unsigned” in VHDL code.

Name end of frame signal

Input to 4.1 Pixel Buffer Operations
Output from 4.3 Vertical Sync Generator

 56

Description The signal indicating the end of a frame.
Fomat std_logic: YES when the end of a frame is reached, NO

otherwise.

Name full
Input to 3.0 Memory Process

3.1 SDRAM Controller
Output from 4.0 Synchronization Process via VGA

4.1 Pixel Buffer Operations
Description The signal indicating whether the pixel buffer is full or not.

Fomat std_logic: YES when the pixel buffer is full, NO otherwise.

Name gate signal
Input to 4.3 Vertical Sync Generator

Output from 4.4 Horizontal Sync Generator
Description The signal which is used to update the counter of the vertical

sync generator correctly.
Format std_logic : YES at the end of each scanline, NO otherwise.

Name global blank signal

Input to 4.6 Connection with the Monitor
Output from 4.5 Blank Signal Processing
Description The signal indicates when the red, green, or blue video signals

are blanked. This signal is produced by the blank signals
coming from the vertical and horizontal sync generators.

Format std_logic : YES when a pixel should be blanked,NO otherwise.

Name hex data
Input to 6.2 Memory Process

3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data

6.2 Serial to Parallel Conversion
Description The data contained in the hex file which will be sent via

bluetooth and processed by “serial to parallel conversion”
operations will arrive to the parallel port of the board and will
be sent to the FPGA so that it can be stored in the SDRAM.

This signal represents the data bus that contains data that will
be sent to the FPGA from the parallel port of the XSA board.

Format This parallel data is composed of 8 bits and it is declared as
“unsigned” in VHDL code. When the 8 bit data arrives to the

FPGA, it will be combined with the next coming 8-bit data and
will be passed to the 16-bit data bus of the SDRAM.

 57

Name HEX file bluetooth data
Input to 6.0 Processing Bluetooth Data

6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth

7.4 Establish Communication
Description The HEX file formed in “Format Conversion” will be send to

our board via bluetooth. “HEX file bluetooth data” represents
this incoming data. This data contains both the configuration

input and image pixel data.
Format This data is arrives in Hex format.

Name HEX file serial data

Input to 6.2 Serial to Parallel Conversion
Output from 6.1 Bluetooth to Serial Conversion
Description When “HEX file bluetooth data” comes to the bluetooth

evaluation board, it is sent to “Serial to Parallel Converter” as
serial data.

Format This data arrives bit by bit and bit and when combined, these
bits represent the HEX formatted data.

Name hex parallel data

Input to 6.3 Sending Parallel Data to FPGA
Output from 6.2 Serial to Bluetooth Conversio
Description When “hex bluetooth data” comes to the bluetooth evaluation

board, it is sent to “Serial to Parallel Conversion” operations
and then arrives to the XSA parallel port. This signal

represents the data bus that carries data to the parallel port of
the XSA board from the pic (designed by us) that converts the

bluetooth serial data to parallel data.
Format This data arrives to the parallel port as a data bus of 8 bits and

is represented as “unsigned” in VHDL.

Name HEX formatted file
Input to 7.0 Sending via Bluetooth

7.4 Establish Communication
 Output from 3.0 Format Conversion

2.2 HEX formatted file formation
Description This file contains information about the configuration input

entered by the user and the pixel data for the images uploaded.
The format of this file is described in detail in “Process

Specifications.”
Format This file is written in Hex format.

 58

Name image_n

Input to 1.2 User Interface

1.2 Image Directory Formation
Output from It is an input to the system.
Description The images stored in the PC, available for selection to be

displayed on the monitor.
Format The images can be in jpg or gif formats.

Name image bitstream

Input to 4.0 Synchronization Process via VGA

4.1 Pixel Buffer Operations
Output from 3.0 Memory Process

3.4 Read Operation
Description The image bitstream read from the SDRAM to the VGA port.

Format VHDL unsigned type. The bitstream is read as words of 16
bits. Since we will have 16-bit pixels, the bitstream will be

read as pixels.

Name host address
Input to 3.1 SDRAM Controller

Output from 4.0 Synchronization Process via VGA
4.1 Pixel Buffer Operations

5.0 Sending to Bluetooth Device

5.1 Sending to Parallel Port

6.0 Processing Bluetooth Data

6.2 Serial to Parallel Conversion
Description The address of the data to be read from or to be written to

produced by the FPGA applications.
Format This is a bus defined of type unsigned composed of 24 bits.

Name hsync_n
Input to 4.6 Connection with the Monitor

Output from 4.4 Horizontal Sync Generator
Description This signal derives the horizontal sync input of the monitor.

Format std_logic : This signal becomes positive when the visible area
is in progress within a scanline and negative to indicate the

start and end of a scanline.

 59

Name image file_n
Input to 7.0 Format Conversion

2.2 r-g-b values extraction
Output from 1.0 User Interface

1.2 Image Directory Formation
Description The image files uploaded by the user which will go through

the format conversion process.
Format The format of the image can be jpg or gif.

Name image on monitor

Input to It is an output of the system.
Output from 8.0 Synchronization Process via VGA

4.6 Connection with the monitor
Description The image displayed on the monitor

Name information bluetooth data

Input to 7.3 Processing Bluetooth Data

6.1 Bluetooth to Serial Converter
Output from 7.0 Sending via Bluetooth

7.4 Establish Communication

Name information
Input to 1.1 User Interface

 1.1 Txt file formation
Output from It is an input to the system.
Description The information entered by the user related to the event date

and time.
Format User enters a message and this message will be stored in a txt

formatted file named “mesaj.txt”.

Name information bitstream
Input to 5.0 Sending to Bluetooth Device

5.1 Sending to Parallel Port
Output from 3.0 Memory Process

3.4 Read Operation
Description The bitstream read from the SDRAM, which contains the

message about the event data, ready to be processed by the
bluetooth functionalities of the system so that a bluetooth

message can be sent to devices.
Format This data comes on a data bus composed of 16 bits and

contains the message file which was written in txt format.

 60

Description The bluetooth data recieved from the bluetooth device
containing the information about the event, namely the data in

the “txt formatted information file”.
Format This data arrives as txt file.

Name information data

Input to 3.0 Memory Process

3.1 SDRAM Controller
Output from 6.0 Processing Bluetooth Data

6.3 Sending Parallel Data to FPGA
Description The time and place information of the event sent from the

parallel port of the board to the FPGA so that it can be stored
in the SDRAM.

Format This parallel data is composed of 8 bits and it is declared as
“unsigned” in VHDL code. When the 8 bit data arrives to the

FPGA, it will be combined with the next coming 8-bit data and
will be passed to the 16-bit data bus of the SDRAM.

Name information parallel data

Input to 6.3 Sending Parallel Data to FPGA
Output from 6.2 Serial to Bluetooth Conversion
Description When “information bluetooth data” comes to the bluetooth

evaluation board, it is sent to “Serial to Parallel Conversion”
operations and then arrives to the XSA parallel port. This

signal represents the data bus that carries data to the parallel
port of the XSA board from the pic (designed by us) that

converts the bluetooth serial data to parallel data.
Format This data arrives to the parallel port as a data bus of 8 bits and

is represented as “unsigned” in VHDL.

Name information serial data
Input to 6.2 Serial to Parallel Conversion

Output from 6.1 Bluetooth to Serial Conversion
Description When “information bluetooth data” comes to the bluetooth

evaluation board, it is sent to “Serial to Parallel Converter” as
serial data.

Format This data arrives as a txt formatted file.

Name list of devices
Input to 7.2 Discover BlueRadios

Output from 7.1 Device Discovery
Description In order to send bluetooth data from the user pc, our code will

request for a list of available bluetooth devices, and this list
contains the available devices to connect.

Format The availabe devices will be represented by the Java
RemoteDevice class and this list is an array of RemoteDevice

objects.

 61

Name opBegun

Input to 3.3 Write Operation

3.4 Read Operation
Output from 3.2 Clock Operations
Description This signal becomes high with the rising edge of the SDRAM

clock input when a read or a write is requested. It initiates the
requested operation.

Format std_logic: YES when a read or a write operation is requested
and clock input is high, NO otherwise

Name parallel data

Input to 5.2 Parallel to Serial Conversion
Output from 5.1 Sending to Parallel Port
Description While sending bluetooth messages, the message content which

is stored in the SDRAM, needs to first come to the parallel
port of the XSA board. From the parallel port, this data will be
sent to the parallel port of the pic(designed by us). This data

bus represents the data that is sent from the parallel port of the
XSA board to the parallel port of the other pic.

Format The parallel port of the XSA board, keeps data in parallel port
registers as a byte. So this data is represented as a data bus
composed of 8 bits. It is represented by unsigned type in

VHDL.

Name pin number
Input to 1.0 User Interface

1.3 Authentication
Output from This is an input to the system.
Description The pin number, which is specific to the bluetooth converter

card, the user must enter in order to send images to the board.
Format The user enters an integer.

Name pixel register content

Input to 4.2 Color Mapping
Output from 4.1 Pixel Buffer Operations

Description

The data in the pixel buffer is shifted to the pixel register and
the contents of this register are processed to produce color

signals.
Format std_logic_vector composed of 16 bits

Name read control signal

Input to 3.2 Clock Operations
Output from 3.1 SDRAM Controller
Description The signal indicating a read request from the memory.

Format std_logic : YES when a read operation is pending, NO
otherwise.

 62

Name read done signal

Input to 3.1 SDRAM controller
Output from 3.4 Read Operation
Description The signal shows that the current read operation is completed.

Format std_logic: YES when the current read operation is finished.

Name read signal
Input to 4.1 Pixel Buffer Operations

Output from 4.5 Blank Signal Processing
Description The signal which indicates when to read more data from the

pixel buffer.
Format std_logic: YES when the buffer is empty, NO otherwise.

Name serial data

Input to 5.3 Serial to Bluetooth Conversion
Output from 5.2 Parallel to Serial Conversion
Description The parallel data obtained from the parallel port of the XSA

board, will be sent to the pic (designed by us) responsible for
sending this data to the serial port on it. The pic will get the
parallel data and send to it to its own serial data. This signal
represents the data that arrives to the serial port of this pic.

Format Since this signal represents the serial data, it will be processed
by bit by.

Name service record

Input to 7.4 Establish Communication
Output from 7.3 Discover Service
Description We will discover the services offered by the bluetooth

evaluation board get a record for the service, namely “Serial
Port” service. This record will be used in connection.

Format This record is represented by the Java ServiceRecord class.

Name time information
Input to 4.0 Synchronization Process via VGA

4.1 Pixel Buffer Operations
Output from 3.0Memory Process

3.4 Read Operation
Description The time information stored in the SDRAM which is obtained

from the configuration file and which is used to determine
which image should be displayed at a specific moment.

Format VHDL unsigned type. The information is read as data words of
16 bits.

 63

Name txt bluetooth file
Input to This is an output of the system.

Output from 5.0 Sending to Bluetooth Device

5.3 Serial to Bluetooth Conversion
Description From the serial port of the pic(designed by us) data is sent to

the bluetooth evaluation board. The evaluation board receives
this data and sends it as a txt message to bluetooth devices.

This signal represents the txt file ready to be sent to the
bluetooth devices containing information about the event.

Format The file will be in txt format.

Name txt formatted information file
Input to 7.0 Sending via Bluetooth

7.4 Establish Communication
Output from 1.0 User Interface

1.1 Txt File Formation
Description The file created by the information entered by the user about

the details of the event.
Format txt formatted file

Name verification signal

Input to 7.0 Sending via Bluetooh

7.1 Device Discovery
Output from 1.0 User Interface

1.3 Authentication
Description A verification signal indicating that the user has entered the

correct pin number.
Format Java Boolean type

Name vsync_c

Input to 4.6 Connection with the Monitor
Output from 4.3 Vertical Sync Generator
Description This signal derives the vertical sync input of the monitor.

Format std_logic: This signal becomes positive when the visible area
within a frame is in progress and negative when the end of a

frame is reached.

Name write control signal
Input to 3.2 Clock Operations

Output from 3.1 SDRAM Controller
Description The signal indicating the write request to the memory.

Format std_logic: YES when a write operation is pending, NO
otherwise.

 64

Name write done signal
Input to 3.1 SDRAM Controller

Output from 3.3 Write Operation
Description The signal indicating that the current write operation is

completed.
Format std_logic: YES when the current write operation is completed.

* : When wires are described as signals in VHDL, they are defined with the type std_logic. With
this type the signal can be set to low (0), high (1), or high impedence. std_logic_vector is an
array of the std_logic type. It represents a bus which has a dimension associated with it. Type
unsigned is again an array of std_logic used to declare variables. This type also has a
dimension.

2.3.3. Process Specifications:

1.1 txt File Formation:

This process gets the message related to the poster event entered by the user via the user

interface. Afterwards, this message is written in a txt file named “mesaj.txt”. This file is kept in

the directory formed by “1.2 Image Directory Formation”.

1.2 Image Directory Formation:

When the user selects jpg or gif images for creating a slide show, this process creates a directory

and the selected images are kept in this directory. The directory is created with the name “new

folder” and when the user saves the slide show the directory is renamed to the name specified by

the user. As the user selects an image and specifies a slide number and time duration, this

process writes this data (format: slide number – image file name – time duration) in a

configuration file named “bilgi.txt”. This file is in txt format and it is also kept in the directory

that is used to store the images.

1.3 Authentication:

The bluetooth evaluation kit attached to the main XSA board will have a predetermined pin

number and in order to send data to this kit one has to enter this pin number. Thus when the user

decides to send the contents of the slide show, s/he is requested to enter a pin number by this

process. If the pin number matches with the pin number of the bluetooth evaluation kit, a

verification signal is raised so that bluetooth operations can start.

 65

2.1 r-g-b Values Extraction:

When the user decides the send the slide show contents to the board, this process is initiated first.

The selected images that are stored in this directory formed by “1.2 Image Directory Formation”

are first resized to 800 * 600 dimensions first so that each image occupies same space in the

SDRAM and there’s a consistency in the display process. Then each resized image is processed

and the r, g, and b color information of each pixel in an image is obtained. These values are send

to “2.2 HEX File Formation”.

2.2 HEX File Formation:

This process starts by reading the configuration file produced by “1.2 Image Directory

Formation”. The data in the configuration file is written in a new file named “slideshow.hex” in

hex format. The data in the configuration file will be stored in the first 16 memory words of the

SDRAM. This process will write the hex data in the following format:

 address – configuration data that is going to be stored in this SDRAM address

To be more specific, the format will be like:

 address – number of images

 address – time duration of the 1st slide

 address – time duration of the 2nd slide

 …

 address – time duration of the 10th slide

The user may have selected less than 10 images, in that case the time duration of the slides not

specified will be given the value zero. Here the address specifies one of the first 16 memory

words.

After the first phase is complete, the second phase in this process starts. In our design, each

image is stored in the predetermined address ranges of the SDRAM. Thus this process writes the

obtained pixel color information from “2.1 r-g-b Values Extraction” again in “slideshow.hex”

with appending the SDRAM address to which this data will be written. In other words the format

of the file is :

 address - pixel data that is going to be stored in this SDRAM address

 66

After the pixel data of an image is completely written, we will write “FF” to the next memory

location which will indicate the end of the current image. Thus the hex filw will contain the

following line, after the pixel data of each image is written:

 address – FF

We will divide the SDRAM into two parts and the first part will contain the data related to the

VGA operations. Thus, here the address specifies an address location from the first part of the

SDRAM, excluding the first 16 memory words.

3.1. SDRAM Controller:

This process communicates with our applications running on the FPGA. The SDRAM operation

type (read from or write to the memory) is determined by the signals coming from these

applications. According to the type of the operation, this process raises either a write control or a

read control signal. The process is used for gathering data (if the operation is a read operation)

and address information from “4.0 Synchronization Process with VGA”, “5.0 Sending to

Bluetooth Device”, and “6.0 Processing Bluetooth Data” and for dividing this host address

information into memory address rows and columns. If the operation is a write operation, the

data and address information is sent to "3.3 Write Operation Process" to be written in the

memory according to the address row and column information. If the operation is a read

operation the address row and column information is sent to "3.4 Read Operation" to read the

related data from memory.

3.2. Clock Operations:

This process uses the oscillator signal and creates a new signal for SDRAM by concerning the

delays between the SDRAM and FPGA. This created clock signals are used by SDRAM for read

and write operations. When the process retrieves the write control signal or read control signal

from "3.1 SDRAM Controller", it creates the new clock signal and opBegun signal and sends

this signal to either "3.3 Write Operation" or "3.4. Read Operation" according to write/read

control signals . The SDRAM write and read operations start immediately after the first rising

edge of this created clock.

3.3. Write Operation:

This process is used for writing the data information gathered from "3.1 SDRAM Controller"

using the address (row and column) information gathered from the same process. Before this

 67

process starts to operate the address and data information gets ready in the address and data

buses of the SDRAM. After the clock signal and opBegun signal is gathered from "3.2 Clock

Operations" this process starts to operate with the rising edge of the clock signal and writes the

data in the data bus to the address specified by the row and column information in the address

bus.

3.4. Read Operation:

This process is used for reading the data information from the SDRAM using the address (row

and column) information gathered from "3.1 SDRAM Controller". Before this process starts to

operate the address information gets ready in the address buses of the SDRAM. After the clock

signal and opBegun signal is gathered from "3.2 Clock Operations" this process starts to operate

with the rising edge of the clock signal and reads the data from the SDRAM according to the

address specified by the row and column information in the address bus. We will use the "dual-

port" feature of the SDRAM Controller. The read data from the first part of the SDRAM will

always contain the following information: The first 16 memory words of the SDRAM will be

read first. These words will contain the time duration information of each frame uploaded by the

user. After these 16 words, the frame data will be read for each frame according to the address

information. All this read data will be sent to "4.0 Synchronization Process via VGA" as image

bitstream and time information. While VGA Controller gets time and image information from

the first part of the SDRAM, this process will read and send the event information to "5.0.

Sending to Bluetooth Socket" to be sent to bluetooth device users.

4.1 Pixel Buffer Operations:

This process reads data from the SDRAM and processes this data so that images are displayed on

a monitor. The process first reads time information kept in the first 16 memory words and stores

this data in variables later to use. Then this process starts reading pixel data from the first portion

of the SDRAM. The read data is stored in a pixel buffer. As long as the buffer is not full, this

process updates the address and initiates a read operation. When the buffer becomes full, the full

signal becomes high and no read operations occur until the full signal becomes low again. The

address is incremented in each clock cycle unless end of a frame is reached. If eof signal

becomes high, it is checked whether the time duration of the current image has passed. If so the

address is updated to the address of the next image and incrementing process starts again. If not,

the address is updated to the beginning address of the current image. Meanwhile, a pixel data is

put into the pixel register so that the pixel can be displayed. Because the pixel register is 16 bits

 68

wide and we store each pixel as 2 bytes, the register can hold one pixel at a time. Thus a pixel

data is put into the register from the buffer and when that pixel is displayed another pixel is put

and so on. In this process the read signal coming from the “4.5 Blank Signal Processing” is taken

into account. This read signal makes sure that a pixel is read from the buffer when the global

blanking signal is low. (The pixel will not be blanked.)

4.2 Color Mapping:

This process gets the pixel in the pixel register and extracts the r, g, b values of the pixel and

sends these values to “4.6 Connection with the Monitor”. Because each pixel is 16 bits wide, bits

0-2 contain blue color information, bits 3-5 contain green color information, and bits 6-8 contain

red color information. And since these bits are packed in the lower nine bits, they directly map to

the RGB values.

4.3 Vertical Sync Generator:

This process produces the vsync_n signal that derives the vertical sync input of the monitor. This

process gets “gate signal” from “4.4 Horizontal Sync Generator” and updates its counter because

this gate signal shows that a scanline has finished. Because we resize the images to constant

dimensions (800 * 600), when the counter becomes 800, in other words all scanlines in a frame

have been displayed, this process raises the end of frame signal (eof) end sends it to “4.2 Color

Mapping.” Additionally, this process raises the vsync_n signal sends it to “4.6 Connection with

the Monitor”. The negative pulses on this signal indicate the start and end of frame so that the

monitor displays the scanlines between the top and bottom visible area. During this period, a

blanking signal is sent to “4.5 Blank Signal Processing”. In our design, vertical sync generator

period is 14.624 ms. Of this period, 13.2 ms is the visible area and the rest 1.424 ms (front porch

+ back porch + sync pulse) indicates the start and end of a frame. (Refer to the VGA process

module for details.)

4.4 Horizontal Sync Generator:

This process produces the hsync_n signal that derives the horizontal sync input of the monitor.

This process produces a gate signal at the end of a scanline and sends it to “4.3 Vertical Sync

Generator”. This process also raises the hsync_n signal and sends it to “4.6 Connection with the

Monitor”. The negative pulses on this signal indicate the start and end of a scanline so that the

pixels between the left and right edges of the visible screen area are displayed. During this period

a blanking signal is activated and sent to “4.5 Blank Signal Processing”. In our design, horizontal

 69

sync signal period is 22 µs. 16 µs of this period is visible and the rest 6 µs (front porch + back

porch + sync pulse) indicates the start and end of a frame. (Refer to the VGA process module for

details.)

4.5 Blank Signal Processing:

This process gets blanking signals from “4.3 Vertical Sync Generator” and “4.4 Horizontal Sync

Generator” and these signals are logically or ed to produce a global blanking signal, which is

sent to “4.6 Connection with the Monitor”. These blanking signals are also used to determine

when to read more pixels from the buffer. A read signal is raised when the global blanking signal

is low and the current pixel in the pixel register has been processed and this signal is sent to “4.1

Pixel Buffer Operations”.

4.6 Connection with the Monitor:

This process gets the RGB components from the “4.2 Color Mapping” and global blanking

signal from “4.5 Blank Signal Processing”. The RGB components are displayed when the global

blanking signal is not high. This process also gets vsycn_n from “4.3 Vertical Sync Generator”

and hsync_n from “4.4 Horizontal Sync Generator”. These signals derive the vertical and

horizontal sync inputs of the monitor respectively.

5.1 Sending to Parallel Port:

For sending messages to the bluetooth devices, data about the message content should be first

read from the SDRAM and sent to the parallel port of the XSA board. This process generates

host address from which data will be read from the SDRAM. Because we know the starting

address of the message data in the SDRAM, we will start generating addresses beginning with

this address. Then the address will be incremented with each read operation. The read data from

the SDRAM will arrive to the FPGA. FPGA will send this data as 3 bits by deriving the A2, A1,

and A0 address lines of the Flash. Then the S3, S2, and S1 status lines of the parallel port will be

derived and data will come to the parallel port. Finally this process will assign these lines to the

D7, D6, and D5 data lines of the parallel port. A value of 0 and 1 will be put on the D4 data line.

5.2 Parallel to Serial Conversion:

This process retrieves the parallel data from “5.1. Sending to Parallel Port” and send this data to

Serial-Parallel Converter Board so that the parallel data is converted to serial data. Details of the

conversion process are explained in “Sending Data to User via Bluetooth Evaluation Kit

 70

Module” specifications. This converted serial data then sent to “5.3. Serial to Bluetooth

Conversion” process.

5.3 Serial to Bluetooth Conversion:

Once serial data arrives to the Bluetooth Evaluation board, this process sends the coming data to

the nearby devices as bluetooth messages (as a .txt file).

6.1 Bluetooth to Serial Conversion:

When the user wants to send slide show contents to the XSA board, the hex formatted file and

the txt file are sent via bluetooth operations. This data arrives to the bluetooth board and sent to

the 16F877 pic through serial port by this process.

6.2 Serial to Bluetooth Conversion:

When data arrives to the serial port of the 16F877 pic, this data is received by the use of USART

interrupt and when 8 bits of data is collected bit by bit, this 8-bit data is sent to the parallel port

of the pic. From here, this data arrives to the parallel port of the XSA board.

6.3 Sending Parallel Data to FPGA:

When the data sent by the user via bluetooth arrives to the parallel port of the XSA board, after

the serial to conversion operations, this process sends the coming data to the FPGA so that it can

be stored in the SDRAM. For this purpose, the data will be put on the D0-D7 pins of the parallel

port. Then this data will pass through the CPLD and arrive to the FPGA. While sending the hex

file format, first the address and then data that needs to be written to that address will arrive.

When an 8-bit data arrives to the FPGA, this data will be combined with the next two coming 8-

bit data to produce the address data composed of 24 bits. This address will be put to the host

address data bus of the SDRAM controller. Then, two coming 8-bit data will be combined to

produce data composed of 16 bits (hex data). Then this data bus will be transferred to the data

bus of the SDRAM controller. Then the write operation can start in the Memory Process module.

After all the hex data is transferred, the transfer of the txt data will start. (Because we know the

number of images and the number of bytes in an image, we will be able to recognize when all

hex data has been received.) This data will be stored starting with the end address of the hex data

in the SDRAM. Thus, with every two 8-bit data coming, the current address will be incremented

and the combined 16-bit data will be transferred to the data bus of the SDRAM so that a write

operation can start.

 71

7.1 Device Discovery:

When the user decides to send a slide show content to the XSA board and enters the correct pin

number for the bluetooth evaluation board, a verification signal arrives and this process starts. In

order to establish a connection with the bluetooth evaluation board, this process searches for the

available bluetooth devices returns a list of the available devices.

7.2 Discover BlueRadios:

This process gets the list of available bluetooth devices from “7.1 Device Discovery” and finds

the bluetooth evaluation board attached to our main board in this list. It returns the name of the

bluetooth evaluation board, which will be “BlueRadios”.

7.3 Discover Service:

Once the bluetooth evaluation board is discovered and its name is retrieved, this process searches

for the available services provided by this evaluation board. We will use the “Serial Port” service

so when this process discovers this service, it returns a service record, which is passed to “7.4

Establish Communication”.

7.4 Establish Communication:

When the “Serial Port” service is found and the service record is obtained, this process first

establishes a connection with the bluetooth evaluation board. After the communication is

successfully established, this process starts sending data to the evaluation board. The data sent

consists of the HEX formatted file produced by “2.2 HEX Formatted File Formation”, and the txt

formatted information file produced by “1.1 txt File Formation.” The hex file contains

configuration and image data so the data sent by this process arrives to “6.1 Bluetooth Serial

Data” as image bluetooth data, configuration bluetooth data, and information bluetooth data.

2.4. BEHAVIORAL DESIGN

3.3.3. State Transition Diagram:

The following diagram illustrates the possible states and their transitions to other states.

 72

Input Taken
via Computer

State

Invalid Data Form
Display System Message

Format
Conversation

State

Successful Images Upload
Invoke ChangeFormat()

Valid Hex Format Images
Turn to User Interface

Request of Sending Data
Invoke CheckUser()

Bluetooth
Authentication

State
Wrong PIN is entered

Display System Message

Data
Transformation

to Board
via

Bluetooth
State

Valid PIN is entered
Invoke TransformData()

Preservation
Data in

SDRAM
State

Saving of Hex Format Images
Invoke SaveImages()

Saving of Message Data
Invoke SaveMessage()

Synchronization
for VGA

State

 Valid Hex Images in SDRAM
 Invoke Synchronize()

Sending of
Message

via
Bluetooth

State

 Valid Message in SDRAM
Invoke BluetoothTransferMessage()

Message Sending
Invoke TransferMessage() Message

 Preparation
State

Identification of a bluetooth device
 Invoke SendMessage()

 73

3. SYSTEM DESIGN

3.1. USE CASES & USE CASE DIAGRAM

3.1.1. Use Cases

Use Case 1: Uploading Poster and Information

This use case is for uploading the poster and event information via a computer or a bluetooth

device.

Actors: File Uploader

Pre-Condition: The user should have the right to upload files about the event.

Post Conditions: The poster and information is uploaded successfully to BLUEPOST SYSTEM.

Basic Flow:

1. File Uploader runs the file uploading software of BLUEPOST SYSTEM on his/her computer

in order to browse and upload the event image and information files.

2. After browsing the files people uploads the file to be stored in BLUEPOST SYSTEM via

interactive bluetooth.

Alternative Flow:

If the file formats that the File Uploader intends to send are not compatible or the files do not

contain any information or the File Uploader do not have the right to upload a file (pin error)

uploading is simply rejected.

Use Case 2: Store Poster and Information into the System

This use case is for storing poster images and information into the system.

Actors: BLUEPOST SYSTEM

Pre Condition: Poster images and event information have to be already uploaded by the File

Uploader correctly.

 74

Post Conditions: The images and information is stored into the system and the images are ready

to

be displayed and the information is ready to be sent to Information Recievers.

Basic Flow:

1. The images and information that File Uploader wants to upload come to the system to be

stored.

2. The system stores the images and the information.

3. The poster and information is ready to be displayed and sent to the Information Recievers.

Use Case 3: Observing the Digital Poster from the Monitor

Actors: Information Reciever

Pre Condition: The user wonders about the event.

Post Condition: The user gets the information about the event and decides to participate in the

event.

Basic Flow:

The user observes the poster and information on the poster.

Use Case 4: Broadcasting Event Information from BLUEPOST SYSTEM to Information

Recievers

Actors: BLUEPOST SYSTEM and Information Reciever

Pre Conditions: An event information should already be stored in the BLUEPOST

SYSTEM, and a bluetooth connection should already be established between BLUEPOST

SYSTEM and Information Reciever.

Post Conditions: The event information has successfully transferred to Information Recievers.

Basic Flow:

1. Information Reciever establish a connection with BLUEPOST SYSTEM that is already ready

to establish a connection.

2. File transfer operation occurs.

3. Connection closes after successful completion of File Transfer.

 75

Alternative Flows:

1. If connection is not established, file transfer request is simply rejected.

2. If connection is lost during file transfer operation, file transfer request is not completed

successfully.

3.1.2. Use Case Diagram

 File Uploader

 BLUEPOST SYSTEM

 Information Reciever

Store Poster and
Information into

the System

Observing the
Digital Poster

from the Monitor

Broadcasting Event
Information from

BLUEPOST SYSTEM
to Information

Recie vers

: Uploading Image
and Information by

BLUEPOST SYSTEM
File Uploading

Software

 76

3.2. CLASS AND SEQUNCE DIAGRAMS

3.2.1. File Uploading Module Class Diagram

BluePost

String: projectName

+ showVerification()
+ errorDisplay()
+ reques tPIN(): Integer

ImageAdder

+ addImage(image,s lideNo,time)

Save

String:workspaceName
String:projectName()

+ save()
+ nameFormation()

Open

String: projectName

+ Open(projectName:String)

ImageUploader

String: image
Integer: s lideNo
Integer: time

+ ImageUploader(image:St ring,
s lideNo:Integer,time:Integer)
+ saveImage()

Message

String: messageContent

+ Message(messageContent:String)
+ writeMessage()
+ saveMessage()

ImageModifier

+ modifyImage(image,s lideNo,t ime)

1

 1

 1 1

1 1
 1 1

1 1
 1 1

Send

Int eger: pinNo
String:projectName

+ reques tToSend(pinNo:Integer)
+ s tartSend()

1

 1

 77

BluePost Class:

Attributes of the Class:

Attribute Name Attribute Type Description
projectName String This is the current slide show the user is working on.

If the slide show has not been saved yet, it has the
name “new folder”.

Methods of the Class:

Method Name Parameter Types Return Type Description
showVerification void void A verification message is

displayed when the user adds or
modifies an image, or saves the
slide show.

errorDisplay void void When the user specifies an
already given slide number, an
error message is displayed.

requestPIN void void When the user enters a wrong
pin number to complete the send
process, user is forced to enter
another pin.

Message Class:

Attributes of the Class:

Attribute Name Attribute Type Description
messageContent String This is the message entered by the user that is going

to be sent to the bluetooth devices. If the user has not
entered a message yet it has a null value.

Methods of the Class:

Method Name Parameter Types Return Type Description
Message String void This is a constructor that creates a

message object with the specified
message content.

writeMessage void void This function displays a text area with
the current message content so that the
user can edit the current message. If
the message content is null, an empty
text area will be displayed.

saveMessage void void When the user enters a message to the

 78

text area, this function updates the
message content with the text in the
text area.

Send Class:

Attributes of the Class:

Attribute Name

Attribute Type

Description

pinNo Integer This is the pin number entered by the user in order to
complete the send process. It should be equal to the
pin number of the bluetooth evaluation board.

projectName String This is the name of the slide show that the user
wants to send.

Methods of the Class:

Method Name Parameter Types Return Type Description
requestToSend Integer Boolean This function returns true if the pin

number entered by the user matches
the pin number of the bluetooth board.

startSend void void This function starts the sending process
of the current slide show. Here the
Format Conversion module starts
working.

Open Class:

Attributes of the Class:

Attribute Name Attribute Type Description
projectName String This is the current slide show the user is working on. If

the slide show has not been saved yet, it has the name
“new folder”.

 79

Methods of the Class:

Method Name Parameter Types Return Type Description
Open String void This constructs an Open object with the

given slide show name. If the slide show
name is not null, the current images in
the show are displayed. Otherwise, the
user can start adding new images to a
new slide show.

Save Class:

Attribute of the Class:

Attribute Name

Attribute Type

Description

workspaceName String This is the name of the workspace our software is
running on. The slide shows created by the user will
be saved under this directory.

projectName String This is name the user has entered to save the current
slide show.

Methods of the Class:

Method Name Parameter Types Return Type Description
save void void This function renames the current slide

show to the projectName attribute.
nameFormation void void If a slide show that has the name of

projectName attribute, this function
changes the projectName as explained
in module description.

ImageUploader Class:

Attributes of the Class:

Attribute Name

Attribute Type

Description

image String Name of the image file the user as selected.

slideNo Integer The slide number specfied for the selected image.

 80

Time Integer Time duration specified for the selected image.

Methods of the Class:

Method Name Parameter Types Return Type Description
ImageUploader String,Integer,Integer void This is a constructor that creates a

ImageUploader object with the
specified parameters.

saveImage void void This function saves the image that
comes from ImageAdder or
ImageUploader class to the current
slide show and updates “bilgi.txt” as
explained in module description.

ImageAdder Class:

Methods of the Class:

Method Name Parameter Types Return Type Description
addImage String,Integer,Integer void This function adds a new image to the

current slide show, with the specified
parameters. If the slide number has
been specified before, an error
message is dispayed. If the user
selects to change the image, adding
continues.

ImageModifier Class:

Methods of the Class:

Method Name Parameter Types Return Type Description
modifyImage String,Integer,Integer void This function modifies an image in

the current slide show, with the
specified parameters. If the slide
number has been specified before, an
error message is dispayed. If the user
selects to change the image,
modifying continues.

DeleteImage String,Integer void The specified image is deleted from
the slide show and the slide number
will be freed so that the user can
select an image for that slide number.

 81

3.2.2. File Uploading Module Sequence Diagram

Sequence of Events for File Uploading Module

Main Sequence

1. The user either starts a new slide show or opens a
previously saved slide show.

2. The user can add a new image to the slide show. If the
slide number is specified, a warning message is displayed.
If the user wants to change the image for the specific slide,
adding operation continues accordingly. (The for the
current slide is changed.) Otherwise the operation is
canceled.

3. The user can modify an image in the slide show. If the
new slide number entered for the image has been already
specified, a warning message is displayed. If the user
chooses to modify the image anyway, the operation
continues accordingly. (The for the current slide is
changed.) Otherwise the operation is canceled.

 82

4. The user can delete an image from the slide show.
5. The user can enter the message that is going to be sent to

the bluetooth devices. If no message has been saved, an
empty text area will be displayed. Otherwise, the current
message will be displayed. The user will make any
changes and save the message.

6. The user can save the current slide show. If the name
specified already exists, the name will be changed as
described in the module description and the current slide
show directory will be renamed.

7. The user can send the slide show contents to our main
board. S/he will be asked a pin number, if the pin number
matches with the pin number of the bluetooth board,
operation continues. Otherwise, user is asked to enter the
pin number again.

 83

3.2.3. Format Conversion Module Class Diagram

FormatConverter
- nImages : Integer
- order[n_images] : In teger
- t ime[n_images] : Int eger

+ readSpec() void

Images

- name: String
-numb:Integer

+ getImg_Header(void) ret urn St ring
+ res ize(void) void
+ getPixel(x : Integer, y : Int eger) return
String

HexDataFile

- data : FILE

+ s ignBegin() return boolean
+ s ignBnd() return boolean
+ writeGenData(time[] : In teger ,
i:Integer , address[]:Integer) return
boolean

PixelData
- r : In teger
- g: In teger
- b : Int eger
- value: Int eger

+ writeData(void) return boolean
+ setValues(i :Int eger, x : Int eger, y:
Integer) return String

Deals

1

1

Writes

1

1

Creates1

800*600

Writes

800*600 1

 84

Images Class:

Attributes of The Class:

Attribute Name Attribute Type Description
numb Integer The identification number of the image.
name String Name of the image.
Methods of the Class:

Method Name Parameters Types Return Type Description
getImgHeader void String Returns the header file

information of the image file.
resize void void Resize the image file.
getPixel Integer,Integer String Return RGB string of the

specified pixel.

FormatConverter Class:

Attributes of The Class:

Attribute Name Attribute Type Description
nImages Integer Number of images in the slide show.
order Integer[] The specified order of images in the slide show.
time Integer[] The specified time durations of images in the slide

show.

Methods of the Class:

Method Name Parameters Types Return Type Description
readSpec Void Void Reads ‘bilgi.txt’ file and initializes

class attributes.

HexDataFile Class:

Attributes of The Class:

Attribute Name Attribute Type Description
data FILE The hex format file.

Methods of the Class:

Method Name Parameters Types Return Type Description
signBegin Void Boolean Puts a flag to the hex format file

to sign the beginning of a new
RGB stream.

 85

signEnd Void Boolean Puts a flag to the hex format file
to sign the end of a RGB
stream.

writeGenData Integer[], Integer[] Boolean Writes the general
specifications about slide show.

PixelData Class:

Attributes of the Class:

Attribute Name Attribute Type Description
r Integer Red value of a pixel.
g Integer Green value of a pixel.
b Integer Blue value of a pixel.
value String Evaluated RGB value of a pixel.

Methods of the Class:

Method Name Parameters Type Return Type Description
writeData String Boolean Writes value attribute in hex

format file.
setValues Integer,Integer Integer Initialize the attributes of the

class.

 86

3.2.4. Format Conversion Module Sequence Diagram

fc : FormatConverter if :Image

: PixelData

hdf : HexDataFile

getPixel(x,y)

<<create>>

setValues(pixel(x,y))

pixel(x,y)

getImgHeader()

image header data

<<destroy>> X

<<create>>

writeGenData(time[n_images],n_images,address[n_images*2])

loop n
[800]

writeData()

loop n
[600]

loop n
[nImages]

 resize()

signBegin();

signEnd()

readSpec()

 87

Sequence of Events for Format Conversion Module:

Main Sequence

1. The general specifications about slide show is read and written
to the hex format file.
2. For every image file in the slide show;
 a. New image beginning sign is written to the hex format
file.
 b. Image header is read.
 b. Image is resized.
 c. Every pixel of the image is written to hex format file after
 its examination.
 d. Image ending sign is written to the hex format file.

3.2.5. Sending Data to Board via Bluetooth Class Diagram

LocalDevice
bluetoothManager
discoveryAgent
bdAddrString

getLocalDevice
getDiscoveryAgent
getFriendlyName
getDeviceClass
setDiscoverable
getDiscoverable
getBluetoothAddress
getRecord
updateRecord

RemoteDevice
bdAddrString
bdAddrLong
pageScanRepMode
pageScanPeriodMode
pageScanMode
deviceClass
clockOffset
friendlyName
serviceRecords

getFriendlyName
getBluetoothAddress
getRemot eDevice
authent icate
authorize
encrypt
isAut henticat ed
isAut horized
isEncrypt ed

DiscoveryAgent

bluet oothStack
list eners
cachedRemoteDevices
foundRemoteDevices
remoteDevices
is Inquiring
transact ionID

DiscoveryA gent
retrieveDevices
s tartInquiry
cancelInquiry
searchServices
cancelServiceSearch
selectService
receive_HCI_Event_Inqu
iry_Result
receive_HCI_Event_Inqu
iry_Complet e
receive_HCI_Event_Rem
ote_Name_Reques t_Com
plete
getRemoteDevice

ServiceDiscovery

discoverService
initiateServiceDiscoveryTransaction

Device

1

*

*
0..1

1

0..1

 88

LocalDevice Class:

Attributes of The Class:

Attribute Name Attribute Type
bluetoothManager BluetoothStack
DiscoveryAgent DiscoveryAgent
bdAddrString String

Methods of the Class:

Method Name Parameters

Types
Return Type Description

 getLocalDevice void LocalDevice return an object that
represents the local Bluetooth
device

getDiscoveryAgent void DiscoveryAge
nt

Returns the discovery agent
for this device

getFriendlyName void String Retrieves the name of the
local device

getDeviceClass void DeviceClass Retrieves the DeviceClass
object that represents the
service classes, major device
class, and minor device class
of the local device.

setDiscoverable mode Boolean Sets the discoverable mode of
the device

getProperty Property String Retrieves Bluetooth system
properties.

getDiscoverable void int Retrieves the local device's
discoverable mode.

getBluetoothAddress void String Retrieves the Bluetooth
address of the local device.

 getRecord Connection ServiceRecord Gets the service record
corresponding to a btspp
btl2cap or btgoep notifier.

updateRecord ServiceRecord void Updates the service record in
the local SDDB that
corresponds to the
ServiceRecord parameter.

 89

DiscoveryAgent Class:

Attributes of The Class:

Attribute Name Attribute Type
BluetoothStack BluetoothStack
listeners Vector
cachedRemoteDe
vices

Vector

foundRemoteDev
ices

Vector

Methods of the Class:

Method Name Parameters

Types
Return Type Description

 retrieveDevices int RemoteDevice
[]

Returns an array of Bluetooth
devices that have either been
found by the local device
during previous inquiry
requests or been specified as a
pre-known device depending
on the argument.

startInquiry int,DiscoveryL
istener

boolean Places the device into inquiry
mode.

 cancelInquiry DiscoveryList
ener int

 boolean Removes the device from
inquiry mode.

 searchServices int, UUID
RemoteDevice
,DiscoveryList
ener

int Searches for services on a
remote Bluetooth device that
have all the UUIDs specified
in uuidSet

 cancelServiceSearch int Boolean Cancels the service search
transaction that has the
specified transaction ID.

 selectService UUID, int,
boolean

String Attempts to locate a service
that contains uuid in the
ServiceClassIDList of its
service record.

getDiscoverablerecei
ve_HCI_Event_Inqui
ry_Result

byte[] void Retrieves the local device's
discoverable mode. This
method is called from
BluetoothStack.receive_HCI_
Event_Inquiry_Result

receive_HCI_Event_I
nquiry_Complete

byte[] void Retrieves the Bluetooth
address of the local
device.This method is called
from
<code>BluetoothStack.receiv

 90

e_HCI_Event_Inquiry_Compl
ete

 getRemoteDevice long RemoteDevice Resolves a Bluetooth Address
to a RemoteDevice.

RemoteDevice Class:

Attributes of The Class:

Attribute Name Attribute Type
 bdAddrString String
bdAddrLong long
pageScanRepMod
e

byte

pageScanPeriodM
ode

byte

pageScanMode byte
deviceClass DeviceClass
clockOffset short
friendlyName String
serviceRecords HashTable

Methods of the Class:

Method Name Parameters

Types
Return Type Description

 getFriendlyName boolean String Returns the name of this
device.

 getBluetoothAddress void String Retrieves the Bluetooth
address of this device.

getRemoteDevice Connection RemoteDevice Retrieves the Bluetooth
device that is at the other end
of the Bluetooth Serial Port
Profile connection, L2CAP
connection, or OBEX over
RFCOMM connection
provided

authenticate void Boolean Determines if this
RemoteDevice should be
allowed to continue to access
the local service provided by
the Connections.

authorize Connection Boolean Sets the discoverable mode of
the device

 encrypt Connection,bo
olean

Boolean Attempts to turn encryption
on or off for an existing

 91

connection.
isAuthenticated void Boolean Determines if this

RemoteDevice has been
authenticated.

isAuthorized Connection Boolean Determines if this
RemoteDevice has been
authorized previously

isEncrypted void Boolean Determines if data exchanges
with this RemoteDevice are
currently being encrypted.

3.2.6. Sending Data to Board via Bluetooth Sequence Diagram

:Local Device :Remote Device Server Client

Discover Remote
Devices

Discover Remote Devices

remote device found

discover service add service record
to database

accept connection

send data

receive data

Sequence of Events for BluetoothModule:

Main Sequence

 1. Local Device tries to discover the remote devices around.
 2. The service is discovered.

• Remote Device accepts connection.
• The information transfer between the local and the remote

device occurs

 92

4. HARDWARE DESIGN

The following block diagram is a brief overview of the hardware of our system. We have an

SDRAM Controller, which communicates with the VGA Controller, which is responsible for the

image display, and the Bluetooh Controller, which is responsible for the operations involving

bluetooth. SDRAM Controller is like a bridge between the SDRAM and other applications. The

Counter calculates the address from which the next pixel information is going to be read for the

VGA Controller. Similarly, Bluetooth Address Operations part calculates the address from which

next data is going to be read and the address to which next data is going to be written in the

Bluetooth Controller. The SDRAM Controller is composed of a “host side” which is connected

to our VGA and Bluetooth applications and an “SDRAM side” which is connected to the

SDRAM. Since the SDRAM should be in communication with two applications, we will build a

dualport module in the SDRAM Controller host side. With this module, the host side will be

divided into two and each of the smaller parts will act just like the original host side port. For this

reason, some signals related to the SDRAM are duplicated (ex. read control signal, write control

signal, earlyOpBegun etc.) and each copy is attached to the one of the two applications. The

duplicated signals ending with a “0” are attached to the VGA Controller and those ending with a

“1” are attached to the Bluetooth Controller. The host side of the SDRAM, gets the address

information from

 93

Oscillator

read done
signal0

wr

read control
signal 0

clock
clock

full

pixel data image bitsream

time data time information

eof

rst
earlyOpBegun0 cke

clock

address0

vsync_n
hsync_n

blank

r

g

b

 M
O

N
ITO

R

SDRAM

SDRAM CONTROLLER VGA CONTROLLER

COUNTER

rst rst

address1

earlyOpBegun1

wrdata

rddata

read done
signal1

write done
signal1

read control
signal 1

write control
signal 1

Reset

dataReady

readyToSend

next

send
information
bitstream

coming data

BLUETOOTH ADDRESS
OPERATIONS

BLUETOOTH
CONTROLLER

In this block diagram, there are some signals, which are not specified in the data dictionary since

these signals take place in the level–3 data flow diagrams. Here is the explanation of these

signals:

• cke: This is a clock-enable signal of type std_logic. This signal arrives to the Counter

from the SDRAM Controller. When the next current read operation has started, a signal is

raised in the SDRAM Controller (earlyOpBegun), and this signal arrives to the Counter

so that the counter updates the address to the address of the next pixel, which is going to

be read.

• coming data: This is the data bus for the Bluetooth Controller that holds the data to be

written to the SDRAM. It has a width of 16 bits and it is of type unsigned. This bus will

carry the data coming through our board via bluetooth, namely “hex data” and

“information data” as specified in the level-2 data flow diagrams and the data dictionary.

This data will be passed to the SDRAM Controller so that it is written to the SDRAM.

• dataReady: This signal is of type std_logic and becomes true (YES) when a byte of data

becomes ready to be written to the SDRAM after the serial to parallel conversion

operations. This initiates a write request in the SDRAM controller for the bluetooth port.

 94

• earlyOpBegun: This signal is of type std_logic and becomes high just after the indication

of the start of a read or a write operation so that the application can update the address

value for the next read or write operation.

• next: This signal is of type std_logic and becomes YES when the current write operation

in the SDRAM Controller for the bluetooth port has been completed so that the Bluetooth

Controller can start processing the next byte of data to be written to the SDRAM.

• pixel Data: This is the data bus for the SDRAM Controller for the VGA port that holds

the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned. It

holds data related to pixel information.

• rdData: This is the data bus for the SDRAM Controller for the bluetooth port that holds

the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned.

• readyToSend: This signal is of type std_logic and becomes true (YES) when the

Bluetooth Controller is ready to read data from the SDRAM in order to send bluetooh

messages. This initiates a read request in the SDRAM controller for the bluetooth port.

• rst: This is a std_logic signal that resets the SDRAM Controller and causes the

initialization of the SDRAM when it becomes high. It also resets the internal circuitry for

generation the vertical and horizontal sync signals and the counter in the VGA

Controller.

• send: This signal is of type std_logic and becomes true when the current read operation in

the SDRAM Controller for the bluetooth port has been completed. Thus the Bluetooth

Controller can process this read data.

• time data: This is the data bus for the SDRAM Controller for the VGA port that holds

the data read from the SDRAM. It has a width of 16 bits and it is of type unsigned. It

holds data related to timing operations such as the number of slides and the time duration

of each slide.

• wr: This signal is of type std_logic and becomes true when the read operation of the pixel

data is complete so that the read data can be written to pixel buffer.

• wrdata: This is the data bus for the SDRAM Controller for the bluetooth port that holds

the data to be written to the SDRAM. It has a width of 16 bits and it is of type unsigned.

 95

The VGA Controller is responsible for first reading the information related to the order of the

slide show. This information is written in the first 16 memory words of the SDRAM. When a

read operation is in progress if the address corresponds to this first portion of the SDRAM, the

data is stored in “time information”. (Contents of the bus “time data” are passed to the bus “time

information”.) While this data is being read, the Counter increases the address field by 1 after an

“earlyOpBegun” signal is raised. This signal indicates that a read operation has begun and the

Counter can update the address for the next read operation. After this information is read, the

controller starts reading the pixel information from the rest of the SDRAM and this data is stored

in the “image bitsream” and put into the pixel buffer as long as the buffer is not full. (Contents of

the bus “pixel data” are passed to the bus “image bitstream”.) When the pixel buffer if full, “full”

signal becomes high, and the next read operation is requested when this signal becomes low

again. (The pixel buffer is 256*16 which means that it can hold 256 pixels. The data arrives to

the buffer with “in” data bus and when a pixel should be passed to pixel register, it is passed with

the “out” data bus. Data is passed to the pixel register, as long as no blanking is necessary. In this

case “rd” signal becomes high. When the “eof” signal becomes high, the buffer contents are

refreshed.) During this operation, the counter increments the address field by 1 unless end of a

frame is reached. When the “eof” signal becomes high, indicating that the end of a frame is

reached, the Counter checks whether the time duration for the current image has passed or not.

(This comparison is done easily, since the time duration for each slide has already been read, and

the period of a frame is shown.) If the time duration has passed, the address is updated with the

beginning address of the next image. If not, the address is updated with the beginning address of

the current image. When a pixel data is extracted from the buffer to the pixel register, the color

components are extracted in the Color Generation part of the controller and the pixel is

displayed. Meanwhile, Vertical and Horizontal Sync Generators generate appropriate signals for

indicating the end of a scan line and a frame. The current pixel is displayed as long as the pixel

should not be blanked. The following block diagram is a detailed overview of the VGA

Controller:

 96

VERTICAL
SYNC

GENERATOR

HORIZONTAL
SYNC

GENERATOR

PIXEL BUFFER
CONTROLLER

gate

rsteof

vysnc_nvsync_n
blank

rd

blank

cnt

hsync_nhsync_n
gate

cke

clock

clock

clock

cke

blank

out

pixel register Color
Generation

r

b

g

clock

wr

wr
in

 image
bitstream

1

full

full

reset

rst

rst

Here is the explanation of the signals that are not covered in the data dictionary:

• in: This is the data bus connected to the pixel buffer that holds the image bitsream

arriving to the VGA Controller. It is of type unsigned and has a width of 16 bits.

• out: This is the data bus connected to the pixel register that holds the data extracted from

the pixel buffer. It is of type unsigned and has a width of 16 bits.

As already explained, SDRAM Controller implements the dualport feature so that both the VGA

Controller and the Bluetooth Controller can access the SDRAM simultaneously. The SDRAM

 97

Controller has two ports for the host side, one for each application. Thus, again some signals are

duplicated. There’s also the SDRAM side that is attached to the SDRAM itself. SDRAM

controller enables the communication between the host applications and the SDRAM itself, by

passing information from the host side to the SDRAM side. The data provided by the host

applications are passed to the data bus of the SDRAM side. The address provided by the host

applications is used to determine the row and column address of the memory word specified and

this information is passed to the SDRAM side by “sAddr” bus. When a read or write operation

begins, the controller raises the “opBegun” signal. This signal causes the "earlyOpBegun" signal

to become high with the following rising edge of the clock. The “earlyOpBegun” signal arrives

to both Counter and Bluetooth Address Operations, and the address is updated for the next

memory operation. When the current read operation is completed, the “read done” signal

becomes high. Likewise, when the current write operation is completed, “write done” signal is

raised. When the current operation is a read operation, the data read is put on the “sData” bus by

the SDRAM and the controller passes this data to the “data out” bus. Then for the VGA

Controller, the “data out” bus is copied either to “pixel data” or “time data” bus according to the

address. (Explained above.) For the Bluetooth Controller, “data out” bus is copied to the “rddata”

bus. For a write operation, Bluetooth Controller puts the data to be written to the “wrdata” bus.

This bus is passed to the SDRAM side of the SDRAM controller and then copied to “sData” bus

of the SDRAM. Here’s the more detailed block diagram for the SDRAM Controller:

VGA
CONTROLLER

BLUETOOTH
CONTROLLER

read control
 signal 0

read control
 signal 1

earlyOpBegun1

opBegun0

opBegun1

rdPending0
done0
read done0
pixel data
time data
address0
status0

rdPending1
done1
read done1
rddata

wrdata

address1
status1
write control
 signal

reset rst

earlyOpBegun
opBegun

rdPending

done

read done

address

wrdata

data out

status

clk

rst
read control
 signal

write control
 signal

earlyOpBegun
opBegun

rdPending

done

address

wrdata

read done

data out

rst

read control
 signal

write control
 signal

status

sAddress

sData

clk1x

lock

sclkfb

sclk

cke

cs_n

ras_n

cas_n

we_n

ba

dqmh

dqml

DA

DQ

DCLK

DCKE

DCS

DRAS

DCAS

DWE

DBA

DQMH

DQML

Oscillatorclock

DUALPORT SDRAM CONTROLLER

SDRAMwrite done
write done

COUNTER earlyOpBegun0

BLUETOOTH
ADDRESS OPERATIONS

 98

The definitions for the new signals in this block diagram are as follows:

• ba: This two-bits wide unsigned signal chooses one of the four memory banks in the

SDRAM.

• cas_n: This std_logic signal is the column address strobe and when a data is needed

from the SDRAM, this signal is activated to specify the column where the data is.

• clk: This signal, which if of type std_logic, is the master clock input coming from the

oscillator.

• clk1x: This std_logic signal is derived from the master clock input and it clocks the

host side of the circuit.

• cs_n: This std_logic signal derives the chip select input of the SDRAM.

• data out: This data bus holds the data read from the SDRAM. This data must be

processed by the host side logic on the rising clock edge after the done (or read done)

signal becomes high.

• done: This std_logic signal becomes true when the current read or write operation is

completed. This signal remains high for a single clock cycle.

• dqmh: This std_logic signal becomes high when the upper byte of the SDRAM data

bus is enabled.

• dqml: This std_logic signal becomes high when the lower byte of the SDRAM data

bus is enabled.

• lock: This std_logic signal becomes YES when the clk1x signal is synchronized with

the master clock so that the host side circuit operations can be clocked.

• opBegun: (revisited) This std_logic signal becomes high to indicate the initiation of a

read or write operation. In fact, the previously defined “earlyOpBegun” signal

becomes high immediately after this signal is activated.

• ras_n: This std_logic signal is the row address strobe and when a data is needed from

the SDRAM, this signal is activated to specify the row where the data is.

• rdPending: This is a std_logic signal and becomes true if there are any read operations

in the pipeline that have not delivered their data yet.

• sAddress: This 12-bit wide bus contains the row and column address fields of the

SDRAM memory location. This information is extracted from the address coming

from the host side.

• sclk: This std_logic signal is obtained from the master clock and derives the clock

input for the external SDRAM.

 99

• sclkfb: This std_logic signal is a copy of the sclk signal with delays concerning the

passage of this data from the FPGA to the SDRAM and back to the FPGA. This

allows the synchronization between the FPGA and the SDRAM operations.

• sData: This is a 16 bit wide data bus. The data to be written exits from the FPGA and

the data read exits from the SDRAM through this bus.

• status: This std_logic_vector bus, which is four bits wide, holds the current status of

the SDRAM.

• we_n: This std_logic signal derives the write-enable input of the SDRAM and

becomes high when write operations will occur.

The Bluetooth Controller is responsible for the communication between the XSA board and the

BlueRadios Evaluation board. When a user wants to send the slide show contents, the hex file

and the txt file are sent to the BlueRadios Evaluation Board as already explained in the

description of the modules. Once this data arrives to bluetooth board, it needs to be transferred to

the XSA board. Because, data arrives to the bluetooth board serially and there’s no serial port on

the XSA board, we will make a serial to parallel conversion. For this purpose we design a

16F877 PIC, as described earlier. The bluetooth board will be connected to the serial port of the

pic and as data arrives to the pic, USART interrupt will be raised. When the interrupt is raised,

we will read the coming bit and store in a register. We will append the next coming seven bits to

the same register and obtain a data of 8 bits. Then we will put this data to the parallel port of the

pic, from where it will come to the parallel port of the XSA board.

The following block diagram shows the connection between the pic and the bluetooth board:

 100

In this diagram there are some signals that need to be explained:

• RB7…RB0: These are the parallel port pins of the pic which will be connected to the

parallel port of the XSA board. When 8 bit serial data is received, this data will be put to

these pins so that they are transferred to the XSA board. Similarly, when data arrive from

the XSA board to pic, it will arrive on these pins.

• Rx: This is the serial data receiver pin. Data coming from the bluetooth board will be

received through this pin.

• Tx: This is serial data transmitter pin. While sending data from the pic to the bluetooth

board, data will be put to this pin.

While sending bluetooth data to the XSA board, we will receive bluetooth data bit by bit through

the serial port of the pic. When we have received 8 bits of data, we will put this data to the

parallel port of the pic. Then this data will arrive to the parallel port of the XSA board. Once data

comes to the parallel port of the XSA board, it will pass through the CPLD and arrive to the

FPGA as already described in the description of the modules. While retrieving the hex data, first

address data will arrive, then the data that is going to be written to that address. (The reason is

that, the hex file we create in the format conversion module has an address followed by data that

needs to be written to that address.) In our VHDL code, the address data bus is composed of 24

PIC 16F877

MCLR

CLKOUT

CLKIN

RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

Tx

Rx

VSS

10 KOhm

5 V

Parallel
Output

4 MHz
MAX 232

Serial
Input

33 pF

CRYSTAL

 BlueRadios
Evaluation Board

 101

bits. Thus, after receiving 8 bits of data from the parallel port, we will receive the next two 8-bit

data and combine them to make a 24-bit data. This data will be put to the “address” bus by the

Bluetooth Address Operations. Then, the next two coming 8-bit of data will be combined to

obtain a 16-bit data. This data will be presented to the “coming data” bus. With the given address

and the data, the write operation can be carried out in the SDRAM Controller. This process will

be repeated until all the hex file is retrieved. (Since we know the number of images sent and the

number of bytes of each image, we will be able to recognize when all the hex file has been

retrieved.) After that we will start retrieving the contents of the txt file. The address range for the

hex data is predetermined by us and we will start writing the txt file contents at the end of this

address range. We will again combine the coming two 8-bit data to produce a 16-bit data and put

this into the “coming data” data bus. When the “earlyOpBegun” signal comes to the Bluetooth

Address Operations, the current address will be incremented and the address for the next write

operation will be defined. This way we will know to which address we will write the coming

data. Thus, at the end we will be able to store the data sent by the user to the SDRAM.

While VGA operations are in progress, we will send bluetooth messages to the nearby devices.

For this process, we will need to send the txt file content stored in the SDRAM to the bluetooth

board. For this purpose, we will need to first send data from the FPGA to the parallel port of the

SDRAM. The address from which data is read is obtained from the Bluetooth Address

Operations. Since we know the beginning address of the txt data, we will incerement the address

when the earlyOpBegun signal goes high. FPGA uses the S5, S4, S3 status lines of the parallel

port to send data to the parallel port. The FGPA, drives the A2, A1, A0 address lines of the Flash

and this in turn drives the S5, S4, S3 address lines of the parallel port. Then the data on these

lines will be put to the D7, D6, and D5 data lines of the parallel port. Then this data will arrive to

the pins RB7, RB6, RB5 of the pic. We will understand that data has come by the port change

interrupt. This interrupt is generated when a change occurs in one of the RB7-RB4 pins. In order

to guarantee that every data we send causes an interrupt, while mapping the S5-S3 pins to the

D7-D5 pins, we will put a 0 and 1 to the D4 pin interchangeably. This way, the value of the RB4

pin will change with each coming data and an interrupt will be raised. We will send 3 bits

followed by 3 bits followed by 2 bits of data from the FPGA. Similary, we will receive 3 bits

followed by 3 bits followed by 2 bits of data in the pic. This data will be combined to produce 8-

bit data. Then, the pic will send this data to bluetooth board, through the serial port bit by bit.

Thus we will be able to send the bluetooth message data to the bluetooth board. The following

block diagram describes the hardware used in this step:

 102

Serial to Parallel
Parallel to Serial Converter

RB7
RB6

RB0

...

D7
D6

D0

S5

RB5

S4
S3

FLASH

CPLD

D
7-

D
0

D
7-

D
0

A
15

-A
8

A15-A8

A2-A0

A0
A1
A2

S5S4S3

A15-A8

coming data
information
bitstream

send
next

dataReady

readyToSend

ea
rl

yO
pB

eg
un

ad
dr

es
s

Here, “Serial to Parallel, Parallel to Serial Converter” refers to the pic whose block diagram was

included above.

There are some signals that need to be explained in this diagram:

• D7-D0: These are the data pins of the parallel port of the XSA port. They are used to

send and receive data.

• S5,S4,S3: These are the status lines that carry the data sent from the FPGA to the parallel

port in the XSA board.

• A15-A8: When the parallel port sends data to the FPGA, these address lines are derived

with the data on D7-D0 and carried to the FPGA.

• A2,A1,A0: When FPGA want to send data to the parallel port, these address lines are

derived which drive the S5,S4,S3 lines of the parallel port and carry information.

 103

5. SYNTAX SPECIFICATIONS

According to conversations between our group members, we decided not to limit our members

with strict syntax specifications. We only declared some basic rules for the understandability of

our code and easy analyzing.

The most important point of our specifications is using comments efficiently. For every new item

in the code (except local variables), we decided to force members to include comments about the

process in a detailed way. Moreover we expect the members to include a text file that tells the

capabilities and constraints of their code, for every new created package.

Near this, because we will use only two programming languages in our project, which are Java

and VHDL, we decided to use the syntax conventions of these languages for a more considerable

code-design.

For Java, the names of the classes will be mixed-case, starting with a capital letter. If the name is

composed of a phrase, each word in the phrase will start with a capital letter. (ex. ClassName)

The constant names will be all upper case. Words in phrases will be separated by underscores.

(ex: CONSTANT_NAME) Finally function and variable names will start with a lower-case word

and if the name contains other names, then those words will start with a capital letter. (ex:

functionName)

For VHDL, the names of the generic variables will be all in upper case, words in a phrase being

separated by underscores. (ex: LINES_PER_FRAME) The variable names assigned to the ports

will be lower case and words will be again separated by underscores. (ex: pixel_data_in)

Constant names will be similar to generic variable names. They will be upper case and the words

will be separated by underscores. (ex: HSYNC_START) Component, architecture, and entity

names will be lower case where words are distinguished again by underscores. (ex: component,

component_arc, sync) Procedure names will be defined similarly. (ex: map_pixel)

 104

6. DEVELOPMENT SCHEDULE AND GANNT
CHART

Besides completing the required reports before the deadlines, we also planned our other work.

We have completed the design part of our project with this Final Design Report.

Besides the design process, we have started working on the implementation part of our project.

We started working on the prototype development by the end of November. First we analyzed

the design examples about the VGA port and started working on our own design. We

successfully made a transition between different images in a slide show manner. Then we

worked on reading data from the SDRAM according to the address ranges. We assigned the data

read from the first 16 memory words to one data bus and the rest of data to another data bus.

This is what we should do in order to distinguish the configuration data about the slide show

from the image data itself. We have little work to do about the usage of the VGA port and we

plan to finish this part by the end of February as indicated in the Gantt chart.

In addition, we started implementing the user interface. We have finished the parts we have

explained in the “File Uploader Module”. We are planning to complete the remaining parts by

the end of January. Meanwhile, we started working on the “Format Conversion” module. Now,

we are able to extract pixel information from image files. What is left is writing this information

in a .hex file and embedding this code in the user interface design. We will accomplish this task

before the prototype demonstrations.

For the prototype demonstrations, we are responsible for sending bluetooth messages when the

BlueRadios Evaluation Board is attached to our computer. We have to accomplish this task by

AT Commands. We are currently working on this part of our project.

We are planning to work on the design of the 16F877 pic during the vacation and we hope to

finish this task by the end of March as shown in the Gantt chart. Meanwhile, some of the group

members will work on programming the CPLD so that it acts as a bridge between the FPGA and

the parallel port. Once we design this pic, we will start working on programming this pic and

establishing a connection with this pic and the XSA board.

 105

Besides these tasks, we have to send slide show contents to our BlueRadios Evaluation board.

We have started working on this part of our project. We found the Java Bluetooth Stack

(BlueCove) we will make use of. So far, we were able to discover the nearby bluetooth devices

and search for their services. What is left is establishing a connection with the BlueRadios

Evaluation Board and sending data by the serial port service. We are planning to focus on this

part after we progress in our pic design.

According to our process so far, we believe that sending data to our XSA board from the

bluetooth evaluation board and vice versa is one of the most challenging parts of our project. In

the beginning of the second term, we will focus on this part. Meanwhile, we will try to make

progress in the other parts.

In the second term, one other task we will work on is the web page design. We are planning to

work on this part at the end of March as indicated in the Gantt chart.

We are planning to finish the implementation of our project by the beginning of April. From then

on we will focus on testing.

 106

 107

REFERENCES

[1] XSA-3S1000 Board User Manual
 http://www.xess.com/manuals/xsa-3S-manual-v1_0.pdf
[2] VGA Generator for the XSA Boards
 http://www.xess.com/appnotes/an-101204-vgagen.pdf
[3] Spartan-3 Capabilities
 http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_fpgas
[4] Xilinx : Logic Design
 http://www.xilinx.com/ise/logic_design_prod/index.htm
[5] XSA Board SDRAM Controller

 http://www.xess.com/appnotes/an-071205-xsasdramcntl.html
[6] VGA Generator Test Application with an Embedded Parallel Port Interface
 http://www.xess.com/appnotes/an-103005-vgagen.html
[7] Bluetooth Radios, A Wireless World
 http://www.blueradios.com/evaluationkit.htm
[8] Getting Started with Java and Bluetooth

 http://today.java.net/pub/a/today/2004/07/27/bluetooth.html

[9] The Java APIs for Bluetooth Wireless Technology

 http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth2/

[10] Sundar Rajan, “Essential VHDL : RTL Synthesis Done Right”, USA:Sundar Rajan,
 1998.

[11] Downloading XESS FPGA and CPLD Software Tools : img2xes.zip
 http://www.xess.com/ho07000.html

