
CONFIGURATION MANAGEMENT PLAN

Anıl Yiğit Filiz 1395045

Berkehan Altınkaya 1394642

Derya Akpınar 1394600

Güneş Efe 1394980

CONTENTS

1. INTRODUCTION 3

i. Purpose 3

ii. Scope 3

iii. Definitions and Abbreviations 3

2. SOFTWARE CONFIGURATION MANAGEMENT 3

i. Organization 3

ii. SCM Responsibilities 4

iii. Tools and Infrastructure 4

3. CONFIGURATION MANAGEMENT TASKS 5

i. Configuration Identification 5

ii. Configuration Items 6

iii. Management and Control 7

iv. Accounting 7

v. Auditing 7

4. PROJECT SCHEDULES AND CM MILESTONES 8

5. PROJECT RESOURCES FOR THE CM 8

6. PLAN OPTIMIZATION 8

7. APPENDIX 9

1. INTRODUCTION

i. Purpose

This software configuration management plan is written for the participants of the Twilight Project

to establish and maintain the integrity of the project throughout the development process. This SCM

plan is intended to provide guidelines when managing and controlling the changes in the configuration

of the Twilight project.

ii. Scope

The scope of this plan extends to source code management, documentation, development tools,

executables and the operating system and the hardware to be used during the project development

process. It identifies the planning of the implementation process and describes the responsibilities and

duties of the project members.

iii. Definitions and Abbreviations

CCB: Configuration Control Board

CM: Configuration Management

CVS: Version Control System

SCM: Software Configuration Management

2. SOFTWARE CONFIGURATION MANAGEMENT

i. Organization

The organizational units that participate in the SCM activities of the Twilight Project are:

• Configuration Control Board (CCB)

 All of the participants of the project are active members of the CCB. They will be responsible in

approving or rejecting an SCR and update the CM schedule accordingly.

• Testing Team

 The testing team is responsible for originating SCRs throughout the testing process. They will also

ensure the implementation of the SCRs. Güneş Efe is responsible for planning test cases and applying

them.

• Developer Team

 Developer team is responsible for the development of the Twilight project and they implement all the

change requests that come from the testing team. Members of the developer team are Berkehan

Altınkaya, Anıl Yiğit Filiz and Güneş Efe.

ii. SCM Responsibilities

Responsibilities of the CCB members are :

Commenting the developed functions and files properly : Each individual member is also a part of the

developer team. In order to co-operate throughout the development cycle each member is required to

write comments and to-do lists for every function and file they develop.

Uploading the finished files to the CVS system : CCB member Berkehan Altınkaya is responsible for

uploading the developed files to the CVS system at every prototype step. The names of the developers

of the files will be appended to the files they create.

Coordinating the development team for properly implementing the SCRs : The member Anıl Yiğit

Filiz is responsible for coordinating the development team for properly implementing the SCRs.

Coordinating the development process according to schedule : Every member is responsible for

keeping up with the schedule. Prototype days(in every two weeks) will be the milestones for the tasks of

each member.

iii. Tools & Infrastructure

Throughout the development project of Twilight the tools to be used can be listed as follows.

• DevC++

DevC++ is an open source IDE for C and C++. It has versions for windows platform and specific

packeges for different APIs are present on the web. It supports projects and also it h

as CVS support. But we will make use of another CVS tool TortoiseCVS since it is easier to use.

• Tortoise CVS

CVS stands for concurrent versioning system. Tortoise CVS is a user friendly tool for CVS. Since

the project will be in windows platform Tortoise CVS is very handy to monitor the different versions of

the project.

• WinMerge

WinMerge is an editor for window that supports diff functions. It can be integrated into

TortoiseCVS and just after checking out the CVS repository the differences of files can be seen from this

program. It is up to the user to select which blocks to use in the files.

3. CONFIGURATION MANAGEMENT TASKS

i. Configuration Identification

Twilight implementation consists of modules and supporting functions. The module names are

starting with uppercase letters. If the name of a module or function has more than two names, it is

written in an appended form and all the words starts with uppercase letters. Each module is in a

separate directory according to its usage. Each module has two files, one for the header and one “cpp”

file for the actual code. The directory structure is as follows:

Data: This directory is also included with the executable. It contains texture bitmaps, models,

sounds and the options file.

Encode-Decode: This directory contains the encode and decode modules.

GameData: This directory contains game data modules for server and client.

Graphics: This directory includes the graphical modules and their auxiliary functions and classes.

Input: This directory includes the input module.

Library: This directory contains the support functions to be used by all of the modules.

Models: This directory contains the classes to be used for importing model files(OBJ).

Network: This directory contains network modules for server and client.

Objects: This directory contains the object classes that are used in the game.

Physics: This directory contains the physics modules and their supporting functions.

Sound: This directory includes the sound module.

World: This directory contains the world class that is used to initialize the map in server.

ii. Configuration Items

Directory Filename Description

Encode-Decode EncodeModule Module used for encoding network
packets.

DecodeModule Module used for decoding network
packets.

GameData ClientGameData Storage for client objects.

ServerGameData Storage for server objects.

UserData Storage for user inputs.

Graphics GraphicsModule Rendering class for the client.

Particles Wrapper class for particles.

Particle Instant of a particle.

Stars Creation and displaying of stars.

Input InputModule Input handling.

Library Vertex Simple vertex class.

Options Storage for options of the game.

BmpLoader Bmp loader class.

Texture Texture loader class.

LinearRandom Random number generation.

Models Model OBJ file loader wrapper.

Group Support class for Model.

Face Support class for Group.

Material Support class for Model.

Network NetworkServer Packet transfer handler for server.

NetworkClient Packet transfer handler for client.

NetworkAux Support functions for network classes.

Objects Object Wrapper class for objects.

Displayable Objects in the client side.

Spaceship Spaceship object class.

Laser Laser object class.

Rocket Rocket object class.

Mine Mine object class.

Headquarter HQ object class.

NPC NPC object class.

StillObject Still object class.

Physics PhysicsModule ODE wrapper for physics interaction
handling.

Physics Physics instance of every object.

Sound SoundModule Class handling the sounds.

World World Class for initializing the universe.

MissionModule Mission initializer, handler class.

iii. Management And Control

Change Requests: Change requests are taken on the daily meetings. Each member has the latest

working copy of the project and changes are requested informally. Whenever a change is made by a

member, the latest working copy of the source code is backed up and named as “Twilight vX.X.”. The

changes made by the member are then merged together with all the members. If the changes are

successful, another working copy is formed.

Build: Whenever a change that causes an advance in the schedule is made a backup of the project

with the “Data” folder is taken. These backups are named as “Twilight Working With Data vX.X”. These

builds are presented in every two weeks to the customer(Oral Dalay).

iv. Accounting

As the project advances, it gets harder to keep track of the version details. To overcome this

problem a change log will be included in every backup copy of the project. Naming convention will be

as “ChangeLog.txt”. The new changes will be entered as the version number on the top and every

change listed as a separate line.

v. Auditing

Auditing of the project will be done after a new source code version is created. Each member will

test the new version and if an error occurs each member will have equal share of voting to go back to the

previous version or to request for a change to correct the error.

4. PROJECT SCHEDULES – CM MILESTONES

Since the project is improving this version of the CM will be outdated after the first release. There

will be another version with the first release including these changes. Then after the final release the

overall CM plan will be explained.

Date Milestone Description

12.03.2007 CM Delivery Delivery of this document.

01.04.2007 CM Update An update of changes in the CM
with the first release of the

project.

01.06.2007 CM Final Final CM of the project's finished
state.

5. PROJECT RESOURCES

The following items will be used for CM activities:

− TortoiseCVS

− WinMerge

− DevC++

6. PLAN OPTIMIZATION

The optimization of the plan will be made during the updates in the SCM plan. These updates are

scheduled to the first release and the final release of the project. According to the difficulties faced

throughout the project the CM plan will be optimized and changed. These changes will be made by the

whole team in order to prevent miscommunication.

7. APPENDIX

Living Schedule

