Dty Poed

FINAL REPORT

1395045 — Arl Yigit Filiz
1394642 — Berkehan Altinkaya
1394600 — Derya Akpinar
1394980 — Glines Efe

18™ January 2007

TABLE OF CONTENTS
1. Introduction
2. Goals & Objectives

3. System Architecture
i. DFD Level 0
ii. DFD Level 1 for Server Game Engine
iii. Server Game Engine
(a) AI Module
(b) Network Module
(c) Message Module
(d) Database Module
(e) Mission Module
(f) Visible Area Module
iv. DFD Level 1 for Client Game Engine
v. Client Game Engine
(a) Network Module
(b) Graphics Module
(c) Sound Module
(d) Physics Module

4. Flow of the Main Loops
i. Flow of the Client Game Loop
ii. Flow of the Server Loop

5. Database Design

6. Graphical User Interfaces
i. Description of User Interfaces
ii. Use-Case Diagram
iii. State Transition Diagram

7. Classes
i. Class Diagram
ii. Class Definitions

8. Testing Issues
i. Test Design
ii. Test Cases

9. Appendix
i. Model Spaceships
ii. Gantt Chart

1. Introduction
Massively multiplayer online games is the new trend in gaming. With the aim of creating
an exciting and consistent universe, our team is planning to design a space simulation game
that has a science-fiction scenario. Like every traditional MMOG our game will have registered
users and there will be experience based level-ups while playing the game. The storyline of

Twilight is as follows:

“In the year 2525 the prophecy of the Goths (a religious human minority living close to the planet
Pharma) came true and the galaxy Quasar appeared in the middle of the universe. The new active galaxy
Quasar is the home of the biological beings named Eaons. Goths proclaimed that the appearance of the
Eaons was the last sign of the apocalypse of the universe. Goths built an army to wipe out Eaons once
and for all. But there was one thing that was not foreseen. In the far planets of Quasar there was another
race named Cyrians which depended upon X-Particles that only Eaons could produce. The universe was
being led to chaos. Darkness to brightness or brightness to darkness. Choose between Humans, Goths and

Cyrians while the apocalypse arrives.”

There will be three races in Twilight namely Humans, Goths and Cyrians.

Goth race is a rebellion of Humans whom are full of anger and has no mercy against the
other livings around them. This anger, in time led them to discover their own religion and life-
style. Their priests have their own perspectives about the apocalypse day (which in fact
inherited from human religions) and this foreseen perspective came true with the appearance of
the galaxy Quasar. So the Goths are enemies of both Humans and Eaons. This will then lead to a
diplomacy change with Cyrians who depends on the Eaons. Goth ships will have more attack

power than other races.

Humans are neutral against Cyrians. But they are enemies of Goths. But when attacked by
a Cyrian the diplomacy will change. Humans ships are balanced. They have normal attack and

defense powers.

Cyrians are the protectors of Eaons. Since they depend on the X-Particles produced by
Eaons, when Humans or Goths attack any Eaon, the temporary diplomacy will change. Since
Eaons supply the necessary X-Particles to Eaons it is a matter of death to protect Eaons for

Cyrians. Cyrian ships will have more defensive power than other races.

2. Goals and Objectives

During the design phase of we had a lot of discussion about the various aspects of the
game. Our primary objective is to create something which is small in size and great in
efficiency. Our primary objectives are as follows:

v By the end of this term we should be finished with the network modules of our game.
The packet size and the thread management issues inside the send and receive methods
are very important issues since this game is an online multiplayer game. So we spent and
will spend fair amount of time for the networking. We decided to use WinSock API for
packet transfers via TCP/IP.

v Another must of a game is using effective sound effects. Since we'll implement this game
using c++ we should find a suitable API for playing and manipulating sound files. There
were some candidates for the API choice (OpenAL, SDL, DirectSound) but we agreed on
using DirectSound which is the sound API of DirectX SDK. So learning about this API is
another thing to do.

v The user information will be held in a database in the server. So in a little part of our
game we will be concerned with connecting to this database and retrieving and storing
information on this database. So a suitable API for connecting to this database will be
needed. We will use MySQL on our server. A suitable API to connect to this database is
MySQL++ and we should also learn about that API.

v There will be lots of 3D objects in the game. Loading this 3D objects and placing textures
to their surfaces is another thing to do. We'll use Object3DS for that purpose and we
should also learn about that API. Since we also got a parallel graphics project including
the usage of this API we'll be learning about Object3DS soon. We've started modeling

some of our spaceships. These can be seen in the appendix.

3. Architectural & Component Level Design

i. DFD Level 0

Next Instance Info

Display Data

er i
'/QLI }F\ Server Client / \
; Eatia Game
Database l_ .
Engine Engine _
\R A (1) 2
esult ;
User Input
Client Packet
ii. (1) DFD Level 1 for Server Game Engine
Encoded Message
Client Packet / \ User State
s (On Exit) ah /(:J_uen:
* Network : Message : - Database
Module Module - Module DEBEMS
L O e \ ®) =z
‘\ / "L %5‘94‘0;? Result
MNext Instance Info)
lient D A \
Client Data E .
o Mission
c Module
) - ()
NPC Data = " Visible Area
Auto Trigger . Update . Module
7 - {4)
Al B =
Module Game Data M‘-.-’isible ArcaData e
(6)
US@ Client

nmﬁf D — [nitializer
a
3 r, :'

iii. Server Game Engine

Server game engine consists of a main game loop which runs a couple of modules in an
order to supply the sequentiality of the game. This main game loop accepts the packets from the
clients. Regarding to the messages received from these clients it triggers other modules to do

their stuff. The modules and their features are listed below.

(@) (1) Network Module

Network module is responsible for the message traffic. It will be a multi-threaded
network program which listens to a specified port on the server. When a user makes a
connection request to the port listened by the server, network module creates another thread
which in turn opens another socket for that client to fulfill its own send and receive operations.
A socket cannot send and receive at the same time. But this is not a problem in our case since
we are planning to send the next instance info if and only if a packet received by a client. So at
first the received packet will be processed, and then the information for the next time instance
will be calculated and sent to the clients. The state of the socket assigned to the user will change
between send and listen modes. And this change will be exactly the inverse of the client. Which
means if the server thread is in send mode, the user assigned to that thread will be in listen

mode. Packet descriptions are as follows:

Client Packets
Packet Header Packet Content Packet Description
When the packet is invalid the connection between the server and
Invalid - client is broken and the server assumes that the user has sent a quit
message.

int username_len + string username + int

Register_User password_len + string password + char
race

The packet contains the user's desired username and password and the
race he/she selected.

int username_len + string username + int The packet contains the user's claim of his/her username and
password_len + string password password.

Login User

The packet is sent when the user informs the server that he/she has
Quit User - quit. It contains no information since the user's id exists in the ip to id
table stored in the server.

The packet contains the id of the ship that the user entered the hangar

Enter Hangar int ship_id with.

Exit Hangar

int ship_id

The packet contains the id of the ship that the user has selected to
leave the hangar with.

Mission _Accept

int mission_id

The packet contains the id of the mission that the user accepted in the
mission select screen.

Buy Item

int ship_id + char object_type

The packet contains the id of the ship that the user has bought an item
on and the type of the item. If the user has bought a ship the ship id is
0 and the object type is the type of the ship.

Sell _Item

int ship_id + char object_type

The packet contains the id of the ship that the user has sold an item on
and the type of the item. If the user has bought a ship the ship id is 0
and the object type is the type of the ship.

Game Data

arbitrary number of objects

The packet contains all of the user's game data parsed as different
objects and concatenated one after another. These objects can be in

any order and are of previously defined sizes.

Server Packets

Packet Header

Packet Content

Packet Description

Invalid

When the packet is invalid the connection between the server
and client is broken and the server assumes that the user has sent
a quit message.

Invalid Login

The packet is sent to inform the user that the received username
and password do not match the username and password in the
database.

Invalid Username

The packet is sent to inform the user that the desired username is
not available.

Hangar Data

the object data types of the three ships

that the user has in the database + the

amounts and prices of all of the items
offered in the hangar + possible sell

prices of all of the items offered in hangar
+ the object data types of arbitrary
number of available missions in the
hangar

The packet contains all of the information that is needed to
display the hangar screen. The buy and sell prices of all items
and the properties of the user's ships are sent as objects
concatenated one after another.

The packet contains all of the user related game data parsed as

Game_Data arbitrary number of objects different objects and concatenated one after another. These
objects can be in any order and are of previously defined sizes.
Object Packets
Object Header Object Content Object Description
B long unsigned int timestamp + int owner_id + int effected id t—g}&i}f iﬁits(éﬁf:f;i};:i’ol;:)e rvzlt)’ gi%?e egg}gi’t
=Y + char effect_type + float effect amount >)
- - to another.

Spaceship long unsigned int timestamp + int owner id + int ship_id + The spaceship of a user. Also contains the

char ship_type + int owner_experience + float x + float y +
float z + float Rx + float Ry + float Rz + float health + float
shield + int body level + char body_state + char body frame
+ int laser level + char laser state + char laser frame + int
rocket level + char rocket state + char rocket frame + int
turret_level + char turret_state + char turret frame + int
mine_level + char mine_state + char mine frame + int
magnet level + char magnet state + char magnet frame + int

user's current game info since a user can have
only one ship while the game is running.

stealth level + char stealth_state + char stealth _frame + char
selected_weapon + int rocket_amount + float rocket health +
int mine_amount + float mine_health + float laser health +
float turret_health + int magnet _amount + float
magnet health + int stealth amount + float stealth health

long unsigned int timestamp + int owner_id + int rocket _id +
Rocket int rocket life + char rocket level + char rocket state + char
rocket_frame + float x + float y + float z + float Rx + float
Ry + float Rz

The rocket of a user flying in space.

long unsigned int timestamp + int owner_id + int laser id +
int laser_life + char laser_state + char laser level + char
laser frame + float x + float y + float z + float Rx + float Ry
+ float Rz

Laser The laser of a user flying in space.

long unsigned int timestamp + int owner_id + int mine id +
Mi int mine_life + char mine_state + char mine level + char
e mine_frame + float x + float y + float z + float Rx + float Ry
+ float Rz

The mine of a user flying in space.

Mission

long unsigned int timestamp + int owner_id + int mission_id

- = Current mission data of the user.
+ char mission_type + char mission_state

Chat long unsigned int timestamp + int chat_len + string chat Recently sent chat of the user.

Packet to be sent in network messaging of the game :

All the packets will start with a timestamp.

This timestamp will be useful for the following issues:

¢ There will be an optimization in the server side in the decision of the information to be

sent to each user. If the timestamp of the object in the game environment are less than the
timestamp of the packet received by the user, server doesn't have to send these objects to
the client since the client has already got the information of that object. Server will only
send information of the objects that has a bigger timestamp than the packet received by
the user.

When a packet received by a user has a field regarding to the object, the decision of
updating the object will be up to the timestamps. If the packet has a bigger timestamp
then that object needs to be updated and its timestamp must be “timestamp+1”. If the
packet has a smaller timestamp this means that the packets arrived to the server belongs
to an old action of the client, which is probably based on a lag in the network. The old

information in the packets will simply be ignored.

After the timestamp there will be the information about the objects in the game
environment. These subfields in the packet will have the convention <H><I>, where <H> is
the header of the object and <I> is the information about that object. Information contents are

shown in the tables above.

(b) (2) Message Module
The packets received by the network module will be passed to a message module. This
message module will be needed to decode the received messages and set specific states for the
game engine to trigger different modules. This specific states can be listed as login, register,
quit, mission requests. This message module is responsible for encoding the messages to be sent

to the clients.

(c) (3) Database Module
Since the client informations will be held at a database there is also a need for a database
module. This database module will be active if a user wants to register, login or quit. Other than
these user requests also a timeout of the connection of a user will trigger database module.

Database module will do the following in the conditions below:

v Register: Look if the username exists, if not insert a new tuple in the database.
v Login: Check if the username and password tuple is in the database.

v Quit & Timeout: Update the last user information on the database. That is, the features of

the users ship and the user experience.

(d) (4) Visible Area Module
Visible area module is a very important part of the server. This module will calculate the
visible area of the user and only send those changed object information within that visible area.
There is also another optimization for the packet size to be smaller, the clients will only get the
environment information that has changed after the previous packet transmission. This means
that faster the connection of the user, smaller the packet size will be. This can be shown with the

aid of the following graph.

Connection Speed

A

P Packet Size
hax Packet Size

(e) (5) Mission Module
Missions are an important part of the game since, in a static universe players can get
bored easily. The missions will be delivered in the HQ of the players in their hangars. This
process will be as follows:
v The mission module will return a set of available missions to the user when he/she enters
the his hangar.
v When a user accepts a mission the mission will be initialized by the mission module, that
is the objects regarding to that mission will be updated to the game data.
v After that initialization phase the mission module will be responsible for tracing the

mission objectives. It will also decide if the mission is accomplished or failed.

(f) (6) AI Module
The NPC's in the game will be controlled by this Al module. The AI module will access
to the game data and update the NPC information in a specified interval. For every NPC in the
game data Al module will first check if there are any interactions with other players. If there are
any, it will calculate the effects of these interactions. Then it will determine the NPC state
regarding to the new status of the NPC. And finally, an action will be done using this state and

will be used to update the game data.

The NPC's are Eaons in our game. There will be 5 different types of Eaons. This types are
sorted with increasing attack power and defense below:
Sibling —> Breeder —> Psychic —> Hunter —> Mother
These order also defines the increasing intelligence order of the NPCs besides the attack
& defense power. Besides this intelligence levels, there are also NPC states such as; retreat,
defensive, normal and hostile. The NPCs will take action by these states. The NPCs will also
level-up within the game and this level-up will result in a restoration of the health of the NPCs

and their attack and defense power will increase.

(g) (7) Client Initializer
This module will calculate a logical spawn point outside the headquarter of the race of

the player to avoid possible collisions with other objects.

iv. DFD for Client Game Engine

Next Instance Info New Game Data
Network § . Message .:. Collis i.U]'l
Module : Module ¢+ Detection
. (1) (2) E A (3
Client Info Encoded Message L {g%’
A = 'i? &
: & g = QF

Bffect - _oicalth XP Upq a3 3 & ™ S

’ Pda = 3 AN
Module / i 2 S s YJ'*"‘:H Visible

(4 | & pyed) Area

b : : / wz’“’ _ Module

ispy. T) P;eﬁm % (3)
&= Ay i - :
Da \ Game Data & Vs -

Effocts
o e JTRAN. N
Module sem— gyl OPY*™ 3 b
(19 g e U
2 -Qé’ g 4 é %‘G Plare Stabilizator
A SFE 2 4 i
& O =
%, SR TN
% .] ; :
2 & & 8 R T W
- : put :
S fa% - Module
J Multimedia . Physics R[ser Input
Module . Module

(9) (8)

v. Client Game Engine
(a) (1) Network Module
This network module has a single thread and manages the send and receive commands
one after another. There will be a single socket connected to the game server and this socket will
be initiated to send mode at first. After sending a message to the server it will jump into receive

state and wait for a message from the server.

(b) (2) Message Module

The message module on the client is the same as the message module of the server. Since

client and server uses the same language(that is the packet information in our case), the
translator(that is message module in our case) is the same for both of the sides. This module
will be responsible for encoding and decoding the messages. When decoded an update to the
game data will be done. When encoded the packet to be sent to user will be passed to the

Network Module.

(c) (3) Collision Detection
Collision detection will simply detect the collisions to the user. If anything crashes to the
user at that time instance, a new effect will be appended to the game data to be processed by the

effect module.

(d) (4) Effect Module
Effect module will process the effect objects in the game data. This process will result in
either health and experience update of the user or a change in the object state. The health and
experience updates will be checked for an event of death or level-up. The animations regarding

to these game states will be initiated for the Multimedia Module to handle them.

(e) (5) Visible Area Module
Visible Area Module will be responsible for cleaning up the old game data received from
the server as well as extracting the objects from the game data which are visible in the game-

play screen.

(f) (6) Input Module
Input Module will be responsible for handling the inputs received from the user via
keyboard or mouse. For the mouse clicks it will queue the user input to be processed when a
new packet from the server arrives. In every loop it will update the force and the moment vectors

of the user with respect to the input received from mouse and keyboard.

(g) (7) Stabilizer
The stabilizer will be responsible for stabilizing the user spaceship. It will try to balance

the force and moment vectors. This module will act like a booster to the opposite direction of the

movement of the ship.

(h) (8) Physics Module
Physics module will calculate the next instance of the user objects with respect to their
force and moment vectors. This module will fetch all the external force vectors applying to user
objects and calculate the new force and moment vectors. The simple logic is shown in the

diagram below.

F=Fx+Fy+Fz
M = Mx + My + Mz

Collision Force Vector = C
C=Cx+Cy+Cz

Resultant Vector = R
o R=F+C
\ R = (Fx+Cx) + (Fy+Cy) + (Fz+C2)

Resultant vector will be the new F

F=EL

r is the position vector which is perpendicular to the center of gravity of the object.
M =Fxr where x is cross product.
Mx = Mx + Mcx where Mc=Cxr

My = My + Mcy
Mz=Mz+ Mcz

At every instance the x, y and z components of F and M will be calculated.

From the force vector the acceleration will be calculated and the coordinates of the next
instance will be determined. This can be formulated as follows;
F.=m.a, Fy=m.a, F,=m.a,

Ax="%.a,.t Ay=%.a,. t Az="%.a,.t

The same approach can be used for the rotation amounts with respect to x, y and z

coordinates. Using the rotation vectors M,, M, and M, the angle that one object has with respect

to the x, y, z coordinates can be formulated as follows;

r, = (M, / ¢) * 360 r,= (M, / c) * 360 r, = (M, / ¢) * 360

where c is a constant for determining a fair amount of degree to the coordinates which

must be a larger number than M values.

(i) (9) Multimedia Module

Multimedia Module will handle both animation and sound events. Looking at the state
of one object it will send the regarding frame of that object to display module and increment the
frame by one at each loop. If there are no frames left to display in that state or a terminating
condition occurs to switch into another state it will also handle these situations too. At the very
beginning of animations it may call callback functions to produce sound or do any necessary
actions. For example when a user fires his/her laser the laser will not appear in the screen at that
instant. First an introductory animation will be played and then the laser itself will be created.
These are two different states which this module must have control over. While playing the
introductory animation for the laser an appropriate sound must be played as well. And it must

last for only the time interval of that animation.

(G) (10) Display Module
Display Module is responsible for drawing everything that is visible to the screen. All the
drawable objects in the game data will be displayed with respect to its state and frame number.
These states and frame numbers will be controlled by the multimedia module. The only thing
display does is to draw these objects to the right places on the screen. This module will include
loading the objects(3ds), textures as well as making the appropriate adjustments of light, color

and blending for the user interfaces to seem in a more fashionable way.

4. Flow of the Main Loops
i. Flow of the Client Game Loop

Clieri Gane Metwrerk Mesaage - Veilde Area Effect i Pliyzice Niukime dia Displlay
Loop | Mochle | | Mol Game Data | ‘ Nlodle | Mol | | Tnput Module | | Stabilizator ‘ Etigme | | Modue ‘ ‘ Modhle ‘
| l 1 | | l l l l l l
receive I 1 1 1 1 I I 1 1 1
1 1 1 l l l l l l
1 1 1 I I I l l l
decode I]] | | | | 1 1
1 1 l l l l I I
l 1 1 I I I I I l
1 1 1 1 1 1 1 1 1
l update 1 | l l l 1 1 l
| 1 1 l l l l l l
I 1 1 1 1 1 1 1 1
l 1 clean | I l l l I l
l 1 [l l l l l I
1 1 1 1 1 1 1 1 1
| | | handle effect | | | | | |
l 1 1 T l l l l l
1 1 1 1 1 1 1 1 1
l 1 1 1 handle input I I I I
l 1 1 1 1 I I I
1 1 1 1 1 1 1 1 I
l 1 1 1 1 dabili 1 1 l I
l 1 1 1 l stabiliz L l l I
1 1 1 1 1 1 1 1 1
l 1 1 1 l l . l l l
; ; i i i ; move objects 3 3 i
l 1 1 1 l I 1 l l
; : j j , ; ; animate and | |
| I I I | | | play sounds_ 1
l 1 1 1 l l l T I
l 1 1 1 l l l l I
i 1 1 1 1 1 1 1 displav 1
| 1 1 1 | prepare send package | |

l 1 t t t t T

1 1 1 1 1 1 1 1

1 1 encode 1 1 1 1 1 1
I . 1 I I I l l l
1 1 1 1 1 1 1 1 1
l send 1 1 l l l l I I
i 1 1 I I I I I l
1 1 1 1 1 1 1 1 1
. 1 | | l l l l l l
wat 1 1 1 l l l l l l
] 1 1 1 1 1 1 1 1 1
l 1 | | I l l l I l
l 1 1 1 l l l l l I
1 1 1 1 1 1 1 1 1 1

Sequence diagram of the client game loop

The client game loop will be the main loop during gameplay. When the player exits the
hangar screen he will enter the game play state. In this state this loop will function. At first
network module will be checked if there is a receive. If there isn't the display module will be
called with the old data to make the user able to exit the game even if there is lag on the
network. If there is a receive the loop will continue to execute. Next, the received data will be
decoded and the new data will be entered to the current game data via the GameData module.
Then this new data will be cleaned by the visible area module. The old objects that stay outside
of the user's visible area will be deleted from the game data. Then the effect module will look at
the game data to find any effect objects which represents other player's effects on the current
player. If there is an effect to the user these effects will be applied to health, experience and
object states. Then, the input module will be polled to see if there is new input from the user.
These inputs will be processed. Then the stabilizator will correct the ship's alignment and x,y,z
values to make smooth transitions. Then the game data will be processed by the physics engine
to move the ship's objects according to physics rules. Then the multimedia module will change

the display frame of the user's objects and play the appropriate sounds. Then the final state of

the game data will be decoded and sent by the network module. While waiting for a new packet

to arrive display module will be called to display the calculated new state.

ii. Flow of the Server Loop

Server Gaune Netwiork Messnge Miszion

Loop Module Modhule Crame Drata Miodls Al Module
1 1 1 1 1 1
M reeeive | ! ! ! !
| | 1 |
| | 1 |
decode | | 1 |
1 1 1
I 1 1 1
: upedate : : :
]] 1 1
1 1 1 1
| | clean i i
| | | |
1 1 1 1
| | l hamndle effect |
1 1 1 1
| | | 1
| | | 1
1 1 1 1
1 1 1 1
1 1 I 1
| | | 1
| | | 1
1 1 1 1
1 1 1 1
]] 1 1
| | | 1
1 1 1 1
1 1 I 1
1 1 1 1
| | | 1
| | | prepare send package
1 1 t T
]] 1 1
| ! encode ! !
| - 1 |
| | 1 |
1 Sel..’d 1 1 1
| 1 1 1
1 1 1 1
. | | 1 |
wait ; : | :
[] 1 1 1 1
1 1 1 1 1
| | | 1 |
| | | 1 |

Sequence diagram of the server loop

The server loop will constantly run on the server machine. The server will first check if
there is a new packet received from the players. Then this message will be decoded by the
decode module and the new packet will be put into the game data by the game data module.
Then the mission module will update the mission status of the user according to the current
game data. AI module will handle the NPC effects if there are any concerning the player. The
tinal data will be then decoded and sent by the decode and network modules.

5. Database Design

In our database there are two entities. User entities has the primary key user_id which
means every user has a unique id. Second entity is ship with the primary key ship_id. Ship
entity have a foreign key user_id which gives the owner of the ship. These two entities have

one-to-many relation between each other. A user can own more than one ship in the database.

6.

>

" — —_— e

=, — T o~ s,
- e ,
[sir lsarmame) lka__str paﬁswor'd#) l\/\ﬁ Int ex perience)

T

SeREatet S e o e
.a-"r_—_h_h'“ 2
: e S
| I)
\H_Iht uiLLd__a__ {, charrace)
o i "
-'—'_'_'_'_'______
— gl -\-\-\-.‘
P _ (_ float stealth_health
{_ int ship id) SIS S — —
T S =23 R,
L int steakh_level)
o = T e e

(int ship_type :,

—

oS —

e o R .,
_________-———-—-(\ float magnet_health)

—_— -

o / Ship e
.""- = = ___-H‘
l\"-,_jl_ﬂat haalth_#__ \{ int magnet_lkevel :]

R

.
(float shield)
- .

it rocket_amount)

-\"\—____ _'___a- " h\-""—\—____ _'_'__o-""-'-.
- ——eeee - -"-_'______-'\>
7 float ket _health
< it ser level -
. —
—

— -—

— —_ o "'H-\‘
ffﬂn — h"“j (Ntmine_level)
':x___ at laser_| e B <
e R ___,_,--'— S
(-*"’ "“x\ f int mire_amount
4 int body_level J — -
'\"--____ ____,_,a-"'
Database E/R diagram

Graphical User Interfaces

i. Description of User Interfaces

The interfaces shown to the user will be ordered as follows:
Intro Animations

Register / Login Screen

¢ Race Selection Screen

¢ Register Screen

Player Hangar Screen

¢ Buy Screen

& Sell Screen

~ ..

int rocket_level)

-~

-

P

& Mission Screen
2 Loading Animation

> Gameplay Screen

The introduction animation of our company Dirty Pixel is the first screen in the game,
then another animation of Twilight will be shown to the user which includes the storyline and
scenes from the game.

The third screen is login screen for registered players which has a link to the registration
screen for unregistered users. In that screen registered users should choose a server IP and a
server port after entering username and password for login. The login button logs the user to
the game. Exit button is the exit point of the program when clicked the program terminates.
After logging into the system registered users directed to the loading screen. Register button
directs the system to the registration page.

Unregistered users pass to the registration screen where first a race selection screen
welcomes the player. A new user account created according to a unique username. Create
account button saves the username and password to the database of the server.

After clicking the register button user is directed to the race selection screen. In this
screen information about races will be given. On click of any of these races means a selection
and the username & password screen will then displayed.

The next step after choosing the race and username is buying the first spaceship for
starting the game. User chooses the spaceship according to the informations about the ships in
the spaceship buy page but he/she can buy a spaceship only if his/her money is enough for the
selected ship. The spaceship saved to the player account in the database when the buy button
clicked. Game is ready for loading for new user after selecting the spaceship.

Users spawn in their hangars which is in their HQ where they can repair or upgrade
their spaceship in exchange to their money. Buy spaceship screen opens when users want to
repair and upgrade their spaceship or buy a new spaceship by clicking the related place in the
headquarter. Sell spaceship screen opens when users need to sell spaceship to earn money for a
specific purpose.

The special missions are also assigned in the headquarters of the users by the mission

screen. Mission screen appears when the user clicks the computer icon in the headquarter. User

is ready to play the game after login, settings and accepting the mission.

The game play screen shows all needed informations to the player. In the left side of the
screen the info of shield amount is given, on the right side the health info is given vertically. In
the bottom left side of the screen the map of the universe is placed. Player can see the fuel and
speed info in the bottom-center part of the game play screen. To the left of the fuel info the
weapon type and the amount of the shots is given. To the right of the speed info, the type and
amount of the mines are given. The chat screen is placed in the bottom-right part of the screen.
Information screens are designed in a compact way for giving a larger view to the player in
game environment. The sketches for the user interfaces can be found in the appendix.

i. Use-Case Diagram

Can register to the system

Can login to the system |

Can choose a race |

Can buy a spaceship |

Can upgrade repair the spaceship

Can accept a mission

Can speed up/down the spaceship with W-8
buttons

Can turn right/left and look up/down with mouse
moves

Can strate left/right with A-D buttons

Y

Can increase/decrease the volume of sounds in
the game.

Can see the map

User
Can see the speed. fuel, health.shield and
weapon information of the spaceship

Can buy new spaceship

Hear various kinds of sound effects
according to events and weapons

Can exit from the system

The possible actions of the user is shown above. The actions are given in order. User

interface actions are followed by the game-play actions.

ii. State Transition Diagram

User Click User Click 5
Drirty Pixel Twilight Logo o =
% — or —P g e or —P| Login State =5
Logo Bk ESC Button Qi ESC Button . =
v
-
* o
Mission c-é:\ 2.
Selection State S y Q?" %
At Gy e @
Wige 17, AT =
.ﬁ;“n IE&""E (e
Op -%ff-'ﬂf i %
Baey. e \
- ¥
= " T i - t) -
— bt Hamngal ..--"'" Hangar State Race %:elﬂ tion
Game-play Hang®” State
State ‘____,,,..-Emm T /
'\
- d-. m .I-:U f—_‘ &,
S p g c % 5
W < = = [#34 &
2 o] (3 < =
O = £ £ &
e - 43 % &
> '5 T % T
..E & =" =9 = o
< Sell State / ¢ /
LS
Register State

Buy State

{

Invalid Username

)

Bought Item

This state transition diagram explains the flow of the game from the start. It's

actually explained above. These states will activate the regarding modules. But it gives

an insight of the actual flow of the game.

7. Classes
i. Class Diagrams

il

oot 5 Effect

Crbjact ;: Spacerhip

Effectfint cwrar_id, int <fTectad id, char

!Epa-:e-:hipfint avwner_id; int ship_id, char ship_type, int

affact_type): awner_ssparience, foat o, feat . float o flaak B, fleat
vaid Cizplayi b IR,.-, fleat Pz, fleat bealiby, fleath shield, int body_laval,
char CetEffactTypa 1 rhar body_state, char bedy_frameint laser_level, char

ink CatEffectCawne |;
Jink GatEffarted Usar|)

{bamar_staite, char lassc_Frame, ink rockat_leval, dhar
kst _siate, char rockat_frama, ink turrst_bevel, char

I

Cibjeet

Dbjact] 1

Lnbesface Object = Lacer |

Laser ot avened_pl, int bser_gl, int bser_Efe, ch lnser_state,
chas biser_level, chas Inses_frame, Hoat =, foat v, float =, float Tix, |
Aot Ry, flont Fz);

(voul Displak

bool Check Callission WithShip| Cbject “ship, Vertex
“vollissgonPanth:

| nwrerfacefiliect 2 300bject

beol Cisplayatdal)
abairact void Cisplay ;
NG Catsarne |

char SetObjectTyps |;

|arrat_stale, char burret_frame,int mune_level, char
imine_stabe, char mice_frameiint magret_level, char
(magrrt_state, dhar magnet_frameyint stealth_level, char

!:Iul.th_:tal:e.- char stealth_frame];

Epaceshipdint cwner i, int ship_id, ohar ship_type, int
wwner_ssperiencs, foat x, Meat y float =, Aot B, float
iFﬁ}'. Tlcat Bz, fleat bealib, fleat shisld, int body_bevel, dhar
:I:\:d}'_:lalq. <har bady_frama, ink Jasar_leval, dhar
(lazar_state, char laser_frame, int rocket_leval, dhar

Er-:ﬂ:k:et_slnlq. whrar rockat_frame, ink tarrst_leval, char
|\Iurr:t_shl.-e. «har turrel_frame, int mine_l=vel, char

irnin.g_:lalq. <har mire_frame, ink magret_leval, dhar
[ragret_siate, <har magnet_frame, ink stealth_leval, char
islealth_stake, char stealth_frame, char salecled_weapon,
ink reckest_ameunt, fleat cocket_bealib, ink

miina_armeunt, fest mire_beslib, feat lxser_bealib, fleat

tarrat_health, int magnet_ameunt, Bk magret_health,

int stealth_ameount, Foat stealth_bealib);

vaid Cisplagd);

Warbex ZalCoardirpkes];

vkl Sat Cocrdinatas Warta: datald;
“arbey GatForoard);

vakd Sat FarcalWartes datad;
Warbax ZatPotakiond];

vkl Set BataticnVartes dakad;
Warbex Gathbameni;

iw:-id. St foment Vet cdatal;
;-:har et Salacted Waapen(h

imid. St Selacted Waaponichar waapon_typsh;

(waid Peduse Selected Weaponil
i-*:-i':l ZanFirede eched Weapan(l;
!int GalShipl D)

IntexfaceDbject & Rocket

lnterfaceObject o Buttan

Iﬂcmt z, float R, float By, float Be);

Focketfiot ovwner_il, int rocket_gl, int pocket_life, char |
rocket_level, char rocket_state, char rocket_frame, float x, float v,

v CHsplagr(}; |
bool CheckColEssionWithShip{Olbject “ship, Vetex |
“collissionPointh:

{voldlifaene Bon(volil));
voidl Dhsplavi b

|
Button(int %, int v, int width, int height, int text,
bol ChechClickiint = int vk

|l:nitl CallFuncHoni 1;

Tanterfice Clgect & linnge Futboan |

Button(ing «, int v, it width, int Belght, ink text,

o IBlTM'AP bitmap_olf, BITMAT bitmap_om,
InterfoceObject | ol o oi)):
IDC0pectnt x, int v, DISPLAY_LIST » 1 |voicl Displayl |
Selolsfect]: — { | bal ChechClickint =« int vk
wold Displag! k Interface Chject] J; | voiel CallFunctioni 1;
bol CheckClick{int it v abstract void Displag] k; M [
o L Jabstract bool CheckClickl int
[voiel Fotatel }; i InterfaceObject :: Mission
LBt)
Interfece Olicck o Text woid Select(|;
| DierfaceOject s Test | T

|T¢xlﬁnt w, int y; string,
bext];
Imil Dhsplagi 1

||.1n-ul ChechClickd int x, int
¥

| InterficeObject 1 Chat |

Iulissionding oodssaon_id, chas mngssion_trpe);

bliszion{int ovmer_id, int missian_icl, char miszion_type, char
mission_skabe);

void Dhsplayik;

(char GethissionState(l:

ehar Sethlissions tats{);

ichas Gel}\l'nsiunTt'pe[k

| Interface Object 2 bline

IntextaceCibject s EdtBox

| Chatisiring chath;
!wltl Dhsglayik:
isuing et il

EMine it ovyrer_icl, ek oodmee_gd, inb ondne _Life, cliog ooene_statke,
|char minwe_Bavel, char mine_Frame, oat x, float v, Aoat =, Aoat
!R\:, Hoat Ry, float Tz;

imltl Dhsplayi}:

|boal Chec kColEssinniWithShipl Olaject “ship, Vertex

5'(olljsiimI’_qint|_:_

EclatBesciint =, et v, mnt wideh, ot

|height);

vodd Displar 1
o] Clhreck e kdint =, int v 1
void EnterChar|char c);

void DaleteChar(b

SpasdBoo Came Tata “data, int usr_jd,
it o, it)

weid Display()

HuaalthBax[GamaData “data, int usar_id,
it it
weid DiEplay)

Shicdl oo CameTata “data, it wsr_jd,
ink 3, dnt ¥
waid Tisplay(l;

Vertex
S s Envcodebtoilul
2 wendiekfoilule
ot ¥ 17 Decodehdodule Musltizsndin Module
E!':-alg Z[_:l_; : CassiDala
L"-"-"‘—‘j':"m'-“rm}'-' Cunadabddulal Enu:dd.'}:f.ll.ﬂ:{]. Pt badulal)
bzl SrartCusnad i StartErcasdal i £ LAl ulal i
‘dll:::l.: astring i} PutH-n;Ea::'[chnr c‘.:ll'nql:!:l:ll:]- : wadd HandleSoundsTf Al s CameCata “data,
Em et o o uaj Uﬂib&!h}:ll,dt:laﬂ “clal: ink usar_id);
s r. weidd Dpcataby Shipiobject
- int Catlnt]) vaid Putlmbding data); ik b
Dlalwovisiras string ECatStrng] vaid PutString(string weid SalectFirstabaer] 1
Jelar SatChan 1 dalal; clject SatObjact]) :
X x Chssiza
Hatweck Sarvariing poet]; [ﬁﬁli:“\:mxﬂ :;hl . :“: ;uimﬂzuddﬁr,:??ﬁ el SaletMpFiesI Chjetjing
string "CatPecaivaDatal) Eibiees yahipl: R L Pl il
boal SandDataiaieing SHgs SO bt (Shjact "CatyFisiChjseii i Camca| GarnaData “datl;
. 2 fali Spacaship “MyShigd 1 woid MoveZarmara TolsFamSamaData “data,
datal]; id PubCibjactidatay;
T vard PutCbjectichatay; weid DidataDistantOibjacts [int int usar_jd);
: firing “GetBulfer(l; | e il
HetseorkClien! Chiject Faturn by Farimstoint
{emrlorn s e — i
Le MissionlModule Leerd Eifeci=Frocessorkiodule |
|BstwarkClisntting port, I S o |
siring iph Bissicabdodulal i 5 5 T "
siring "G;tE‘:e:in-_Dnln[l; Nlld Traplml‘ﬂaEMmbnsn:]' e woid HaredlaEffacts[Gamaliata *data,int usar_id);
[bosd S=rdCmtalstring waid hackMiszicnStates] CameTata “data, int usar_id), L PR "“ﬂﬁlﬂd"!fﬁr*ﬂﬂﬂi&mbhlﬂ “daka int
"datal; id Usar hocapshissi Diata “data, int i, i pr ey
" ot e secapthfisian{Gienabata Wata, it usat LA e wrid HarellablypObjscis Gamentn “dataint
miezian_id]; Physicstdedulal i el
weid MevebdyOhilects[GameData *data, ink
usar_id);
Dalntrzabdndula weid Check My CoerdinatesiSameCiata “data, E—
it vser_id 15
Databasafedulastring ussrmama, siiing paesword, string i ‘f'u.hjll:chf}ahlp[GamDab. *data, int
R ussr_jdl; Tiewar [
ool chael:validL JatHE ; void HandleAlMimar Variablasy |;
bl l"'hzI-"J:Iiiu;::::iin:]:’ﬁ:::;:;ﬁ:ing Userrama eaid AddTimnarVariableiing "wariiblz, float start_vatua, fleat
iring passward); Inpusl Hamdler a‘d.aua:uq. I.nl:1I|'r|zud_1'r:m\lalclm- fure_twpa,
int Iresrtlew Usarstring wssenama, siiing paesword, string preddiluncticapieidly
racs);
woid UsarEntarsdShipToHangar (CameTata “data, int wser_id, InputHardlar]
int ship_id): statiz veid KaybeardUpfchar kay, int =, int ¥]; Hlaiiton
= i
id UsarBcughtitarn (i usar_id, int ship_id, char eljeot_jd) statiz weid Haybeard Downlchar kay, ink s, int ¥l ServirLoop i
[woid UsarSclditern (int usar_id, int ship_idchar ebject_id), static weid SpeialKeyboardUpichar key, int =, int [b —
T ClientLoopll
TR statiz veid SpecialKeyboard Dowenichar kay, int e, Sarvarloopd; vaid MainLoop(s
S mibr int g vaid MainLoop(l iint DirtyPixel LagaLooplls
e static woid Passiveblousabdovalint x, int g int TwilightLagaLoopll
ALh-‘rodqu, statiz wold Mecsahlovaiing ¥, int ¥, lint LeginSersenLaopdl;
cicl CresteHawpesiGamaDit Collizion Crelection statiz weid MeuseTlhickint butten, .t buttan_stats, int FagistarSorasnloopll
“dntal; - i, it ¥ fint LeadingSereanlaopi);
eidd FrhrdIeN]:cEﬂru[GamDam weid Hardlakaybeard Input[SamaData “data, int ChaiBoy int
Anital; Zellisicn Dataclion| 3 uesar_idl]; ; y = !.'-‘.ans'.'r:le:tiﬂn:}:r\eml’.&:pl:l_;
cicl DatermminsNpaSitelGimeDats | vid Detect AllCollizsians| GameTrtn weid HardlaMeuszInput[ZamaData “data, ink : - = int Hangacsmrasnleopll
“data); “datajinit usar_id); i el] ST i, ot iint Buy Sersen Loapd;
= 3 i dRE ¥ int FallFereanloopd;
woid HaredleblpesiGameCiata *data); e Tegtap: o il
vaid SandiChatf); MissienSakalicnSeraenlon
waid EntarCharfchar <)) Pl
T Tufaesnation Box | L el I paid CaktsChar); int CamepliyLoopdl:
= e e Enem}'D:wilstumeDnla “data, int
e B e TS
ink 3, int ¥1; ok et FLTE a5 int Fird Select=dStipdl;
i Tiemlandl: poentyl; &
waid Displag(l; vaid Cisplayil; |m ;:;:d%: Ubserlntarfacs{ BITMAT background):
A woid Activate] 1
waid Cisplay(1
Ifaplox [T —— SelecledWeapnnBox woid AddintarfamaObjectIntaface Chject “obj)
Islalic waid KeyboardUpichar bay, int x, int y);
Islalic waid FaybaoardDownichar bay, int x, int y)
_M:'P“;“[‘j"“"m“ ata, 4nt usar_id, ExpariancaBosGamaData data, int uzar_d, | |SshoctedwaapanBoslGamnata “data, int usar_id, | staiie vaid SpecialkaybeardUpichar kay, int x, int
e e AL K] ink 3, int ¥, i, i vl
waid Cisplayi); fwaid ti‘l-:ﬂ':l";" |-,.-¢,|d Displav(); Llanic waid Spacialkaybeard Cownlchar kay, dnt %,
- lint v
Ltatic vaid Passivaldcusshovaiing =, it ¥;
SpeedBox HealthBox SlyieldBox tatic warid Mousabdcwafiot =, ot ¥l
tatic woid MousaClick(int buttan, nit butten_stata,

link x, dnk ¥

ii. Class Definitions

class Vertex {

}

Vertex(float x, float y, float z);
/* Initializes the vertex.

*/

float X();

float Y();

float Z();

class Object {

}

Object();

[* Initializes an object with default values.

*/

bool Displayable();

/¥ Returns true if the object is a solid object with X,y and z coordinates and
should be drawn to the screen.

*/

abstract void Display();

/¥ Draws the object by calling the corresponding display function.

*/

int GetOwner();

[* Returns the owner of the object.

*/

char GetObjectType();

/¥ Returns the type of the object. It is either a ship, a particle , a mission or an
effect.

*/

intGetTimestamp();

/* Returns the time-stamp of the object.

*/

class NetworkServer {

NetworkServer(int port);

/¥ Initiates a thread to receive new connections and control their receives on
the specified port.

*/

string *GetReceivedData();

/¥ Returns the latest received data from anyone of the connected clients. The
client's thread gets ready to send message. Returns NULL if no data was
received.

*/

bool SendData(string *data);
[* Sends a data to the client that was received from. Cannot be called if no

receive was made.

*/

class NetworkClient {

NetworkClient(int port, string ip);

/¥ Initiates a thread to make a connection to the specified server. The thread
then gets ready to send message.

*/

string *GetReceivedData();

[* Returns the latest received data from the server. Returns NULL if no data
was received. Cannot be called before a send is made.

*/

bool SendData(string *data);

[* Sends the data to the client. The thread then waits for a receive.

*/

class DecodeModule {

The

DecodeModule();

/* Initializes the decode module class.

*/

StartDecode(string *data);

[* Initializes the pointer to the first object on the data.

¥/

char GetHeader();

/¥ Gets the header of the received data. Moves the pointer to next data.
*/

int GetInt();

/* Gets an integer from the received data. Moves the pointer to next data.
¥/

string &GetString();

[Gets an integer from the received data. Then gets a string the length of the
integer received. Moves the pointer to next data.

¥/

char GetChar();

/¥ Gets a char from the received data. Moves the pointer to next data.

*/

float GetFloat();

[* Gets a float from the received data. Moves the pointer to next data.

¥/

Object *GetObject();

[Gets an object from the received data and allocates a space for it by looking at the

type of the object and initializing it's corresponing class with the received values.
pointer is incremented to the next object. Returns NULL if the end of the data is
reached.

¥/
}

class EncodeModule {
EncodeModule ();
[* Initializes the encode module class.
*/
StartEncode();
[Deletes the previous buffer if it exists. Makes the byte count zero.
¥/

void PutHeader(char data);

/* Appends the header to the buffer.

*/

void PutInt(int data);

[Appends an integer to the buffer.

¥/

void PutString(string data);

/* Appends the length of the string to the buffer. Then appends the string to
the buffer.

¥/

void PutChar(char data);

/* Appends a char to the buffer.

*/

void PutFloat(float data);

[Appends a float to the buffer.

*/

void PutObject(data);

/* Encodes and appends an object to the buffer.
*/

string *GetBuffer();

/¥ Gets the pointer of the encoded data.

*/

class DatabaseModule {
DatabaseModule(string username, string password, string host);

[* Creates a connection to the database.

*/

bool CheckValidUsername(string username);

/* Queries from the database if the username is available.

*/

bool CheckValidUsernameAndPassword(string username, string password);
[* Queries from the database if the username and password is valid.

*/

int InsertNewUser (string username, string password, char race);

to

/¥ Inserts a new entry to the table with the provided arguments. Returns the
ID of the user provided by the database.

*/

void UserEnteredShipToHangar(GameData *data, int user_id, int ship_id);

/¥ Finds the user in the database. Finds the ship's old state from the database
from the ship_id. Finds the ship's new state from the game data by the
user_id. Updates the data record to match the new state.

¥/

void UserBoughtltem(int user_id, int ship_id, char object_id);

/* Finds the user's ship from the database and adds the specified item to it. Decreases
the item's amount from the database. Decreases the user's credits according to the
item's price.

*/

void UserSoldItem(int user_id, int ship_id, char object_id);

[Finds the user's ship from the database and removes the specified item from it.
Increases the item's amount in the database. Increases the user's credits according
the item's price.

¥/

class GameData {

not a

GameData();

/¥ Initializes the game data structure by putting NULL values.

*/

void UpdateObject(Object *object);

/* Puts the object into the game data by updating the previous record or if there is
previous record inserts the object into the end of the game data.

*/

void SelectFirstObject();
/* Sets the pointer to the first object in the data.

*/

Object *GetObject();

/¥ Gets the pointed object and moves the pointer to the next object. Returns NULL if
no objects.

*/

void SelectMyFirstObject(int user_id);

/¥ Sets the pointer to the first object of the user.

*/

Object *GetMyObject();

/* Gets the pointed object and moves the pointer to the next object of the user.
Returns NULL if no objects.

*/

Spaceship *MyShip();

/* Returns the ship pointed by the game data.

*/

void DeleteDistantObjects(int user_id);

[Deletes the objects that are too far from the user's ship.

¥/

Object *ReturnMyPerimeter(int user_id);

/* Allocates new objects for all of the objects in the game data that stay inside the
perimeter of the user. Returns the head of the linked list.

*/

class MissionModule {

MissionModule();

/* Initializes the mission module.

*/

void PrepareNewMissions();

/* Puts new mission objects to it's list of available missions if it's required.

*/

void CheckMissionStates(GameData *data, int user_id);

/¥ Checks if the user's accepted mission's state has changed and update related
Mission object by changing its state if necessary. Delete the mission object if the
mission is failed or accomplished and the mission object has reached the user.

*/

void UserAcceptedMission(GameData *data, int user_id, int mission_id);

/* Prepare a mission object owned by the user and put it into the game_data.

Delete the corresponding mission from the list of available missions.

*/

class PhysicsModule {

PhysicsModule();
/¥ Initializes the physics module.
*/

void MoveMyObjects(GameData *data, int user_id);
[* Move all of the user's objects according to their Fx,Fy,Fz,Mx,My,Mz values and
update their x,y,z,Rx,Ry,Rz values.

*/

void CheckMyCoordinates(GameData *data, int user_id);

[* Check if the coordinates of the user's ship is inside the allowed boundaries of the
game. Create information instances accordingly.

*/

void StabilizeMyShip(GameData *data, int user_id);
/* Add or subtract from Mx,My,Mz,Fx,Fy,Fz values of the ship in a way creating a
stabilizer effect.

*/

class MultimediaModule {
MultimediaModule();

/* Initializes multimedia module classs.

*/

void HandleSoundsOfAllObjects(GameData *data, int user_id);

/* Checks all of the objects to see if a sound is triggered in that animation frame. If a

sound is triggered starts playing that sound. If a sound does not exist in the

specified frame stops playing the sound. If a sound exists determines the pan and
volume of the sound by looking at the x,y,z,Rx,Ry,Rz coordinates of the camera and
XY,z coordinates of the sound source.

¥/

}

class Camera {
Camera(GameData *data);

/* Initializes the camera to it's initial place by looking at the coordinates of
the spaceship.

*/

void MoveCameraToltsPlace(GameData *data, int user_id);

/* Moves the camera by looking at the current x,y,z values of the camera and by
deciding where it should be by looking at the x,y,z values of the spaceship of the

user.
*/

class CollissionDetection {
CollissionDetection();

[* Initialize collission detection class.

¥/

void DetectAllCollissions(GameData *data, int user_id);

/¥ Create an outline of the user's ship and call collission detection function with all of

the game data that do not belong to the user. If there is a collission, allocate Effect
objects and put them into the game data.

*/

class EffectsProcessorModule {
void HandleEffects(GameData *data, int user_id);
[* Finds the effects applied to the user and changes user's health, Mx, My, Mz, Fx, Fy,
Fz values accordingly. Doesn't delete these handled effects. Then finds the effects that
the user applied to the other users. Changes user's experience accordingly. Deletes
these effects from game data. Creates chat objects that have the user id as the

owner id if necessary.
*
/
void HandleExperince(GameData *data, int user_id);
[Checks if the user has leveled up. Creates information instances accordingly.

*/

such

}

void HandleMyObjects(GameData *data, int user_id);

[* Increments frames of all of the user's animated objects. Decrements the life of
temporary objects like rockets, lasers. If the animation frame requires a callback
as the firing of a weapon, the callback is made.

¥/

class InputHandler {

ship's

}

InputHandler();
[* Initializes the input handler class.
*/

static void KeyboardUp(char key, int x, int y);

[Called when a key is up.

*/

static void KeyboardDown(char key, int x, int y);

[* Called when a key is down.

*/

static void SpecialKeyboardUp(int key, int x, int y);
/¥ Called when special keys are up.

*/

static void SpecialKeyboardDown(int key, int x, int y);

[* Called when special keys are down.

*/

static void PassiveMouseMove(int x, int y);

/¥ Called when the mouse is moved. The change in mouse coordinates is saved.

*/

static void MouseMove(int X, int y);

/* Called when the mouse is moved while a mouse button is pressed. The change in
mouse coordinates is saved.

*/

static void MouseClick(int button, int button_state, int x, int y);

[* Called when the mouse is clicked. The button that is clicked is saved into a queue.

*/

void HandleKeyboardInput(GameData *data, int user_id);

/¥ The effects of the keyboard buttons that are currently down is applied to the
Fx, Fy, Fz values.

*/

void HandleMouselnput(GameData *data, int user_id);

/¥ The change in the mouse coordinates are applied to the ship's Mx, My, Mz values.
The first click in the mouse click queue is applied if applicable.

*/

class Timer {

Timer();
[* Initializes the timer class and starts the first timer.

*/
AddTimerVariable(int *variable, float start_value, float end_value, int time_interval, char
func_type, (void *) function(void));

[* Adds a variable to the timer variable list which will be incremented/decremented
according to the func_type specified. The variable will start with the start_value

and end with the end_value. If the variable exceeds the end_value the specified
function is called.

*/

void HandleAllTimerVariables();

[* Handles all the declared timer wvariables and increments/decrements them
according to their properties.

*/
}
class InterfaceObject {

InterfaceObject();

/* Initializes an interface object.

*/

abstract void Display();

/* Displays the object on the screen.

*/

abstract bool CheckClick(int x, int y);

[Checks if the mouse clicked within the boundaries of the object.

*/

void Select();

[* Makes the object selected.
*/

void Deselect();

/* Deselects the object.

*/

}

class InterfaceObject :: EditBox {
EditBox(int x, int y, int width, int height);

[Creates an edit box in the specified place.
¥/

void Display();

/* Display the edit box on the screen.

*/

bool CheckClick(int x, int y);

[Checks if the mouse clicked within the boundaries of the object.
*/

void EnterChar(char c);

[* Enter the char to the edit box.

*/

void DeleteChar();

/¥ Delete the last char in the edit box. Do nothing if edit box is empty.
*/
}

class InterfaceObject :: Text {
Text(int x, int y, string text);

[Creates text in the specified place.
¥/

void Display();

/* Display the text on the screen.

*/

bool CheckClick(int x, int y);

[* Returns false.

¥/

}

class InterfaceObject :: Button {
Button (int x, int y, int width, int height, string text, (void) function());

/* Creates a button in the specified place.
¥/

void Display();

/* Display the button on the screen.

*/

bool CheckClick(int x, int y);
[Checks if the mouse clicked within the boundaries of the object.
¥/
void CallFunction();
[* Call the callback function of the button.
*/
}

class InterfaceObject :: ImageButton {
Button (int x, int y, int width, int height, BITMAP bitmap_off, BITMAP bitmap_on, (void)
function());

[Creates a button with an image on it in the specified place.
¥/

void Display();

/* Display the button on the screen.

*/

bool CheckClick(int x, int y);

[Checks if the mouse clicked within the boundaries of the object.
¥/

void CallFunction();

[* Call the callback function of the button.

*/

class InterfaceObject :: 3DODbject {

}

3DObject (int x, int y, DISPLAY_LIST 3dobject);
/* Creates a 3d object in the specified place.

¥/

void Display();

/¥ Display the object on the screen.

*/

bool CheckClick(int x, int y);

[* Returns false.

¥/

void Rotate();

/¥ Rotate the 3d object 1 degree around z axis.
*/

class UserInterface {

UserInterface(BITMAP background);

[Create a user interface with the specified background.
¥/
void Activate();

/* Registers the display callback of the program to the display function and the
keyboard and mouse callbacks to the corresponding functions.

*/

void Display();

[* Draw the background and all of the interface objects added to the user interface.
*/

void AddInterfaceObject(InterfaceObject *object);
/¥ Add the object to the user interface.

¥/

static void KeyboardUp(char key, int x, int y);

/* Called when a key is up.

*/

static void KeyboardDown(char key, int X, int y);
/¥ Called when a key is down.

¥/

static void SpecialKeyboardUp(int key, int x, int y);
/* Called when special keys are up.

*/

static void SpecialKeyboardDown(int key, int x, int y);

/¥ Called when special keys are down.

¥/

static void PassiveMouseMove(int x, int y);

[* Called when the mouse is moved. The change in mouse coordinates is saved.
*/

static void MouseMove(int x, int y);

/* Called when the mouse is moved while a mouse button is pressed. The change in
p &
mouse coordinates is saved.

*/

static void MouseClick(int button, int button_state, int x, int y);

[Called when the mouse is clicked. The button that is clicked is saved into a queue.
*/

class Object :: Effect {
Effect(int owner_id, int effected_id, char effect_type);

/* Initializes the effect class.
¥/

void Display();

[* Does nothing.

*/

char GetEffectType();

/¥ Returns the effect type.
¥/

int GetEffectOwner();

[* Returns the effect owner.
*/

int GetEffectedUser();

/* Returns the effected user.
¥/

class Object :: Spaceship {

Spaceship(int owner_id, int ship_id, char ship_type, int owner_experience, float x, float
y, tloat z, float Rx, float Ry, float Rz, float health, float shield, int body_level, char body_state,
char body_frame, int laser_level, char laser_state, char laser_frame, int rocket_level, char
rocket_state, char rocket frame, int turret level, char turret state, char turret frame, int
mine_level, char mine_state, char mine_frame, int magnet level, char magnet_state, char
magnet_frame, int stealth_level, char stealth_state, char stealth_frame, char selected_weapon,
int rocket_amount, float rocket_health, int mine_amount, float mine_health, float laser_health,
float turret_health, int magnet_amount, float magnet health, int stealth_amount, float
stealth_health);

/¥ Initializes the spaceship with the given values.
*/

void Display();

/* Displays the ship and it's weapons.

*/

Vertex GetCoordinates();

[Gets the x, y and z coordinates of the ship.
*/

void SetCoordinates(Vertex data);

/* Sets the X, y and z coordinates of the ship.

}

¥/

Vertex GetForce();

[Gets the x, y and z force vectors of the ship.

*/

void SetForce(Vertex data);

/* Sets the x, y and z force vectors of the ship.

*/

Vertex GetRotation();

[Gets the x, y and z rotation values of the ship.
*/

void SetRotation(Vertex data);

/* Sets the x, y and z rotation values of the ship.
*/

Vertex GetMoment();

[Gets the x, y and z moment vectors of the ship.
*/

void SetMoment(Vertex data);

/* Sets the X, y and z moment vectors of the ship.
*/

char GetSelectedWeapon();

/¥ Returns the selected weapon.

*/

void SetSelectedWeapon(char weapon_type);

[* Sets the selected weapon.

*/

void ReduceSelected Weapon();

/¥ Reduces 1 from the amount of the selected weapon.
*/

void CanFireSelected Weapon();

/* Returns true if the selected weapon's amount is larger than 0.
*/

int GetShiplID();

/¥ Returns the ship's id.

*/

class Object :: Rocket {

Rocket(int owner_id, int rocket_id, int rocket_life, char rocket_level, char rocket_state,

char rocket_frame, float x, float y, float z, float Rx, float Ry, float Rz);

[* Initializes the rocket class.
*/

void Display();

/¥ Displays the rocket.

*/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);
[* Detects the collission between the ship and the rocket and writes the collission

point to the vertex. Returns true if there is a collission, false if there is not. To optimize
the speed of collission detection the length between two objects is first checked.

¥/

class Object :: Laser {
Laser (int owner_id, int laser_id, int laser_life, char laser_state, char laser_level, char
laser_frame, float x, float y, float z, float Rx, float Ry, float Rz);

/* Initializes the laser class.

*/

void Display();

[* Displays the laser.

*/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);

/¥ Detects the collission between the ship and the laser and writes the collission point
to the vertex. Returns true if there is a collission, false if there is not. To optimize the

speed of collission detection the length between two objects is first checked.

*/

class Object :: Mine {
Mine (int owner_id, int mine_id, int mine_life, char mine_state, char mine_level, char
mine_frame, float x, float y, float z, float Rx, float Ry, float Rz);

/* Initializes the mine class.

¥/

void Display();

/* Displays the mine.

*/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);

[* Detects the collission between the ship and the mine and writes the collission
point to the vertex. Returns true if there is a collission, false if there is not. To
optimize the speed of collission detection the length between two objects is first checked.

¥/

}

class Object :: Mission {
Mission(int mission_id, char mission_type);

[* Initializes the mission. Called by the mission module when it is first created.
*/

Mission(int owner_id, int mission_id, char mission_type, char mission_state);

/* Initializes the mission. Called by the decode module when it is first created.
*/

void Display();

[* Does nothing.

*/

char GetMissionState();

}

/* Returns the mission state.

*/

char SetMissionState();

[* Sets the mission state.

¥/

char GetMissionType();

/¥ Returns the mission type.
*/

class Object :: Chat {

Chat(string chat);

/* Initializes the chat.

*/

void Display();

[* Does nothing.

*/

string *GetChat();

/¥ Returns the chat string.

*/

}
class ChatBox {

ChatBox(GameData *data, int x, int y);

/¥ Creates a chat box in the specified coordinates.

*/

void Display();

/* Finds the chat object in the game data that has the owner id 0 and appends it to
the chat box buffer. Deletes the chat object. If send boolean is true the input buffer of
the chat box is created as a new chat object. Then the buffer is emptied. Then it
displays the chat box.

*/

void SendChat();

[* Sets a send boolean true to send the buffer on the first ProcessChat call.

*/

void EnterChar(char c);

[Appends a char to the input buffer.

*/

void DeleteChar();

/* Deletes a char from the end of the input buffer. Nothing is done if the buffer is
empty.

*/

}
class MapBox {

MapBox(GameData *data, int user_id, int x, int y);

/¥ Creates a map box in the specified coordinates.
*/
void Display();
/* Displays the map box by displaying all the displayable objects as dots with
corresponding colors.
*/
}

class HealthBox {
HealthBox(GameData *data, int user_id, int x, int y);

/¥ Creates a health box in the specified coordinates.
*/

void Display();

/* Displays the health of the user with the health box.
*/

}

class ShieldBox {
ShieldBox(GameData *data, int user_id, int x, int y);

[* Creates a shield box in the specified coordinates.
*/

void Display();

[Displays the shield of the user with the shield box.
*/

}

class FuelBox {
FuelBox(GameData *data, int user_id, int x, int y);

/¥ Creates a fuel box in the specified coordinates.
*/

void Display();

/* Displays the fuel of the user with the fuel box.
*/

}

class SpeedBox {
SpeedBox(GameData *data, int user_id, int x, int y);

/* Creates a speed box in the specified coordinates.
*/

void Display();

[Displays the speed of the user with the speed box.
¥/

}

class SelectedWeaponBox {
SelectedWeaponBox(GameData *data, int user_id, int x, int y);

/¥ Creates a selected weapon box in the specified coordinates.

¥/

void Display();

/* Displays the selected weapon of the user with the selected weapon box.
*/

class InformationBox {
InformationBox(int x, int y);

[* Creates an information box in the specified coordinates.

*/

void PutInformation(string info, int time, int priority);

/¥ Replaces the previous information if this information's priority is of higher value.
If no information exists the string is saved. If the same information exists updates it's

time value.

¥/

void Display();

/* Display the current information if it exists and decrease it's time value. If the time

value is beyond 0 delete the information.

*/

class ExperienceBox {
ExperienceBox(GameData *data, int user_id, int x, int y);

/¥ Creates an experience box in the specified coordinates.
*/

void Display();

/* Display the experience box.

*/

class EnemyDetails {
EnemyDetails(GameData *data, int user_id);
[* Initializes enemy details class.
¥/
int FindSelectedShip();
/¥ Apply 3d picking from center of the spaceship to the front of the spaceship. If

there is a ship it returns the ship's user id. This user id is also saved into a place. If
there is already the same user id saved it increments a counter which represents the
number of times this ship was spotted in front of the ship.

*/

bool Locked();

/¥ Returns true if the saved counter is more than a predetermined number.

Puts an information if locked.
*/
void Display();

}

/¥ If there is a selected ship displays it's properties around it.

*/

class ClientLoop {

loop

loop

loop

loop

main

loop

ClientLoop();

/* Initializes the class.

¥/

void MainLoop();

/* Coordinates the calling of the client loop functions.
*/

int DirtyPixelLogoLoop();
/¥ Coordinates the displaying of the dirty pixel logo. Returns a message to the main
loop representing the ending state of the loop.

*/

int TwilightLogoLoop();

/¥ Coordinates the displaying of the twilight logo. Returns a message to the main
representing the ending state of the loop.

*/

int LoginScreenLoop();

/¥ Coordinates the displaying of the login screen. Returns a message to the main
representing the ending state of the loop.

*/

int RegisterScreenLoop();

/¥ Coordinates the displaying of the register screen. Returns a message to the main
representing the ending state of the loop.

*/

int LoadingScreenLoop();

/¥ Coordinates the displaying of the loading screen. Returns a message to the main
representing the ending state of the loop.

*/

int RaceSelectionScreenLoop();

/¥ Coordinates the displaying of the race selection scren. Returns a message to the
loop representing the ending state of the loop.

*/

int HangarScreenLoop();

/¥ Coordinates the displaying of the hangar screen. Returns a message to the main
representing the ending state of the loop.

*/

int BuyScreenLoop();

/¥ Coordinates the displaying of the buy screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int SellScreenLoop();

/¥ Coordinates the displaying of the sell screen. Returns a message to the main loop

representing the ending state of the loop.

¥/

int MissionSelectionScreenLoop();

/¥ Coordinates the displaying of the mission selection screen. Returns a message to
the main loop representing the ending state of the loop.

*/

int GameplayLoop();

/¥ Coordinates the displaying of the game screen. Returns a message to the main
loop representing the ending state of the loop.

*/

class ServerLoop {

ServerLoop();
[* Initializes the server loop class.
*/
void MainLoop();
/* Coordinates the server loop.
*/
}
class AIModule {
AlModule();
/* Initializes the AI module class.
*/
void CreateNewNpcs(GameData *data);
[* Creates new npc characters if NPC count / PC count ratio is below some limit.

Assigns npc ids for each NPC.
*/
void HandleNpcEffects(GameData *data);
[* Handles the effects that are related to npcs.
*/
void DetermineNpcsState(GameData *data);
/* Determines the Al state for each NPC in the game data.

¥/

void HandleNpcs(GameData *data);

/* Make the npcs move and shoot according to their states.
*/

8. Testing Issues
i. Test Design
Since we haven't gained full insight of what must be done in test cases in all o our
modules we only designed a test case for the network modules which are nearly
complete. As we progress we'll design different test cases for the other modules of our
implementation.

ii. Test Cases

A scenario for the packet size:

Lets assume there are “n” players in the game visible area of the user.

And for the worst case lets assume that in every time increment all of the objects in the
universe are changing. A player will get the information of “n-1” other ships for this case
which is 128 bytes(14 int, 14 float, 16 char) and also information of his/her ship which is
also 128. The total value for the whole information is 128 x n.

v Lets assume every player fired at most one weapon in the previous time increment (this
is an optimistic assumption). In this case there will be “n” ammos flying in the universe.
That is n x 39 bytes(3 int, 3 char, 6 float) for any kind of weapon ammao.

v Lets also assume that every player received damage from a previous ammo released by a
player. For this case there must be 39 x n bytes for the ammos, since their animations are
not completed yet. There must be also “n” effect objects in the packet which counts 9 x n
bytes(2 int, 1 char) more. Then a total of 48 x n bytes for this case.

v There is also 1 byte for the packet header.

Then assuming there are no NPC's in the visible area 215 x n bytes must be sent to a single user.

Assuming there are 10 players in the visible area the packet size is 2150 bytes = 2.1 kbytes
Then for a frame rate of 20 fps 2.1 x 20 = 42 kb's must be sent to the player in one second
assuming the scenario is always the same in that second(every player is firing a weapon and
gots hit at the same time).

Since the server will only send information about the objects which are visible to the user,
(which is another optimization to speed up the messaging) this calculations are realistic. For a
war scene of 10 players and a scenario like this at least 0.5 mbits of an internet connection is
needed.

This scenario can be tested by creating virtual packets (a dummy packet) of 2.1 kb's and sending
them to 10 clients at the same time.

9. Appendix
i. Model Spaceships

© spaceshipl.max - Autodesk 3ds Max B - Unregistered Version, - Trial Period

File Edit Tools Group Views Create Modifiers Characker reactor Animation Graph Editors Rendering Customize MARXScript Help
L IAII -

H ™R By A N
s

liCe]

i 0 al TW) e o & o oI i @S|

Frant t&|?|£ﬁ|[®|@| T|
[N
[odiies List -

=)

-y
o

w il el

Right

< 0/100 b

FeE=8(8%0 L@V SOR|RED

= IHI||4DIIIII|||||||||||IIIJII|||||||||||||||||||||||||||$
= 10 a0 30 40 &0 0 &0 30 100
| More Selecte 8 [8] %[4087m vfoom z[1130 | Grid=0.254m AutoKeyISelected | bea|an 5] me [w | Q GB AL

|

| Updated in 80 ms [dd Time Tag

Set Key f Key Filters... | LL] |IU—£| @ |LQ_: éﬂ-? ,@'

(©/spaceship2.max - Autodesk 3ds Max 8 - Unregisterad Yersion - Trial Period

File Edit Tools Group Views Create Modifiers Characker reactor Animation Graph Editors Rendering Customize MARScript Help

[R T B ﬂ&%@ﬂthwﬂ®&&@$| BRI

— |7 & @@ T
[u
| Modifier List |

I IR A S

<] 0/100 |>]
EAELENU AL LR AR RARARLRRRARAR RN AR AN RRRRRARRANRARRRARA R AR AR AR AR AR
= 0 0 £l 4 o 60 n 0 20 1o

[None Selecte 8 [8] %[00 v[izan " zfomen | [Gid-02m | Ao Key|Selected - e 5] e [| QGBS
| Click and drag up-and-down to zoom in and out | Add Time Tag Set Key LZT Key Filters... | b || | & |Q_ {ﬂ-? .G‘ .

Fiee=8|3%0 L@ BRI EDg B

|

©spaceship32.max - Autodesk 3ds Max B - Stand-alone License

File Edit Tools Group Wiews Create Modifiers Characker reactor Animation Graph Editors Rendering Customize MAXScript Help

Rl val JdBE st dimers
v | A @@ T
(0™ ¥ & o 2 %

IStandard Primitives ﬂ

|@ 2% G B b

) 8|

Ce=A8FLLEPIOR|ZED

[- Object Type |
SuteGrid ™
Box | Cane |
Sphere | GeoSphere |
Cylinder | Tube |
Torug | Puyramid |
Teapot | Flane |

Mame and Colar

. = I]IIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII%DIIIIIIIII|IIIIIIIIIJIIIIIIIII|IIIIIIIII|IIIIIIIII$

L = 10 2 3D 4 B0 0 B0 El 100
| [Nane Selecte 8 [] %] v Z | Giid =100 Auto Keyl[Selected | b | 5] o (o [5B LA
|C|ic:k and drag up-and-down to zoom in and ot |Add Time Tag SetKey AI‘ Key Fiters... | T ||D £|@|LQ-‘ {m)" .5‘9‘

Task Name

Week

Week

Week

Week

Week

Week

Week

Week

Week

Week
10

Week
11

Week
12

Week
13

Week
14

Week
15

Week
16

Week
17

Week
18

Week
19

Week
20

Week
21

Week
22

Week
23

Week
24

Game Concept
Development

* Storyline

* Gameplay design

* Interfaces design

* Sketching

* Objects design

* Objects modelling

Graphics Engine
Development

* Engine basics creation

* Displaying 3ds objects

* Displaying animations

* Displaying lights

Network Modules
Development

* Chat module

* Packet creation

* Packet parsing

* Packet transfer

* Send and Receive
modules

* Synchronization

Data Structures
Development

* Organization of data

* Encapsulation of data

* Database tables
creation

* Database interaction
classes

Artificial Intelligence
Development

* NPC design

* NPC behavior modelling

* NPC behavior
programming

Game Flow
Development

* Maps design

* Maps programming

* Quests design

* Quests programming

* Game flow
programming

Deployment and
Testing

* Deployment of classes

* Designing test cases

* Testing

