Dty Poed

INITIAL DESIGN REPORT

1395045 — Anil Yigit Filiz
1394642 — Berkehan Altinkaya
1394600 — Derya Akpinar
1394980 — Glines Efe

3" December 2006

TABLE OF CONTENTS
1. Introduction
2. Goals & Objectives

3. System Architecture
i. DEFD Level 0
ii. DFD Level 1 for Server Game Engine
iii. Server Game Engine
(a) AI Module
(b) Network Module
(c) Message Module
(d) Database Module
(e) Mission Module
(f) Visible Area Module
iv. DFD Level 1 for Client Game Engine
v. Client Game Engine
(a) Network Module
(b) Graphics Module
(c) Sound Module
(d) Physics Module

4. Sequence Diagrams
5. E-R Diagram

6. Graphical User Interfaces
i. Description of User Interfaces
ii. Use-Case Diagram
iii. State Transition Diagram

7. Classes
i. Class Diagram
ii. Class Definitions

8. Testing Issues
i. Test Design
ii. Test Cases

9. Appendix
i. Model Spaceships
ii. Gantt Chart

1. Introduction

Massively multiplayer online games is the new trend in gaming. With the aim of creating an
exciting and consistent universe, our team is planning to design a space simulation game that has a
science-fiction scenario. Like every traditional MMOG our game will have registered users and
there will be experience based level-ups while playing the game. The storyline of Twilight is as

follows:

“In the year 2525 the prophecy of the Goths (a religious human minority living close to the planet Pharma)
came true and the galaxy Quasar appeared in the middle of the universe. The new active galaxy Quasar is
the home of the biological beings named Eaons. Goths proclaimed that the appearance of the Eaons was the
last sign of the apocalypse of the universe. Goths built an army to wipe out Eaons once and for all. But there
was one thing that was not foreseen. In the far planets of Quasar there was another race named Cyrians
which depended upon X-Particles that only Eaons could produce. The universe was being led to chaos.
Darkness to brightness or brightness to darkness. Choose between Humans, Goths and Cyrians while the

apocalypse arrives.”

There will be three races in Twilight namely Humans, Goths and Cyrians.

Goth race is a rebellion of Humans whom are full of anger and has no mercy against the
other livings around them. This anger, in time led them to discover their own religion and life-
style. Their priests have their own perspectives about the apocalypse day (which in fact inherited
from human religions) and this foreseen perspective came true with the appearance of the galaxy
Quasar. So the Goths are enemies of both Humans and Eaons. This will then lead to a diplomacy
change with Cyrians who depends on the Eaons. Goth ships will have more attack power than

other races.
Humans are neutral against Cyrians. But they are enemies of Goths. But when attacked by a
Cyrian the diplomacy will change. Humans ships are balanced. They have normal attack and

defense powers.

Cyrians are the protectors of Eaons. Since they depend on the X-Particles produced by

Berke
Highlight

Eaons, when Humans or Goths attack any Eaon, the temporary diplomacy will change. Since

Eaons supply the necessary X-Particles to Eaons it is a matter of death to protect Eaons for

Cyrians. Cyrian ships will have more defensive power than other races.

2. Goals and Objectives

During the design phase of we had a lot of discussion about the various aspects of the game.

Our primary objective is to create something which is small in size and great in efficiency. Our

primary objectives are as follows:

v

By the end of this term we should be finished with the network modules of our game. The
packet size and the thread management issues inside the send and receive methods are very
important issues since this game is an online multiplayer game. So we spent and will spend
fair amount of time for the networking. We decided to use WinSock API for packet transfers
via TCP/IP.

Determining the states of the game is another important issue. Since games are nearly state
machines which does something different by looking at the states we are thinking of writing
our own state machine. But in the state design there will also be sub-states. For example in
the “User Interface” state there will be a sub-state named “Buy”. This state, sub-state
coordination will make it easier to handle the rendering of the screen. @

Another must of a game is using effective sound effects. Since we'll implement this game
using c++ we should find a suitable API for playing and manipulating sound files. There
were some candidates for the API choice (OpenAL, SDL, DirectSound) but we agreed on
using DirectSound which is the sound API of DirectX SDK. So learning about this API is
another thing to do.

The user information will be held in a database in the server. So in a little part of our game
we will be concerned with connecting to this database and retrieving and storing
information on this database. So a suitable API for connecting to this database will be
needed. We will use MySQL on our server. A suitable API to connect to this database is
MySQL++ and we should also learn about that API.

There will be lots of 3D objects in the game. Loading this 3D objects and placing textures to
their surfaces is another thing to do. We'll use Object3DS for that purpose and we should

also learn about that API. Since we also got a parallel graphics project including the usage of

Berke
Highlight

Berke
Highlight

Berke
Highlight

Berke
Highlight

Berke
Highlight

Berke
Note
how?

this API we'll be learning about Object3DS soon. We've started modeling some of our

spaceships. These can be seen in the appendix.

3. Architectural & Component Level Design
i. DFD Level 0

Next Instance Info

R / \ e o Display Data
Query <, .

: Server Client .
Database Game @ Game
< " Engine / ‘. Engine
User Input
Client Packet
ii. DFD Level 1 for Server Game Engine
Encoded Message
i o PaLket / \
Uaer State
™ Query
. : ; 0N
" Network ! I‘\-’les:‘mge E Database
5 ' Z i ;) 3
. Module . Module - . Module DBMS
_____ -' ' : N T
K C/ J’L;f:,-SSJ;_- T Result
Next Instance Infn 5, On I
3 % o
Client Data - 3 \
J
1]
oy \
E' . Mission
NPC Data Updat ig Vil Y Medus
Auto Trigger . B \é n Area & i
2 . A . Module
Al Game Data @
. Module N S
Ser Injy; —
1a] Dag, -
Client

Initializer

Berke
Note
Enumerate the circles in DFD's.

Berke
Note
Continuous?

Berke
Note
There will be an arrow from game data to the visible area module.

iii. Server Game Engine

Server game engine consists of a main game loop which runs a couple of modules in an
order to supply the sequentiality of the game. This main game loop accepts the packets from the
clients. Regarding to the messages received from these clients it triggers other modules to do their

stuff. The modules and their features are listed below.

(a) Network Module

Network module is responsible for the message traffic. It will be a multi-threaded network
program which listens to a specified port on the server. When a user makes a connection request to
the port listened by the server, network module creates another thread which in turn opens
another socket for that client to fulfill its own send and receive operations. A socket cannot send
and receive at the same time. But this is not a problem in our case since we are planning to send the
next instance info if and only if a packet received by a client. So at first the received packet will be
processed, and then the information for the next time instance will be calculated and sent to the
clients. The state of the socket assigned to the user will change between send and listen modes.
And this change will be exactly the inverse of the client. Which means if the server thread is in

send mode, the user assigned to that thread will be in listen mode. Packet descriptions are as

follows:
Client Packets
Packet Header Packet Content Packet Description
When the packet is invalid the connection between the server and
Invalid - client is broken and the server assumes that the user has sent a quit

message.

int username_len + string username + int

Register_User password_len + string password + char
race

The packet contains the user's desired username and password and the
race he/she selected.

int username_len + string username + int The packet contains the user's claim of his/her username and
password_len + string password password.

Login User

The packet is sent when the user informs the server that he/she has
Quit User - quit. It contains no information since the user's id exists in the ip to id
table stored in the server.

The packet contains the id of the ship that the user entered the hangar

Enter Hangar int ship_id with.
g . L The packet contains the id of the ship that the user has selected to
Exit_Hangar int ship_id leave the hangar with.

Berke
Highlight

Mission_Accept

The packet contains the id of the mission that the user accepted in the

int mission id ..
- mission select screen.

Buy Item

The packet contains the id of the ship that the user has bought an item
on and the type of the item. If the user has bought a ship the ship id is
0 and the object type is the type of the ship.

int ship_id + char object type

Sell Item

The packet contains the id of the ship that the user has sold an item on
and the type of the item. If the user has bought a ship the ship id is 0
and the object type is the type of the ship.

int ship_id + char object_type

Game Data

The packet contains all of the user's game data parsed as different
objects and concatenated one after another. These objects can be in
any order and are of previously defined sizes.

arbitrary number of objects

Server Packets

Packet Header

Packet Content Packet Description

Invalid

When the packet is invalid the connection between the server
- and client is broken and the server assumes that the user has
sent a quit message.

Invalid Login

The packet is sent to inform the user that the received username
- and password do not match the username and password in the
database.

Invalid Username

The packet is sent to inform the user that the desired username
is not available.

Hangar Data

the object data types of the three ships

that the user has in the database + the

amounts and prices of all of the items
offered in the hangar + possible sell

prices of all of the items offered in hangar
+ the object data types of arbitrary
number of available missions in the
hangar

The packet contains all of the information that is needed to
display the hangar screen. The buy and sell prices of all items
and the properties of the user's ships are sent as objects
concatenated one after another.

The packet contains all of the user related game data parsed as

Game_Data arbitrary number of objects different objects and concatenated one after another. These

objects can be in any order and are of previously defined sizes.
Object Packets
Object Header Object Content Object Description
i long unsigned int timestamp + int owner_id + int effected_id t?lllilf ifg)its(;?::frtli}glsti,o?:)e rV};It)’ :}i)%lne ez)lr))'uelclzyt
= + char effect_type + float effect_amount >)
to another.
Spaceship long unsigned int timestamp + int owner_id + int ship_id + The spaceship of a user. Also contains the

char ship_type + int owner_experience + float x + float y +
float z + float Rx + float Ry + float Rz + float health + float
shield + int body level + char body_state + char body frame
+ int laser level + char laser state + char laser frame + int
rocket_level + char rocket_state + char rocket _frame + int
turret_level + char turret_state + char turret frame + int
mine level + char mine_state + char mine_frame + int
magnet level + char magnet state + char magnet frame + int
stealth level + char stealth_state + char stealth _frame + char
selected weapon + int rocket _amount + float rocket health +
int mine_amount + float mine health + float laser_health +
float turret health + int magnet amount + float

user's current game info since a user can have
only one ship while the game is running.

magnet_health + int stealth_amount + float stealth health

Rocket

long unsigned int timestamp + int owner_id + int rocket id +
int rocket_life + char rocket level + char rocket state + char
rocket frame + float x + float y + float z + float Rx + float
Ry + float Rz

The rocket of a user flying in space.

Laser

long unsigned int timestamp + int owner_id + int laser_id +
int laser_life + char laser_state + char laser_level + char
laser frame + float x + float y + float z + float Rx + float Ry
+ float Rz

The laser of a user flying in space.

Mine

long unsigned int timestamp + int owner_id + int mine id +
int mine_life + char mine_state + char mine_level + char
mine_frame + float x + float y + float z + float Rx + float Ry
+ float Rz

The mine of a user flying in space.

Mission

long unsigned int timestamp + int owner id + int mission_id
+ char mission_type + char mission_state

Current mission data of the user.

Chat

long unsigned int timestamp + int chat_len + string chat

Recently sent chat of the user.

Packet to be sent in network messaging of the game :

All the packets will start with a timestamp.

This timestamp will be useful for the following issues:

¢ There will be an optimization in the server side in the decision of the information to be sent
to each user. If the timestamp of the object in the game environment are less than the
timestamp of the packet received by the user, server doesn't have to send these objects to the
client since the client has already got the information of that object. Server will only send
information of the objects that has a bigger timestamp than the packet received by the user.

+ When a packet received by a user has a field regarding to the object, the decision of
updating the object will be up to the timestamps. If the packet has a bigger timestamp then
that object needs to be updated and its timestamp must be “timestamp+1”. If the packet has a
smaller timestamp this means that the packets arrived to the server belongs to an old action

of the client, which is probably based on a lag in the network. The old information in the

packets will simply be ignored.

After the timestamp there will be the information about the objects in the game environment.
These subfields in the packet will have the convention <H><I>, where <H> is the header of the

object and <I> is the information about that object. Information contents are shown in the tables

above.

(b) Message Module
The packets received by the network module will be passed to a message module. This
message module will be needed to decode the received messages and set specific states for the
game engine to trigger different modules. This specific states can be listed as login, register, quit,
mission requests. This message module is responsible for encoding the messages to be sent to the

clients.

(c) Database Module
Since the client informations will be held at a database there is also a need for a database
module. This database module will be active if a user wants to register, login or quit. Other than
these user requests also a timeout of the connection of a user will trigger database module.

Database module will do the following in the conditions below:

v Register: Look if the username exists, if not insert a new tuple in the database.
v Login: Check if the username and password tuple is in the database.

v Quit & Timeout: Update the last user information on the database. That is, the features of

the users ship and the user experience.

(d) Visible Area Module
Visible area module is a very important pat of the server. This module will calculate the
visible area of the user and only send those changed object information within that visible area.
This is a very good optimization for the packet size to be smaller since the clients will only get the
environment information thats only changed at every time packet receive. This means that faster
the connection of the user, smaller the packet size will be. This can be shown with the aid of the

following graph.

Connection Speed

A

P Packet Size
hfax Packet Size

Berke
Highlight

(e) Mission Module
Missions are an important part of the game since, in a static universe players can get bored
easily. The missions will be delivered in the HQ of the players in their hangars. This process will be
as follows:
v The mission module will return a set of available missions to the user when he/she enters
the his hangar.
v When a user accepts a mission the mission will be initialized by the mission module, that is
the objects regarding to that mission will be updated to the game data.
v After that initialization phase the mission module will be responsible for tracing the mission

objectives. It will also decide if the mission is accomplished or failed.

(f) AI Module

The NPC's in the game will be controlled by this AI module. The Al module will access to
the game data and update the NPC information in a specified interval. The NPC's are Eaons in our
game. There will be 5 different types of Eaons. This types are sorted with increasing attack power
and defense below:

Sibling —> Breeder —> Psychic —> Hunter —> Mother

These order also defines the increasing intelligence order of the NPCs besides the attack &

defense power. The NPCs will also level-up within the game and this level-up will result in a

restoration of the health of the NPPCs.

Berke
Highlight

iv. DFD for Client Game Engine

Next Instance Info New Game Data

Network . Message : Collision
. Module - : Module ' . Detection
Client Info Encoded Message l {:;-' f
() *-J
B I
£ §
Heajyy, = &
? J - E
Effect *P Update g \ _
Module i “S*E" = Seibia
] / pi® '
Dy

. 3 : Area
” 5 . @ © Module -
= %}’Dara e %, o
same Data i
i A . Eff@crs—’/

./""_'—_ F&M
. Display - e,as/ ’T '\ ‘\ \
:,_ Module E""_ gull Ob) L oL F&M }
: :.'.l"-:'u.... o % % f_jbdate__..-'f o
. fh @QH-“?' 4 2 < - Stabilizator
& = .
%, £ 2 TN -
?a % ey g =
% [nput
e “J%r Module
SO User Input
Multimedia Physics ¢
Module

Module

v. Client Game Engine

(a) Network Module

This network module has a single thread and manages the send and receive commands one

after another. There will be a single socket connected to the game server and this socket will be

initiated to send mode at first. After sending a message to the server it will jump into receive state
and wait for a message from the server.

(b) Message Module

The message module on the client is the same as the message module of the server. Since

client and server uses the same language(that is the packet information in our case), the

Berke
Note
There will be again that arrow !

translator(that is message module in our case) is the same for both of the sides. This module will be
responsible for encoding and decoding the messages. When decoded an update to the game data

will be done. When encoded the packet to be sent to user will be passed to the Network Module.

(c) Collision Detection
Collision detection will simply detect the collisions to the user. If anything crashes to the
user at that time instance, a new effect will be appended to the game data to be processed by the

effect module.

(d) Effect Module
Effect module will process the effect objects in the game data. This process will result in
either health and experience update of the user or a change in the object state. The health and
experience updates will be checked for an event of death or level-up. The animations regarding to

these game states will be initiated for the Multimedia Module to handle them.

(e) Visible Area Module
Visible Area Module will be responsible for cleaning up the old game data received from the
server as well as extracting the objects from the game data which are visible in the game-play

screen.

(f) Input Module
Input Module will be responsible for handling the inputs received from the user via
keyboard or mouse. For the mouse clicks it will queue the user input to be processed when a new
packet from the server arrives. In every loop it will update the force and the moment vectors of the

user with respect to the input received from mouse and keyboard.

(g) Stabilizer
The stabilizer will be responsible for stabilizing the user spaceship. It will try to balance the
force and moment vectors. This module will act like a booster to the opposite direction of the

movement of the ship.

(h) Physics Module

Physics module will calculate the next instance of the user objects with respect to their force
and moment vectors. This module will fetch all the external force vectors applying to user objects

and calculate the new force and moment vectors. The simple logic is shown in the diagram below.

F=Fx+Fy+Fz
M =Mx + My + Mz

Collision Force Vector = C
C=Cx+Cy+Cz

Resultant Vector = R
X - BE=F+C
\ R = (Fx+Cx) + (Fy+Cy) + (Fz+Cz)

e -
107 el
— Colli Resultant vector will be the new F

F=R

r is the position vector which is perpendicular to the center of gravity of the object.
M =Fxr where x is cross product.
Mx = Mx + Mcx where Mc=Cxr

My = My + Mcy
Mz=Mz+ Mcz

At every instance the X, y and z components of F and M will be calculated.

From the force vector the acceleration will be calculated and the coordinates of the next
instance will be determined. This can be formulated as follows;
F,=m. a, Fy=m.a, F,=m.a,

Ax=%.a,.t Ay=%.a,. ¢t Az=%.a,.t

The same approach can be used for the rotation amounts with respect to x, y and z
coordinates. Using the rotation vectors M., M, and M, the angle that one object has with respect to
the x, y, z coordinates can be formulated as follows;

1 = (M, / €) * 360 r, = (M, / c) * 360 r, = (M, / ¢) * 360

where cis a constant for determining a fair amount of degree to the coordinates which must

be a larger number than M values.

(i) Multimedia Module

Multimedia Module will handle both animation and sound events. Looking at the state of
one object it will send the regarding frame of that object to display module and increment the
frame by one at each loop. If there are no frames left to display in that state or a terminating
condition occurs to switch into another state it will also handle these situations too. At the very
beginning of animations it may call callback functions to produce sound or do any necessary
actions. For example when a user fires his/her laser the laser will not appear in the screen at that
instant. First an introductory animation will be played and then the laser itself will be created.
These are two different states which this module must have control over. While playing the
introductory animation for the laser an appropriate sound must be played as well. And it must last

for only the time interval of that animation.

(j) Display Module
Display Module is responsible for drawing everything that is visible to the screen. All the
drawable objects in the game data will be displayed with respect to its state and frame number.
These states and frame numbers will be controlled by the multimedia module. The only thing
display does is to draw these objects to the right places on the screen. This module will include
loading the objects(3ds), textures as well as making the appropriate adjustments of light, color and

blending for the user interfaces to seem in a more fashionable way.

4. Sequence Diagrams @

Game Network 0 v Netywork Decode
Engine Module Module Module
listen() 2 :) : :
L] receive() | !
decode() o
s mssms s ;
o : |
| | I :
Sequence Diagram
Network Database Spawn Point Visible Area Encode-Send
Decode Module Module Module
process_databage() ' : i :
o calculate_spawn_pt() : i
—calculate_vis_area(jw— :
encodel) |
‘ ___________

.- - - :
| |
I : :
g : : :

Sequence Diagram

Berke
Note
What is a sequence diagram?? Draw proper diagrams in final design report.

Sequience Diagram

clean()

|

S

send()

-

encode()

send()

|

e

uit / Timeout + Flush DB

areal(

Q

vis

calculate

encode()

4___________
.‘____________
Missi o
Module
SR

()

init_mission

Network
Decode

e

process_databage() |

g

Metwork
Decode

Sequence Diagram

5. E-R Diagram (&)

e —_ —— —_—

& ..__.‘\. e _"--._‘_\-\

(strusername str password

“--\'"“--___ _'___.---"" ool ____-"/
i int experience
(intuser_id) (a_ :
H\""-__ ___-—-“. —_— -

/
User @

ey e

R e i
o =, gl (" float stealth_health
lr\‘.lh Int SD'I'E—'Ld' F,/:I {m own) e B ___'_F_'_'___.-f—'__
S = i _'““-h-.\\
r\/ int ship_type int stealth_level)
- i -
e T J - _____‘\\
@ int user_id) 2 e
T— Ship —
—_— -t ____\--.\-‘
/a"'-- -\-H_""-.\ :]
(_ float health =

- ,
(_ float shield

O

o
-

[i int laser_level

(_ float laser_health % e T T
o T el .. (intmine_amount
{_int body_level) o e

In our database there are two entities. User entities has the primary key user_id which means every
user has a unique id. Second entity is ship with the primary key ship_id. Ship entity have a foreign
key user_id which gives the owner of the ship. These two entities have one-to-many relation

between each other. A user can own more than one ship in the database.

Berke
Note
We don't need this here =) Remember the good old database days...

Berke
Note
Where is the race of the user?

Berke
Note
Also Oral wondered about the NPC's here. Make a proper explanation about NPC states.

6. Graphical User Interfaces
i. Description of User Interfaces

The interfaces shown to the user will be ordered as follows:

2 Intro Animations
> Register / Login Screen
+ Race Selection Screen
+ Register Screen
- Player Hangar Screen
+ Buy Screen
+ Sell Screen
+ Mission Screen
> Loading Animation

> Gameplay Screen

The introduction animation of our company Dirty Pixel is the first screen in the game, then
another animation of Twilight will be shown to the user which includes the storyline and scenes

from the game.

The third screen is login screen for registered players which has a link to the registration
screen for unregistered users. In that screen registered users should choose a server IP and a server
port after entering username and password for login. The login button logs the user to the game.
Exit button is the exit point of the program when clicked the program terminates. After logging
into the system registered users directed to the loading screen. Register button directs the system to

the registration page.
Unregistered users pass to the registration screen where first a race selection screen
welcomes the player. A new user account created according to a unique username. Create account

button saves the username and password to the database of the server.

After clicking the register button user is directed to the race selection screen. In this screen

information about races will be given. On click of any of these races means a selection and the

username & password screen will then displayed.

The next step after choosing the race and username is buying the first spaceship for starting
the game. User chooses the spaceship according to the informations about the ships in the
spaceship buy page but he/she can buy a spaceship only if his/her money is enough for the selected
ship. The spaceship saved to the player account in the database when the buy button clicked. Game

is ready for loading for new user after selecting the spaceship.

Users spawn in their hangars which is in their HQ where they can repair or upgrade their
spaceship in exchange to their money. Buy spaceship screen opens when users want to repair and
upgrade their spaceship or buy a new spaceship by clicking the related place in the headquarter.

Sell spaceship screen opens when users need to sell spaceship to earn money for a specific purpose.

The special missions are also assigned in the headquarters of the users by the mission
screen. Mission screen appears when the user clicks the computer icon in the headquarter. User is

ready to play the game after login, settings and accepting the mission.

The game play screen shows all needed informations to the player. In the left side of the
screen the info of shield amount is given, on the right side the health info is given vertically. In the
bottom left side of the screen the map of the universe is placed. Player can see the fuel and speed
info in the bottom-center part of the game play screen. To the left of the fuel info the weapon type
and the amount of the shots is given. To the right of the speed info, the type and amount of the
mines are given. The chat screen is placed in the bottom-right part of the screen. Information
screens are designed in a compact way for giving a larger view to the player in game environment.

The sketches for the user interfaces can be found in the appendix.

ii. Use-Case Diagram

Can register to the system

Can login to the system

Can choose arace

Can buv a spaceship

Can upgrade repanr the spaceship

Can accept a mission

Can speed up/down the spaceship with W-8
buttons

Can turn right'left and look up/'dovwn with mouse
moves

\

- Can strafe left right with A-D buttons

Can increase/decrease the volume of sounds in
the game.

Can see the map @

User . : :
Can see the speed. fuel. health.shield and

weapon information of the spaceship

Can buy new spaceship

Hear various kinds of sound effects
according to events and weapons

Can exit from the system

The possible actions of the user is shown above. The actions are given in order. User

interface actions are followed by the game-play actions.

Berke
Note
Oral highlighted and question marked here.

iii. State Transition Diagram

User Click Tlser Click =y
Dirty Pixel Twilight Logo i s =
Z " or —> & B or —»| Login State =
1080 Skits ESC Button Sl ESC Button ' N
e
x %
Mission & .
. i d =0 e
Selection State S “F &
e e
! € X e
41&'4{; 3 "!"J‘*' § —
"l:'-?;r,-m J’.ﬁ:" : -y ,‘}'
&) i ; f{'l.“ rh".? ’:f,..
“Ba X ‘e \‘
A \
m—— ;
<— bxit Hangal ~_ ¥ Hangar State @ Race Selection
Game-play 1 1ang® State
\ - oy
State Ente f
— 2
OF = = £ o3
ol & a %]
SR L i ol [g ¢ o
el 4 C 0 W o
Al & = - b
¥ = = % 2
o Jed E m 3 vl
= < = £ % &
= Sell State / ¢ {
B S
Register State

Buy State

{

Invalid Username

)

Bought Item

This state transition diagram explains the flow of the game from the start. It's actually

explained above. These states will activate the regarding modules. But it gives an insight of

the actual flow of the game.

Berke
Note
We had hard time explaining Oral why we placed the race selection before username and password selection.

7. Classes

i. Class Diagrams

Cibject 5 Edfect [= & Cibject i; Spaceship
Effectfint carwer_icl, int sffactad i, char | Spacashiptint awner_id, int ship_id, char ship_type, int
affazt_typa): 5-:-wner_-.:ip=rience.- Eloaat 3, float 7, Float = Fleat B, fleat
woid Cisplay(1; IRp_. Tlcat Pz, fleat bealth, floath shisk, int bady_laval,
<har St EffactTypa |; ehar body_stats, char bedy_frmeint lssr_lavel, char
int CatEffactCawme |, {lamar_state, char lassr_frama, int rocket_leval, char
__il'l': at Erf-"flfd Usar(j: !w:k:t_;lale. char reckat_frame, int urret_level, char
;Il.1rr~=i;_sl=\|lvehI «har turrat_frameint minea_level, char
:mine_alaLe.d'wr mirez_frameint magret_level, dhar
!rmgn:t_-:lalq. <har magnet_frame,int stealth_level, char
Ir istealth_stab=, char stealth_frame |;
e Spaceshiplint owner_id, int ship_id, <bar ship_type, int
owner_sxperiencs, foat x, fleat y, ot =, fot Bz, float
oibjact] iFf}'. leat Pz, fleat bealib, fleat shisdd, it body_bevel, char
beol Tisplayatlal): :I:\:\d}'_;laIQ. <har bady_frame, int Jaser_level, char
abastrast vaid Tizplayi 1t :hser_:lal.q. «har lazer_frame, it w;:'l. <har
ik SatCwna 1 iw:het_;lnlq_. char mc}'.eI_F:anLg: ink I.l:lrr:t_l-:.'el. ohar
char SetObjectTyps I | !Il.lrnt_slal.e.d'urturr\el_Fram.q. ink mune_lzvel, char

Imiru:_;lan. «<har minz_frame, int magret_level, char
iwgn-.t_alnu.d'wr magnet_frame, ink stealth_level, char
(slealth_stats, char stealth_frame, char salscied _weapon,
ink reckest_ameunt, fleat recket_bealih, int
miina_armesnt, Meat mices_bealth, Neat laser_bealib, feat
tarrzt_health, int magnet_amount; fleat magoet_health,
mnk staalth_amunt, ot staslth_bealibl;

waid Displapdl;

Wartay GalCoardirakes];

vard St Coordinatas]Vartax datad;
Wartey GatForos];

wakd St Forcal Warkas dakad;
Wartax ZatRotatizng;

vard SatBatation]Varte: datad;
Warlax Gatbdamenti);

iw:-i".l. Satbdornant [Varta: datal;
;*:har izt felected Waapen(y

imid. St Salected Weapon(char weapon_typsh;
(vard ReduseSelscted Wanpon
iw:-id CanFirefelected Weapani);
:inl: G Ship Ll

Iu.lh;faveﬂh' [I.-as-et l Il:mriauﬂb'] ::.Rodlm T
I cellject o Button
il I (i InterfaceObject = B
Focketint ovwner_ul, int rocket_gl, ant rocket_life, chan | 3 = = = = = |
Laser (int ovener_gl, int beer_l, int bises_Efe, chir Inser_state, rocket_level, chas rocket_state, chas racket_frame, float x, Aoat v, Button(int x, int v, int width, int height, int text,
chas bser_Bevel, char laser_frame, float =, float ¥, float = float Iix, | ot z__m R, Aoat R}i_,_l'h'\u'lt Rzl . (o]) oo v wd 1)1
float Ry, flont Rz); vaid Disploik; vaid Dhsplayi b
waitl Dhaplarfh bool CheckColEmioniVithShip Oljact “ship, Vertex [bol CheckClick{int » int).
bool ChechCollissionWithShipd Object “ship, Vertex “collissionPainty: |m|:l CallFanctiont 1;
“collEsiomPoaint}:

Tatenfce Clgect & linnge Butboa |

| Iu!t_wl:'T!rl('eUlbiult = 300k ject | | Butbonu(ind =, dnt v, int widtl, int helght, int text,
I i i T - | o ;BlT[\.'IAP bitmag_off, BITMAP bitmap_om,
InterfweObject | | beollifuen tongvoidif:

IDCgectnt x, dnt v, DISPLAY_LIST |—._ . !“._.m Chisplay(k;

Addobject]: —] | ol ChechClickiint = int yl:

vold Dhsplay(h: IntetfaceObject(); | [voldl CallFsancioni J;

bol CheckClick{int = it vl; jabstract void Dicplag i I

[voic Ratatef); :lj;:“;;’hml ChekCiek| ot InterfaceObject :: Mission
void Select] };
vonl deselact{ 1)

I elissionding modssion_icd, char mdssion_tvpe);
. - | Mission{int ouwmer_id, int mission_id, char mission_type, chas
|T'=-T'=ﬁ"'l x ity sting | mission_stabel;
|br_1.l:|- | void Dhsplayil;
1

voul Displagi ; tchar GethissionStatel}:

il.mnl CheckClick int x, int :m.u SothissionState]);
'Er"J

ichas Gel}tl'nsiunTrpe[k
[InterfaceObject s Chat | | Interface Object 2 bline ! Iterfacebject s EBiitBox |
|C}mﬂming chat}: EM-‘ne fant ovener_iil, mt rodeee _gd, ant oane _Life, clag moene_state, ExlitBoximt =, it v, mt widih, it
|\.".'||l:| Dhsplavi =ch.1r mine_level, char mine_frame, float x, float v, float z, float |heigha);
| yie: e = e k
|sting “GarChatip: [P, Roat Ry, Aoat Raf: void Displayd 1
L imlcl DCHsplagih: Lo Clheck Clickfint x, int vl
il:uml Chec k ColEssioniVithShipi Object “ship, Vertex woid EnterChar|char ¢);
5'<ol|.|9§imIf1§int}_:_ | waid DebeteChaat b

Berke
Note
Question Mark?

Vertex

SpeaidBox

HealthBox

ShieldBox

it o, it g
weid Display()

Spesd Boxi CameTata “dats, int wser_id,

HaalthBox[SamaData "data, ink usar_id,
it 2, init g
weid Display()

Shialel Boo CanaTrata “data, it wser_id,
ink 3, dnt v,
waid Casplay(l

Sikntl Encodehtornl
wendekdodnle
Flsat ¥% 15 Ciecodeldodule Blusltizidia hModuale
Ebat .:.[:l_. Cazsi Dala
L‘f'-""‘:l':"m'-“rm}-' Cunadabdodulal i Enu:«.'.l;}.'!':-dl.ﬂ-{]. rllinadizselulal)
1= ultienadiabdedulal i
A S SrarkDacod i StartEreecd £
i algtring i PutH-n;i:::l[chnr Camaatail waid HandleSaundsCf All Shjects) CamaTata “data,
Ep i i c unj Uﬂib&!h}:ll,dt:laﬂ “cbijls int usar_id);
i i weid Upcatabiy Shipiobject
— int Catlng] 3 waid Putlntding datal; ik D
Dlatwovisras ':uing ECatSisng)) vaid FukStringlstring woid SalactFirstObjact])
| char St Char 1 datal; oot Sardibjact]) :
5 u Chassiza
o ﬁlmlc‘.at_Fb:t[J vaid PutCharichar daba:l.i. ikl Saleet My FisstClsgeetiint
tring *CatFasaiveTatal Objact “ZthyShipl) vaid FutFload(flzat datal; wizar_icl;
strin iveCatal); - 7 ST il
———— e e et Chject “CatblyFesiCljaeii Camscal SarnaCiata st
“data; _t"’:'-' A Spacahip *MyShipd 1; waid MoveZamanaTolsFacaSamalata *data,
r— m.rd. Futjectidatay; webd DidataDistantObjects [int int usar_id);
E firing *GetBulfer(l; ussar_icl;
Nﬂwvrllfllenl Chject Patuin by Farimstaiing
L&t S — i
i Missionbdodule Leeecia] El’l!clshvwmrl'lwllllr |
|Bstwark<Slisntting port, I = |
siring iph; Bissicobdcdulal i 5 5 T "
e R AT T Pr___pmmf\fmmm”. F——— void HarrdlaEFfects(Garnaliats *datnint user_id;
bved Sored Dtastring e Chack:Missice States] CameTuta “data, et wsee_id); e "M_E’I“d"’a exiencel Camelatd dal: ot
"datal; id Usar Accapshissi Diata “data, nt usar_id, i b
" ot i socaptilisionfaenabata Matm, dnt usar L 000 eoe rveid Haredlebdyhjeis GamesDnta “data,int
roiizzion_id]; Fhysicstdodulel i wazar_idl;
veid MesebdyOhlects[GameData *data, ink
user_idl;
Datakarahiodule wnid Chesck My CoordinatesGarne=Cata *data, Thmar
int user_jd I;
Databasaledulafstring ussrnama, siing paesward, string yeid T‘\'t.a.hjll:cr-.f}ahlp[GamDab. et Ik
et user_jdl; Tirnar [)
) dr i id HandlaAlMirnar Varialidas |
bl Check:validu i : i Vi
b-:ol.l"'h;I-"J:Iiiu::::::iinﬂ::::;:;ﬁiing T waid AddTimarVarhabling “variablz, float start_walua, fleat
civing pazsword); gl Hassl e an:laua:uq. I.nt1I|'r|zud_1'r:mvalclm' fure_twpa,
int st Mlew Usar[string wssnama, sieing paesword, string [rotethsnetionzold:
raca)
woid UsarEntarsdShipToHangar (SameTata “data, int wser_id, InputHandlar()
intship_id): statiz weid Kaybeard Upfchar kay, int 2, int ¥]; ClicnlLoo
22 i
id UsarBoughtitarn (ink usar_id, it ship_id, char el _id); static wodd Fayboard Downichar kay, ink 2, int ¥} ServerLoog i
[waid UsarSeldiern int usar_d, int ship_idchar eljeet_id]; statiz weid SpesialKeybeardUpichar kay, int =, int P e
kB ClizntLoopll
statiz weid SpecialKeyboard Dowenichar kiay, int x, Sarvarloop(; vaid MainLeoopl
it ¥ vaid MainLeocpil iint Dirty Presl LagaLeopll
statiz veid Passiveblousabdovalint x, it ¥ | E—— int TwilightLogoLeopl
;L’h-:mdu;sllr statiz weid Pousehove(in 2, int ¥ fink LeginScrean Loapd;
rid CreateHev Mpest@ameCats Collizion Trelection statiz weid MeuseThckint butten, .t bultan_stats, ink RagisterFoesnLoopll
sdntal; = inl x, ity iint Loading ScreenLoap(;
eid FrhrdIeN]:\:Eﬂru[GanuDam weid Handlakaybeard Input[SamaData *data, int ChatBox int
edntnl; CdlmmDekﬁcllm[:l_. sz _j]; : y z !.'-‘.ans;'r:le:tiﬂn:}:r\eml’.&:plfl_;
i srrnicHp e StatelGameDinta vaid Dratact AllCallissionst GamesTnta weid HandlaMewszInput[SamaData *data, ink : - =3 int HangarsmesnLoopll
“data); “daka,int ussr_id); s el P e iint Buy SersenLaopd;
bz : ANt ¥l int SellScreanLoapd;
weid HardleBpes(GameaCiats *data); maid Tasplay(] int i
waid SandChat). Miszicn FeleclicnScraenLon
waid EnterTharfchar <) Fili
o P P, | L Enndzay Dol i madd CraketaThar): int. Grmisplay Laopil;
. e EnamyCistailsi Gam=Dmin “dats, int
FuelBco Game=Taia “daka, int user_id, [zﬁ?ullrl:a?mq:::nx[‘:::;}]:nh it ke, |"19-"-"":"r Fioalie
int s, int ¥1; ok prisai] il i it Fired Sslactad Shipd;
id Tislasr]- Frentyli
paid il vaid Tisplap(l; |m IST:;T%: Ukzzrlntzrfacs{ EITMAP background);
A woid Activate] |
waid Cisplay(1
IapBox [Fm—r— SelectediVeapnnBos woid AddintarfamaObjectIntaface Chject “obj)
Islalu: waid KayboardUpichar bay, int x, int y);
Islalu: waid FaybaardDownizhar bay, int x int y)
F‘:PT*[?'“D“' data, int usar_id, ExparianceBo(SarmaData *data, int usar_id, Selectad Waipan Bau[SamaData “data, int usar_id, rlillﬂ woid Spacialkiaybeard Up(char kay, int 2, int
i Tt b ink 3, dnt ¥, it 2, il
vaid Displayi); fwaid 1:1-5'_-:1“.,;" |md Displayi; Llamc waid Spacialkiaybeard Cownlchar kay, dnt x,

|I|11: bun

Ltatic void Faszivabdcusahavaiing 2, ink ¥];

tatic waid Mousabdovafint =, int g
;lalic waid MousaClickling buttan, nit butien_stata,
link =, dnt ¥,

Berke
Note
Handle Npc effects ?
Handle Npcs ?

ii. Class Definitions

class Vertex {

}

Vertex(float x, float y, float z);
[* Initializes the vertex.
*/

float X();

float Y();

float Z();

class Object {

}

Object();

[* Initializes an object with default values.

¥/

bool Displayable();

/* Returns true if the object is a solid object with x,y and z coordinates and
should be drawn to the screen.

¥/

abstract void Display();

/* Draws the object by calling the corresponding display function.

¥/

int GetOwner();

[* Returns the owner of the object.

*/

char GetObjectType();

/* Returns the type of the object. It is either a ship, a particle, a mission or an
effect.

*/

intGetTimestamp();

/* Returns the time-stamp of the object.

*/

class NetworkServer {

NetworkServer(int port);
[* Initiates a thread to receive new connections and control their receives on
the specified port.

*/

string *GetReceivedData();

[* Returns the latest received data from anyone of the connected clients. The
client's thread gets ready to send message. Returns NULL if no data was
received.

*/

bool SendData(string *data);

[* Sends a data to the client that was received from. Cannot be called if no

receive was made.

*/

class NetworkClient {
NetworkClient(int port, string ip);

[* Initiates a thread to make a connection to the specified server. The thread
then gets ready to send message.

*/

string *GetReceivedData();

[* Returns the latest received data from the server. Returns NULL if no data
was received. Cannot be called before a send is made.

*/

bool SendData(string *data);

[* Sends the data to the client. The thread then waits for a receive.

*/

class DecodeModule {

DecodeModule();

/* Initializes the decode module class.

*/

StartDecode(string *data);

[* Initializes the pointer to the first object on the data.

*/

char GetHeader();

[* Gets the header of the received data. Moves the pointer to next data.
*/

int GetInt();

/* Gets an integer from the received data. Moves the pointer to next data.
*/

string &GetStringy();

/* Gets an integer from the received data. Then gets a string the length of the
integer received. Moves the pointer to next data.

*/

char GetChar();

/* Gets a char from the received data. Moves the pointer to next data.

¥/

float GetFloat();

/* Gets a float from the received data. Moves the pointer to next data.

*/

Object *GetObiject();

/* Gets an object from the received data and allocates a space for it by looking at the

type of the object and initializing it's corresponing class with the received values. The
pointer is incremented to the next object. Returns NULL if the end of the data is
reached.

¥/

class EncodeModule {
EncodeModule ();

[* Initializes the encode module class.

¥/

StartEncode();

/* Deletes the previous buffer if it exists. Makes the byte count zero.
*/

void PutHeader(char data);
/* Appends the header to the buffer.

¥/

void PutInt(int data);

/* Appends an integer to the buffer.
*/

void PutString(string data);

/* Appends the length of the string to the buffer. Then appends the string to
the buffer.

*/

void PutChar(char data);

/* Appends a char to the buffer.

¥/

void PutFloat(float data);

/* Appends a float to the buffer.

*/

void PutObject(data);

/* Encodes and appends an object to the buffer.
¥/

string *GetBuffer();

/* Gets the pointer of the encoded data.

*/

class DatabaseModule {
DatabaseModule(string username, string password, string host);

/* Creates a connection to the database.

*/

bool CheckValidUsername(string username);

[* Queries from the database if the username is available.

¥/

bool CheckValidUsernameAndPassword(string username, string password);

[* Queries from the database if the username and password is valid.

*/

int InsertNewUser (string username, string password, char race);

/* Inserts a new entry to the table with the provided arguments. Returns the

ID of the user provided by the database.
¥/

void UserEnteredShipToHangar(GameData *data, int user_id, int ship_id);

[* Finds the user in the database. Finds the ship's old state from the database
from the ship_id. Finds the ship's new state from the game data by the
user_id. Updates the data record to match the new state.

¥/

void UserBoughtltem(int user_id, int ship_id, char object_id);

/* Finds the user's ship from the database and adds the specified item to it. Decreases
the item's amount from the database. Decreases the user's credits according to the
item's price.

*/

void UserSoldItem(int user_id, int ship_id, char object_id);

/* Finds the user's ship from the database and removes the specified item from it.
Increases the item's amount in the database. Increases the user's credits according to
the item's price.

¥/

class GameData {

GameData();

/* Initializes the game data structure by putting NULL values.

¥/

void UpdateObject(Object *object);

/* Puts the object into the game data by updating the previous record or if there is not a
previous record inserts the object into the end of the game data.

¥/

void SelectFirstObject();

/* Sets the pointer to the first object in the data.

*/

Object *GetObiject();

/* Gets the pointed object and moves the pointer to the next object. Returns NULL if no
objects.

*/

void SelectMyFirstObject(int user_id);

/* Sets the pointer to the first object of the user.

¥/

Object *GetMyObject();

/* Gets the pointed object and moves the pointer to the next object of the user. Returns
NULL if no objects.

¥/

Spaceship *MyShip();

/* Returns the ship pointed by the game data.

*/

void DeleteDistantObjects(int user_id);

/* Deletes the objects that are too far from the user's ship.

¥/

Object *ReturnMyPerimeter(int user_id);
/* Allocates new objects for all of the objects in the game data that stay inside the

perimeter of the user. Returns the head of the linked list.

¥/

class MissionModule {

MissionModule();

[* Initializes the mission module.

*/

void PrepareNewMissions();

/* Puts new mission objects to it's list of available missions if it's required.

*/

void CheckMissionStates(GameData *data, int user_id);

/* Checks if the user's accepted mission's state has changed and update related Mission

object by changing its state if necessary. Delete the mission object if the mission is
failed or accomplished and the mission object has reached the user.

*/
void UserAcceptedMission(GameData *data, int user_id, int mission_id);
/* Prepare a mission object owned by the user and put it into the game_data.
Delete the corresponding mission from the list of available missions.
*/
}
class PhysicsModule {
PhysicsModule();
/* Initializes the physics module.
*/

void MoveMyObjects(GameData *data, int user_id);
[* Move all of the user's objects according to their Fx,Fy,Fz,Mx,My,Mz values and
update their x,y,z,Rx,Ry,Rz values.

*/

void CheckMyCoordinates(GameData *data, int user_id);

/* Check if the coordinates of the user's ship is inside the allowed boundaries of the
game. Create information instances accordingly.

*/

void StabilizeMyShip(GameData *data, int user_id);
/* Add or subtract from Mx,My,Mz,Fx,Fy,Fz values of the ship in a way creating a
stabilizer effect.

¥/

class MultimediaModule {
MultimediaModule();
/* Initializes multimedia module classs.
*/
void HandleSoundsOfAllObjects(GameData *data, int user_id);
/* Checks all of the objects to see if a sound is triggered in that animation frame. If a
sound is triggered starts playing that sound. If a sound does not exist in the specified

frame stops playing the sound. If a sound exists determines the pan and volume of
the sound by looking at the x,y,z,Rx,Ry,Rz coordinates of the camera and x,y,z
coordinates of the sound source.

¥/

class Camera {
Camera(GameData *data);

/* Initializes the camera to it's initial place by looking at the coordinates of
the spaceship.
*/
void MoveCameraToltsPlace(GameData *data, int user_id);
/* Moves the camera by looking at the current x,y,z values of the camera and by

deciding where it should be by looking at the x,y,z values of the spaceship of the user.
¥/

class CollissionDetection {
CollissionDetection();

/* Initialize collission detection class.

*/

void DetectAllCollissions(GameData *data, int user_id);

/* Create an outline of the user's ship and call collission detection function with all of

the game data that do not belong to the user. If there is a collission, allocate Effect
objects and put them into the game data.

¥/

class EffectsProcessorModule {

void HandleEffects(GameData *data, int user_id);

[* Finds the effects applied to the user and changes user's health, Mx, My, Mz, Fx, Fy, Fz
values accordingly. Doesn't delete these handled effects. Then finds the effects that
the user applied to the other users. Changes user's experience accordingly. Deletes
these effects from game data. Creates chat objects that have the user id as the owner
id if necessary.

*/

void HandleExperince(GameData *data, int user_id);

/* Checks if the user has leveled up. Creates information instances accordingly.
¥/

void HandleMyObjects(GameData *data, int user_id);

[* Increments frames of all of the user's animated objects. Decrements the life of

temporary objects like rockets, lasers. If the animation frame requires a callback such
as the firing of a weapon, the callback is made.

*/

class InputHandler {

}

InputHandler();
/* Initializes the input handler class.
*/

static void KeyboardUp(char key, int x, int y);

/* Called when a key is up.

¥/

static void KeyboardDown(char key, int x, int y);

/* Called when a key is down.

*/

static void SpecialKeyboardUp(int key, int x, int y);
/* Called when special keys are up.

¥/

static void SpecialKeyboardDown(int key, int x, int y);

/* Called when special keys are down.

*/

static void PassiveMouseMove(int x, int y);

/* Called when the mouse is moved. The change in mouse coordinates is saved.

¥/

static void MouseMove(int x, int y);

/* Called when the mouse is moved while a mouse button is pressed. The change in
mouse coordinates is saved.

¥/

static void MouseClick(int button, int button_state, int x, int y);

/* Called when the mouse is clicked. The button that is clicked is saved into a queue.

*/

void HandleKeyboardInput(GameData *data, int user_id);
/* The effects of the keyboard buttons that are currently down is applied to the ship's
Fx, Fy, Fz values.

*/

void HandleMouselnput(GameData *data, int user_id);

/* The change in the mouse coordinates are applied to the ship's Mx, My, Mz values.
The first click in the mouse click queue is applied if applicable.

*/

class Timer {

Timer();
[* Initializes the timer class and starts the first timer.
*/

AddTimerVariable(int *variable, float start_value, float end_value, int time_interval, char

func_type, (void *) function(void));

[* Adds a variable to the timer variable list which will be incremented/decremented
according to the func_type specified. The variable will start with the start_value and
end with the end_value. If the variable exceeds the end_value the specified function is
called.

*/

void HandleAllTimerVariables();
[* Handles all the declared timer variables and increments/decrements them according
to their properties.

*/
}
class InterfaceObject {
InterfaceObject();
/* Initializes an interface object.
*/

abstract void Display();

/* Displays the object on the screen.

¥/

abstract bool CheckClick(int x, int y);

/* Checks if the mouse clicked within the boundaries of the object.

*/

void Select();

[* Makes the object selected.
*/

void Deselect();

/* Deselects the object.

*/

}

class InterfaceObject :: EditBox {
EditBox(int x, int y, int width, int height);

/* Creates an edit box in the specified place.
*/

void Display();

/* Display the edit box on the screen.

¥/

bool CheckClick(int x, int y);

/* Checks if the mouse clicked within the boundaries of the object.
¥/

void EnterChar(char c);

/¥ Enter the char to the edit box.

*/

void DeleteChar();

/* Delete the last char in the edit box. Do nothing if edit box is empty.
*/

}

class InterfaceObject :: Text {
Text(int x, int y, string text);
/* Creates text in the specified place.
*/
void Display();

/* Display the text on the screen.

*/

bool CheckClick(int x, int y);
[* Returns false.

*/

}

class InterfaceObject :: Button {
Button (int x, int y, int width, int height, string text, (void) function());

/* Creates a button in the specified place.

¥/

void Display();

/* Display the button on the screen.

*/

bool CheckClick(int x, int y);

/* Checks if the mouse clicked within the boundaries of the object.
¥/

void CallFunction();
[* Call the callback function of the button.
*/

}

class InterfaceObject :: ImageButton {
Button (int x, int y, int width, int height, BITMAP bitmap_off, BITMAP bitmap_on, (void)
function());

/* Creates a button with an image on it in the specified place.

¥/

void Display();

/* Display the button on the screen.

*/

bool CheckClick(int x, int y);

/* Checks if the mouse clicked within the boundaries of the object.
¥/

void CallFunction();
[* Call the callback function of the button.
*/

}

class InterfaceObject :: 3DObject {
3DObject (int x, int y, DISPLAY_LIST 3dobject);
/* Creates a 3d object in the specified place.

*/

void Display();

/* Display the object on the screen.
¥/

bool CheckClick(int x, int y);
/* Returns false.

*/

void Rotate();
/* Rotate the 3d object 1 degree around z axis.
*/

}

class UserInterface {
UserInterface(BITMAP background);

/* Create a user interface with the specified background.
*/
void Activate();

/* Registers the display callback of the program to the display function and the
keyboard and mouse callbacks to the corresponding functions.

*/

void Display();

/* Draw the background and all of the interface objects added to the user interface.
¥/

void AddInterfaceObject(InterfaceObject *object);
/* Add the object to the user interface.

*/

static void KeyboardUp(char key, int x, int y);

/* Called when a key is up.

¥/

static void KeyboardDown(char key, int x, int y);
/* Called when a key is down.

*/

static void SpecialKeyboardUp(int key, int x, int y);
/* Called when special keys are up.

¥/

static void SpecialKeyboardDown(int key, int x, int y);

/* Called when special keys are down.

*/

static void PassiveMouseMove(int x, int y);

/* Called when the mouse is moved. The change in mouse coordinates is saved.

¥/

static void MouseMove(int x, int y);

/* Called when the mouse is moved while a mouse button is pressed. The change in
mouse coordinates is saved.

¥/

static void MouseClick(int button, int button_state, int x, int y);

/* Called when the mouse is clicked. The button that is clicked is saved into a queue.

*/

}

class Object :: Effect {
Effect(int owner_id, int effected_id, char effect_type);
/* Initializes the effect class.

*/

void Display();

/* Does nothing.

*/

char GetEffectType();

/* Returns the effect type.
*/

int GetEffectOwner();

/* Returns the effect owner.
*/

int GetEffectedUser();

[* Returns the effected user.
*/

class Object :: Spaceship {

Spaceship(int owner_id, int ship_id, char ship_type, int owner_experience, float x, float y,
float z, float Rx, float Ry, float Rz, float health, float shield, int body_level, char body_state, char
body_frame, int laser_level, char laser_state, char laser_frame, int rocket_level, char rocket_state,
char rocket_frame, int turret level, char turret_state, char turret frame, int mine_level, char
mine_state, char mine_frame, int magnet_level, char magnet_state, char magnet_frame, int
stealth_level, char stealth_state, char stealth_frame, char selected_weapon, int rocket_amount, float
rocket_health, int mine_amount, float mine_health, float laser_health, float turret_health, int
magnet_amount, float magnet_health, int stealth_amount, float stealth_health);

/* Initializes the spaceship with the given values.
*/

void Display();

/* Displays the ship and it's weapons.

¥/

Vertex GetCoordinates();

/* Gets the x, y and z coordinates of the ship.
*/

void SetCoordinates(Vertex data);

/* Sets the x, y and z coordinates of the ship.
*/

Vertex GetForce();

/* Gets the x, y and z force vectors of the ship.

*/

void SetForce(Vertex data);

/* Sets the x, y and z force vectors of the ship.

*/

Vertex GetRotation();

/* Gets the x, y and z rotation values of the ship.
*/

void SetRotation(Vertex data);

/* Sets the x, y and z rotation values of the ship.

*/

Vertex GetMoment();

/* Gets the x, y and z moment vectors of the ship.

*/

void SetMoment(Vertex data);

/* Sets the X, y and z moment vectors of the ship.

¥/

char GetSelectedWeapon();

[* Returns the selected weapon.

*/

void SetSelected Weapon(char weapon_type);

/* Sets the selected weapon.

¥/

void ReduceSelectedWeapon();

[* Reduces 1 from the amount of the selected weapon.
¥/

void CanFireSelectedWeapony();

/* Returns true if the selected weapon's amount is larger than 0.
¥/

int GetShipID();

[* Returns the ship's id.

*/

}

class Object :: Rocket {
Rocket(int owner_id, int rocket_id, int rocket_life, char rocket_level, char rocket_state, char
rocket_frame, float x, float y, float z, float Rx, float Ry, float Rz);

/* Initializes the rocket class.

*/

void Display();

/* Displays the rocket.

¥/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);

/* Detects the collission between the ship and the rocket and writes the collission point

to the vertex. Returns true if there is a collission, false if there is not. To optimize the
speed of collission detection the length between two objects is first checked.
*/
}

class Object :: Laser {
Laser (int owner_id, int laser_id, int laser_life, char laser_state, char laser_level, char
laser_frame, float x, float y, float z, float Rx, float Ry, float Rz);

/¥ Initializes the laser class.
*/

void Display();

/* Displays the laser.

*/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);

/* Detects the collission between the ship and the laser and writes the collission point to
the vertex. Returns true if there is a collission, false if there is not. To optimize the
speed of collission detection the length between two objects is first checked.

¥/

class Object :: Mine {
Mine (int owner_id, int mine_id, int mine_life, char mine_state, char mine_level, char
mine_frame, float x, float y, float z, float Rx, float Ry, float Rz);

/¥ Initializes the mine class.

¥/

void Display();

/* Displays the mine.

*/

bool CheckCollissionWithShip(Object *ship, Vertex *collissionPoint);

/* Detects the collission between the ship and the mine and writes the collission point to

the vertex. Returns true if there is a collission, false if there is not. To optimize the
speed of collission detection the length between two objects is first checked.

*/

class Object :: Mission {
Mission(int mission_id, char mission_type);

[* Initializes the mission. Called by the mission module when it is first created.
*/
Mission(int owner_id, int mission_id, char mission_type, char mission_state);
/* Initializes the mission. Called by the decode module when it is first created.
*/
void Display();
[* Does nothing.
*
/
char GetMissionState();
[* Returns the mission state.
*
/
char SetMissionState();
[* Sets the mission state.
*/

char GetMissionType();
/* Returns the mission type.

¥/

}

class Object :: Chat {
Chat(string chat);
/* Initializes the chat.
¥/

void Display();

/* Does nothing.

*/
string *GetChat();
[* Returns the chat string.
*/
}
class ChatBox {
ChatBox(GameData *data, int x, int y);
[* Creates a chat box in the specified coordinates.
*/
void Display();

}

/* Finds the chat object in the game data that has the owner id 0 and appends it to the
chat box buffer. Deletes the chat object. If send boolean is true the input buffer of the
chat box is created as a new chat object. Then the buffer is emptied. Then it displays
the chat box.

*/

void SendChat();

/* Sets a send boolean true to send the buffer on the first ProcessChat call.
*/

void EnterChar(char c);

/* Appends a char to the input buffer.

*/

void DeleteChar();

/* Deletes a char from the end of the input buffer. Nothing is done if the buffer is empty.

¥/

class MapBox {

}

MapBox(GameData *data, int user_id, int x, int y);

/* Creates a map box in the specified coordinates.
*/
void Display();

/* Displays the map box by displaying all the displayable objects as dots with
corresponding colors.

¥/

class HealthBox {

HealthBox(GameData *data, int user_id, int x, int y);

/* Creates a health box in the specified coordinates.
*/
void Display();

/* Displays the health of the user with the health box.
¥/

class ShieldBox {
ShieldBox(GameData *data, int user_id, int x, int y);

/* Creates a shield box in the specified coordinates.
*/

void Display();

/* Displays the shield of the user with the shield box.
¥/

class FuelBox {
FuelBox(GameData *data, int user_id, int x, int y);

/* Creates a fuel box in the specified coordinates.
¥/

void Display();

/* Displays the fuel of the user with the fuel box.
*/

class SpeedBox {
SpeedBox(GameData *data, int user_id, int x, int y);

/* Creates a speed box in the specified coordinates.
*/

void Display();

/* Displays the speed of the user with the speed box.
¥/

class SelectedWeaponBox {
Selected WeaponBox(GameData *data, int user_id, int x, int y);

/* Creates a selected weapon box in the specified coordinates.

¥/

void Display();

/* Displays the selected weapon of the user with the selected weapon box.
*/

class InformationBox {
InformationBox(int x, int y);

/* Creates an information box in the specified coordinates.

*/

void PutInformation(string info, int time, int priority);

/* Replaces the previous information if this information's priority is of higher value. If
no information exists the string is saved. If the same information exists updates it's
time value.

¥/

void Display();

/* Display the current information if it exists and decrease it's time value. If the time

}

value is beyond 0 delete the information.

¥/

class ExperienceBox {

}

ExperienceBox(GameData *data, int user_id, int x, int y);

/* Creates an experience box in the specified coordinates.
*/

void Display();

/* Display the experience box.

¥/

class EnemyDetails {

}

EnemyDetails(GameData *data, int user_id);

/¥ Initializes enemy details class.

¥/

int FindSelectedShip();

/* Apply 3d picking from center of the spaceship to the front of the spaceship. If there is
a ship it returns the ship's user id. This user id is also saved into a place. If there is
already the same user id saved it increments a counter which represents the number
of times this ship was spotted in front of the ship.

*/

bool Locked();

/* Returns true if the saved counter is more than a predetermined number.
Puts an information if locked.

*/

void Display();

/* If there is a selected ship displays it's properties around it.

*/

class ClientLoop {

ClientLoop();

/* Initializes the class.

*/

void MainLoop();

/* Coordinates the calling of the client loop functions.

¥/

int DirtyPixelLogoLoop();

/* Coordinates the displaying of the dirty pixel logo. Returns a message to the main

loop representing the ending state of the loop.

¥/

int TwilightLogoLoop();

/* Coordinates the displaying of the twilight logo. Returns a message to the main loop
representing the ending state of the loop.

*/

int LoginScreenLoop();

/* Coordinates the displaying of the login screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int RegisterScreenLoop();

/* Coordinates the displaying of the register screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int LoadingScreenLoop();

/* Coordinates the displaying of the loading screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int RaceSelectionScreenLoop();

/* Coordinates the displaying of the race selection scren. Returns a message to the main
loop representing the ending state of the loop.

*/

int HangarScreenLoop();

/* Coordinates the displaying of the hangar screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int BuyScreenLoop();

/* Coordinates the displaying of the buy screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int SellScreenLoop();

/* Coordinates the displaying of the sell screen. Returns a message to the main loop
representing the ending state of the loop.

*/

int MissionSelectionScreenLoop();

/* Coordinates the displaying of the mission selection screen. Returns a message to the
main loop representing the ending state of the loop.

*/

int GameplayLoop();

/* Coordinates the displaying of the game screen. Returns a message to the main loop
representing the ending state of the loop.

*/

class ServerLoop {
ServerLoop();
[* Initializes the server loop class.
*/
void MainLoop();
[* Coordinates the server loop.

*/

class AIModule {

AlModule();

/* Initializes the AI module class.

*/

void CreateNewNpcs(GameData *data);

[* Creates new npc characters if NPC count / PC count ratio is below some limit.
Assigns npc ids for each NPC.

*/

void HandleNpcEffects(GameData *data);

[* Handles the effects that are related to npcs.

*/

void DetermineNpcsState(GameData *data);

[* Determines the Al state for each NPC in the game data.

*/

void HandleNpcs(GameData *data);

/* Make the npcs move and shoot according to their states.
¥/

8. Testing Issues
i. Test Design
Since we haven't gained full insight of what must be done in test cases in all o our
modules we only designed a test case for the network modules which are nearly complete.
As we progress we'll design different test cases for the other modules of our
implementation.

ii. Test Cases

A scenario for the packet size:

Lets assume there are “n” players in the game visible area of the user.

And for the worst case lets assume that in every time increment all of the objects in the
universe are changing. A player will get the information of “n-1” other ships for this case
which is 128 bytes(14 int, 14 float, 16 char) and also information of his/her ship which is also
128. The total value for the whole information is 128 x n.

v Lets assume every player fired at most one weapon in the previous time increment (this is
an optimistic assumption). In this case there will be “n” ammaos flying in the universe. That
is n x 39 bytes(3 int, 3 char, 6 float) for any kind of weapon ammo.

v Lets also assume that every player received damage from a previous ammo released by a
player. For this case there must be 39 x n bytes for the ammos, since their animations are not
completed yet. There must be also “n” effect objects in the packet which counts 9 x n bytes(2
int, 1 char) more. Then a total of 48 x n bytes for this case.

v There is also 1 byte for the packet header.

Then assuming there are no NPC's in the visible area 215 x n bytes must be sent to a single user.

Assuming there are 10 players in the visible area the packet size is 2150 bytes = 2.1 kbytes
Then for a frame rate of 20 fps 2.1 x 20 = 42 kb's must be sent to the player in one second assuming

the scenario is always the same in that second(every player is firing a weapon and gots hit at the
same time).

Since the server will only send information about the objects which are visible to the user, (which is
another optimization to speed up the messaging) this calculations are realistic. For a war scene of
10 players and a scenario like this at least 0.5 mbits of an internet connection is needed.

This scenario can be tested by creating virtual packets (a dummy packet) of 2.1 kb's and sending
them to 10 clients at the same time.

9. Appendix
i. Model Spaceships

] spaceship1.max - Autodesk 3ds Max B - Unregistered VYersion - Trial Period

File Edit Tools Group Miews Create Modifiers Character reackor Animation Graph Edibors Rendering Cuskomize MAXScript Help

[P %% &P Ty ECiREUAR TH s adAn Tme s

=K m Pl AemT]
! | e
[Mot Lit -

= N+ 8 | =

Right

Ce=8|EFLt@PIORBED

< 0/100 >
. =] IWIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIII|I|IIIIIIIgﬂlIIIIIIII|IIIIIIIIIJIIIIIIIII|||||||III|IIIIIIIII$
L] &= 10 2 3 40 B0 0 80 50 100
I_ [More Selecte 8 [8] %[4087n vfoim 211350 | Gid=0,254m omp | 2100 Key||Selected] b | an 5] e e | O GB L GR
| [Updatedin 80 ms [Add Time Tag SetKey| J%, KepFiters.. | Wi |0 3| B |GG & e B

® spaceship2.max - Autodesk 3ds Max B - Unregistered Version - Trial Period

7 b, G 2 PEfe | U B & &
] FPerspective Perzpective A | B | [l
i dob
J— l -F-___
[
-
il
iV
I_
LLEft
(l
(2] 5] A T &
[4
© spaceship32.max - Autodesk 3ds Max B - Stand-alone License Q@
2 T) = || : ; [& 75
] Frant Perspective 7| H)| [
L] dob
Q =
Object Type
[
-
o Marne and Color
I_
Top
i
2] [v] B T,
0

Task Name

Week

Week

Week

Week

Week

Week

Week

Week

Week

Week
10

Week
11

Week
12

Week
13

Week
14

Week
15

Week
16

Week
17

Week
18

Week
19

Week
20

Week
21

Week
22

Week
23

Week
24

Game Concept
Development

* Storyline

* Gameplay design

* Interfaces design

* Sketching

* Objects design

* Objects modelling

Graphics Engine
Development

* Engine basics creation

* Displaying 3ds objects

* Displaying animations

* Displaying lights

Network Modules
Development

* Chat module

* Packet creation

* Packet parsing

* Packet transfer

* Send and Receive
modules

* Synchronization

Data Structures
Development

* Organization of data

* Encapsulation of data

* Database tables
creation

* Database interaction
classes

Artificial Intelligence
Development

* NPC design

* NPC behavior modelling

* NPC behavior
programming

Game Flow
Development

* Maps design

* Maps programming

* Quests design

* Quests programming

* Game flow
programming

Deployment and
Testing

* Deployment of classes

* Designing test cases

* Testing

