

Storyline

 In the year 2525 the prophecy of the Goths came
true and the galaxy Quasar appeared in the

middle of the universe…

 Goths ,highly religious humans, proclaimed that
the apocalypse was near…

 The war between Goths, Humans and a new
breed living in Quasar called Sylans began…

Twilight is a;

 Third Person,
 Sci-fi,
 Massively Multiplayer Online,
 Space Simulation Game.

General Features of Twilight

 Thrilling action
 Endless gameplay
 3 different races
 6 different ships
 Race-specific missions
 Experience and rank system
 Dynamic political stance
 Dynamic pricing

Thrilling Action

 In Twilight you become a pilot of one
of the three races and try to make
your way up as a commander.

 By upgrading your ship with the
experience and credits you gain in
your journey, you’ll have a chance to
defeat your vicious enemies.

Endless Gameplay

 Twilight has a consistent universe.
 Players log-in to the ongoing game

and log-off whenever they wish.
 When a player dies, he/she only

loses his/her ship. A player returns
back to the game by buying a new
ship or using a previously bought
one.

Three Different Races

 Humans: Neutral against the other races.
Ships have medium characteristics.

 Goths: Hostile against the Sylans and
neutral against humans. Ships have heavy
weapon power but light armor.

 Sylans: Hostile against Goths and neutral
against humans. Ships have heavy armor
but light weapon power.

6 Different Ships

 Light Fighter:
 Laser
 Mine
 Light Armor
 Very Fast

6 Different Ships

 Medium Fighter:
 Laser
 Rocket
 Mine
 Medium Armor
 Medium Speed

6 Different Ships

 Heavy Fighter:
 Laser
 Rocket
 Tesla Coil
 Heavy Armor
 Very Slow

6 Different Ships
 Scavenger:

 Laser
 Magnet
 Can pull leftovers of

another ship and other
ships as well

 Can sell the collected
particles in the hangar

 Heavy Armor
 Slow

6 Different Ships

 Demolition ship:
 Mine
 Stealth Generator
 Can demolish itself

causing great damage
 Can be invisible
 Medium Armor
 Medium Speed

6 Different Ships

 Transport Ship:
 Laser
 Can be used to

transport VIP in the
missions

 Very Light Armor
 Very Fast

Race-Specific Missions

 Players can select a mission from
their hangar.

 The selected missions varies
according to the player’s race,
experience and owned ship’s type.

 Missions grant experience points and
credits to the user.

Experience and Rank System

 Players gain experience points throughout
the game by destroying enemy ships and
by completing missions.

 Player’s rank increases according to
his/her experience points.

 New weapon upgrades will be available to
higher ranked players.

 The ship’s speed, armor and weapon
power increase with the player’s rank.

Dynamic Political Stance

 The races have two stances against each
other which are: Neutral and Enemy.

 These stances change dynamically when a
high ranked player selects a mission
requiring stance change.

 The stance neutralizes after the mission.
 Bonus experience can be gained by

destroying enemy ships.
 Headquarters will attack enemy ships on

sight.

Dynamic Pricing

 The prices of the ships and the
weapon upgrades change according
to the other players ships and
upgrades, creating some kind of
inflation.

 There are only a limited number of
ships and upgrades depending on the
number of current players.

Gameplay Features

 Simple physics engine
 Independent ship parts
 Dynamic third person camera
 Easy controls
 Hyperjump
 No need to save

Simple Physics Engine

 An object will be defined by it’s position
and rotation angles.

 A force acting on an object will change the
speed and the moment of the object in all
directions.

 The speed will be used to calculate the
next position and the moment will be used
to calculate the new rotation angles.

Independent Ship Parts

 In Twilight, ships consist of body and
weapons.

 This way upgrading a weapon will
change the appearance of the ship.

 Damage computation will be done for
all these parts, which means it will
be possible to blow up a weapon of
any ship.

Dynamic Third Person Camera

 Twilight will dynamically change the position of
the camera in gameplay.

 These changes will be defined by the speed,
rotation angle and external forces acting on the
ship.

 Faster speeds cause zoom out, while slower ones
cause zoom in to the user ship.

 An unexpected change in the resultant force(i.e
getting hit by a rocket) will also change the
camera position in a logical manner.

Easy Controls

 The gameplay will be controlled by mouse
and keyboard combinations.

 Strafe and accelaration will be controlled
by keyboard, whereas other directional
changes will be controlled by mouse.

 Controls are intended to simulate the
behaviour of spaceships moving in space.

Hyperjump

 If a player has enough hyperjump cells,
hyperjumping to another location in the
gigantic universe is possible.

 While hyperjump is animated to the user
there will be no packet transfer between
the server and the client. Client will
compute its own coordinates and inform
the server at the end of the hyperjump.

 This will create some sort of a warping
effect.

No Need To Save

 Exiting from the hangar will trigger a save
since users are able to buy, sell weapons
or repair their spaceships.

 When the user disconnects and logs-in the
last saved state will be loaded from the
server.

 If a user disconnects while the game is
running the last gained experience will be
lost since the game saves only in hangar.

Technical Features

 Networking

 Artificial Intelligence

 Graphics

 Sounds & Dynamic Music

Networking

 We will use TCP/IP protocol via
Winsock API for messaging between
server and the clients.

 We will take advantage of Windows
threads in both server and client
side.

 Our own encoding/decoding schema
will be used for messaging.

Networking – Server Side

 Server side will make the computations for NPC
creatures.

 There will be a huge game data in the server side
from which the necessary information for every
client will be fetched.

 Every received packet will be decoded and
updated to this huge game data.

 The packets to be sent will be encoded into our
packet prototype and sent to clients.

 No compression/decompression will be used.

Networking – Server Side

 Server side will calculate the active area for every
client and send only the updated and active
object informations to the clients.

 This will be achieved by simple boundary
checking and timestamping.

 Worst case analysis shows a packet size of 2.1
kilobytes for 10 players in active area.

 Server will also access a compact database of
users for saving the user state and log-in
purpose. We will use a mysql database and
mysql++ API for this purpose.

Networking – Client Side

 Clients will send very small packets to the server
regarding to their states.

 All the object positions belonging to a client will
be sent to the server as well as collision
informations.

 Every client is responsible for its own position
calculations.

 Every client is responsible for its own collision
detection. In case of a collision, suitable
information will be sent to the database which in
turn will be sent to the client of the collided
object for experiment gaining.

Networking - Synchronization

 Twilight networking principle is: “Fastest
Connection Survives”

 A new packet will be sent to clients whenever a
packet is received from that client. If the client
does not send its information, no information will
be returned by the server.

 This means if the client has a faster connection
than another client, its chance of winning a battle
increases since the information of the slower
client is only updated when a packet is received
by that user. This case; in turn, causes inevitable
death of a lagged client in a dog-fight.

Artificial Intelligence

 AI will be controlled by the server side.
 There will also be an experiencing &

ranking system for NPCs which will cause
a change into more complex AI states.

 We are planning to implement 4 different
AI states for NPCs which are Attack,
Defence, Neutral and Retreat.

 NPC creatures will be another race called
Eaons that are neutral creatures on which
the Sylans depend.

Graphics

 We will use OpenGL for graphics
rendering.

 For increased level of detail we will
implement segmentation for the surfaces.

 For modelling, 3DMAX will be used. We
are planning to implement our own 3DS
loader.

 For lighting we will use 2 different light
sources which will represent 2 suns in
space.

Sounds & Dynamic Music

 Direct-Sound API will be used for sounds
in Twilight.

 Animation states for the objects will also
trigger sound events in the game.

 We’re also planning to implement
transitions in music between aggressive
and normal states throughout the game.

 Also the game menus will be enriched by
music.

Team Members

 Anıl Yiğit Filiz (Project Leader)

 Berkehan Altınkaya

 Güneş Efe

 Derya Akpınar

Thank You

 Contact Us

dirtypixel.twilight@gmail.com

 Any Questions ?

