
Developer’s Manual
GOSOft

Page 1 of 12

 CENG 490
 Senior Project

“A 3D – Massively Multiplayer Online Game”
The Ma3e-3D

Developer’s Manual

by

Ömer Akyüz e1347079
Önder Babur e1347186
Süleyman Cincioğlu e1347277
Güneş Aluç e1462670

Developer’s Manual
GOSOft

Page 2 of 12

Table of Contents

1. Introduction .. 3
2. Architectural Overview .. 3
3. Enhancement on Client-Server Communication.. 4

3.1. Message Preparation ... 4
3.2. Integration into Client/Server Code .. 4

4. Room Scene Preparation .. 5
4.1. What is dotScene? ... 5
4.2. Room Structure ... 6
4.3. Types of Nodes.. 6
4.4. Media Archieve Structure ... 8
4.5. Material Scripting.. 8
4.6. Viewing Model Meshes .. 9
4.7. Quaternion Table... 9

5. Menu Preparation ... 9
6. Puzzle Deployment .. 10

6.1. Describing Objects .. 10
6.2. Enabling Player-Object Interaction... 11
6.3. Rule Processing ... 11

7. Conclusion and Future Work ... 12

Developer’s Manual
GOSOft

Page 3 of 12

1. Introduction

This document briefly outlines the steps that need to be taken for enhancing the
functionalities of the Ma3e and therefore should be treated as introductory material.
Some of the modifications presented in this document can easily be achieved by
developers familiar with Network Programming and XML. However, for advanced
upgrades, familiarity with OGRE-3D Software Development Environment is essential.

The Ma3e is developed and executed on the Windows XP (SP2) operating system. The
protocol specification and the format of the exchanged messages can be found in the
Final Design Report [1]. The graphical functionalities have been developed on top of
the OGRE-3D Graphics Engine. For further information, the developer is
recommended to consult its Application Programming Interface specifications [2].

The document proceeds as follows. First a brief overview of the architecture is given.
It is followed by a section that explains how modifications on the communication
(client-server) protocol can be made. The subsequent sections elaborate on graphical
modifications (scene and menu preparation). The “Puzzle Deployment” section
describes how new puzzles can be integrated into the game.

2. Architectural Overview

The main architecture of the game lies on the two distinct parts: Client Side and Server
Side. Client Side is responsible for the playing of the game on a single computer.
Server Side is responsible for the communication and synchronization of the players.

Architecture of the Client Side depends on the 3 main classes, ClientSideGameEngine,
GraphicsEngine and MyListener. ClientSideGameEngine is responsible for the
interaction of the game with server side. GraphicsEngine is responsible for the
rendering of the game. It uses some classes such as Scene which is responsible for the
rendering of a room. It also manages the menus in the game and the handles of these
menus. MyListener is responsible for the real-time I/O interaction of the game. It takes
the I/O messages and handles them.

The Server Side consists mainly of classes that are responsible for the underlying
Client-Server interaction (Message, MessageFactory, MessageResolver, Channel,
Connection); classes that represent the global game state (Cube, Room, Player,
Object) and finally the core (Server, Skeleton).

1 GOSOft, “The Ma3e – Final Design Report.” Online. Available:
http://senior.ceng.metu.edu.tr/2007/gosoft/documents/final_design_report.pdf
2 “OGRE: Documentation.” 09 March 2007. Online. Available:
http://www.ogre3d.org/index.php?option=com_content&task=view&id=407&Itemid=106

Developer’s Manual
GOSOft

Page 4 of 12

3. Enhancement on Client-Server Communication

3.1. Message Preparation

Messages make up the core of the client-server communication. “Message.h” and
“Message.cpp” contain the necessary implementation.

IMPORTANT: Both the client and the server should either access the same code
segments (“Message.h” / “Message.cpp”) or their exact copies.

The Message is a container class for all attributes (e.g. Identifier, Timestamp,
ChatMessage, GeometricVector, Position, Direction, etc.) that need to be conveyed
during client-server communication. If the developer decides to use any of these
building blocks to compose different messages, then he3 is encouraged to study the
implementation on his own.

While implementing new message types, the developer should modify the following
functions as to integrate the desired functionalities:

bool Message::fromBitStream (string bitstream);
string Message::toBitStream();

“fromBitStream” parses the incoming bitstream and constructs the corresponding
Message entity. If the bitstream has been parsed successfully then it should be
reported as “true” in its return value. “toBitStream” accomplishes just the opposite
task.

IMPORTANT: At all times, the developer is encouraged to consult the Final Design
Report [4] for more information on the design and the protocol specification.

3.2. Integration into Client/Server Code

On the server side, the following classes are responsible for interaction with the
communication backbone:

• MessageResolver.h
• MessageFactory.h

As the name implies, “MessageResolver.h” processes and categorizes an incoming
message and invokes the relevant methods that make the necessary changes in the
global game state. It is important to realize that some messages such as MOVEMENT
and OBJECT_STATE need also be distributed to other players in the room. This
functionality is implemented within the MessageResolver.

3 All references of the pronoun refer to third persons without bias towards a specific gender.
4 GOSOft, “The Ma3e – Final Design Report.” Online. Available:
http://senior.ceng.metu.edu.tr/2007/gosoft/documents/final_design_report.pdf

Developer’s Manual
GOSOft

Page 5 of 12

“MessageFactory.h” contains the static methods that generate different types of
messages from various user arguments. The return types of each function within the
MessageFactory class are Message entities.

Similarly on the client side, the following classes/functions accomplish the similar
tasks:

• MessageTransmitter.h
• MessageTransmitter.cpp
• ClientGameEngine.cpp (DWORD WINAPI getMessages(LPVOID n))

The MessageTransmitter class enables the client machine to seamlessly send messages
to the server. The server then takes on the job of distribution of the messages to other
client machines.

The “getMessages” function within the ClientGameEngine acts as a separate thread for
listening to all messages coming from the server. These messages imply changes in the
local game state and therefore the relevant functions of the Graphics Engine are called.

IMPORTANT: Due to its multi-threaded nature, care has to be taken when the
getMessages function modifies a local game state parameter while the Graphics
Engine is constantly seeking for changes within the local game state. Appropriately
assigning critical sections and enabling state modification only through function calls
was the method taken during development.

The developer should be cautious as to make the necessary modifications in these
integration classes/functions whenever a new message type is to be implemented.

4. Room Scene Preparation

4.1. What is dotScene?

DotScene is the XML representation of the 3d scene to be loaded by Ogre3D Engine.
The complete syntax can be found in ‘dotscene.dtd’ in the folder ‘documents’. The
specific structure to be used by The Maze is as follows:

<scene id=....>

<environment>
<colourAmbient r="?" g="?" b="?" a="?" />
<colourBackground r="0" g="0" b="0" a="1" />

</environment>
<nodes>

<node name=“Players” id=”999”>
** CANNOT HAVE ANY CHILDREN**

</node>
<node name=”NonCollisionObjects” id=”333”>

** light Nodes**
** plane Nodes (walls)**

</node>
<node name=’CollisionObjects’ id=”666”>

Developer’s Manual
GOSOft

Page 6 of 12

** object Nodes**
</node>

</nodes>
</scene>

4.2. Room Structure

Rooms should have specific boundaries. In terms of world coordinates:

• upVector of the camera : +y axis
• ground : xz plane at y=0 where x in [-1500, +1500], z in [-1500, +1500].
• ceiling : xz plane at y=1500 where x in [-1500, +1500], z in [-1500, +1500].

Initial placement of the camera is static, and looks at the direction of –z.

4.3. Types of Nodes

There are mainly three types of nodes, light, plane and object nodes.

Light Nodes

These represent light in the scene. The schema and an example instance are as follows:

<!ELEMENT light (position?, normal?, colourDiffuse?, colourSpecular?, lightRange?,
lightAttenuation?, userDataReference?)>

<!ATTLIST light

name CDATA #IMPLIED
id ID #IMPLIED
type (point | directional | spot | radPoint) "point"
visible (true | false) "true"
castShadows (true | false) "true"

>

<node name="LightNode" id="0">

<light name="Light1" id="1" type="point" visible="true">
<position x="0" y="500" z="0" />
<lightAttenuation range="8000" constant="1" linear="0" quadratic="0"
/>
<colourDiffuse r="1.0" g="1.0" b="1.0" a="1" />
<colourSpecular r="0" g="0" b="1" a="1" />

</light>
</node>

Plane Nodes

These represent static planes(walls) with textures. The schema and an example
instance are as follows:

Developer’s Manual
GOSOft

Page 7 of 12

<!ELEMENT plane (normal, upVector?, vertexBuffer?, indexBuffer?)>
<!ATTLIST plane

name CDATA #REQUIRED
id ID #IMPLIED
distance CDATA #REQUIRED
width CDATA #REQUIRED
height CDATA #REQUIRED
xSegments CDATA #DEFAULT "1"
ySegments CDATA #DEFAULT "1"
numTexCoordSets CDATA #DEFAULT "1"
uTile CDATA #DEFAULT "1"
vTile CDATA #DEFAULT "1"
material CDATA #IMPLIED
normals (true | false) "true"

>
<node name="groundNode" id="20">

<plane name="ground" id = "21" distance="0" width="3000" height="3000"
xSegments="20" ySegments="20" numTexCoordSets="1" uTile="5" vTile="5"
material="PrairieWind" normals="true">

<normal x="0" y="1" z="0" />
<upVector x="0" y="0" z="1" />

</plane>
</node>

The coordinates are probably not subject to any change. The important part is related
with textures:

• uTile: how many times the texture is multiplied in u dimension.
• vTile: how many times the texture is multiplied in v dimension.
• material: the name of the material applied to the wall

Material scripting is explained later in the section 4.5.

Object Nodes

These represent static/dynamic object entities displayed my model meshes. The
schema and an example instance are as follows:

<!ELEMENT entity (vertexBuffer?, indexBuffer?, userDataReference?)>
<!ATTLIST entity

name CDATA #IMPLIED
id ID #IMPLIED
meshFile CDATA #REQUIRED
materialFile CDATA #IMPLIED
static (true | false) "false"
castShadows (true | false) "true"

>

Developer’s Manual
GOSOft

Page 8 of 12

<node name="dragonNode" id="39">
<position x="250" y="400" z="-500" />
<rotation qx="0" qy="1" qz="0" qw="0.000796274" />
<scale x="3" y="3" z="3" />
<entity name="dragonEntity" id="77" meshFile="dragon.mesh" static="false"

/>
</node>

The elements are explained as follows:

• position: x-y-z coordinate
• rotation: Quaternion representing the orientation (see table at section 4.7,

Quaternion Table)
• scale: multiplier in x-y-z dimensions
• meshFile: name of the model mesh file

4.4. Media Archieve Structure

The media archieve is found under ‘media’ folder, and classifies the files such that:
• media

o models: mesh files
o materials

 textures: image files used by material scripts
 scripts: material scripts used by our nodes

4.5. Material Scripting

When you want to use a texture image, you have to write the corresponding script file
for it. It is suggested to add the script in the file ‘NewMaterials.material’ under
/media/materials/scripts. A sample material file is as follows:

material PrairieWind
{

technique
{

pass
{

texture_unit
{

texture PrairieWind
scale 0.5 0.5

}
}

}
}

Developer’s Manual
GOSOft

Page 9 of 12

4.6. Viewing Model Meshes
To view the meshes in the media archieve, you can use ShowMesh program under the
folder:

\ma3e\490.2007\gosoft\tools\ShowMesh

4.7. Quaternion Table

Rotation around +y axis:

Rotation
amount

qx

qy

qz

qw

PI/4 0 0.3825 0 0.923956
PI/2 0 0.706825 0 0.707388
3PI/4 0 0.923651 0 0.383235
PI 0 1 0 0.000796274
5PI/4 0 0.92426 0 -0.381764
3PI/2 0 0.707951 0 -0.706262
7PI/4 0 0.383971 0 -0.923345

Copy-paste these values to achieve that much of a rotation.

5. Menu Preparation

Menus in the game are prepared through an XML file which is loaded to the game in
the beginning. For the time being there are 3 menus in the game: Main Menu, Game
Menu and Object Menu. Main menu is displayed in the beginning and inside the game
when the game is paused. Game Menu is displayed through the game. Object Menu is
displayed when a selectable object is selected. It shows the actions of the object. Main
Menu and Game Menus are stable but new Object Menus can be added to the game.
The menus in the game are handled by making the active menu visible and other
menus invisible.

You can find a layout of our menu file(XML file) below:

<?xml version="1.0" ?>
- <GUILayout>
- <Window Type="DefaultGUISheet" Name="MainMenu">
- <Window Type="DefaultGUISheet" Name="debug_overlay">
 <Property Name="AlwaysOnTop" Value="True" />
 <Property Name="Disabled" Value="True" />
 </Window>

- <Window Type="DefaultGUISheet" Name="OpenMenu">
 <Property Name="RelativeMaxSize" Value="w:1 h:2" />
 <Property Name="Size" Value="w:1 h:2" />
 <Property Name="Visible" Value="True" />
- <Window Type="TaharezLook/FrameWindow"

Name="OpenMenu/MainWin">

Developer’s Manual
GOSOft

Page 10 of 12

 <Property Name="Position" Value="x:0.4 y:0.1" />
 <Property Name="RelativeMaxSize" Value="w:0.23 h:0.43" />
 <Property Name="RelativeMinSize" Value="w:0.23 h:0.43" />
 <Property Name="Size" Value="w:0.23 h:0.43" />
 <Property Name="Text" Value="Main Menu" />
 <Property Name="Alpha" Value="0.75" />
 <Property Name="CloseButtonEnabled" Value="False" />
- <Window Type="TaharezLook/Button" Name="ResumeGame">
 <Property Name="Position" Value="x:0.25 y:0.2" />
 <Property Name="RelativeMaxSize" Value="w:0.12 h:0.04" />
 <Property Name="RelativeMinSize" Value="w:0.12 h:0.04" />
 <Property Name="Size" Value="w:0.33 h:0.04" />
 <Property Name="Text" Value="Play Game" />
 <Property Name="InheritsAlpha" Value="False" />
 </Window>
 </Window>
 </Window>
 </Window>
 </GUILayout>

The example above shows the layout of a menu called Open Menu with one button:
Resume Game. You can adjust some properties of the menu like size, position or text
via this XML file format.

6. Puzzle Deployment

The interaction of players with objects in the room and the rules that determine how
the states of objects interrelate constitute the puzzles in the Ma3e. It is assumed that
every object has a current state and that the state of objects can be manipulated either
by player interaction or by the consequence of rule application.

Within this respect, we may categorize the implementation into classes that are
responsible for:

o describing what to do when an object is in a certain state,
o communication-wise, enabling the player-object interaction to take place,
o checking the current states of objects in the rooms and applying the predefined

rules.

6.1. Describing Objects

A new object can be registered into the framework by implementing the header and
body classes that extend the Object class. It is necessary and sufficient to override the
following methods of inherited from the Object class:

o *constructor* (string id, int roomID);
o virtual void performAction (string actionName);
o virtual void drawState ();

Developer’s Manual
GOSOft

Page 11 of 12

Every object has an id and every object must be placed in a room. The constructor
enables an instance of this object to be generated depending on these two parameters.

When the client application receives a message indicating a player-object interaction,
the performAction method is called with the actionName parameter. For instance, the
TURN-ON action on a switch that has a current state of OFF causes it to change its
state to ON. The function should be implemented such that this functionality is
achieved.

Finally, the drawState method interacts with the Graphics Engine such that the current
state of the object is drawn.

IMPORTANT: The developer is strongly encouraged to study the code in Object.h
and Object.cpp before implementing a new object.

IMPORTANT: Objects are registered into the Graphics Engine inside the bool
GraphicsEngine::setup (void) function. The developer is encouraged to study the
current implementation for a better understanding.

6.2. Enabling Player-Object Interaction

The Player-Object interaction takes place whenever a player picks an object and
selects an appropriate action to be performed from the pop-up menu.

The Message that enables this information to be communicated among the hosts is the
OBJECT_STATE message. It carries the:

o object ID,
o current object state,
o room ID (in which the object is located),
o an additional parameter to be used on future extensions,
o and a timestamp.

It is very likely that developers will not need to modify this message structure,
therefore further details are avoided.

6.3. Rule Processing
Whenever a client sends to the server an OBJECT_STATE message, the server
records the latest state of the object. Please note that in the server side, only “Object.h”
and “Object.cpp” are present. Inherited classes are not included. The reason is that the
server does not need to know anything about the implementation details specific to a
given object. The server is only interested in the state of the objects.

IMPORTANT: “Object.h” and “Object.cpp” on the server-side are different from their
complements on the client-side. The developer is strongly encouraged to study the
difference on his own.

The Room::resolveObjectState (string objectID, string state) method is responsible for
processing and incoming OBJECT_STATE message. The state of the object is

Developer’s Manual
GOSOft

Page 12 of 12

recorded and then the Rule Engine is invoked to see if any rules are now applicable.
The Rule Engine is implemented by the static functions within “RuleResolver.h”.

IMPORTANT: For integrating other rules, it is necessary and sufficient that the
developer modifies the static void applyRules (Room * room) function of
RuleResolver.

IMPORTANT: Objects are registered into the global game state of the server inside
void Cube::generateAllObjects (). The developer is encouraged to study the current
implementation for a better understanding.

7. Conclusion and Future Work

When we first start the project we have many goals and challenges for the project. We
accomplished some of them and we failed some of them due to some reasons,
especially the insufficient time is the main reason for the points we couldn’t finish.
Let’s go over the some points of the project.

The main server and client properties are accomplished. The server can take a load of
100 players. The game can be played with many players synchronously. The actions of
any player can be viewed by the other players simultaneously.

The main 3D rendering and visualization is accomplished. We have lots of 3D models.
And the rendering quality of the scene is very high. FPS in a scene is between 50 and
70 which are very desirable.

The database feature is not implemented due to time reasons, so we don’t take the
records of the players and we don’t do any authentication. Before the players get into
the game, they adjust the properties of the player by the Ma3eClient.config, then get
into the game by Ma3eClient.exe.

Puzzles are implemented partly in the game. Due to time reasons we couldn’t prepare
as many puzzles as we wanted. Also lack of good 3d models is a reason. We aimed to
implement the puzzles via XML file, but for the time being the puzzles in the game are
implemented partly by XML file, partly by hard-coded. But we have the enough
infrastructures to implement all the puzzles in XML format.

Menus are also implemented successfully. All the menus are implemented. But new
object menus can be added when new puzzles are added.

Room preparation is accomplished successfully. All the rooms in the game are
implemented via XML files.

As you see most of the goals in the project are achieved. Lack of many puzzles and
database interaction are the main flaw of our game, but new puzzles, menus and rooms
can be added to the game without changing the architecture.

