
CENG 490
Senior Project

“A 3D – Massively Multiplayer Online Game”

Requirements Analysis Report

by

Ömer Akyüz e1347079
Önder Babur e1347186
Süleyman Cincioğlu e1347277
Güneş Aluç e1462670

Page 1 of 47

Table of Contents

Table of Contents
1 Introduction...4

1.1 Overview... 4
1.2 Project Definition.. 4
1.3 Project Scope...5
1.4 Goals and Challenges.. 6

2 The Process... 8
2.1 Process Model... 8
2.2 Team Organization.. 8
2.3 Major Constraints.. 8

3 Research.. 10
3.1 Market Analysis.. 10
3.2 Technical Research..11

3.2.1 Network... 11
3.2.1.1 Overview..11
3.2.1.2 Available Models... 12

3.2.2 Graphics...14
3.2.3 Artificial Intelligence...15
3.2.4 Game Engine... 17

3.3 Interviews.. 18
4 Project Requirements.. 19

4.1 Functional Requirements...19
4.1.1 Overview..19
4.1.2 Menu Requirements...19
4.1.3 Game Flow Requirements... 21
4.1.4 Operational and Structural Requirements..22

4.2 Software Requirements... 24
4.2.1 Overview..24
4.2.2 Game State Consistency.. 25
4.2.3 Node-to-node interaction...26
4.2.4 Client Side Processing Speed.. 27

4.3 Hardware Requirements.. 28
4.4 Non-Functional Requirements.. 28

5 System Analysis..29
5.1 Data Flow Diagrams..29

5.1.1 Level:0 DFD.. 29
5.1.2 Level:1 DFD “Game”..30
5.1.3 Level:2 DFD “Server Game Engine”.. 31
5.1.4 Level:2 DFD “Client Game Engine”...32

5.2 Use Case Diagrams... 33
5.2.1 Game Play Use Case..33

Page 2 of 47

5.2.2 AI Player Game Playing Use Case.. 34
5.2.3 Login Use Case..35
5.2.4 Menu Interface Use Case...35
5.2.5 Chat Use Case..36

6 Project Schedule..37
7 Risk Management... 38

7.1 Project Risks..38
7.2 Risk Table..39
7.3 Overview of RMMM...39

8 Software Quality Plan... 41
Appendix..42
References..46

Page 3 of 47

1 Introduction

1.1 Overview

This report provides an insight into the requirements analysis phase GOSOft went through for the “A
Massively Multi-player Online Game with 3D Graphics” project topic. Initially the group members
made some brainstorming to come up with a creative idea as to how the topic could be turned into a
working product. After all, creativity plays an essential role in game development. Later on, the group
members conducted a thorough research on the topic, including market analysis as well as some
technical research. A brief summary of the useful information obtained during the research stage can be
found in the relevant sections of the report.

The research data left the group members with several engineering problems to solve and decisions to
make. Implementing a 3D-MMOG game consists of integrating various components such as Network,
Game Engine, Computer Graphics and Artificial Intelligence. There are various methods to follow in
implementing each of the four components. Consequently there are also some trade-offs to preferring
one to the other. What the group did – which is presented more formally in this report – was first to
determine the requirements that must be satisfied for a functional product. Besides its technical aspects,
social (user friendliness) and economic (the MMOG market) factors were also taken into consideration
while determining the requirements. Later on, the group members combined the research data with
some of the requirements criteria to come up with some very vague design guidelines. They can also be
found in this report.

The requirements analysis efforts were supported by several formal methods such as drawing Use-Case
Diagrams and Data-Flow Diagrams. These can also be considered as preparatory efforts for the design
phase. Additionally some risk management and quality assurance criteria as well as the process model
have been set and agreed upon to lead to a smoother development process.

1.2 Project Definition

For our senior project, we will be implementing a 3D Massively Multi-player Online Game that is
capable of simultaneously supporting hundreds of online players. The current Massively Multi player
Online Game (MMOG) market is dominated by Role Playing Game (RPG) and First-Person Shooter
(FPS) games. There are also a few examples of strategy games in this field. Since implementing multi
player online games in a 3D environment is a difficult task, the examples of 3D MMOG games are
limited, most of them being commercial. The reason why MMOGs have become so popular is that a
person can play this game with other people and even his/her friends interactively. The 3D feature is an
add-on to the environment. In this market, creative ideas are more likely to survive since they have a
capability of leaving a stronger impact. We believe that our idea, whose details are provided below, is
innovative in this respect, especially regarding the standard approaches.

Page 4 of 47

The game to be implemented in this project should be capable of supporting more than a hundred
online players simultaneously. This implies that a strong network architecture is essential for a working
product. Thus, before proceeding with any design procedure, an in-depth analysis of existing
architectures is essential.

Furthermore, the online players in the game are expected to interact with each other. This is actually
the key point in producing a game that can attract a large number of people. For this purpose, the game
should provide facilities in which one player's action should affect others'. However, the desired
condition is that the scenario or the concept of the game forces the players to interact. Although, it is
true that the server will suffer from this functionality, as it is a necessity, it cannot be neglected.

The game will be played in a 3D atmosphere that is rendered as realistic as possible. A good network
architecture that separates graphics rendering from the game engine, or equivalently in this case the
client module from the server, allows high-quality 3D graphics to be created and to be played without
much of a network concern.

Although our initial view is that its integration to our game scenario will be difficult, the role of
Artificial Intelligence cannot be neglected. Unlike in strategy games, our game – whose scenario details
are given next – does not contain a solid set of rules that can guide the AI unit in resolving its search
tree. The game to be implemented is mainly based on puzzle solving and for the AI player to become a
part of it, some relations should exist between the puzzles. In reality they do not and this is the difficult
part. To overcome this difficulty, the puzzles will be associated with each other by ontology mappings.

1.3 Project Scope

For this project, our goal is to implement an adventure game from the first person's point of view. The
game scenario is based on the movie “The Cube1” in which the actors are trying to get out of a very
large cube shaped building consisting of n*n*n – k rooms. The rooms are also cube shaped and they
are similar in view. Furthermore, on regular intervals, the rooms in the construction change their
absolute position inside the cube.

The primary goal of the players in the game is to eventually get out of the cube. This, as one might
guess, is not an easy task. The rooms are filled with tricks, booby-traps and several puzzles to solve.
Even if the players are very close to the exit location, just before they move out of the room, that
room's absolute position might change. In our opinion, this will add some flavor into the game.

To safely move from one room to the other, the players need to collaboratively solve the predefined
puzzles. It is different from the original movie in this respect. After all, in the movie, the actors try to
avoid the booby-traps by solving the puzzles. On the contrary, in our scenario, the players unlock the
doors by solving the puzzles. Of course, not all actions performed by the players lead to a solution.
Additionally sometimes the actions that are performed might harm the players, thus they need to be
very careful.

The puzzles can be solved directly or indirectly interacting with the objects in the environment.

1 Cube. Natali, Vincenzo. Movie. http://www.imdb.com/title/tt0123755/

Page 5 of 47

Therefore, exchange of ideas between the players becomes very crucial at this point. By direct
interaction we mean actions such as clicking on a wall item, using an object from the object inventory
and various combinations of each. Indirect interaction refers to the personal experience gained in
interacting with the environment objects. For example, there might be a written text on the wall that has
clues as to how the puzzle for that room (or for some other room) can be solved. When a puzzle is
solved, the players will be able to move to a different room. Although the players may prefer moving in
groups, such a restriction is not imposed. Therefore, they might leave others behind. When they move
inside the cube, the players will either encounter rooms with other players or some empty rooms.

As in almost every game, there will be some artificial intelligence present. However it will be
implemented in a different way. In almost every occupied room there will be some (one or two, usually
one) AI players present. They will mainly be moving with the group and performing actions together
with them. The key role of the AI player will be to assist the other players in solving the puzzles. The
AI players will usually have some background experience. After all, they will have moved with
different people that have solved various puzzles. As the puzzles are solved, the AI players will learn
from the actions that led to the solution. For this purpose, several predicate clauses will be associated
with each of the actions that can be performed. As the AI player's search tree grows wider and deeper,
it will be able to come up with better suggestions as to how the puzzle in the current room can be
solved. Therefore, it will assess the objects and the actions that can be performed on these objects and
later on evaluate its search tree to find if anything similar matches. The AI player can make a
suggestion through the chat functionality or by answering questions asked by other players, a technique
known as “interrogation”.

We now provide an example room definition to enhance the understanding of the game scenario.
Suppose in one of the rooms there are four water valves that can each be turned on and off. Embodied
under the valves, there exist four rectangular prism shaped cups and below them four drawers. On their
own, the drawers are locked. The condition for unlocking the drawers is to make the cup above it filled
with water and to leave all the other three empty. There is no other possible way of opening the
drawers. The players will see a key in each of the drawers that they can use for unlocking the doors of
the room. At this stage, the AI player can make the suggestion of emptying out some of the drawers
through interrogation or if the players are lucky by some public chat message. This is just a simple
example showing how a room can be like. Rooms can contain more than one puzzle and even booby-
traps. Thus, deaths are inevitable. Fortunately though, when a player dies, she or he has the chance to
continue playing, but in another room.

1.4 Goals and Challenges

Within the scope of the project the general goals can be classified as follows:

● Maintaining the game-state consistent,
● Ordering the events,
● Increasing interactive responsiveness,
● Providing realistic rendering of 3D components,
● Integrating artificial intelligence into the game.

Page 6 of 47

The above functionalities can be used in setting up the roadmap for developing the MMOG for the
senior project. Other goals are also present, but we will just provide them as challenges. In our design
we will try to leave some open doors to the following items:

● Displaying animations,
● Scheduling computations across players,
● Providing authentication/authorization mechanisms,
● Implementing a cheat-proof design.

Page 7 of 47

2 The Process

2.1 Process Model

Regarding the time constraints dictated on the project, it is essential to adopt a robust software process
model. Hence, the waterfall model seems most suitable for the project with its linear sequential
structure meeting the deadlines of the project phases, and its high reliability. But since a prototype of
the product is expected right after the design phase, without thorough test and documentation concerns,
the fixed structure of the model has to be disturbed in order to achieve the construction of the
prototype. The modified model has the implementation phase with the initial construction of a working
prototype at the beginning, meeting with the minimal requirements and integration concerns.

2.2 Team Organization

Although the nature of the project tends to favor Democratic Decentralized team structure, open to new
ideas and creativeness, it is somewhat obligatory to adopt a more strict model to achieve timely release
of documentation at the end of each process phase. Since it might be disastrous to employ too much
control, it seems wiser to distribute the major tasks among the team in groups of two, where horizontal
communication is encouraged. The groups are strictly responsible to project manager while cooperating
within the group, thus achieving a Democratic Controlled structure.

Internal Organization

Project Roles:
• Game Engine: Önder Babur, Süleyman Cincioğlu
• Graphics Engine: Süleyman Cincioğlu, Güneş Aluç
• Network: Güneş Aluç, Ömer Akyüz, Önder Babur
• AI: Ömer Akyüz, Önder Babur
• UI: Güneş Aluç
• Art: Süleyman Cincioğlu
• Audio: Önder Babur
• QA&Testing: Önder Babur, Ömer Akyüz, Süleyman Cincioğlu, Güneş Aluç
• Puzzle design: Süleyman Cincioğlu
• Website design: Ömer Akyüz

Other roles are distributed among the whole team in a democratic manner.

2.3 Major Constraints
Time Constraints:
There exists strict deadlines for each phase of the process, so the constraint of meeting the deadlines is
of utmost concern.

Page 8 of 47

Attribute Constraints:
As a common denominator in game programming, it is best to use C++ as the main programming
language as the server side component. The components to be used/integrated, hence the overall design
is considered around the core C++ component.

Tool Constraints:
Using Graphics and AI Engines leads to limitations within the corresponding domain according to the
implentation of functionalities. While engines reduce the burden of low-level programming, they
introduce constaints to the capabilities of the project.

Network Constraints:
Since the aim is to be able to support a great number of players, the effective transmission of game data
is exposed to network connection speed constraints, which greatly affects the project design.

Graphics Constraints:
A good frame rate is to be guaranteed in order to have a decent display and thus gameplay. This places
constraints of to what extent the graphics module complexity can be pushed.

Personnel Constraints:
Having a small project team greatly limits the development of a larger scale project. The project is
subject to balanced distribution of the limited workforce.

Page 9 of 47

3 Research

3.1 Market Analysis

A Massively Multiplayer Online Game (MMOG or MMO) is a computer game which is capable of
supporting hundreds or thousands of players simultaneously, and is played on the Internet. Typically,
this type of game is played in a giant persistent world.

MMOs enable players to compete with and against each other on a grand scale, and sometimes to
interact meaningfully with people around the world. Most MMOs require players to invest large
amounts of their time into the game. Although MMOs are played by very large amounts of people, it is
still one of the youngest game generations in the game industry and it is very rapidly developing and
every day new things are added to satisfy the players.

There are a number of factors shared by most MMOGs that make them different from other types of
computer games. MMOGs create a persistent universe where the game continues playing regardless of
whether or not anyone else is. Since these games strongly or exclusively emphasize multiplayer game
play, few of them have any significant single-player aspects or client-side artificial intelligence. As a
result, players cannot "finish" MMOGs in the typical sense of single-player games. Some MMOGs,
such as Star Sonata, do have an end condition that includes awarding a "winner" based on a player's
standing in the game at the finale. But these examples are very rare and most of the times the players in
the game do not intend to finish the game. They even like to feel as if they are living on another
universe. For most of the MMOG players, the game they are playing has become a major part of their
lives.

Most MMOGs also share other characteristics that make them different from other multiplayer online
games. MMOGs host a large number of players in a single game world, and all of those players can
interact with each other at any given time. Popular MMOGs might have thousands of players online at
any given time, usually on a company owned server. Non-MMOGs, such as Battlefield 1492 or Half-
Life usually have less than 50 players online (per server) and are usually played on private servers.
Also, MMOGs usually do not have any significant modes since the game must work on company
servers. There is some debate if a high head-count is the requirement to be a MMOG. Some say that it
is the size of the game world and its capability to support a large number of players that should matter.
For example, despite technology and content constraints, most MMOGs can fit up to a few thousand
players on a single game server at a time.

To support all those players, MMOGs need large-scale game worlds. In some MMOGs, large areas of
the game are interconnected so that a player can traverse vast distances without having to switch
servers manually. For example, Tribes comes with a number of large maps. A server plays in rotation
(one at a time), but in the MMOG PlanetSide all map-like areas of the game are accessible via flying,
driving, or teleporting.

Page 10 of 47

There are also a few more common differences between MMOGs and other online games. Most
MMOGs charge the player a monthly or bimonthly fee to have access to the game's servers, and
therefore to online play. Also, the game state in an MMOG rarely ever resets. This means that a level
gained by a player today will still be there tomorrow when the player logs back on. MMOGs often
feature in game support for clans and guilds. The members of a clan or a guild may participate in
activities with one another, or show some symbols of membership to the clan or guild. This is one of
the most loved characteristic of the MMOGs, players like to belong to some clan or guild and compete
with each other massively by these clans. There are especially a group of players who plays these
games because of its clan feature, they want to fight against a group with his own group, these clan
wars (as if wars between two countries) attract these group of people to MMOGs.

There are several types of massively multiplayer online games. Massively multiplayer online role-
playing games, known as MMORPGs, are perhaps the most famous type of MMOG (Everquest 2,
Lineage 2, Toontown Online, World of Warcraft, Guild Wars etc.). Browser Based Massive
Multiplayer Online Role-Playing Games are MMORPGs played through an internet browser, saving
the developer the hassle of creating a client for its game, and the players the hassle of downloading one
(Starkingdoms, Bushtarion, Kingdom of Loathing, StarSphere etc.). Several MMOFPSs first-person
shooters have been made (World War II Online, PlanetSide etc.). These games provide large-scale,
sometimes team-based combat. A number of developers have attempted to bring real-time strategy
games into the MMOG fray (Mankind, Shattered Galaxy etc.). Other types of MMOGs are not as
popular as the ones we stated above2.

3.2 Technical Research

3.2.1 Network

3.2.1.1 Overview

As the amount of information that must be transmitted over the network is quite extensive, a thorough
analysis of the existing models is essential before implementing a network architecture that is capable
of supporting a 3D massively multi-player online game. The research data shows that a good network
architecture of a 3D MMOG should:

● maintain the world state consistent throughout the whole nodes on the network,
● allow interactive responsiveness to be as quick as possible,
● prioritize and order events,
● provide authentication and authorization mechanisms and prevent players from cheating,

2
“Massively multiplayer online game”. Online.
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game.
“Game Ogre: The Online Gaming Mega Site.” Online. http://www.gameogre.com/mmorpgs.htm.

Page 11 of 47

http://www.gameogre.com/mmorpgs.htm
http://www.gameogre.com/mmorpgs.htm
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game

● be highly scalable.

Although it is difficult to tackle all of the aforementioned challenges at once, a good design can – by
reducing traffic over the network – eliminate most of them. The following methods can be applied to
reduce traffic and thus increase the game performance:

● Static game data should be separated from the dynamic one and it should be transferred to the
network nodes only once;

● Compression techniques should be used to reduce network load. However, this puts some extra
computational load on the nodes;

● The nodes should receive only what they need to receive and not more. In other words, only the
relevant information should be sent.

● If the state of an object remains unchanged, then the associated update message should be
delayed.

● For cases when object updates cannot be accomplished all at once, update priorities should be
considered.

In addition to the above statements, research findings indicate that not every change in the state of an
object require an update message to be transmitted. In a first-person-shooter game for instance; unless
the player changes his/her direction, no update messages are necessary. In other words, it would be
useless to send the message: “player45 is still moving east”, over and over again. Furthermore,
complex techniques such as artificial intelligence can be utilized for reducing message complexities.
For example, simply a “move to (x, y)” command can be sufficient in cases when AI can resolve it to
simpler “move” commands with path-finding algorithms. However in this case, there is a trade-off
between computational complexity and network load.

3.2.1.2 Available Models

During the research phase, we have come across the following models by which the network aspect of
the 3D MMOGs can be implemented. Namely, and generally speaking, these models are:

● Client-server model,
● Publisher-subscriber model, and
● P2P architectures.

The publisher-subscriber model is sometimes known as the producer-consumer model. Although the
basic idea behind them is almost the same, every model has some variants. For instance, the client-
server model can be extended by using a group of machines, each assigned to a unique task, instead of
a single one in the server side. Below you will find more detailed information on each approach.

The Client-Server Model

The client-server model has been in use for a long period of time in game development. The multi-
player version of the Half-Life game can be given as an example to it. It is considered to be a small-
scale multi-player game where the maximum number of concurrent players is around 60. In the client-

Page 12 of 47

server topology, a machine that is powerful in terms of hardware and software capabilities is assigned
the role of the server and all game-logic functionalities, the world state and other utilities such as
authentication/authorization are implemented on it. The clients communicate with the game server to
receive up-to-date information that enables the client application to make the game available to the
players.

As in every model, the client-server model has its own advantages as well as drawbacks, which are
outlined below:

Advantages:

● A single authority is used for the game engine and the communications, therefore, world data
can be kept in a consistent manner,

● There is a central data repository, this is advantageous for consistency, processing efficiency
and space,

● A network implemented with the client-server architecture is easy to secure.

Disadvantages:

● Unfortunately, the virtual world's complexity and size has to be limited by the functional
capabilities of the server,

● The client-server model creates network traffic with a high-bandwidth,
● Usually in such architectures player-to-player interactions are limited,
● For a practical system, large amounts of money has to be spent on hardware.

During the research made on the Network aspect of 3D MMOGs, two different approaches for
extending the client-server model were encountered. They both intend to reduce the load on the server
and thus increase overall game performance. The first one is based on the idea of splitting the server
into logical modules. For an MMOG, some possible logical groupings are:

● login server, game server, chat server, patch server or
● data repository, physics engine and artificial intelligence.

The second approach – namely the proxy-server model – is a consequence of the physical restrictions
imposed by the network itself. Identical proxy servers each containing the same game state are situated
in various countries around the globe and clients connect to the physically nearest station. With this
approach, keeping the game state consistent in all of the proxy nodes becomes a challenge.

The Publisher-Subscriber Model

The client-server architecture allows one-to-one communications. In other words, although the server
exchanges messages with a number of clients; the messages exchanged by each client are usually
distinct. For the server, each client serves as a different, unique entity. On the other hand the publisher-
subscriber model has been put forward to capture one-to-many and even many-to-many communication
patterns. In this context, a “one-to-many” communication pattern implies that the server is associated
with a group of clients. Although each group might have distinct characteristics, the members within a
single group are treated as one entity. The messages exchanged by the members of a single group are

Page 13 of 47

usually the same.3

The publisher-subscriber model is more suitable to cases where information needs to be sent to a large
number of consumers (the model is sometimes referred to as the producer-consumer model). In this
case, the clients subscribe themselves to entities called channels, along which the messages are
transferred. Whenever a message appears in the channel all consumers can receive it. There are
push/pull versions of the model, whose details are skipped in this report.

If the MMOG can be divided into logical (or even physical) sections such that it is sufficient that a
client application knows what is relevant to it but nothing more, then the publisher-subscriber model
can be applied. Splitting the map by means of hexagons and rectangles or separating environmental
variables from the user interaction data are some examples of physical and logical divisions.

The P2P Model

The P2P model is relatively a new architecture and its utilization in MMOG implementations is still a
hot research subject. Some researchers believe that it has various advantages over existing architectures
and that it will lead to the development of MMOGs with a much higher interactive responsiveness.

In a P2P network, every node has the same responsibility and privilege as every other node on the
network. Considering its utilization in MMOG development the it is indicated in several research
papers that the P2P model has the following advantages:

● computation is spread over the whole P2P network, therefore the average workload is less than
that of the server's in a client-server model;

● the consumed bandwidth is reduced: when there is a client-to-client communication in the
client-server model, the message has to go through the server thus doubling the consumed
bandwidth.

Unfortunately, the P2P model has the following disadvantages:
● security (authentication / authorization) issues become more difficult;
● maintaining world-state consistent becomes a major problem.

3.2.2 Graphics

3D graphics is one of the most important aspects of current game industry. It is the most rapidly
growing part of the game development business, every day the 3D graphics in the games are getting
better and better. They have become so popular that specialized APIs have been created to ease the
processes in all stages of computer graphics generation. These APIs have also proved vital to computer
graphics hardware manufacturers, as they provide a way for programmers to access the hardware in an
abstract way, while still taking advantage of the special hardware of this-or-that graphics card. These
APIs for 3D computer graphics are particularly popular: OpenGl, DirectX, RenderWare etc. Game
developers develop their 3D game environment according to these APIs. But instead of using these

3 Fiedler, Stefan. Wallner, Michael. Weber, Michael. “A Communication Architecture for Massive
Multiplayer Games.”

Page 14 of 47

tools plainly, they use some powerful graphics engines to make their lives easier. These engines use
different techniques to make games more than just games but like an artwork, for example Oblivion
The Elder Scrolls 4 is a very good example of these games which was released by Bethesda4.

Most of the time graphics engines are considered with game engines, since every game engine has a
graphics engine inside, but there are also some independent graphics engines. The best examples of
these engines are Ogre3D, Axiom, Power Render and Crystal Space. We have researched mostly on
these graphics engines in order to use in the project. After the research we decided to use Ogre3D
engine as our graphics engine. Here are some merits and flaws of Ogre3D and the reason why we
choose it:

● Simple, easy to use OO interface designed to minimize the effort required to render 3D scenes,
and to be independent of 3D implementation i.e. Direct3D/OpenGL.

● Extensible example framework makes getting your application running is quick and simple
● Common requirements like render state management, spatial culling, dealing with transparency

are done for you automatically saving you valuable time
● Clean, uncluttered design and full documentation of all engine classes
● Proven, stable engine used in several commercial products
● Sophisticated skeletal animation support
● Direct3D and OpenGL support
● Builds on Visual C++ and Code::Blocks on Windows
● Generic models could easily be embedded into
● Although it supports skeletal animation, it is a bit hard to animate the generic models that were

taken from some other source

Actually Ogre3D is the best open source graphics engine of the market. The Object Oriented aspect is
also one of the most important fact why we choose Ogre3D. It is easy to use and very powerful5.

3.2.3 Artificial Intelligence

Because of we have lots of question marks about AI before searching, understanding definition of AI is
at first precedence for us. “AI is the ability of a computer or other machine to perform those activities
that are normally thought to require intelligence.” This definition comes from The American Heritage
Dictionary of the English Language, Fourth Edition (Houghton Mifflin Company).

4
http://en.wikipedia.org/wiki/3d_graphics
http://en.wikipedia.org/wiki/OGRE
http://www.ogre3d.org/
5
http://www.ogre3d.org/index.php?option=com_content&task=view&id=13&Itemid=62
http://en.wikipedia.org/wiki/Game_engine
http://www.openscenegraph.org/
http://www.gamasutra.com/

Page 15 of 47

http://en.wikipedia.org/wiki/Game_engine
http://www.gamasutra.com/
http://www.openscenegraph.org/
http://www.ogre3d.org/index.php?option=com_content&task=view&id=13&Itemid=62
http://en.wikipedia.org/wiki/OGRE
http://en.wikipedia.org/wiki/3d_graphics
http://www.ogre3d.org/

There are basically two types of AI. Strong and weak AI. Strong AI is the ability to solve a problem
requiring intelligence if it were to be solved by a human is not enough; AI must also learn and adapt to
be considered intelligent. Unlike strong AI, weak AI involves a broader range of purposes and
technologies to give machines specialized intelligent qualities. Game AI falls into the category of weak
AI.

Think about deterministic AI, non deterministic AI is the opposite side of deterministic AI. Non
deterministic AI is unpredictable and indefiniteness. Of course AI method determines the rank of
indefiniteness. For example if a non-player character learning to adopt to the fighting tactics of a player
could be learned by neural network, genetic algorithm or Bayesian network which are nondeterministic
AI.

Game AI can be divided into two categories: deterministic and non deterministic AI. In deterministic
AI there is no uncertainty. Deterministic behavior is specified and predictable. If we want to give an
example of deterministic AI chasing algorithm can be relevant. If you give x and y coordinate to
character, character is moving along toward to x and y coordinate axes until it coincide with this x and
y coordinate.

Deterministic AI techniques are the easiest part of AI. They are fast, easy to implement, test, debug and
predictable. Deterministic AI does not make easy learning and evolving. Also it is predictable after a
little game play.

Nondeterministic AI is related about learning and unpredictability. Nondeterministic method has
behavior that is revealed without explicit instructions and can learn and extrapolate on their own.

For our project cheating which is deterministic AI and Bayesian network can be suitable. An example
of a cheating, in war simulation game the AI player get all information about its opponents like the
types, number and location of units without sending scouts. But cheating can be sometime useless. If
the player understands that computer is cheating, the player thinks that his efforts is vain and can lose
interest in the game. Additionally, if the cheating is unbalanced, the player can never beat the
computer. In order to not lose players interest from the game cheating must be balanced very well. In
our project there are players and AI players, in a room lets think four players and an AI player. Starting
the game some AI player do not know anything so they can not solve puzzle but after a time human
players will solve the puzzle and AI player in that room cheat how human player solve the puzzle.
After solving many puzzles AI player knows more thing by cheating, it will combine the information
by cheating and give some suggestions in order to help player to solving puzzle. Of course if AI player
able to give suggestion, cheating is not enough it must have learning capability and this learning ability
will be reached by some algorithm like Bayesian network.

In Bayesian network AI player makes decision when the state of game is uncertain. An example of a
Bayesian network, in fighting game we want to predict the next strike the player will throw. By this
strike the AI player either defenses itself and also strike according to players strike type. Player has
more than one strike type, for example three; punch, low kick and high kick. If we are going to save
this three strike combinations we can calculate probability for that strike given the previous two strikes.
This will able to know three strike combinations. In our project for example in a room human player is
exit from the room simply by opening the door. AI player is cheat that human player solve the puzzle

Page 16 of 47

by opening the room and it will know that opening something (window, tab, and computer) may solve
the puzzle. This ability is loading to AI player by us and if a room has window AI player knows that
opening a window may solve the puzzle. In another room human player can exit the room by different
way for example by just bouncing over the chair. In third room let’s think there is a window which is
not closed, the AI player give suggestion to human player that “lets exit the room from window by
bouncing”. This example may be not wonderful but it shows clearly that AI player able to combines the
different puzzles. If there are more than one probability to solve the puzzle, AI player choose only one
solution by looking up which solution is more used by others room by using probability.6

3.2.4 Game Engine

Being an integrated collection of software components of any computer game, game engine is the most
important part in designing a game. On the top of the subcomponents game, it functions as the
integrator of all these parts. Although it is used having the modularity feature, in this context it will be
referred as the first definition: the backbone/core of any computer game.

The current market is populated with many powerful commercial game engines such as Unreal and
NetImmerse engines, whereas there exist some satisfactory free MMOG middle-wares too. Since it is
not allowed to use a game engine for this project, the purpose in researching the game engines is solely
to have a better understanding of game design&development and to be able to divide the tasks for
distribution among the team. From the whole research, the main parts of our game engine are as
follows:

• 3D graphics module
• Basic physics module
• Collision detection module
• I/O module
• Sound module
• AI module
• Network module
• Database module
• GUI module

Usually, more functionality such as scripting is included in the game engine, but regarding the scope of
the project, those seem to be negligible.
MMOG engines differ from regular game engines such that they are based on the network code and
database management. ‘Massively’ feature requires that a huge amount of data is handled with huge
number of players at the same time. With bandwidth being very expensive, network traffic optimization
is one of the most important parts.
The free engines in the market such as Multiverse, Crystal Space and Realmforge GDK provide a good
idea; but we have particularly been able to find a comparative overview of many engines, commercial
and free, which can be found at Appendix A.2.

6 “AI for Game Developers”. Online. http://safari5.bvdep.com/05960055555/ch00.

Page 17 of 47

http://safari5.bvdep.com/05960055555/ch00

3.3 Interviews

Because of we have no experience about game development we arrange a formal meeting with Veysi
İşler who is working at Modsimmer and a teacher at METU Computer Engineering Department, Faruk
Polat who is a professor in Middle East Technical University Computer Engineering Department and
Caglar Ata who was graduated last year from our department and he was a member of Anka Yazılım
project group which was about a 3D educational software tool.

Meeting with Faruk Polat

We had a meeting with Faruk Polat on 16.10.2006 at METU Computer Engineering Department in his
office. The meeting was very useful. After we explained about what is our project and our project
scenario he gave valuable suggestions about artificial intelligent techniques. He mentioned that
artificial intelligent is a very difficult and huge concept. He warned us to have enough knowledge about
artificial intelligent and use AI techniques carefully. Especially he emphasized that learning part is very
difficult in artificial intelligent. He did not keep secret that our task is hard because of time limit and we
have not experience about game development before but he stressed that if we work systematically we
will succeed in that project.

Meeting with Çağlar Ata

We had a meeting with Çağlar Ata on 16.10.2006 at METU Computer Engineering Department. The
meeting was very useful especially he shared his experiences about group work and which tools we
will use. Because of he was a senior student last year he worked in senior project and he advised us to
share the work equally. He emphasize that we are lucky because of our group is forming by four
people. In that project he said that being five people is very difficult according to four people. He
mentioned that our task is very difficult and do not become low-spirited. He advised us that use OGRE
tool while developing game and search the web carefully in order to get valuable information.

Meeting with Veysi İşler

We had a meeting with Veysi İşler on 18.10.2006 at Modsimmer in METU Teknokent. The meeting
was very valuable. He shared his valuable experiences about game development. He was very glad to
game development project was assigned to by our teachers. He got information about what we know
about MMOG game and what is our scenario. He suggested that make a good risk analysis and do not
make a huge target, reach our aims by a small step. He thought that for MMOG development we have
not enough time. He advised that use a top-down approach, and solve the problems when we reach but
he attracted our attention that set up framework very carefully. After we explained our project he
shared his experience with us. He suggested us to use Torque for an engine. He added that OGRE is a
very popular engine in fact he used last year, he encounter a problem but he could not remember the
details of it. Also he said that Delta3D is a good engine but not good as Torque. For graphics rendering
he suggested us to use DirectX or OpenGL. For network he used Torque and suggested us to use
Torque. And for competition he advised that modeling is very important for visualization.

Page 18 of 47

4 Project Requirements

4.1 Functional Requirements

4.1.1 Overview

To understand the needs of the project, assess feasibility, prevent ambiguity, and reach a valid project,
the most important actions to be taken are determination and engineering of the requirements. The most
important issues we considered during requirement specifications are:

• To make requirements consistent with the objective of the project.
• To specify requirements at proper level of abstraction.
• To state bounded and unambiguous requirements.
• To prevent conflicting requirements.
• To state technically achievable requirements.

The activities that we have performed for determining the requirements of our project are
as follows.

• Identifying Actors
Actors represent external entities that interact with the system. Actors basically help in defining
the boundaries of the system. Identifying actors helps the developer see all the perspectives of
the system.

• Identifying Scenario
Scenario is, formally, a narrative description of what people do and experience as they try to
make use of computer systems and applications. In our game, we have developed our scenario
according to the game concept and game style. Scenario will have many different uses during
the software life cycle.

• Identifying Use Cases
In order to identify use cases, first we find all the use cases in the scenario that specifies all
possible instances of what occurs when a player encounters an event in the game. After defining
the requirements, we grouped them logically and added the necessary details.

4.1.2 Menu Requirements

These are the requirements that are related to the menu that is displayed in the game. This part is
divided into two sections; one is about the general properties of the menu and the other one is about the
properties and usage of the items that can appear in this menu.

a) General Requirements

Page 19 of 47

• This menu is displayed from two contexts: first one is the entrance of the game
(Main Access Menu) and the latter one is anytime whenever requested by the player during the
playing of the game (Paused Access Menu).
• Menu is composed of items which are included in the menu according to the context that the
menu is displayed from.
• The player can also use predefined shortcuts from the keyboard in order to select the menu
items.

b) Menu Items Requirements

• Profile Selection
o This item is displayed at very beginning of the game even before Main Access Menu.
o The player can select his/her profile which stores the settings and games of his/her

player.
• View Profile

o This item is included in both Main Access Menu and Paused Access Menu.
o The player can view his profile by this.
o The information about the player and Total Elapsed Time In The Cube is written

there.
o Total Elapsed Time In The Cube is an important feature since the game has a Hall Of

Fame section where the players who are able to get out of the cube are listed according to their
elapsed time.
• Enter The Cube

o This item is included in only Main Access Menu.
o The player enters the cube with this button.
o The player starts in a random room in the cube whenever he\she enters the cube.
o We will try to group the players in 4-5 people, so that the player who enters the game

will always interact with someone in the room and wont play alone.
o The player who died in the game will not be able to enter the game for 15 minutes, so

it is useless to try to enter the cube in this time interval.
• Resume Game

o This item is included in Paused Access Menu.
o The player is returned to his/her current game and continues playing from the exact

position where the game is paused. But the game is actually never paused. Other players will
continue to play.
• Help

o This item is included in both Main Access Menu and Paused Access
Menu.

o Help section is displayed which includes general information about game contents,
playing of the game and game controls.
• Credits

o This item is included in Main Access Menu.
o Information about the game developer company and its members are displayed.

• Hall Of Fame
o This item is included in both Main Access Menu and Paused Access.
o It is the table of most valuable players who are able to get out of the cube. The list is

Page 20 of 47

made according to the minimum elapsed time in the cube.
• Leave The Cube

o This item is included in both Main Access Menu and Paused Access Menu.
o The player leaves the cube to the operating system.
o The player can select this item at anytime he/she wants.
o But the player must not forget that this game does not have a save option, and when a

player leaves the game, he\she will not be able to continue from its last position. He\she will
start in a random room in the cube if he\she wants to enter the cube again.

4.1.3 Game Flow Requirements

These requirements cover the period that the player is in the game actively. It includes
environment, main character abilities, interaction between player and game and overall game
logic during the game.

a) Game Logic Requirements

• The game has a homogeneous characteristic.
• The is game is played inside the rooms of the cube, and all rooms are treated equally.
• The player can change his location from one room to another.
• Most of the rooms will have some tricks and traps.
• Every room has a different trick, which means a different solution path.
• The traps can be deadly, so beware you can be wounded or die.
• Not all the rooms have to have a trick or trap, some of them can only be gateways.
• The rooms are not stable, they are moving inside the cube.

b) Environment

• The cube and Rooms
o It is the world that the game takes place in.
o It consists of only rooms. When you get out of the room, you either get out of the cube

(if you are that lucky) or you get into another room.
• Objects

o Movable objects can be carried by characters and can be put to inventory.
o Most of the objects will be stable and can only be used.

• Inventory items
o They are objects that can be used by characters.
o A player can use only one item at one time.
o They have specific functionalities like for a key to open a door.

• AI Players
o They have artificial intelligence and/or scripted behavior.
o They can walk.
o They can jump.
o They can turn.
o They can climb.

Page 21 of 47

o They can speak.
o They can get wounded.
o They can die.

c) Human Player

• It has movement abilities.
o Walk
o Run
o Jump
o Crouch
o Turn
o Climb

• It has other abilities.
o Pick up inventory items
o Use inventory items
o Drop inventory items
o Use objects in the environment
o Speak, chat with other human or AI players.
o Get wounded, every player will have a specific health.
o Die

d) Player-Game Interaction Requirements

• Player uses mouse and keyboard to supply input to the game.
• Game uses monitor and sound devices to supply output to the player.
• During the game the players can talk to each other or with AI players. This talk can be private
or public.
• Player manages the his character’s inventory items like selecting or dropping one by a menu.
• Player views the game from the first person’s perspective.
• Player can view the health and inventory status during the game.
• Player can escape to the menu during the game. The game is not paused meanwhile.

4.1.4 Operational and Structural Requirements

These requirements form the base for the game. These are not controlled directly by the
player but they work in coordination with each other to satisfy the integrity of the game.

a) Game Engine

• It provides coordination between the subcomponents.
• It processes the game flow based on game data and user responses.
• It provides the network architecture needed for the game.

b) Graphics

Page 22 of 47

• It renders the scene in 3D perspective.
• It maps the models with the textures.

c) Sound

• Game has soundtracks playing in background.
• Player has the ability to control sound options such volume level.
• Game can deliver instant sound effects opening of a door.

d) AI and Scripting

• It is used in game controlled character behavior.
• It is used to control game flow.

e) Game Data

• Room State Information
• Models

o Players
o Rooms in the Cube
o Objects and inventory items
o Textures
o Images

• Sound
o Sound effects
o Soundtrack music

• Scripts

Page 23 of 47

4.2 Software Requirements

4.2.1 Overview

From the view of software capabilities, the requirements for the project can be assessed as follows:

Consistency

The game state should be kept in a consistent manner at all levels. Although over a large
network with lots of interactions going on, it is difficult to achieve full consistency; logical
assumptions should be made and efficient algorithms should be utilized in order to reduce
game-state inconsistencies.

Node-to-node interaction

In order to support the functional requirements that are a consequence of simply being a
massively multi-player online game, the network architecture employed in the project should:

● allow the maximum interaction among the players,
● enable a fast connection with a high bandwidth between the nodes on the network: client

machines, the server (or servers), etc.

Client Side Processing Speed

In addition to the node-to-node interaction speed, the software modules deployed over the client
machine should be able to process incoming data as fast as possible and minimize internal
latencies. The same case applies to when the client machine processes information, before it is
distributed over the network.

Realistic graphics rendering

The functional requirements discussed previously and the massively multi-player online game
market imposes the game developers of this project to come up with a highly realistic graphics
engine. Although a good deal of work has been conducted by other game developers over the
past and the project members can make use of such tools; customizing them based on the
project requirements and integrating the 3Dmodels, animation templates imposes further
restrictions.

Artificial Intelligence processing

Both for interactive purposes and for adding some taste into the game, the AI module should be
capable of resolving pre-defined predicates obtained from the game environment.

Some of the major items listed above are discussed thoroughly in the following sections.

Page 24 of 47

4.2.2 Game State Consistency

The game to be developed in this project will be supporting hundreds of online players. Not only that
but the current MMOGs on the market can support thousands and even tens of thousands of users
simultaneously. Evidently, one of the most challenging tasks in developing a massively multi-player
online game is to make sure that every player – to a high degree – has the same information about the
game state. By game state we include all the information that is necessary for each client machine to
fully functionally resolve and make the game available to the player. Although it is possible to include
more information than what is actually necessary, such redundancy might lead to a weaker
performance. Therefore before implementing strategies for resolving game state inconsistencies, the
game state should be defined.

In order to have a high performance, the game state to be utilized in this project should be kept
minimal. Redundancies should be eliminated. However, such redundancy elimination should
not put further load on the client machines in resolving the game state. The trade-offs should be
well assessed.

Based on our scenario and the probable network architecture we will use in this project, the game state
consistency problem can be evaluated in the following levels of abstraction, listed in decreasing
priority in terms of time-constraints:

● Consistency on the client application,
● Consistency within the sub-worlds,
● Complete consistency.

Consistency on the client application

The priority should be given to resolving consistency problems inside the client application. If the
players of the game cannot have a consistent view of the world (or sub-world) they are in, then
unfortunately the whole purpose of the MMOG is gone. Suppose that the clients continuously receive
information about the current world state. The client application should be able to:

● execute events in the their correct order:
Due to physical factors affecting the speed of transmission over the network, the client
application will not be able to receive every “game state-change” information in their
correct sequence. The client application should therefore keep a list of “state-change”
information based on their desired execution time and when the list is filled up such that
a logical action can be obtained, the events should be executed in the correct order.

● resolve conflicts when necessary:
Conflicts may and will arise during processing events in the execution list. Let us
assume for the moment that the client application receives a “state-change” message that
indicates that Player-A has started walking in the “north” direction. The client continues
receiving messages indicating the current position of Player-A in regular intervals.
Suddenly player A stops moving and a different message indicating the stop action is
sent. If the stop message comes to the client with a relatively high delay, then the client

Page 25 of 47

will still process Player-A to be moving in the “north” direction. Such conflicts should
be resolved to a greatest extent in the client side.

● in case of work overload, take priority parameters into consideration:
If the work load on the client is extensively large such that it knows it cannot execute all
of the events in the required time interval, then the events with the highest priority
should be executed before all the others.

Consistency within the sub-worlds

For our project, the game-state for the “sub-world” is limited to the information that is sufficient and
necessary for simulating all interactions within a single room of the cube. Please remember that the
game consists of hundreds of rooms that make a whole cube. In every room there will be several
players interacting with each other and with the objects in the environment. Whenever the game-state
within the “sub-world” changes, every player (or equivalently client application) should be notified,
otherwise consistency cannot be achieved. Considering time issues, this problem has a priority level
very close to that of resolving consistency on the client application. Yet it still has a lower priority: If
the data repository associated with a single room is not updated so fast, the game state will still be
consistent. It is just that the game will proceed in a slower fashion.

Complete Consistency

Although processing the interactions within a single room is more essential than processing the whole
game-state data, a central repository is required to keep the game-state for the whole world consistent.
Considering our scenario, players – upon solving the puzzles in a single room – will be able to move
from one room to the other. Furthermore, the absolute locations of the rooms inside the cube will
change on regular intervals. As the Artificial Component of the game also requires processing of the
whole game-state data (statistics collection, etc.) complete consistency should be achieved.

“A supervisor (server) needs to know everything about the map but does not need to know everything
that is happening on the map.”7

The above statement clearly states what the central data repository's role and how its interactions with
other software components should be like. It is not so important that the change in the “sub-world”
state data be reflected as soon as possible on the central data repository. Furthermore not every single
detail needs to be stored globally.

Various approaches can be taken for implementing the aforementioned requirement. A database
management system seems suitable, however, such decisions are left to the design phase of the project.

4.2.3 Node-to-node interaction

The network architecture and backbone will be responsible for implementing the node-to-node
interactions. Although a node-to-node interaction will be mainly between a client and a server, client-

7 Fiedler, Stefan. Wallner, Michael. Weber, Michael. “A Communication Architecture for Massive Multiplayer Games.”

Page 26 of 47

to-client interactions will be allowed for certain occasions such as implementing the chat functionality.
In either case the network backbone should provide the maximum number of interactions possible.

Based on our research findings, the network architecture for a massively multi-player online should be
such that:

● a high bandwidth is provided,
● latency is reduced to the minimum,
● security (authentication / authorization) issues are covered.

Keeping the bandwidth as high as possible and reducing the latency is our primary software
requirement goal. Such requirements are critical in a game where interactive responsiveness is a major
concern. Although security issues should be dealt with, due to overall project constraints, they will be
addressed with a lower priority.

As discussed in the Technical Research section of this document, several models exist for
implementing the network communications backbone. Taking the aforementioned requirements into
consideration and evaluating the resources at hand, we have come to the conclusion that the “publisher-
subscriber” model suits our project the best. The client-server architecture on its own seems incapable
of supporting hundreds of online players. Since inherently the game is divided into so-called “sub-
worlds” and the players do not really need to know about what is going on in other “sub-worlds”, the
channel approach discussed in the publisher-subscriber model seems more suitable. Although, the
current trend is towards p2p architectures in MMOGs and a good amount of research is conducted on
utilizing p2p models in the multi-player online games; due to consistency problems, we will avoid p2p
models, at least for the core of the network backbone.

4.2.4 Client Side Processing Speed

One of the key steps in implementing a good massively multi-player online game is increasing
interactive responsiveness, as discussed throughout the report. It is true that choosing a suitable
network model and determining a solid representation of the game state are important steps taken
towards reaching this goal. However, reducing processing time on the client side is as important as the
others.

Suppose that consistency of the game state is preserved and that a strong network architecture is built
for exchanging messages. Now each client application receives messages relevant to the channel they
are subscribed to. For our scenario, every client will subscribe to the channel representing the room
inside the cube. If a player inside the room turns on the lights for instance, this information must be
made visible to every other client inside the same room. With the above consistency and network
architecture conditions, the clients will receive the messages on time. However, there is no point at all
if the clients cannot process them in a reasonable amount of time. In conclusion, consistency and
timing considerations go together for such applications.

The same requirement holds for the reverse case: when the clients process user interactions (usually
provided by some I/O devices) and send them to the server. However, for the reverse case it creates

Page 27 of 47

additional problems. The desired (and of course expected) behaviour is that the clients process the user
input and send them out with after a very short latency. If this were not the case, keeping the game-
state consistent within the sub-world would also become a challenging task leading.

4.3 Hardware Requirements
P4 class processor or equivalent
64 MB of graphics card with OpenGL support
256 MB of memory
Some free disk space for installation
A monitor supporting at least 800*600 screen resolution
Sound card
Internet connection
Keyboard
Mouse

4.4 Non-Functional Requirements

Playability

In the game reviews and evaluations, the game is assessed generally in terms of four categories: game
play, atmosphere, video and sound, while game play is considered as the most important feature of a
game. According to this fact, the playability of the game is a major concern and requirement. The other
features of the game are to be designed accordingly, with the ultimate aim to increase playability, thus
player satisfaction. Regarding the tendency towards graphics ignoring game play in the current market
further drives us to emphasize playability because we see it as a key concept in competing with high-
budget MMOG’s.

Portability

Since the current game market is overwhelmingly dominated by Windows platform, it is nearly
obligatory to develop on that platform. Porting the game onto other platforms do not seem visible,
therefore the project is planned to be compatible with only Windows platform.

Reliability

Being massively multiplayer, the game has highly distributed data operations, and for that reason a
strong control of consistency and synchronization is to be achieved. This stands to be a very important
topic in system robustness and thus user satisfaction.

Page 28 of 47

5 System Analysis

5.1 Data Flow Diagrams

5.1.1 Level:0 DFD

Level 0 DFD is the system in the highest level. The whole software is referred as ‘Game’ process with
which player and developer interacts with. All the necessary game data is stored in the game data
repository. Player interaction involves keyboard/mouse and chat message inputs, and display and chat
message outputs. Game continuously queries 3D model information, AI data, static/dynamic room
information and updates the necessary game data.

Page 29 of 47

Player Developer

Game

Game Data

Login_info

Keybord/mouse_input

Outgoing_chat_message

3D
_d

is
pl

ay

In
co

m
in

g_
ch

at
_m

es
sa

ge

C
onfiguration_data

G
am

e_data_update 3D
_m

od
el

_i
nf

or
m

at
io

n

A
I_

da
ta

(O
nt

ho
lo

gy
)

S
ta

tic
_r

oo
m

_i
nf

or
m

at
io

n

D
yn

am
ic

_r
oo

m
_i

nf
or

m
at

io
n

Level 0

5.1.2 Level:1 DFD “Game”
Level 1 DFD indicates the main functions of the game. Player provides the game with login info, which
is authenticated and matched with the corresponding personal info of the player. This information is
then passed to the Client Game Engine. Input Handler is the layer where player inputs are processed
and converted into action information that is evaluated in Client Game Engine, and with the necessary
room data from the repository, is combined to scene data. This is combined by Graphics module with
3D model data to construct the 3D scene to be displayed to the player. The actions performed by the
player is transformed into events and sent to Server Game Engine by Client Game Engine, which also
receives the incoming events from the Server Game Engine. Server Game Engine is the central part
where events from clients are processed and distributed, highly using the Game Data Repository as
well as the configuration data from Developer. There exists a further process of Chat Handler, which
handles the chat message traffic among the human and AI players.

Page 30 of 47

Player

Chat Handler

Input Handler

Client Game
Engine

Graphics

Authentication

Server Game
Engine

Devel
oper

AI
_d

at
a

D
yn

am
ic

_r
oo

m
_i

nf
o

G
am

e_
da

ta
_u

pd
a t

e

Game Data

Incoming_chat_message

Outgoing_chat_message

Login_info

Keybord,Mouse

3D
_displa y

Sc
en

e_
da

ta

3D_models

C
onfiguration_data

AI
_c

ha
t_

in
fo

Au
th

en
tic

at
io

n_
de

cis
ion

Event_info

Event_request

P
er

so
na

l_
in

fo

P
er

so
na

l_
in

fo
_r

e q
ue

s t

Action_ info

S
ta

tic
_r

oo
m

_i
nf

o

Level1 Game

5.1.3 Level:2 DFD “Server Game Engine”

This L2 DFD introduces a detailed view of Server Game Engine, which is the core process of the game
on the server side. First of all, Channel Resolver process is responsible for handling the incoming event
request traffic by addressing the request to the relevant channels, which may be different for each
client. Event Dealer is the part where event information is converted to actual events and sent to Event
Orderer, where the events are ordered with respect to time and address constraints. Those ordered
events, with the game data and room information from the repository, are processed in Game
Mechanics module. The resultant event information is sent back to Event Dealer, and is eventually sent
to the relevant clients. Game Mechanics process also interacts with AI Engine, sending and receiving
event data while AI Engine is capable of sending messages to Chat Handler. Finally, configuration data
from Developer comes directly to Game Mechanics and processed.

Page 31 of 47

Client Game
Engine

Chat Handler Developer

Channel
Resolver

Event Dealer

Event Orderer

Game
Mechanics

AI Engine

Level 2 Server Game Engine

AI
_c

ha
t_

in
fo

AI_trigger

Event_request

Event_info C
hannele d_

eve nt_in fo

C
ha nnele d_e vent

_re ques t

Event

Bulk_event_info

Orde
red

_e
ve

nts

Up
da

te
_g

am
e_

da
ta

St
at

ic
_ r

oo
m

_i
nf

o

D
yn

am
ic

_r
oo

m
_i

nf
o

AI
 D

at
a

AI_event

C
onfiguration_data

Game Data

5.1.4 Level:2 DFD “Client Game Engine”

This L2 DFD shows the inner dynamics of Client Game Engine, which is the core process of the game
on the client side. Initially, authentication decision is sent to Client Game Mechanics. From then on,
action info from the Input Handler is validated and sent to Client Game Mechanics. Being changed,
current room state is sent to State Screen Transformer, combined with static room info from the
repository and sent to Graphics. Events are handled similar to those in server side: event requests are
made by Client Game Mechanics to Server Game Engine, and the incoming event information is
received in Event Dealer. After being converter to events, they are sent to Event Orderer and ordered.
Game Mechanics receives and processes the ordered events.

Page 32 of 47

Authentication

Server Game
Engine

Game Data

Input Handler

Graphics

Client Side
Game

Mechanics

Event
Validator

State_Screen
Transformer

Event Dealer

Event Orderer

St
at

ic
_r

oo
m

_i
nf

o

Action_info

Validated_action

Schene_data
Curre

nt_
roo

m_s
tat

e

O
rdered_events

Event

Ev
en

t_
in

fo
Event_request

Au
th

en
tic

at
io

n_
de

ci
si

on

Level 2 Client Game Engine

5.2 Use Case Diagrams
The use case diagrams provided below go in direct correspondence with each of the functional
requirements item discussed in the Project Requirements section of the report. The reader is
encouraged to revisit that section, if necessary.

5.2.1 Game Play Use Case
This use case displays the actions that the player can do in game play without interaction with other
players. We grouped these actions into four: Movement, Camera, Items and Menu Entrance. Player can
walk, jump or crouch in the game. Those movements can be executed forward, backward, left or right.
Player can change the camera view in the game. Items is an important issue in the game. There are two
types of items in the game: Wall Items are non-moveable items and can only be used, Inventory Items
are moveable. An inventory item can be get, dropped, equipped or unequipped. Only one item can be
equipped in a time and only the equipped item can be used. The last action is the Menu entrance in the
game, player can enter the menu whenever he wants.

Page 33 of 47

Movement

Crouch

Jump

Walk

Forward

Left

Right

Backword

Walk Item

Inventory

Drop Item

Unequip Item

Equip Item

Get Item

Enter Menu

Player

Use

ex
te

nd
s

Gameplay Usecase

5.2.2 AI Player Game Playing Use Case

This use case displays the actions that AI player can do in the game. AI player in our game is a bit
restricted, it can only have movement actions which are walk, jump or crouch. Of course the directions
are forward, backward, left and right.

Page 34 of 47

AI Player

Movement

Gameplay Usecase(AI Player)

Crouch

Walk

Jump

Forward

Left

Right

Backword

5.2.3 Login Use Case
This use case displays the player’s login to the game. Authentication server checks player’s username
and password and according to the check it either allows or disallows player’s entrance to the game.

5.2.4 Menu Interface Use Case
This use case displays the things that player can do in the Main Access Menu. He can view his profile,
edit and accept it. He can also view his elapsed time in the cube. Other functionalities are entering and
leaving the game.

Page 35 of 47

Player

Log in

Login Usecase

Username
Password
Lookup

Authentication Server

Enter Game

Player

View Elapsed
Time

View Profile

Exit Game

Edit Profile

Accept Profile

Menu Interface Usecase

5.2.5 Chat Use Case

This use case displays the chat usage in the game. Player can chat with other players in the game. This
chat can be public, which includes all players in a room, or can be private, which can only be done by
two players. Player can also interact with AI players in the game, this interaction is of course limited.

Page 36 of 47

Private Chat

Interaction

Public Chat

Player A

Player B

AI Player

Player 1

Player n
Chat Usecase

6 Project Schedule

Page 37 of 47

7 Risk Management

Risk management is essential to be able to deal with strict deadlines. And since the project team have
hardly any experience in game design and development, the risk management plan addresses a very
important topic determining the success or failure of the project. The possible risks and the
corresponding RMMM is explained in details, as a means of reducing the probability of failure.

7.1 Project Risks

Staff Size and Experience(ST):

• Given that the project relies upon individual effort, inexperienced staff, which is likely since the
team consists of senior students with no domain expertise, results in inefficiency and extra
training.

• Given that staff performance is very important in the quality of the project, degrading staff
performance in time deteriorates the overall quality of the system.

• Given that team size is small, where no substitution or alternatives are easily tolerable, any staff
turnover greatly jeopardizes the project’s success, even though not leads to the termination of
the project.

Customer Characteristics(CC):

• Given that the project has to have a good playability besides the technical attributes, end-users’
dissatisfaction from the system by demanding enhancements of the other properties which are
out of project scope forces reassessment of project objectives and scope, thus disrupting project
layout.

Product Parameters(PP):

• Given that the strict deadlines, underestimated project size will increase total project completion
time, thus making it impossible to meet the deadlines.

• Given that components are imported to satisfy the functionality of a module, any incapability of
a component leads to either extension of the component(if possible), or substituting the
component with another, in any case resulting in extra non-scheduled effort.

• Given that many components (e.g. engines) are integrated to realize the project, a possible
disintegrative stemming from any component may lead to an unexpected gap in game design,
thus introduce the reassessment of the design with a new component.

• Given that the ‘massively multiplayer’ feature is demanding on the network connection, and

Page 38 of 47

‘3D’ feature on CPU& Video Card, a wrong estimation of hardware and network requirements
end up destroying the practicality of the game with unrealistic/unfeasible requirements.

• Given that the task distribution is based on major roles, the discovery of too many minor roles
that have been previously ignored causes an extra burden on the team members.

Development Process(DP):

• Given that a desired level of software quality is to be met, the deficiency of software quality
assurance results of degrading quality of the product.

• Given that the process relies on the validity of the modules as well as the integrity of all, the
absence of a detailed, systematic bottom-up testing approach makes it impossible to recover
from the defects revealed too late.

7.2 Risk Table

Risks Category Probability Impact Risk ID
Inexperienced staff ST 60% 3 R1
Degrading staff performance ST 50% 3 R2
Staff turnover ST 10% 1 R3
Customer dissatisfaction CC 10% 3 R4
Underestimated project size PP 30% 1 R5
Deficient components PP 20% 3 R6
Lacking component integration PP 40% 2 R7
Wrong estimation of hardware
requirements

PP 20% 2 R8

Underestimated minor roles PP 50% 3 R9
Lacking SQA approach DP 30% 3 R10
Lacking systematic testing DP 20% 3 R11

Where impact values are:

1. catastrophic
2. critical
3. marginal
4. negligible

7.3 Overview of RMMM

From the risk table, it can be seen that major problems arise in staff- and product-related parts. That is

Page 39 of 47

natural due to the fact that the staff is small-sized, inexperienced and occupied part-time with the
project, while the project is large, unfamiliar and to some extent chaotic in nature(where evolutionary
design should be employed). Anyway, the general approach to risks is as follows:

• encouraging horizontal communication within groups
• keeping high motivation
• realistic (not idealistic) anticipation of the scope and purpose
• maintaining a good level discipline and professionalism

The detailed Risk Information Sheets related to RMMM can be found in Appendix A.1.

Page 40 of 47

8 Software Quality Plan
Objective of quality assurance is to ensure that the product does not deviate far from the original design
specifications. In case of deviations, future deviations will be prevented and previous deviations will be
corrected. During the check for the deviations, ‘Requirements Analysis’ document will be the main
criterion. At each stage of our work, it will be checked whether each task or subtasks are completed
with respect to the original design.

Since we are developing a Massively Multiplayer Online 3D Game, total number of lines of code in the
project will be in huge amount. Keeping track of such an amount will be very difficult. To make the
code understandable and to ease debugging in case of error, a coding standard document will be
prepared. Every group member will have to write their codes according to the code standard
determined.

The project will have too many tasks, most of them will depend on each other and will most probably
be assigned to different team members. As a result of this, in case of suggestion of an important
change, it would take place only if every team member agrees on it. Also in case of efficiency
decrease, we are planning to keep ready one member to help the main member, who is dealing with a
task(graphics, network etc.).
The project will have many deliverables. For each deliverable specific properties will be checked. Such
that

For the Game play:

• Does the game meet our network specifications? Can our architecture support the massively
multiplayer online aspect?
• Does the game meet our 3d graphics objectives? Is it eye-pleasing?
• Does the game meet our playability constraints?
• Are the puzzles in the game prepared well? Are they too simple or too difficult to solve?
• Does the AI in the game meet our AI constraints?
• Are the interactions in the game enough?
For the source code of the project:
• Is the source code easy to read?
• Is the source code commented well?
• Is the source code highly modular?

The RMMM(Risk Mitigation Monitoring Management) will be used to prevent, monitor, and manage
the risks. During the implementation, each member will be expected to do white box testing. At the end
of the implementation of the project, alpha and beta testing will be made. Accordingly test cases will be
prepared.

Page 41 of 47

Appendix

A.1 Risk Information Sheets

Risk Information Sheet 1
Risk ID : R1 Prob : 60% Impact : 3
Description :
Inexperienced staff
Mitigation/Monitoring :

1. Do thorough pre-evaluation of staff to ensure capability
2. Establish frequent informal meetings to inquire about each member’s knowl-

edge about their tasks
3. Collect a detailed, technical assessment papers from staff as a means of self-
evaluation

Management :
Increase horizontal communication among team members to increase information
sharing, thus compromising total team inexperience. Train staff where possible to
increase their capability.

Risk Information Sheet 2
Risk ID : R2 Prob : 50% Impact : 3
Description :
Degrading Staff Performance
Mitigation/Monitoring :

1. Allocate initially balanced load to the staff to eliminate later disappointment
and overburdening

2. Run regular performance tests to the staff to determine their performance level
Management :
Employ the sense of flexibility and keep motivation high to recover degrading
performance.

Risk Information Sheet 3
Risk ID : R3 Prob : 10% Impact : 1
Description :
Staff turnover
Mitigation/Monitoring :

1. Conduct initial interviews with the team members to guarantee their determi-
nation

2. Conduct informal discussion where any tendencies to turn over are uncovered
Management :
Increase and emphasize the roles of the members in coordination of the project and
decision, thus increase satisfaction and responsibility.

Page 42 of 47

Risk Information Sheet 4
Risk ID : R4 Prob : 10% Impact : 3
Description :
Customer dissatisfaction
Mitigation/Monitoring :

1. Conduct detailed field research
2. Perform small-scaled polls to learn about the perspective of end-users

Management :
Inform the end-users well about the project, eliminating any conflicts due to
misunderstanding. Then bend the project scope (at tolerant level, and where possible)
due to user needs.

Risk Information Sheet 5
Risk ID : R5 Prob : 30% Impact : 1
Description :
Underestimated project size
Mitigation/Monitoring :

Management :

Risk Information Sheet 6
Risk ID : R6 Prob : 20% Impact : 3
Description :
Deficient components
Mitigation/Monitoring :

1. Compare to similar projects in order to obtain a stronger estimation of size
2. Monitor schedule frequently and check its consistency with current situation

Management :
Check schedule goals and employ extra workload to keep up the milestones.
Compromise the extra time due to any overestimated tasks with other tasks.

Risk Information Sheet 7
Risk ID : R7 Prob : 40% Impact : 2
Description :
Lacking component integration
Mitigation/Monitoring :

1. Perform a detailed analysis of the components at the beginning.
2. Run small integration tests where basic functionalities of components are at-
tached.

Management :
Retrieve comparative information about required components and be ready to have
alternatives to be substituted for the inappropriate component.

Risk Information Sheet 8
Risk ID : R8 Prob : 20% Impact : 2

Page 43 of 47

Description :
Wrong estimation of hardware requirements
Mitigation/Monitoring :

1. Use historical/statistical data of other projects to verify better estimation
2. Run performance tests to determine system requirements

Management :
Apply necessary modifications throughout the project to compromise any components
which have been tested to have high requirements. Reevaluate system features to
accomplish the goal of low-requirement, adjust when needed.

Risk Information Sheet 9
Risk ID : R9 Prob : 50% Impact : 3
Description :
Underestimated minor roles
Mitigation/Monitoring :

1. Categorize and divide the roles considering the subparts of the modules.
2. Get workforce feedback to check if any major task spawns too many minor
tasks.

Management :
Evaluate the workforce needed for each minor task and adjust the distribution of tasks
among the team.

Risk Information Sheet 10
Risk ID : R10 Prob : 30% Impact : 3
Description :
Lacking SQA approach
Mitigation/Monitoring :

1. Adopt a determined approach from the beginning of the project, and allocate
enough workforce to SQA.
2. Get quality information through technical reviews, hold the statistical data.

Management :
Increase the amount of testing before release. Employ automated tests to improve
quality.

Risk Information Sheet 11
Risk ID : R11 Prob : 20% Impact : 3
Description :
Lacking systematic testing
Mitigation/Monitoring :

1. Adopt a determined approach from the beginning of the project, and allocate
enough workforce to testing.

Management :
Employ a more wide range of testing, i.e. weigh beta testing with a sufficient group of
players.

Page 44 of 47

A.2

Data collected from8

8
http://www.garagegames.com/uploaded/GameEngines2. pdf

Page 45 of 47

http://www.garagegames.com/uploaded/GameEngines2.pdf

References

“AI for Game Developers”. Online. http://safari5.bvdep.com/05960055555/ch00.

“AI Game Development: Synthetic Creatures with Learning and Reactive Behaviours”. Online.
http://safari5.bvdep.com/1592730043/ch01lev1sec2#X2ludGVybmFsX1NlY3Rpb25Db250ZW
50P3htbGlkPTE1OTI3MzAwNDMvY2gwMWxldjFzZWMz.

“Multiverse Platform : An Overview”.
http://www.multiverse.net/platform/whitepapers/mv_overview.pdf

“The Game AI Page. Building Artificial Intelligence into Games”. Online.
http://www.gameai.com.

Amir, Gideon. Axelrod, Ramon. “Massively Multiplayer Game Development: Architecture and
Techniques for an MMORTS.” Online.
http://www.gamasutra.com/features/20050613/amir_pfv.htm.

Bethke, Eric “Game Development and Production”, 2003, Wordware Publishing, Inc.

Caltagirone, Sergio. Keys, Matthew. Schlief, Bryan. Willshire, Mary Jane. “Architecture for a
Massively Multiplayer Online Role Playing Game Engine.”

Fiedler, Stefan. Wallner, Michael. Weber, Michael. “A Communication Architecture for
Massive Multiplayer Games.”

Hammersley, Tom. “Viewing Systems for 3D Engines.” Online.
http://www.devmaster.net/articles/viewing-systems/

Hannah, Britt L. “Object-Oriented Game Design”. Online.
http://www.devmaster.net/articles/building-mmorpg/.

http://en.wikipedia.org/wiki/Game_engine

Page 46 of 47

http://www.devmaster.net/articles/viewing-systems/Viewing
http://www.gamasutra.com/features/20050613/amir_pfv.htm
http://safari5.bvdep.com/1592730043/ch01lev1sec2#X2ludGVybmFsX1NlY3Rpb25Db250ZW50P3htbGlkPTE1OTI3MzAwNDMvY2gwMWxldjFzZWMz
http://safari5.bvdep.com/1592730043/ch01lev1sec2#X2ludGVybmFsX1NlY3Rpb25Db250ZW50P3htbGlkPTE1OTI3MzAwNDMvY2gwMWxldjFzZWMz
http://safari5.bvdep.com/05960055555/ch00
http://www.gameai.com/

Massiv Project Website. http://massiv.objectweb.org/

Merabti, Majid. El Rhalibi, Abdennour. “Peer-to-Peer Architecture and Protocol for a
Massively Multiplayer Online Game.”

Müller, Jens. Metzen, Jan Hendrik. Ploss, Alexander. Schellman, Maraike. Gorlatch, Sergei.
“Rokkatan: Scaling an RTS Game Design to the Massively Multiplayer Realm.”

Privantu, Radu. “A Beginner's Guide to Creating a MMORPG.” Online.
http://www.devmaster.net/articles/building-mmorpg/.

Rouse III, Richard. “Game Design Theory and Practice”, 2001, Wordware Publishing, Inc.

Simpson, Jake. “Game Engine Anatomy”. Online.
http://www.extremetech.com/article2/0,3973,594,00.asp

Stang, Bendik. “Game Engines, Features and Possibilities”.
http://www.garagegames.com/uploaded/GameEngines2.pdf

Yu, Peiqun. “Mopar: A Mobile Overlay Peer-to-Peer Architecture for Scalable Massively
Multiplayer Online Games.”

Page 47 of 47

http://www.devmaster.net/articles/building-mmorpg/
http://massiv.objectweb.org/
http://www.garagegames.com/uploaded/GameEngines2.pdf

	1 Introduction
	1.1 Overview
	1.2 Project Definition
	1.3 Project Scope
	1.4 Goals and Challenges

	2 The Process
	2.1 Process Model
	2.2 Team Organization
	2.3 Major Constraints

	3 Research
	3.1 Market Analysis
	3.2 Technical Research
	3.2.1 Network
	3.2.1.1 Overview
	3.2.1.2 Available Models

	3.2.2 Graphics
	3.2.3 Artificial Intelligence
	3.2.4 Game Engine

	3.3 Interviews

	4 Project Requirements
	4.1 Functional Requirements
	4.1.1 Overview
	4.1.2 Menu Requirements
	4.1.3 Game Flow Requirements
	4.1.4 Operational and Structural Requirements

	4.2 Software Requirements
	4.2.1 Overview
	4.2.2 Game State Consistency
	4.2.3 Node-to-node interaction
	4.2.4 Client Side Processing Speed

	4.3 Hardware Requirements
	4.4 Non-Functional Requirements

	5 System Analysis
	5.1 Data Flow Diagrams
	5.1.1 Level:0 DFD
	5.1.2 Level:1 DFD “Game”
	5.1.3 Level:2 DFD “Server Game Engine”
	5.1.4 Level:2 DFD “Client Game Engine”

	5.2 Use Case Diagrams
	5.2.1 Game Play Use Case
	
5.2.2 AI Player Game Playing Use Case
	5.2.3 Login Use Case
	5.2.4 Menu Interface Use Case
	5.2.5 Chat Use Case

	6 Project Schedule
	7 Risk Management
	7.1 Project Risks
	7.2 Risk Table
	7.3 Overview of RMMM

	8 Software Quality Plan
	Appendix
	References

