
CENG 490
Senior Project

A 3D – Massively Multiplayer Online Game
“The Ma3e”

Final Design Report

by

Ömer Akyüz e1347079
Önder Babur e1347186
Süleyman Cincioğlu e1347277
Güneş Aluç e1462670

Page 1 of 77

Table of Contents
1. Introduction..4

1.1. Motivation.. 4
1.2. Project Definition... 4
1.3. Overview of the Project Scope...5
1.4. Goals and Challenges... 6
1.5. Comments on the Final Design Procedure... 6

1.5.1. Work from the Previous Phase... 6
1.5.2. Recent Progress.. 7

1.6. Current Status in Prototype Implementation.. 8
2. Game Play and Story..10

2.1. General Story of the Game...10
2.2. Puzzle1... 13
2.3. Puzzle2... 14
2.4. Puzzle3... 15
2.5. Puzzle4... 16
2.6. Game Play.. 17

3. Interface Design... 18
3.1. Game Menu Design..18
3.2. In Game Screen Design..21
3.3. Inventory Menu Design..22

4. Game Architecture... 24
4.1. High-Level Operation of the System..24

4.1.1. Abstract Data Flow View (Level:0 DFD).. 25
4.1.2. Game-Core Data Flow View (Level:1 DFD “Game”)... 26

4.2. Overall Architecture... 27
4.3. Message Types... 29

4.3.1. Overview...29
4.3.2. Message Priorities...29
4.3.3. Description of the Fields Used... 30
4.3.4. Explanations of the Messages Used... 31
4.3.5. Achieving Game-State Consistency in a Chain of Interactions..33

4.4. Puzzle Deployment...34
5. Detailed Design..36

5.1.1. Server-Side Network Backbone... 36
5.1.1.1. Server.. 37
5.1.1.2. Skeleton...39
5.1.1.3. Connection.. 39
5.1.1.4. Channel... 40
5.1.1.5. Message Decoder.. 40
5.1.1.6 Event Orderer...42

5.1.2. Server-Side Game Engine...43
5.1.2.1. Game State.. 43
5.1.2.2. Data Loader...44

5.1.3. Client-Side Network Backbone.. 45

Page 2 of 77

5.1.3.1. Client...47
5.1.3.2. Stub... 48

5.1.4. Client-Side Game Engine... 49
5.1.4.1. Client Game State... 50
5.1.4.2. Core Objects..50
5.1.4.3. Chat Module..55
5.1.4.4. Graphics Engine..56
5.1.4.5. AI Engine.. 59

5.1.5. Database Model.. 61
5.2. Behavioural Design – Interaction Modeling.. 63

5.2.1. Server-Side Network Backbone: Initialization, Load-game and Event Processing Scenario
.. 63
5.2.2. Server-Side Game Engine: Event Receiving and Sending Scenario.................................... 65
5.2.3. Client-Side Network Backbone: Load-game and Message Receiving (encoding/decoding)
Scenario.. 66
5.2.4. Client-Side Game Engine: Load-game & Event Processing Scenario................................. 68
5.2.5. Chat Engine: Client-Server Single Message Transmission Scenario................................... 69
5.2.6. Client-Side Game Engine: Inventory Functions Scenario..70
5.2.7. AI Engine: Learning, Resolution and AI-Human Interaction Scenario............................... 71

5.3. Behavioral Design – Process Modeling... 72
5.3.1. Player Movement Scenario...72
5.3.2. Object Interaction Scenario.. 73
5.3.3. Client-Side Event Processing Scenario... 74

6. Interaction Plan.. 75
7. Project Schedule...76

Page 3 of 77

1. Introduction

1.1. Motivation

For our senior project, we will be implementing a 3D Massively Multi-player Online Game that is
capable of simultaneously supporting hundreds of online players. The current Massively Multi player
Online Game (MMOG) market is dominated by Role Playing Game (RPG) and First-Person Shooter
(FPS) games. There are also a few examples of strategy games in this field. Since implementing multi
player online games in a 3D environment is a difficult task, the examples of 3D MMOG games are
limited, most of them being commercial. The reason why MMOGs have become so popular is that a
person can play this game with other people and even his/her friends interactively. The 3D feature is an
add-on to the environment. In this market, creative ideas are more likely to survive since they have a
capability of leaving a stronger impact. We believe that our idea, whose details are provided below, is
innovative in this respect, especially regarding the standard approaches.

1.2. Project Definition

The game to be implemented in this project should be capable of supporting more than a hundred
online players simultaneously. This implies that a strong network architecture is essential for a working
product. Thus, before proceeding with any design procedure, an in-depth analysis of existing
architectures is essential.

Furthermore, the online players in the game are expected to interact with each other. This is actually
the key point in producing a game that can attract a large number of people. For this purpose, the game
should provide facilities in which one player's action should affect others'. However, the desired
condition is that the scenario or the concept of the game forces the players to interact. Although, it is
true that the server will suffer from this functionality, as it is a necessity, it cannot be neglected.

The game will be played in a 3D atmosphere that is rendered as realistic as possible. A good network
architecture that separates graphics rendering from the game engine, or equivalently in this case the
client module from the server, allows high-quality 3D graphics to be created and to be played without
much of a network concern.

Although our initial view is that its integration to our game scenario will be difficult, the role of
Artificial Intelligence cannot be neglected. Unlike in strategy games, our game – whose scenario details
are given next – does not contain a solid set of rules that can guide the AI unit in resolving its search
tree. The game to be implemented is mainly based on puzzle solving and for the AI player to become a
part of it, some relations should exist between the puzzles. In reality they do not and this is the difficult
part. To overcome this difficulty, the puzzles will be associated with each other by ontology mappings.
Such ontological mappings should aid us in the development and deployment of additional puzzles
since they will set out rules by which both the puzzle designer and the programmer should abide.

Page 4 of 77

1.3. Overview of the Project Scope

For this project, our goal is to implement an adventure game from the first person's point of view. The
game scenario is based on the movie “The Cube1” in which the actors are trying to get out of a very
large cube shaped building consisting of n*n*n – k rooms. The rooms are also cube shaped and they
are similar in view. Furthermore, on regular intervals, the rooms in the construction change their
absolute position inside the cube.

The primary goal of the players in the game is to eventually get out of the cube. This, as one might
guess, is not an easy task. The rooms are filled with tricks, booby-traps and several puzzles to solve.
Even if the players are very close to the exit location, just before they move out of the room, that
room's absolute position might change. In our opinion, this will add some flavor into the game.

To safely move from one room to the other, the players need to collaboratively solve the predefined
puzzles. It is different from the original movie in this respect. After all, in the movie, the actors try to
avoid the booby-traps by solving the puzzles. On the contrary, in our scenario, the players unlock the
doors by solving the puzzles. Of course, not all actions performed by the players lead to a solution.
Additionally sometimes the actions that are performed might harm the players, thus they need to be
very careful.

The puzzles can be solved directly or indirectly interacting with the objects in the environment.
Therefore, exchange of ideas between the players becomes very crucial at this point. By direct
interaction we mean actions such as clicking on a wall item, using an object from the object inventory
and various combinations of each. Indirect interaction refers to the personal experience gained in
interacting with the environment objects. For example, there might be a written text on the wall that has
clues as to how the puzzle for that room (or for some other room) can be solved. When a puzzle is
solved, the players will be able to move to a different room. Although the players may prefer moving in
groups, such a restriction is not imposed. Therefore, they might leave others behind. When they move
inside the cube, the players will either encounter rooms with other players or some empty rooms.

As in almost every game, there will be some artificial intelligence present. However it will be
implemented in a different way. In almost every occupied room there will be some (one or two, usually
one) AI players present. They will mainly be moving with the group and performing actions together
with them. The key role of the AI player will be to assist the other players in solving the puzzles. The
AI players will usually have some background experience. After all, they will have moved with
different people that have solved various puzzles. As the puzzles are solved, the AI players will learn
from the actions that led to the solution. For this purpose, several predicate clauses will be associated
with each of the actions that can be performed. As the AI player's search tree grows wider and deeper,
it will be able to come up with better suggestions as to how the puzzle in the current room can be
solved. Therefore, it will assess the objects and the actions that can be performed on these objects and
later on evaluate its search tree to find if anything similar matches. The AI player can make a
suggestion through the chat functionality or by answering questions asked by other players, a technique

1 Cube. Natali, Vincenzo. Movie. http://www.imdb.com/title/tt0123755/

Page 5 of 77

known as “interrogation”.

1.4. Goals and Challenges

Within the scope of the project the general goals can be classified as follows:

● Maintaining the game-state consistent,
● Ordering the events,
● Increasing interactive responsiveness,
● Providing realistic rendering of 3D components,
● Integrating artificial intelligence into the game.

The above functionalities can be used in setting up the roadmap for developing the MMOG for the
senior project. Other goals are also present, but we will just provide them as challenges. In our design
we will try to leave some open doors to the following items:

● Displaying animations,
● Scheduling computations across players,
● Providing authentication/authorization mechanisms,
● Implementing a cheat-proof design.

1.5. Comments on the Final Design Procedure

1.5.1. Work from the Previous Phase

With our initial design – whose details are thoroughly explained in the following sections of the report
– we have covered mainly the basic goals. Our architecture allows:

● The game-state to be kept consistent and it contains modules for the ordering of various events.
● Interactive responsiveness to be increased by dividing the processing on the client application

into separate modules each of which with distinct duties. The network layer, the game engine,
and the graphics processing layers are all separated, with minimal interfaces with each other. In
our opinion this should provide us a good deal of flexibility when it comes to tailoring the
product to our needs.

● Realistic 3D images to be rendered. There seems to be some problems with rendering too many
components, but they are planned to be resolved before the prototype demonstration.

Currently we are facing some problems with artificial intelligence design and implementation.
Therefore what we have done was to include the AI in our design the way we have predicted it to be
and the way our research data forced us to do. The relevant components of our system are associated
with our AI components so that we do not face integration problems in the future. The interfaces are
again kept minimal and abstract so that modification costs are minimized.

Page 6 of 77

The challenges such as displaying level-end animations, scheduling computation across players to
distribute workload, authentication/authorization mechanisms and a cheat-proof design were not dealt
with in the initial design. On the other hand our approach to each of those items will be:

● Level-end animations can be defined through a set of static rules. Animation processing can
completely be done on the client application. All that the client needs to do is to obtain these
static rules at start-up. Other static information is already being sent to the client. Therefore,
including animation data will not cause too much of a disturbance. Once the animation data is
loaded, the client should be ready to process level-end animations. The graphics engine is
modular enough to support animations. It is already intended to support some in-game
animations.

● Instead of trying to schedule computations across players, one might consider dividing the
server into a group of servers and scheduling the computations across each member of the
group. Implementing servers with different functionalities could be one approach or
implementing servers that serve a smaller subset of the whole “game world” could be another.
If necessary, we are planning to take the second approach. That would definitely increase the
number of concurrent players in the game. Although in that case there would exist
synchronization problems, they can be solved by using a global database that is accessible by
each member of the server group. In our initial design, we have already included the interface
for database connections. Based on our design, it does not make too much difference if the
Server instance processes the whole world data or a subset of it. That is one of the major
advantages of our scenario – that we have distinct rooms in the Cube –.

● Authentication / authorization mechanisms are not yet included in the initial design. To
implement such a feature, one method would be to use public/private key encryptions.
Fortunately, such an add-on will not cause costly modifications to be made. The
communications are done via the Message objects that are an abstract representation of what is
being sent and received by the connected nodes. Authentication and authorization can be
implemented just by changing the structure of the message object to include key encryptions.

● A cheat-proof design is too much of a challenge for us considering requirements prior to that,
therefore it will be neglected for the rest of the project.

1.5.2. Recent Progress

During the final design phase of our project, we have enhanced our initial design both by resolving
errors from the previous phase and by adding the relevant detailed design and implementation parts of
some additional components to the report. Consequently, the following tasks have been accomplished:

• Based on the first-hand experience obtained from the prototype implementation, the
interfaces that realize the integration between the two major components of the game: the
Network Backbone and the Game Engine is enhanced.

• The Game Engine is made more modular by describing everything as an event: input
received from the keyboard, a request to join the game, player-object interactions, etc.

• The responsibility of the “Message Encoder” and the “Message Decoder” classes were

Page 7 of 77

enhanced. In other words, now, they do not only deal with the core messages that are
transmitted during game-play but also with chat messages and serial object instance
messages.

• The Graphics Engine is made more modular by introducing the “Animation Engine”
module. It is capable of simulating the events both introduced by the player itself via I/O
device input and the events that are received from the server describing the actions
performed by other players.

• The Chat Module -one of the key components in player-player interactions- is introduced.
Its design and implementation details are expressed via several UML diagrams and verbal
descriptions.

• The roadmap for integrating AI into the game: how ontologies will be utilized in deduction
and resolution of rules and how the clients will be notified of these deductions is explained.

• Based on the feedback received from our advisors, a technique for the deployment of the
puzzles into the game is developed. It is based on expressing the events involved in a puzzle
as a chain of rules and making use of the ontologies upon which the puzzles are developed.

1.6. Current Status in Prototype Implementation

The fact that we have started the implementing our prototype, we were able to see what issues there
were to resolve for the initial design of our project. The implementation evolved in two distinct
disciplines: Network and Graphics. The work accomplished so far can be summarized as follows:

For the Network core, a similar architecture involving the “Channel”, “Connection”, “Stub” and
“Skeleton” concepts was implemented. Although a parser for every type of message was not written,
the available model implements the encoding and decoding of movement messages. Whenever a player
moves in the room, that information is encoded via a message construct and sent over the network for
transmission. The server is responsible for the distribution of that message to every other player in the
same room. With the implementation, we had the chance to see the possible consequences of network
lags and overloads and could modify our design accordingly.

On the other hand, we have built upon our existing Graphics implementation and enabled some
animation (walk, jump, crawl, etc.). Whenever a player interacts with the environment via the I/O
devices, that information is sent to the “Animation Engine” and to the network backbone. This way, a
player can see the movement of other players in the room.

Page 8 of 77

A scene from prototype implementation

Page 9 of 77

2. Game Play and Story

In this section of our initial design report I will try to tell the details about the story and game play of
the game. In order to make everything clearer, some explanatory drawings are also added. But first of
all, I have to tell you that our game is a bit different than the usual FPS(First Person Sight) adventure
games. Generally, in usual FPS adventure games, there is a predefined scenario, and all the events in
the game flows through this predefined end case. Mostly, the events in the game are separated into
levels and at least between levels the player can save the game and then continue from its last saved
position. Game flow is generally incremental in these games. However, for our game the concepts of a
usual FPS game do not apply. Our game is also a FPS adventure game but its being massively multi
player online game changes its nature a bit. Since a lot of human players will be in the game, there will
not be a scenario which is based on the main character as in the usual FPS games. Every player in the
game must have an equal share in the story of the game. Otherwise, there will be conflicts between the
players. So we have chosen a simple but an innovative story which does not have an incremental,
predefined flow. The general story of the game is discussed in section 2.1 below. The drawings will
help you understand the blurry parts of the story.

2.1. General Story of the Game

In this part I will try to explain the general story and game flow of the game. Our game is based on a
thrilling Canadian movie ‘The Cube’. The main idea of the game is very much alike with the movie
‘The Cube’, to get out of a smartly designed cube. Our game’s story starts before the player’s get into
the game, where 4 crazy but absolutely very smart scientists wants to feel the emotion of controlling
people and to experiment the survivor nature of the human. Actually they want to feel like God for
sometime; to create a universe for at least some people and see what happens when these people get
into this universe. For time being lets call these league of extraordinary smart but crazy scientists’ team
‘GOSO’. After sleepless nights and spending millions of dollars GOSO started the design of an evil
universe for their experiment. This universe had to be very smartly designed and GOSO don’t intend to
let their humans escape so quickly from this universe, but also they are merciful enough to let the most
talented and smart humans to get out of this hell-like universe. After many years, GOSO finished their
universe, it was a cube consisting of many rooms which are connected to each other. But these rooms
are not stable, they are constantly changing their positions in the cube, nobody knows the exact number
of the rooms in the cube, because GOSO decided to make their masterpiece design better by adding the
functionality to add and remove rooms from the cube whenever they want. Did I say that they were
totally crazy? The cube has only one entrance and exit and this one way exit is not stable since the
rooms are not stable too. The room which leads to exit changes every time, there may even does not
exist a room in the place of exit for some time, but be patient, the time will come when a room come to
that place.

Page 10 of 77

Drawing 1

GOSO built this hell-like cube underworld, only the entrance(which is also the exit) is above the soil.
So as you understand it is impossible to get out of the cube without finding this one exit. The players
are supposed to go from one room to another until they find the exit. But it isn’t as easy as it sounds.
Most of the rooms contain puzzles and traps which makes everything more complex and harder for the
players. Most of the time the doors are locked and can not be unlocked without solving the puzzle of
that room. Puzzles can be harder or easier, there are even some puzzles that can only be solved by
using some items which are found in some other rooms. Solving the puzzles will be the most enjoyable
part of our game, we hope. There are also some deadly traps in the game. GOSO put these obstacles to
see the survivor nature of the players. Luck can play a very important role in the game. A player may
choose not to go to any other room after solving the puzzle in the room and unlocking some doors of
the room, instead he may choose to wait until the room comes to exit and walk away to the fresh air of

Page 11 of 77

the outside world. But what if the next room you didn’t enter was the exit room. One can get so mad
that he can not resist trying the next room. Yes, GOSO wins again, they want to get you mad. You may
get mad while going one room to another, this cube is like an endless maze, since it always changes.

The story has some mysterious parts. The players start in a room in the cube. None of the players
knows how he came to that room or who got him to that room. And probably they wont have a chance
to learn this for their whole life. In a room generally there are 5 or 6 players. But a group of some other
5 or 6 players may also come to the room they are in. The core of the game story is the puzzles and
traps of the rooms. So I will explain some of the puzzles and traps to give you some idea.

Drawing 2

Page 12 of 77

2.2. Puzzle1

In most of the rooms there are puzzles to be solved in order to get out of the room. In this puzzle there
are two doors in the room; one of them is the door which the players have entered, the other one is
locked. The locked door is a bit higher from the ground, there is platform in front of this exit door
which is half a meter high(see the drawing below). The dimensions of the platform is also given below.
There is a tap in the room, from which water comes when it is opened. The tap can also be closed to
stop the water. There is also a high voltage open electric wire in the room , which is on the wall and 25
cm high from the ground. To touch the wire is deadly, not recommended. When the tap is opened the
water starts to fill the room. The players can get on the platform while the water is flowing. When the
water fills the room 25 cm, the wire touches the water and players who are not on the platform dies
because of the electric shock. When the water fills the room to the level of platform(50 cm), the water
stops filling the room and the door is unlocked. The players are free to get out of the room. If the tap is
closed before the water level reaches to the platform, nothing happens.

 Drawing 3

Page 13 of 77

2.3. Puzzle2
In this puzzle there are two doors in the room; one of them is the door which the players have entered,
the other one is locked. The floor is like a chessboard. There are 32 white and 32 black squares in the
floor. And there is poem written above the exit door:

Sails the traveller the black river from one side to the other
Can not see the end of his journey until the last harbor
But must cross the black river with patience from one corner to the other
Without disturbing the calmness of the river

This poem is the key tip to solve the puzzle. The locked door can only be unlocked by walking on the 8
black squares from lower right corner to upper left corner (this is our black river). All these 8 black
squares must be walked step by step and without interrupted with another square, which means if
someone also walks from one square to other square, the chain is interrupted(the calmness of the river
is disturbed). Everyone must stand still till someone crosses all the 8 squares from one corner to the
another. If the chain is completed without interruption the door is unlocked. The players are free to get
out of the room.

Drawing 4

Page 14 of 77

2.4. Puzzle3
In this puzzle there are 4 doors in the room; one of them is entrance. When all players get into the room
all doors are locked including the entrance door. the lights are on in the room at first, there is light
button in the wall, when it is turned off the room gets dark. There two laser walls in the room each of
them passes from one corner of the room to the opposite corner. These lasers can only be seen in the
dark. And interaction with these lasers is fatal. There are 4 panels in the walls, each consists of 3 arms
all of which are up and a LED screen watch which is set to 10 seconds. The first arm closes the first
laser wall, the second arm closes the second laser wall, and the third one unlocks the door which is at
right of the panel. Each time only one arm in the room can be pulled down and whenever an arm is
pulled down the watch is activated and starts to count from 10 to 0. When it reaches 0 the arm go backs
to its position and everything is reset in the room. So each time only one action can be made. In order
to get out of the room, first or second arm must be pulled down to close the related laser wall. Then
players must get to the right of the panel, but one of them must be left behind to unlock the door. The
last one sacrifices himself for the team. One player can not get out of this room, since each door can
only be unlocked for 10 seconds. Others are free to get out of the room whenever the door is unlocked.

Drawing 5

Page 15 of 77

2.5. Puzzle4

In this puzzle there are 4 doors in the room; one of them is entrance. There is a desk and 4 water taps in
the room. There are also 4 buckets in front of the taps(on the desk) to be filled and 4 drawers in the
desk which are all locked. The doors are also locked. The taps can be opened to fill the bucket.
Whenever a bucket is filled, the related drawer is unlocked. But other buckets must all be empty. The
buckets can be unloaded and taps can be closed as well. When each bucket is filled on its own and the
related drawer is unlocked, you find a key in the drawer. The key unlocks the related door. The key you
find in the first drawer opens the first door, the second key opens the second door, the third one opens
the third door, and the fourth key is a joker key to be used in another room, it is not used in this room.
So you better keep it. Once a player opens a door with its key he is free to get out of the room.

Drawing 6

Page 16 of 77

2.6. Game Play

This section briefly summarizes the general game play within our game. Details of the
following can be seen in the requirements specification documentation.

Player is provided with the main menu when he first enters the game. At this state, he can customize
the provided game options and continue his game in the cube. But to continue does not mean to
continue from the last room he was in. Our game does not have save and load functionality. If you
leave the game you can not continue from where you left. You start in a random room. Also to save and
load game in our game is also meaningless. Because the rooms are not stable, their positions are always
changing, so saving the game does not mean anything. If the player dies in the game, he does not die
forever but could not get into the game for several time(we didn’t decide the interval but it can be
several hours). In the game, player takes place as a first person observer and at the same time he can
monitor some game related information like player health and inventory. Detailed inventory will be
provided whenever requested by the player. During the game, the player can interact with the objects
and other players. The player can wander within the room, while picking up or using a variety of
objects. Moreover, the player can talk with the other human or AI players private or public.

While in the game, the player can escape to the paused game menu. At this state, he can customize the
options, view his elapsed time, resume the game or leave the game.

All the game is based on getting out of a crazy cube consisting of moving rooms. Rooms will change
their positions every half an hour. And most of the rooms has puzzles and traps. There will also be Hall
Of Fame section, displaying the most valuable(most lucky) players who succeeded in getting out of the
cube in minimum time.

Page 17 of 77

3. Interface Design
The following subsections explain the general interface designs for our game. The transitions between
these interfaces are defined previously in the Game Play section of this document and in the
Requirements Specification Document. Therefore we will not mention any details about them again.

3.1. Game Menu Design
As stated in the requirement specification report, our game has two different types of menu: main menu
and paused game menu. Each of them has some parts in common, but they have mainly a different
interface.

Below you can see the Main Menu screen. At the top you can see the game’s title. At the right part of
the interface contains some introductory part for the game; these maybe some introductory text, some
screen-shots or a video. At the left part of the screen you can access the menu items. The details of the
menu items are stated in the Requirements Specification Document of the Analysis Report. These
menu items are Enter The Cube(makes you enter the game), View Profile(gives the profile information
of the player, elapsed time etc.), Hall of Fame(lists the most valuable players), Options(you can adjust
the options of the game via this), Credits(gives information about the creators of the game), Help(gives
helping information about the game play of the game, controls etc.), Leave The Cube(quit the game).
Menu Item(*) is an optional button, if we want to add some new menu item to our menu we can add a
new item there.

Page 18 of 77

Main Menu Interface

Below you can see the Paused Game Menu screen. It appears in the middle of the game screen(we may
change this part). At the top you can see the game’s title. The details of the menu items are stated in the
Requirements Specification Document of the Analysis Report. These menu items are Resume
Game(you go back to the game), View Profile(gives the profile information of the player, elapsed time
etc.), Options(you can adjust the options of the game via this), Help (gives helping information about
the game play of the game, controls etc.), Leave The Cube(quit the game).

Page 19 of 77

Paused Menu Interface

Page 20 of 77

3.2. In Game Screen Design

In Game Screen Interface

The above figure illustrates the In Game Screen design of our game. The current view of the player will
be rendered to the full screen and the other content which can be named as heads up display are
rendered onto this view.

The components of the heads up display which are located at the left shows Public and Private Chat
Boxes. Public Chat Box is displayed continuously during the game and updated as soon as a change
occurs. Private Chat Box is optional and it only appears when two players in the game talk privately.

The components of the heads up display which are located at the right shows the current health amount
of the character, the inventory item which is currently hold by the character, an inventory access button
by which you can go to the inventory and a menu access button by which you can ago to the Paused
Game Menu.

Page 21 of 77

At this screen the cross-hair is a very important component. This cross-hair always displayed at the
middle of the screen. It can be used for inspecting an object, picking up an object or even using an
object with another object. For each of these actions, this cross-hair changes its shape in order to
express the possible action to the player.

3.3. Inventory Menu Design

Inventory Interface

The above figure illustrates the Inventory Menu design of our game. In the game when the player
requests to view the character’s inventory, this menu will be displayed. At the left hand side of this
menu the inventory items that are in the inventory of the character are displayed as list. This list will
include each item rendered at a small scale. Obviously, the list can have a number of items more than
that can fit in the screen, so a scroll box is supplied just at the right of the list. The player can navigate
through the inventory items via keyboard or mouse. Below there are Equip Item(to equip the selected
item) and Leave Item(to leave the item to the ground) buttons. During this navigation, current
inventory item will have a thicker border and it will be rendered at a larger scale at the right hand side

Page 22 of 77

of the screen. Below this larger render, name of the item and a brief explanatory text about the item
will be displayed. This explanatory text will be optional which means that it may or may not exist
according to the current item. Below there is a Un-equip Item button(to un-equip the current equipped
item). At the very below There is Resume Game button to go back to the game.

Page 23 of 77

4. Game Architecture

4.1. High-Level Operation of the System

Our system consists of separate but highly interoperating modules, as can be seen from the following
diagrams. The abstraction of related subsystems recognized from data flow diagrams into modules has
led to a well-designed architecture adopted for the project, which is clearly explained in the following
section.

Page 24 of 77

4.1.1. Abstract Data Flow View (Level:0 DFD)

Level 0 DFD is the system in the highest level. The whole software is referred as ‘Game’ process with
which player and developer interacts with. All the necessary game data is stored in the game data
repository. Player interaction involves keyboard/mouse and chat message inputs, and display and chat
message outputs. Game continuously queries 3D model information, AI data, static/dynamic room
information and updates the necessary game data.

Page 25 of 77

Player Developer

Game

Game Data

Login_info

Keybord/mouse_input

Outgoing_chat_message

3D
_d

is
pl

ay

In
co

m
in

g_
ch

at
_m

es
sa

ge

C
onfiguration_data

G
am

e_data_update 3D
_m

od
el

_i
nf

or
m

at
io

n

A
I_

da
ta

(O
nt

ho
lo

gy
)

S
ta

tic
_r

oo
m

_i
nf

or
m

at
io

n

D
yn

am
ic

_r
oo

m
_i

nf
or

m
at

io
n

Level 0

4.1.2. Game-Core Data Flow View (Level:1 DFD “Game”)
Level 1 DFD indicates the main functions of the game. Player provides the game with login info, which
is authenticated and matched with the corresponding personal info of the player. This information is
then passed to the Client Game Engine. Input Handler is the layer where player inputs are processed
and converted into action information that is evaluated in Client Game Engine, and with the necessary
room data from the repository, is combined to scene data. This is combined by Graphics module with
3D model data to construct the 3D scene to be displayed to the player. The actions performed by the
player is transformed into events and sent to Server Game Engine by Client Game Engine, which also
receives the incoming events from the Server Game Engine. Server Game Engine is the central part
where events from clients are processed and distributed, highly using the Game Data Repository as
well as the configuration data from Developer. There exists a further process of Chat Handler, which
handles the chat message traffic among the human and AI players.

Page 26 of 77

Player

Chat Handler

Input Handler

Client Game
Engine

Graphics

Authentication

Server Game
Engine

Devel
oper

AI
_d

at
a

D
yn

am
ic

_r
oo

m
_i

nf
o

G
am

e_
da

ta
_u

pd
a t

e

Game Data

Incoming_chat_message

Outgoing_chat_message

Login_info

Keybord,Mouse

3D
_displa y

Sc
en

e_
da

ta

3D_models

C
onfiguration_data

AI
_c

ha
t_

in
fo

Au
th

en
tic

at
io

n_
de

cis
ion

Event_info

Event_request

P
er

so
na

l_
in

fo

P
er

so
na

l_
in

fo
_r

e q
ue

s t

Action_ info

S
ta

tic
_r

oo
m

_i
nf

o

Level1 Game

4.2. Overall Architecture

The project is compartmentalized into packages, each of which consists of the classes with related
functionality. The architecture of the project demonstrates a refined view of the system. Cohesion and
coupling is aimed to be intensively employed to maximize modularity. This provides a good initial
design with good opportunity to better express and even further extend the project functionality in the
final design.

The game consists of two main parts, server and client game engines as the managers of the modules.
Server game engine is responsible for database operations and event distribution, which minimizes the
share of processing in the server side, allowing it to support large number of clients. Client game
engine generates and receives events and holds a reflection of the game state on the server side, while
an initial database connection for the static data to be loaded is also regarded. The interface between
server and clients is purely “Event”s, but in the form of “Message”s. All the data necessary for a game
state change is encapsulated within an event, which is encoded into a Message to be later decoded by
the recipients. Graphical user interface and 3d display is achieved through Graphics Engine, which
solely renders everything defined in a room in the client. Graphics Engine stands on top of the
OGRE3D engine, as the higher level for 3d display. User input is handled through a IOHandler
module, dealing with not only keyboard and mouse inputs for object/player interaction and 3d steering,
but also text input for chatting among the players. Finally, AI Engine is the module that manages all the
AI players in the game, possibly distributed among many rooms. Connected to directly Server Game
Engine, which means being server-side only, AI players interact with the human players through the
chat engine by sending them chat messages. The chat messaging facility is provided for the human
players as well.

The interaction between the two major components, namely the Client and the Server, is achieved via
the exchange of “Message”s. Coming up with an extensible, modular and yet lightweight architecture
for the exchange of such “Message” objects is the key principle that will determine whether the
outcome of this project is regarded as a Massively Multi-player Online Game but not just a Multi-
player Online Game. A more detailed description of the underlying messaging architecture can be
found in the subsequent sections.

Page 27 of 77

Overall Game Architecture

Page 28 of 77

Se
rv

er
 D

at
ab

as
e

G
ra

ph
ic

sE
ng

in
e

IO
H

an
dl

er

Cl
ie

nt
G

a
m

eE
ng

in
e

Ch
at

En

gi
ne

M
es

sa
ge

H

an
dl

er

Ev
en

t
Ha

nd
le

r

Se
rv

er

D
at

ab
as

e

AI
En

gi
ne

4.3. Message Types

4.3.1. Overview

The format of the messages that are to be sent between the clients and the server are provided below.
The table gives a grammatical description of the various types of messages. The full syntax that is to be
used in the implementation will be provided later on.

Type Priority Field Field Field Field Field
synchronization 1 timestamp player_id state current_position current_directi

on
movement 2 timestamp player_id movement_type to_position {current_posit

ion}
direction
change

2 timestamp player_id to_direction {current_direction}

interaction 3 timestamp player_id object_id action_id parameter_list
object-object
interaction

3 timestamp object_id object_id action_id parameter_list

player-system
interaction

3 timestamp player_id action_id parameter_list

Table - Messages

{}: represents that the use of the enclosed field is optional within the message. Message encoders and
decoders are responsible for correctly implementing this scheme.

In addition to the messages described above, some other messages such as chat messages and serialized
object instances are transmitted over the network backbone. The use cases in which the latter messages
are involved will be discussed in the following sections.

4.3.2. Message Priorities

Whenever a player is involved in an interaction, other clients are notified of it via the exchange of
messages. Delays and losses are inevitable if especially there is some network overload. Assigning
priorities to messages and implementing the necessary enforcements is a step taken towards achieving
game-state consistency.

As depicted on Table-Messages, synchronization messages have the highest priority. The reason of
choice is simple. The message is used to synchronize the position and direction of a player. It should
have a higher priority than simply a movement message or an interaction message. Similarly, the player
would be more annoyed if he/she sees other players at wrong positions than if there is some delay in

Page 29 of 77

perceiving an interaction with an object. Consequently, interaction messages have the lowest priority.

Inevitably, the “Event Orderer” takes into account both the timestamp and the priority of messages
when actually performing the ordering and validation. Algorithms for combining the two parameters
will be deduced on a trial-and-error basis, during the implementation phase.

4.3.3. Description of the Fields Used

timestamp: a field that is used mainly by the “Event Orderer” during validation and ordering of
events. Over a large network, there is no guarantee that messages will be received by the order
they are sent. Thus, a mechanism for putting them in the correct order is essential. Before
generating the desired message, the “Message Encoder” consults a trusted, synchronized timing
authority for appending the current time value to the message.

player_id: In our model, events are mainly player-driven; that is most of the events are caused
by the interaction of a player with other players, or a player with an object in the environment.
The “player_id” field represents the unique identifier of the player involved in the event.

object_id: The “object_id” field aids the relevant authorities (such as the “Message Decoder”)
for identifying the object (or the subject in an object-object interaction) of the event that is
generated during a player-object or an object-object interaction.

action_id: Unique identifiers for the actions that are invoked in any type of interaction are
embedded in the relevant messages for guiding the authorities in simulating the action. Details
of this scenario will be discussed shortly.

parameter_list: There may be cases when the invocation of an action requires several
parameters to be passed as arguments. One can think of interaction messages as the basis for
implementing remote procedure calls in our model. A thorough explanation can be found in the
following section.

state/movement_type: Both the “state” and the “movement_type” fields practically resemble the
same information but in different contexts. A player is allowed to make a movement of any of
the following types (the list can easily be extended in the upcoming stages of the project):

● STILL,
● WALK,
● RUN,
● JUMP,
● CRAWL.

The “movement_type” field indicates the type of the movement that the player is currently
performing. On the other hand, when this information is represented in a synchronization
message, it is simply called “state”.

Page 30 of 77

current_position: the current physical location of the player is indicated via this field.

to_position: the physical location to which the player intends to make his/her movement is
represented via this field.

current_direction: the most up-to-date direction, represented as a combination of the look-at-
vector and the up-vector of the player, is indicated via this field.

to_direction: When a player wishes to change his/her current direction without making a
movement (look up, look down, turn left, etc.) that information is contained in the message
under the “to_direction” field.

4.3.4. Explanations of the Messages Used

➢ Synchronization Message:

These messages are used whenever conflicts arise and player positions, orientations need to be
synchronized. The message starts with the type tag and continues with the id of the player
which needs synchronization. The state { UNDEFINED, STILL, WALK, RUN, JUMP,
CRAWL }, the position and the player's direction are all supplied within this message. As in all
cases, the message is timestamped with a trusted authority.

➢ Movement Message:

The message indicates a change of position on a player. The player with player_id moves with
type { UNDEFINED, STILL, WALK, RUN, JUMP, CRAWL } to the indicated position. The
player's current position can also be supplied when necessary. That information is for
synchronization purposes.

➢ Direction Change Message:

The player indicated by player_id changes his/her direction from current_direction to
to_direction. The current_direction field is optional and may be supplied for synchronization
purposes.

➢ Interaction Message:

Interaction messages are more generic than the others and they can be used for various
purposes. However, the intended purpose of this type of messages is to let the users interact
with objects in the environment. Objects have several functions that can be invoked in order to
change their properties and also the properties of the environment. These functions can be
generic, in the worst case taking various number of parameters whose types may also be
varying. To overcome such difficulties, in our design, modules have been included such that an
interaction message can be processed as a remote function invocation. The message starts with
its type, containing fields such as player_id, object_id, action_id and a list of arguments.

Page 31 of 77

➢ Object-Object Interaction Message:

A restricted subset of interaction messages.

Although an interaction is usually player-driven, certain scenarios require objects in an
environment to be the initiators themselves. For instance, in one of our scenarios, water filling
out in a room – when it reaches a certain level – triggers the uninsulated electric cable to cause
an electro-shock on the players that are in contact. In this case, the water object itself triggers an
action on the electric cable. The only way that every player in the room is notified of this event
is via the exchange of messages, namely the object-object interaction message.

➢ Player-System Interaction Message:

A restricted subset of interaction messages.

Several interactions, which can be considered outside the core functionalities but are absolutely
essential for a smooth game-play, need also be represented as messages and sent over the
network. Such interactions are usually between a player and the system itself, as listed below:

● A player requests permission to join the game;
● A player is given the permission to join the game in a certain room, other players in the

room must be notified of this event;
● A player quits the game on his/her own will, other players should immediately be

notified;
● A player dies and is forced to exit, other players in the room are also notified.
● Players in the room have completed the puzzle and request to move into a different

room. Players in the neighboring room need to be notified.

The “player-system interaction” message acts as a container for the information that is
exchanged between the clients and the server in case any of the aforementioned events occur.

➢ Serialized Object Instance Message:

When the player is admitted into the game, some static as well as dynamic data associated with
the room in which the player appears must be supplied to the player's machine. Such
information is again transmitted over the same network backbone, by means of messages.
However, the message format is slightly different. The static data includes information such as
the dimensions of the room, the contained objects and their relative positions. For the proper
transmission of this static data, a mechanism is defined: any object has to implement our
Serializable interface, and only then it can be transmitted through our Serialized Object Instance
message. This flexibility is provided for future freedom of sending any object, but for that being
we have only defined Room class to be Serializable, so that it can be sent for client game
loading/initialization at the beginning of the game.

➢ Chat Message:

Page 32 of 77

Chat Messages are defined as specialized messages for text transmission. The message mostly
consists of the text message being sent, only with the exception of the extra part of sender id.
{player_id | textcontent} message is then resolved at the client side, so that the id of the sender
is matched against player name and displayed in front of the text content.

4.3.5. Achieving Game-State Consistency in a Chain of Interactions

The fact that player-object interactions are distributed to other clients in the form of interaction
messages that are transmitted over a loaded network and that consequently the change-of-state
of objects in each client machine is achieved separately in an event-driven manner creates a
major synchronization problem.

For justification, consider the following scenario:

● Player A-E reside in the same room.
● There is a chest in the room. The chest can be opened, if closed; and various items can

be picked out of it, only after it is opened.
● Player A opens the chest. The relevant interaction message is sent to the server for

distribution to the other clients.
● The server processes the information, makes the implied change in its own global game

state repository and sends back the message to the Player B-E.
● For some reason, the messages are lost on the way to two of the recipients (assume these

to be Player C, Player D).

At this point, there is a major game-state inconsistency. Player C and Player D can only issue an
“open-chest” action while Player A, Player B and Player E can pick items from the chest. If
Player A now picks an item from the chest, both Player C and Player D will be confused on
what to do, since the state of their own instances of the chest object do not allow such an action.

There are various schemas that can be implemented to tackle this problem:

1. Make sure that the effects are not visible in either client until every client receives the
notification. In other words, Player A will not be able to pick-up an item from the chest
until Players A-B are fully notified of the “open-chest” event.

2. On regular intervals, send various object-state-synchronization messages to every
subscribed client.

3. Define action chains for the objects and issue the “Event Orderer” to resolve
ambiguities. If Player C receives a message such as “Player A picks up Item X from the
chest” then its “Event Orderer” realizes this by simply understanding that there was a
problem with its own execution of actions and simply assumes the “open-chest” action
to be completed.

Page 33 of 77

4.4. Puzzle Deployment

One of the main challenges that face the developers of the project is to realistically implement the
puzzles that have been designed up to now (and that will be designed in the future). Coming up with an
abstract model to represent the puzzles would definitely be a time-saving accomplishment. Although,
the modules and data structures that deal with the realization of the puzzles (Rule class; Action, Object
entities etc.) exist; hierarchically, there does not yet exist a structure that encapsulates them all. Based
on the feedback we received from our advisors, we have decided to include in our report, an initial
view on how we will tackle the problem. In our opinion, the best solution would be to use a human-
understandable – yet machine processable – resource to represent (and tie together) the building blocks
of a puzzle. That way, developers need only work with such resources, which can later on be supplied
to the system for further processing.

The resource is to be used by three of the major components of the game, namely: the Game Engine,
the Graphics Engine and the AI Engine. The Game Engine will utilize it to simulate the effects of the
action chains described by the puzzle. The AI Engine will work with the rules by which each of these
actions are associated. Furthermore, the Graphics Engine will simulate the environment by associating
the metadata included in the resource with some predefined object models.

Before going into the details of how the proposed resource can be represented, let us briefly go over
each of the key concepts that are used throughout this section. For our case study, we will work with
the following puzzle:

● There is a tap in the room. The tap can only be turned on. Once it is turned on, it will not be
possible to turn it off.

● If the tap is turned on, water starts filling the room out.
● When water reaches a certain level, the uninsulated cable causes an electric-shock on anyone

that is intact with the water.

Based on the given puzzle, the objects involved in the scenario can be identified as:

● Tap
● Water
● Uninsulated electric cable

Furthermore, the following actions are defined on each of the objects:

● Tap: turnOn()
● Water: fillOut()
● Uninsulated electric cable: createShock()

As it is observed, an action usually leads to another in a “cause-effect” fashion. Rules define how these
actions are associated:

● Tap: turnOn() <leads to> Water: fillOut()

Page 34 of 77

● Water: fillOut() + <condition> <leads to> Cable: createShock()

In our model, every object will have a state. Actions defined on an object will either cause a change of
state on that object and/or on some other object(s) in the environment. The Game Engine and the
Graphics Engine will view the state of the objects and do the simulation accordingly.

Unfortunately, the way in which these states are processed by the relevant engines will have to be hard-
coded. However, if somehow the set of all states is kept minimal, then the amount of work will be
reduced.

✔ The design choice we have made here is to use ontologies to describe various object classes and
the possible sets of actions allowed. Furthermore, rules will be defined over various classes in
these ontologies rather than individual class instances. If the puzzle designer and the developer
restricts himself/herself with the definitions in these ontologies (and use as small extensions as
possible) then the Game Engine, the Graphics Engine and the AI Engine can simply use the
information provided in these ontologies for processing. Now, the puzzle designer can add new
objects and actions by simply associating them with the predefined ontologies. That way the
process of integrating new puzzles into the game and processing these puzzles will – to some
extent – be decoupled.

The problem now is to describe an individual puzzle instance as a combination of predefined objects,
actions and rules. One possible solution would be to use XML. From now on, the abstract language
constructed will be referred to as X-PML (eXtensible Puzzle Modeling Language). X-PML will consist
of two major sections: one that contains information for the Graphics Engine to process and the other
for the Game Engine and the AI Engine. The first part would give information on the models used for
the objects, their relative positions and some major properties. On the other hand the second part will
reference the rules that associate actions which are defined over a set of objects. This approach is also
reflected on the Database Design.

This is a draft idea as to how the puzzle deployment problem can be solved hierarchically. The work is
to be extended and refined before the full implementation starts.

Page 35 of 77

5. Detailed Design

We have sought to have a solid design, with as much compartmentalization as possible. The main
modules, each encapsulated as “engine”s, prove to be highly interrelated yet mostly independent,
granting the process a strong sense of modularity.

Our system is presented according to both static and dynamic views in the following subsections.5.1.
Structural Design

5.1.1. Server-Side Network Backbone

Purpose:
It is a layer of abstraction on top of the network connectivity between the clients and the server.
Eventually, everything can be viewed as an “Event” by the application layer of the server-side. This
provides a great deal of flexibility in the amount of information that can be exchanged. Furthermore, it
reduces the workload of the server-side game engine and leads to a loosely-coupled client-server
architecture.

Abstract:

As you would remember, the game to be implemented in this project – roughly speaking – consists of
various clients, a server and an architecture that serves as an interface for the underlying connections.
Both the client and the server has the relevant modules to provide this connectivity. In other words, the
application layer sits on top of the classes that deal with all the connections and resolve conflicts when
necessary.

Page 36 of 77

Server

Skeleton

RoomDispatcher
PlayerDispatcher

GameState

Connection

Channel

MessageDecoder

EventOrderer

1

1

0..n 0..n

1

0..n

1

1

0..n

Thread

The package named “Server-Side Network Backbone” consists of the modules that support these
functionalities. In other words, it is the server-side correspondent of the connectivity engine. When
viewed as a whole, this package supports the following functionalities:

● provide a means of a seamless connection by abstracting out some networking constructs,
● send/receive serialized message instances as a means of connection with the clients,
● enable multi-channeled connections,
● implement the publisher-subscriber model by logically grouping the connected clients,
● encode/decode the serial instances into abstract “Message” entities,
● validate and order the messages,
● based on a sequence of valid messages generate “Event”s that make up the core of game-state

changes,
● put the resolved information in the relevant data structures.

The following sub-sections give detailed information on how each of these functionalities are
implemented. Various modules, the data structures used and the interaction between each module is
thoroughly discussed.

5.1.1.1. Server

Page 37 of 77

+Server(in initialProperties : Properties)
+setProperties(in _properties : Properties) : void
+getProperties() : Properties
+start() : void throw ServerStateChangeException
+hold() : void throw ServerStateChangeException
+destroy() : void
+clone() : void

-serverProperties : Properties
-globalGameState : GameState *
-rooms : Vector<RoomDispatcher *> *
-players : Vector<PlayerDispatcher *> *
-connnections : Hashtable *
-channels : Vector<Channel>
-skeleton : static Skeleton

Server

-hostname : string
-address : string
-port : unsigned int
-socketsInUse : Vector<Socket>
-serverState : Enumeration>State>

ServerProperties

This class makes up the core of the server to be implemented in the project. In the initial design report,
a client-server architecture that supports the publisher-subscriber model is tackled with. Currently,
there exists a single server for the whole system - the main reason being synchronization issues. If
during the prototype implementation it is observed that a different architecture is necessary (a layered
structure of server processes, a group of servers with different responsibilities, etc.) the current design
will accordingly be modified. Here, the main criterion to consider would be whether or not the server
supports a reasonable number of concurrent players.

The "Server" class contains instances of classes that are responsible for storing dynamic attributes
related to the game play. Such information includes but is not limited to the position and orientation of
the players in a room, puzzles solved so far, positions of the rooms inside the cube, etc. GameState,
RoomDispatcher, PlayerDispatcher are examples of such dynamic-attribute-storing classes.

Physical properties of the server are also stored in this class, namely by the serverProperties attribute. It
contains information such as the network address, the host name used, etc.

The core functionality of the server is implemented by the Skeleton instance. The “skeleton” is
responsible for listening to the port(s) to which the server is bound. Whenever a new connection
request arrives from a client, the skeleton directs the processing to a newly generated thread whose
details will be discussed shortly.

Inevitably, the server contains methods that help in starting, holding and destroying the server
application. Furthermore, a clone() method is included in the design. Although, we do not believe that
we will implement the functionality of moving the server to a different location while the game is in
play, we still included this functionality in the design just so that it is not difficult to turn back if we
change our mind in the near future.

Page 38 of 77

5.1.1.2. Skeleton

The skeleton, as mentioned earlier, is the first point to which a connection request is sent. The client
machine, based on its properties, is processed and the new player is added to one of the rooms.
Furthermore a “Connection” instance is generated whose responsibility is to deal with any of the future
messages sent back and forth between the client and the server. The “Skeleton” class should be
implemented as a singleton, since the Server should contain only a single instance of “Skeleton”.
Before its final version and after some implementation, this design decision will again be evaluated by
all of the group members.

5.1.1.3. Connection

This class, which is a subclass of the “Thread” class, deals with all connections with the client. It
provides a means to implementing the server multi-threaded, thus increasing overall efficiency.
Furthermore, it acts as a buffer before the messages can fully be processed as “events”. By definition,
an “event” is the minimal yet sufficient description of how the current world state (or game state)
should be changed so that the game playing can be simulated. As mentioned in the Requirements
Analysis Report, messages will not be received by the order in which they are sent. In many cases,
further processing – such as message ordering – is necessary before they can be converted to events
that faithfully reflect the players interaction. For these purposes, instances of “EventOrderer” and
“MessageDecoder” classes are contained within this class.

Page 39 of 77

-Skeleton(in serverProperties : Properties *)
+getInstance() : Skeleton *
+setAssociatedServer(in server : Server *) : void
+initialize() : void throw SkeletonInitializationException
+stop() : void

-server : Server *
-instance : Skeleton *

Skeleton

+Connection(in game_connection : GameState *, in RoomDispatcher : RoomDispatcher *, in player_connection : PlayerDispatcher) : void
-receiveSingleMessage() : string throw ConnectionException
+processIncomingMessages() : void
+sendBack(in message : Message) : void
+sendBack(in message : ChatMessage) : void
+sendBack(in message : Serializable) : void

-globalGameState : GameState *
-associatedRoom : RoomDispatcher *
-player : PlayerDispatcher *
-subscribedChannel : Channel *
-messageDecoder : static messageDecoder
-buffer : Vector<Message>
-server : Server *
-eventOrderer : static EventOrderer

Connection

It is also possible to see the effects of the publisher-subscriber model within this class. The
subscribedChannel attribute, which is an instance of the “Channel” class, servers this purpose. The
main idea here is that each time a client makes connection to the server, the client is subscribed to one
of the “Channel”s depending on the Room to which the Player is instantiated in. In other words, there is
a corresponding “Channel” entity for each of the Room in the Cube. That way, whenever something
happens within a Room, changes can be made effective to every other player in that Room.

Effectively, changes should be made on the instances that store information about the dynamic
variables representing the Game State (GameState, RoomDispatcher, PlayerDispatcher). These changes
are made in regular intervals: after several messages are grouped together, checked for consistencies
and ordered according to their semantics, as discussed in the previous paragraphs.

5.1.1.4. Channel

It basically provides an interface for clients to subscribe as well as methods to make subscribed clients
be notified on Game State updates. Events can be pushed in by the pushEvents () function call.

5.1.1.5. Message Decoder

The “Message Decoder” is designed based on the singleton design-pattern. In theory, the server should
contain only one instance. Both the prototype implementation and the discussions with the group
members confirm this design decision.

The class contains the decode() function that converts a serial message into a Message instance.

After the initial design phase, with the inclusion of the chat and the static/dynamic game-state loading
functionalities, the responsibility of the “Message Decoder” module has changed significantly.

Page 40 of 77

+subcribe(in sub_connection : Connection *) : void
+unsubscribe(in unsub_connection : Connection *) : void throw ConnectionNotFoundException
+getAllSubscribers() : Vector<Connection *>
+cleanAll() : void
+pushEvents(in events : Vector<Event>) : void
+notifyClientsOfEvents() : void

-subsriptions : Vector<Connection *>
-waitingEventsBuffer : Vector<Events>

Channel

-MessageDecoder()
+decode(in serializedMessage : string) : Message throw ParseException
+decode(in serializedChatMessage : string) : ChatMessage throw ParseException
+decode(in bitstream : string) : Serializable throw ParseException

-instance : MessageDecoder
MessageDecoder

Previously, the module only resolved messages that represented movements and interactions of the
players. However, currently it supports the exchange of:

● movement/interaction messages,
● serialized game-state representation instances (during initial loading, for instance when a player

requests the necessary data to join a room),
● chat messages.

The three different versions of the “decode” message serve this purpose.

Page 41 of 77

5.1.1.6 Event Orderer

Incoming messages should be ordered and synchronized before they can faithfully be converted to a list
of events. Messages are atomic and events may contain semantics provided by multiple messages
altogether. This will be one of the most difficult parts to implement, as such processing requires
complex algorithms to be implemented. For this reason, we have made the class as abstract as possible
to allow future modifications. An instance of this class can be configured via supplying a
“Configuration” instance to it. The “Configuration” class is yet not to be implemented so a default set
of rules will be hard-coded in the “Event Orderer” class. The role of the functions such as
“addToBuffer(), flushBuffer() and isReady()” is to control the “Event Orderer”.

Page 42 of 77

-generateEvent(in msg : Message) : Event
+addToBuffer(in receivedMessage : Message)
+isReady() : bool

-buffer : BinarySearchTree<Event>
-decoderInstance : MessageOrderer
-generateEvent(msg:Message) : Event
+flushBuffer : Vector<Event> throw OrderingException
+getter : Configuration
+setter : Configuration
-eventOrdererConfiguration : Configuration

EventOrderer

5.1.2. Server-Side Game Engine

5.1.2.1. Game State

Purpose: Game State class is the core class of the server side game engine. It handles all the changes
and interactions in the server side. It is a singleton class, so that there can be only one Game State
instance.
Abstract:Our Game State class contains some static information about the cube, for example
dimension and number of rooms. Our cube changes the rooms positions in a predefined
interval(reconstruction interval) with a function called changeRooms(). It takes all the events from the
network and process them with processEvents(Events *[]) function. After processing all the events the
consequences of that events are sent to the players in that related room correctly also as an event. It
manages all of these by using the instances of classes PlayerDispatcher and RoomDispatcher which
handles the dynamic parts of the Player and Room classes. This class mainly deals with the general
parts of the cube and the interaction among the players.

Page 43 of 77

-GameState()
+getSingleton() : static GameState *
+processEvents(in processevents : Event *[]) : void
+getRoomCount() : unsigned int
+getDimension() : unsigned int
+getReconstructionInterval() : unsigned int
+getPlayerDispatcherArray() : PlayerDispatcher *[]
+getRoomDispatcherArray() : RoomDispatcher *[]
+getRuleArray() : Rule *[]
+getMode() : Mode
+setMode(in _mode : Mode) : void
+setRoomCount(in setroomcount : unsigned int) : void
+setDimension(in setdimension : unsigned int) : void
+setReconstructionInterval(in setrec : unsigned int) : voidsetrec
+processEvents(in processevents : Event *[]) : void
+changeRomms() : void
+getNeighborus(in getneighbors : Room *) : void

-roomCount : unsigned int
-dimension : unsigned int
-reconstructionInterval : unsigned int
-mode : Mode
-playerDispatcherArray[] : PlayerDispatcher *
-roomDispatcherArray[] : RoomDispatcher *
-ruleArray[] : Rule *
-aiEngine : AIEngine *
-GEngine : GraphicsEngine *

GameState

Game State Data Loader

11

5.1.2.2. Data Loader

DataLoader is the class responsible for the serving the client necessary information for initializing the
game state. As the client requests to enter the game, it requests the static data (room information,
dimension, list of objects, etc) and dynamic data (players in the room, object states, etc) . loadRoom()
method handles the database connection to query the static room data, while sendSerializedRoom()
method sends the retrieved Room object (which implements the Serializable interface) to the client. In
the same manner, the player and object information retrieved from the database by loadPlayers() and
loadObjects() methods is sent back to the client via sendEventSequence() methods in the form of <list
of Events> (all the changes that have ever occurred in the room).

Serializable is the interface that we have defined (inspired by the Java interface Serializable) to allow
any object define its own methods toBitstream() and fromBitStream() to be sent over our network
backbone. Our Room class implements this interface for loading the game, for instance.

Page 44 of 77

+loadPlayers(in _roomID : roomID) : Player []
+loadObjects(in _roomID : roomID) : Object[]
+loadRoom(in _playerID : PlayerID, in _roomID : roomID) : void
+sendSerializedRoom(in c : Connection, in r : Room) : void
+sendEventSequence(in c : Connection, in events : Event[]) : void

DataLoader

+toBitStream() : char []
+fromBitStream(in str : char []) : void

<<interface>>Serializable

5.1.3. Client-Side Network Backbone

Purpose:

It is a complementary package to the “Server-Side Network Backbone” that sits on the client. It
provides a high-level means of abstraction for the Client Game Engine and the Graphics Engine when
they need to interact with the server. Its overall architecture is similar to that of the “Server-Side
Network Backbone”, however, it does not support multi-channeled connections.

Abstract:

Every client is connected to exactly one server. Therefore, all communications between a single client
and the server can be handled via exactly one channel. Consequently, unlike the “Server-Side Network
Backbone”, neither modules that implement the publisher-subscriber model nor constructs that enable
multi-channeled communications are necessary.

Based on this criterium, the functionalities implemented by this package can be summarized as follows:

● provide a means of a seamless connection by abstracting out some networking constructs,

Page 45 of 77

Client

1

ClientGameState PlayerDispatche RoomDispatche Stub MessageDecode MessageEncode

MessageReceive MessageSender

1 1..n 1..n 1 1 1

Thread

● send/receive serialized message instances as a means of connection with the server,
● encode/decode the serial instances into abstract “Message” entities,
● validate and order the messages,
● based on a sequence of valid messages generate “Event”s that make up the core of game-state

changes,
● put the resolved information in the relevant data structures.

Page 46 of 77

5.1.3.1. Client

After the initial design phase, with the inclusion of the chat and the static/dynamic game-state loading
functionalities, the responsibility of the “Message Encoder” module has changed significantly.
Previously, the module only resolved messages that represented movements and interactions of the
players. However, currently it supports the exchange of:

● movement/interaction messages,
● serialized game-state representation instances (during initial loading, for instance when a player

requests the necessary data to join a room),
● chat messages.

Page 47 of 77

+Client(in initialClientProperties : Properties, in hostProperties : Properties)
+setClientProperties(in _properties : Properties) : void
+getClientProperties() : Properties
+setHostProperties(in _properties : Properties) : void
+getHostProperties() : Properties
+resolveHostProperties(in hostname : string, in physicalAddress : string) : Properties
+openConnection() : void throw ConnectionException
+closeConncetion() : void
+loadStaticData() : void
+loadDynamicData() : void

-clientID : string
-clientProperties : Properties
-hostProperties : Properties
-clientGameState : ClientGameState *
-rooms : Vector<RoomDispatcher *> *
-players : Vector<Playerdispatcher *> *
-stub : static Stub
-encoder : static MessageEncoder
-decoder : static MessageDecoder

Client

+pushEvent(in lastEvent : Event) : void
+sendOutEventsAsMessages() : void

-client : Client *
-encoder : static MessageEncoder
-eventBuffer : Vector<Event>

MessageSender

+encode(in event : Event throw MessegaEncodeException) : Message
+encode(in event : Event throw MessageEncodeException) : ChatMessage
+encode(in event : Eventthrow MessageEncodeException) : Serializable

-instance : MessegaEncoder
-MessageEncoder

Message Encoder

The three different versions of the “decode” message serve this purpose.

Similar to the “Server” class, the “Client” is responsible for holding the necessary data structures,
process modules and constructions related to the network connections. The client is defined by its
unique id as well as its properties. Information such as the physical address on the network, ports used,
etc. are all contained in the clientProperties attribute. The data structures that resemble dynamic game
information relevant to the Room the Player is currently playing in are namely: ClientGameState,
RoomDispatcher and PlayerDispatcher.

Actual network connections are handled by the “Stub”, “MessageSender” and “MessageReceiver”
instances respectively. Their details will be discussed shortly. The client first resolves the properties of
the host to which it needs to connect. This functionality might be provided by a small scale
registry/repository system, however, due to time restrictions imposed on the project, that is left out. For
the time being, the host properties are set to default. The client then tries opening up a connection to the
server machine and obtain static as well as dynamic game playing data [openConnection(),
loadStaticData(), loadDynamicData()].

5.1.3.2. Stub

Upon initialization the stub class generates an instance of both MessageReceiver and MessageSender.
These classes are implemented as two separate threads that resolve all the incoming and outgoing
messages. These two classes have the responsibility of converting Message instances into a list of
processable Event objects.

Page 48 of 77

+MessageReceiver(in client : ClientGameState *, in room : RoomDispatcher *, in player : PlayerDispatcher *, in client : Client)
+processIncomingMessages() : void

-clientGameState : ClientGameState *
-associatedRoom : RoomDispatcher *
-player : PlayerDispatcher *
-client : Client
-eventOrderer : staticEventOrderer
-messageDecoder : static MessageDecoder
-buffer : Vector <string>
-receiveSingleMessage : string throw ConncetionException

MessageReceiver

-Stub(in clientProperties : Properties *)
+getInstance() : Stub *
+setAssociatedClient(in client : Client *) : void
+initialize() : void throw StubInitializationException
+stop() : void

-state : Enumeration<StubState>
-client : Client *
-instance : Stub *

Stub

5.1.4. Client-Side Game Engine

Purpose:

Client Game State is the main control structure of our client side game engine. Everything about the
game in the client side is related with it.

Abstract:

It contains AI Engine, Graphics Engine, Chat Module, Player Dispatcher, Room Dispatcher and Rule in
it. They are the cores of our game data . Player Dispatcher contains Player which also contains
Inventory in it. Room Dispatcher contains Room in it which consists of Object Dispatcher containing
Object in it. All our dispatchers are also renderable and player dispatcher is also a displacer. All these
core entities work collobaretevly in the client side to make the game played properly.

Page 49 of 77

ClientGameState

GraphicsEngine

PlayerDispatcher

Player

Inventory

Displacer

RoomDispatcher

Room

Rule

Event

AIEngine

ObjectDispatcher

Object

Dispatcher
Renderable

1

1

1..n

1

1

1

1

1

1..n

1

1

1
1 1..n

1
1

0..n

0..n

1

1..n

1

Serializable

ChatModule1

5.1.4.1. Client Game State

ClientGameState is the core game engine class of the client side. It handles everything in the client
side. It includes the room dispatcher and player dispatcher inside to resolve everything and passing
events. It runs in no_mode, game or menu mode as in the GameState which shows the current state of
the game in the client's side.

5.1.4.2. Core Objects

Our main entities in our game are the players, the rooms and the objects inside them. So we all defined
them as classes. But we divided the static and the dynamic parts(the parts that changes often in the
game play). We write Player, Object and Room classes as static classes and their Dispatcher classes as
the dynamic classes. PlayerDispatcher, ObjectDispatcher and RoomDispatcher classes deals with the
changing parts in the system. They all extend the Dispatcher and Renderable abstract classes which
defines that the class deals with the dynamic data and these entities can be visualized by the Graphics
Engine class.

Page 50 of 77

+getSingleton() : static ClientGameState *
+processEvents(in [] : Event *) : void
+getMode() : Mode
+setMode(in _setmode : Mode) : void
+getRoomDispatcher() : RoomDispatcher *
+getPlayerDispatcher() : PlayerDispatcher *
+loadGame() : void

#mode : Mode
#playerDispatcher : PlayerDispatcher *
#roomDispatcher : RoomDispatcher *
#GEngine : GraphicsEngine *
#roomRule : Rule *
#ClientGameState

ClientGameState

+Object(in _id : unsigned int, in meshfile : string)
+act(in actionID : unsigned int, in params : Vector<Couple>) : void

#meshFile : string
#id : unsigned int
-state : unsigned int
-objectRule : Rule *

Object

+generateEvent() : Event *

#position : Position
#object : Object *
#dispatcher : RoomDispatcher *

ObjectDispatcher

Object class contains mesh file, id , state and Rules of that object. Mesh file is the relevant information
to render an object. Rules are the core parts of the object. Every object is defined with a rule. Rule
contains the actions and event triggers of an object and defined in the Rule class. For example, to turn
on the lights is an event and it results in another event which is illumination. Rules are defined like
this; an event triggers another event or events. For every object at least one rule is defined. The rules
will be checked in the ClientGameState for the validation of the actions done by using that objects. As
you see Object class is needed only at loading of a room at first place, then every change or action done
by using object is handled via ObjectDispatcher. ObjectDispatcher holds the instance of that object and
the position information of that object. Everything about the object is handled by the generateEvent()
method. Changes in the object are turned into an event by the ObjectChangeEvent class which is
abstracted from the Event class. This class turns a change at object into an event so that network can
resolve and then calls the applyEvent() function to execute the related event. Every dynamic thing in
our system is resolved by using that technique: a change in the system for an entity is defined as a class
and the event is then executed by using applyEvent() function.

Page 51 of 77

Rule

Event

DisplacementEvent NewPlayerRequestEvent NewPlayerEvent ObjectChangeEvent

Displacer

Player Room
PlayerDispatcher

Object

1

1

1

1

1..n

1 1

1

1

1

1

Event class is an abstract class and it is the core of our design. Every move in our system is handled by
the event and message system. Many classes are derived from the Event class. For every action in the
game we define an event class. below you can find more detailed information about the event classes.

Page 52 of 77

+executeEvent(in event : Event) : Event *[]

#eventVector : Vector<Event *>
#eventRelations : hashmap

Rule

+applyEvent() : void
+getEventType() : int
+setEventType(in _seteventtype : unsigned int) : void
+getId() : unsigned int
+setId(in setid : unsigned int) : void

#id : unsigned int
#eventType : unsigned int

Event

+DisplacementEvent(in int_id : unsigned int, in _object : Displacer *, in pos : Position *, in action : ACTION)
+applyEvent() : void
+getObject() : Displacer *
+getPosition() : Position *
+getAction() : ACTION
+setObject(in _setobject : Displacer *) : void
+setPosition(in _setposition : Position *) : void
+setAction(in _action) : ACTION

#object : Displacer *
#pos : Position *
#action : ACTION

DisplacementEvent

+NewPlayerEvent(in playerdispatcher : PlayerDispatcher *, in RoomId : unsigned int)
+applyEvent() : void

#player : PlayerDispatcher *
#room : Room

NewPlayerEvent

+NewPlayerEvent(in newplayerevent : Player *, in RoomId : unsigned int)
+applEvent() : void

#player : Player *
#room : Room *

NewPlayerRequestEvent

GameExitRequestEvent

In the same manner as the above events – using our event expansion mechanism – a player’s request to
exit the game is represented by this event. PlayerID is sent within the message (generated by the event)
to the serve. The server receiving this request and validating it deletes the player from the room and
then sends back a new event to all the players in the same room with the exiting player, to also delete
this player from their room.

RoomExitEvent

This event represents the exiting action of a player to be deleted from the room. All the information
related to the corresponding player with the PlayerID contained within the event is deleted, updating
the game state. Note that in the case of self-exit, client program simply terminates.

RoomChangeRequestEvent

When a user completes all the requirements of the room, this event is thrown and sent to the server.
Server is responsible to change the room information related to the player (with playerID). RoomExit
event is sent to all the players in the old room, and NewPlayerEvent is sent to all the players in the new
room, including the changing player.

Player class is the static class of the Player entity which contains the meshfile, player id, the action
player is doing(still, walk, jump, crawl...) and elapsed Time (begin Time is used to calculate the
elapsed Time). PlayerDispatcher holds the instance of the player and its position. This class is also
abstracted from Displacer class, besides Dispatcher and Renderable. Displacer shows that this is entity
can move from one place to another. generateEvent() handles event generation for that class. A very
important event related with the player entity is creating a new player or adding an existing player to
the game. For them we created two event abstracted classes: NewPlayerRequestEvent
class which deals with the server's initialization of the player in the cube and the other is
NewPlayerEvent sends the information of a new player in the room to everyone in the room. We used
different attributes in these classes. NewPlayerRequestEvent uses Player instance directly since it
creates a player from the beginning, NewPlayerEvent uses PlayerDispatcher since it has to apply all
the changes that has happened in the room before the player comes into the room. The player has also
an Inventory class. It consists of the object list that is in the inventory and the equipped item. You can
pick, leave, equip or unequip items using related methods.

Page 53 of 77

+Player(in id : unsigned int, in elapsedTime : unsigned int, in meshFile : string)
+getElapsedTime() : unsigned int
+updateElapsedTime() : void
+setBeginTime() : unsigned int

#id : unsigned int
#action : ACTION
#elapsedTime : unsigned int
#beginTime : unsigned int
#meshFile : string

Player

Room class is the static class of the Room entity which contains the size information and the player and
object dispatcher arrays that are in the room. RoomDispatcher contains the position information of the
entity. Room is one of the most important entities in our design because it also contains the other
entities in it.

Page 54 of 77

#position : Position
#player : Player *
#dispatcher : RoomDispatcher *

PlayerDispatcher

+Inventory(in equippedItem : Object *, in itemList[] : Object *)
+pickItem(in item : Object *) : void
+leaveItem(in item : Object *) : void
+equipItem(in item : Object *) : void
+unequipItem(in item : Object *) : void
+getEquippedItem() : Object *
+getItemList() : Object *[]

-equippedItem : Object *
-itemList[] : Object *

Inventory

+getObjectbyID(in objectID : unsigned int) : Object

-id : unsigned int
-size : unsigned int
-playerDispatcherArray[] : PlayerDispatcher *
-objectDispatcherArray[] : ObjectDispatcher *
-puzzleDispatcherArray[] : PuzzleDispatcher *

Room

-room : Room *
-position : Position *

RoomDispatcher

+generateEvent() : Event *

Dispatcher

+getPosition() : Position
+getMesh() : string
+getAction() : int

Renderable

5.1.4.3. Chat Module

Page 55 of 77

+getPosition() : virtual Position *
+setPosition(in _setposition : Position *) : virtual void
+moveStraight(in forward : int) : virtual void
+moveSideway(in right : int) : virtual void
+getAction() : virtual ACTION
+setAction(in action : ACTION) : virtual void

Displacer

+sendPublicMessage() : void
+ispublic() : bool
+sendPrivateMessage() : void

-PublicFlag : bool
-text : string

ChatModule

5.1.4.4. Graphics Engine

As the name implies, the “Graphics Engine” is the master class for rendering 3D graphics. It contains
one AnimationEngine instance and one MyFrameListener instance for animation and controller parts.
With control escalated to these parts, it maintains the proper rendering of the 3D scene represented by
RoomRenderer vector viewed by perspective represented by Ogre::Camera instance. The render()
method merely does this task, in coordination with each of the components (referenced in attributes).

Page 56 of 77

GraphicsEngine

EntityRenderer
RoomRenderer

Renderer

OGRE::KeyListener OGRE::FrameListener OGRE::MouseListener

1

0..n 0..n
AnimationEngine 1

1

MainFrameListener

1

The “Renderer” class represents a single (but possibly composed of many) entity to be rendered by the
graphics engine (denoted by Renderable interface). Holds the Ogre::SceneNode representation of the
entity to directly render the node, which itself holds the actual Ogre::Entity object (internal
representation) and the rest of the necessary information to display.

“Animation” class represents an animation instance. Holds the animation type and time interval for
which it lasts (eg. “Idle” animation for 5 seconds). Those values have been encapsulated for their
semantic integrity as well as future compatibility with complex animation representations.

“Animation Engine” class represents the main responsible class for animation generation. Holding the
Animation instances and position vectors for the corresponding objects, this class keeps track of
animation states and manages animation. The feedTime() method gives the current time to the
AnimationState objects (inner representation) for OGRE3D engine to realize the proper animation
phases. In the case of movement, all players are expected to move at constant speed specified by the
moveSpeed attribute.

Page 57 of 77

#createNode(in ren_createNode : Renderable *) : void
+EntityRenderer(in ren : Renderable *) : void
+render() : void

#node : SceneNode *
EntityRenderer

#createNode(in ren_createNode : Renderable *) : void
+RoomRenderer(in ren : Renderable *)
+render() : void

#node : SceneNode *
#light[] : Light *
#shadowT : ShadowTechnique
#showLightsFlag : bool
#showShadowFlag : bool

RoomRenderer

#renderScene() : void
#displayMenu() : void
+display() : void
+getCamera() : Camera *

#roomRen : RoomRenderer *
#entRen[] : EntityRenderer *
#cam : Camera *
-animEngine : AnimationEngine *
-listener : MainFrameListener *

GraphicsEngine

+render() : void
-SceneNode

Renderer

The “Main Frame Listener” class is the controller class which manages all the input into the program.
Implementing Ogre::KeyListener and Ogre::MouseListener interfaces, it handles all the actions from
keyboard and mouse. It also implements Ogre::FrameListener interfaces, so that it is active between
frames. This leads to the capability of animation and unbuffered I/O control. Camera is expected to
move and rotate with constant values specified by camRotateSpeed and camMoveSpeed attributes,
realized by moveCamera() method for every relevant input.

Page 58 of 77

+type : string
+interval : double

Animation

+pushAnim(in _playerNo : playerNo, in anim : Animation *) : void
+feedTime(in time : long) : void

-walkQueues : Deque<OGRE3::Vector>[]
-animQueues : Deque<Animation *>[]
-moveSpeed : float
-positions : Deque<OGRE::Vector3>

AnimationEngine

+processUnbufferedKeyInput(in evt : const FrameEvent &) : bool
+processUnbufferedMouseInput(in evt : const FrameEvent &) : bool
+moveCamera() : void
+frameStarted(in evt : const FrameEvent &) : bool
+frameEnded(in evt : const FrameEvent &) : bool

-camRotateSpeed : float
-camMoveSpeed : float

MainFrameListener

+mouseClicked(in evt : OGRE::MouseEvent *) : void
+mouseEntered(in evt : OGRE::MouseEvent *) : void
+mouseExited(in evt : OGRE::MouseEvent *) : void
+mousePressed(in evt : OGRE::MouseEvent *) : void
+mouseReleased(in evt : OGRE::MouseEvent *) : void

OGRE::MouseListener

+keyClicked(in evt : OGRE::KeyEvent *) : void
+keyPressed(in evt : OGRE::KeyEvent *) : void
+keyReleased(in evt : OGRE::KeyEvent *) : void

OGRE::KeyListener

5.1.4.5. AI Engine

AI Engine class handles the behavior of the AI players in the game. AI players are defined in AIPlayer
and AIPlayerDispatcher. The core of the AI in the game is creating a rule memory for the AI player by
resolving events and adding rules to that list. We do that by using resolveEvents() and addRelation()
functions.

Page 59 of 77

+updateAIMemory(in RoomId : int, in cause : Event, in result : Event) : void
#AIPlayerDispatcherVector : Vector<AIPlayerDispatcher *>

AIEngine

AIEngine

AIPlayerDispatcher

AIPlayer

1

1

1

0..n

Displacer

Dispatcher

Renderable

The game world is designed in order to allow proper integration of AI. These concepts, which are
important in order to clarify the main working principles of AI, are as follows:

• Every object in the game has some enumeration of actions, which are well-defined and
represented by their identifiers.

• Object actions are reflected systematically in our ontologies. These are to be used by the AI as
the base knowledge of domain.

• Events resulting from a human-player action (which is also represented by an event) is stored in
the Rule objects for each room. This way, game mechanics is embedded into these Rule objects
in the form of Event-Event pairs, but also having the meaning of ‘Event chains’ intrinsically.

With these concepts as the underlying requirements, two main principles are adopted in our AI design:
cheating and resolution. Cheating, which means the recording of the events with no effort, corresponds
to some sort of witnessing mechanism. Resolution does the work of deducing some results given a set
of relevant base predicates. Our AI is aimed to work in the following way:

• There will be players controlled by AI as the AI players, which consist of simple Player
classes, with no controller functionality.

• AI engine will on top of AI players, controlling all the AI players in one command. All the
events occurring in the game are reported to the AI engine.

• AI Engine assigns some memory (null as default) to all the AI players. As the events occur,
engine writes the causing result and its result into the AI players’ memory, provided that
they are in the same room with the event.

• Once that AI players have some nonzero number of pairs in their memory, they try to use
resolution algorithm to resolve the pairs and come up with suggestions that may lead to the
solution of the puzzle (this is not guaranteed though).

• AI players will inform the human players through the chat facility, that is, they will send
messages to report what they have found at regular intervals.

In short, since we define the set of cause-results of the game, ‘AI gets to know the some portion of the
actual rules applied to the room‘ and is capable of guessing events that will lead to the solution based
on their prior knowledge. We try to give the AI players an artificial & simplistic sense of cognition.

Page 60 of 77

+addRelation(in cause : Event, in result : Event) : void
+resolveEvents() : Rule *

#aiPlayer : AIPlayer *
#position : Position *
#roomDispatcher : RoomDispatcher *
#ruleMemory : Rule *

AIDispatcher

+AIPlayer()

AIPlayer

5.1.5. Database Model

Page 61 of 77

Our database lays in the server side of our architecture. It contains all the needed static information
about the game and necessary dynamic information of gameplay. The main entities of our game are;

● The Cube
● Room
● Player
● Connection
● AI player
● Object
● Action
● Rule

We have only one huge cube in the game with dimensions we specify. It contains many rooms which
are ordered through their room_id’s. Of course their dimensions can be specified. The location of the
room in the game changes about every half an hour, and we also write this location information to our
database. This dynamic data will help us very much when placing a player to a room when he enters
the game.

Rooms have players, AI players and objects in it. Players and AI players must stay in at most one room,
while there are objects which are in many rooms. Players and AI players have very muc alike
characteristics. Players are real players who have attributes such as player_id, name, login_name,
email_address, elapsed time and the model name which is a file name ending with “.mesh” . Players
has also a connection info which is one to one correspondant with the player. Connection has attributes
such as ip_address, port and login_time. AI players have only three attributes player_id, name and
model name. Players and AI players reside in the room at a specified position and in a specified
position.

Objects are also inside the rooms in a specified position and state. They have object_id as primary key
and name and model as their other attributes. Players can carry many or none objects in their inventory
and also use many or none of them. Object may have actions defined for them and an action can be
claimed by at least one object. These action are identified by their action_ids and they have also
attributes such as action description and code which is a machine processable code to for game to
execute the specified action.

There are also Rules which contains at least one action in it and has attributes such as rule_id and rule
description. But not every action has to be involved in a rule. Actually this rule concept is the core of
our gameplay. We will define every puzzle in the game in a format of list of actions. So at first we will
define onthologies for the actions and store them at the database. Then we will define a chain of actions
which leads to a result action. This result action is our puzzle result, which can be opening a door or
maybe get wounded or even die. These rules can be learned by the AI players. AI players will have rule
memory in the database.

Page 62 of 77

5.2. Behavioural Design – Interaction Modeling

5.2.1. Server-Side Network Backbone: Initialization, Load-game and Event
Processing Scenario

Although not all of the class-to-class interactions are provided here, the diagram provides the reader a
thorough understanding of how the server behaves on incoming messages. The states through which
the server goes, can be outlined as follows:

● The “Server” is initiated by some external entity. For the moment, we assume that this entity is
the system administrator. [start()]

● The “Server” initializes its “Skeleton” so that it is able to receive messages from client
applications. The “Skeleton” can be considered as the main point of entry for new clients to get
involved in the game. [initialize()]

● The “Skeleton” sits idle until there is a new connection request. Whenever such an event
occurs, the “Skeleton” generates a new instance of “Connection”. This results in the generation

Page 63 of 77

:Server :Skeleton :Connection :Channel :Message Decode :Event Orderer :Game State

start()

initialize ()

conncetionRequest()

create()

Client

Server Side Sequence Diagram

add()

subscribe()

receiveSingleMessage()

decode()

decoded Message

addToBuffer()

isReady()

readyFlag

[readyFlag] flush()

ProcessEvents()

pushEvents()

notifyClientsOfEvents()

hold() stop()

:DataLoader

RequestJoinGame

forwardRequest

requestRoomData

RoomData
SerializedRoomData

of a new thread and from that point on all of the interactions between the current client and the
server are handled by that thread, namely that “Connection” instance. [create()]

● It is a good programming practice that the “Connection” instance is visible from its generator,
namely the “Skeleton”. For this purpose, the “Connection” adds itself to the list of all
“Connections” in the “Skeleton”. [add()]

● The “Connection” thread must register itself with the appropriate “Channel” so that it is
evaluated together with the other “Connection” instances in the same “Channel”. This is a must
since the players in the same room should literally be viewing the same dynamic definitions
regarding the room at hand. Maintaining synchronized game state data in various clients will be
one of the major challenges in the project. [subscribe()]

● The “Connection” thread sits doing nothing until a message is received from the client.
● One type of a message that can be received is a request to join the game [requestJoinGame()].

The player should be assigned a room and more importantly that player should be sent the
static/dynamic information regarding the room.

● The “Connection” thread forwards that request to the “Server” [forwardRequest()] which
evaluates it and finds a suitable room to add the player into. Then it asks the “Data Loader”
entity to supply the relevant information by means of its serialized instance [RoomData,
SerializedRoomData].

● Whenever a message (relevant to a player's movement/interaction) is received though, it first
needs to be decoded. The “Message Decoder” class comes in handy at this point. Messages are
transmitted as raw byte-streams based on a predefined messaging format. “Message Decoder”
converts them into Message objects processable by the server itself. [decode()]

● The decoded message is not yet ready to be processed. As mentioned in various parts of the
report, messages need validation and ordering. For this purpose, the decoded message is sent to
the “Event Orderer” unit for further processing. [addToBuffer()]

● There will come a time when the messages in the event queue can be interpreted to form a
meaning. On that case, the “Event Orderer” will signal it to the “Connection” by sending its
“ready” flag. [isReady()]

● Upon receiving the notification, the “Connection” thread is ready to send the list of ordered
events both to the “Game Engine” [processEvents()] and to the subscribed “Channel”
[pushEvents()].

● The “Channel” is responsible for notifying all its subscribers on the events pushed by the
“Connection” [notifyClientsOfEvents()]. To be more specific on the issue, let us clarify it with
an example. Suppose Player A is in Room X and there are 3 more Players in the room (Player
B, Player C, Player D). If Player A makes a movement then all of the other Players (B – D) in
the room must also be made aware of this change. The idea of a “Channel” aids us in
implementing this concept. All the players in a single Room are subscribed to the same
“Channel”. The “Channel” acts as a mediator whenever there is a change in the game state.
Furthermore, whenever a message is sent to the server indicating that there is a change, the
above procedure is automatically invoked.

● The server can be put on hold [hold()] or stopped [stop()].

Page 64 of 77

5.2.2. Server-Side Game Engine: Event Receiving and Sending Scenario

The initialization of the server is when the game administrator calls the init() method of GameState
(which is server-side). During the execution of the main loop, the positions of the rooms is changed in
regular intervals through the self call of changeRooms() methods. The incoming events from the clients
are also received, applied to the global game state and then distributed to all the related clients. This
continues during the whole lifetime of the server.

Page 65 of 77

:ServerGameEngi
ne

Admin

init()

:Connection

changeRooms()

processEvents(Events)

pushEvents(Events)

5.2.3. Client-Side Network Backbone: Load-game and Message Receiving
(encoding/decoding) Scenario

Although not all of the class-to-class interactions are provided here, the diagram provides the reader a
thorough understanding of how the client behaves upon initiation, until closing. The states through
which the client goes are outlined as follows:

● An external entity – in our scenario the Player – after configuring and setting appropriate
parameters of the “Client” for connection, directs it to obtain a connection with the host
machine (or the server). [openConnection()]

● Upon this request, the “Client” generates a new (or obtains the existing) instance of the
“Stub”. [create()]

● After a connection is successfully established, the “Client” tries obtaining the static and
dynamic representations of the world [loadStaticData(), loadDynamicData()]. Loading static
representations are essential so that the Graphics and the Game Engine on the client side can
generate the view and game functionalities. The dynamic data is necessary so that a player can
start up in a room where there are other players that have already made some changes.
Otherwise, concurrency cannot be maintained. Although physically two players are in the same
room, they would not be playing in the same conditions.

● The data structures representing static and dynamic game information should be updated based
on the previously loaded instances. [setGameData()]

Page 66 of 77

:Client :Stub :Message Sender :Message Encoder :Event Orderer :Game State :Message
Receiver

:Message
Decoder :Server

openConnection()

create()

Stub instance
loadStaticData()

loadDynamicData()

setGameData()

create()

create()

receivingSingleMessage()

decode()

decodedMessage
addToBuffer()

isReady()

[readyFlag]fusk()
processEvents()

pushEvent()

encode()

sendSingleMessage

closeConnection()

encodedMessage

Player

readyFlag

Client Side Sequence Diagram

● When everything is established, the “Client” is ready to exchange messages with the server. For
this purpose, it creates an instance of both the “Message Sender” and the “Message Receiver”
class. [create()]

● The “Message Receiver” sits idle unless there is a new message from the server
[receiveSingleMessage()] . Upon such an event, processes such as decoding, event ordering are
executed [decode(), addToBuffer(), isReady(), flush()]. For more information please review the
paragraphs on the Server-Side Sequence Diagram. Finally the list of ordered events are supplied
to the Game Engine for further processing.

● The “Message Sender” on the other hand acts as the mediator between the player and the
network. Whenever the “Game State” changes due to the current player's interaction with
his/her machine an event is generated and sent to the “Message Sender” for processing.
[pushEvent()]

● The “Message Sender” encodes (serializes) [encode()] the message and sends it to the “Server”
[sendSingleMessage()].

Page 67 of 77

5.2.4. Client-Side Game Engine: Load-game & Event Processing Scenario

The initialization of the game is when the loadGame() method is called by the user. This triggers the
creation of the database connector class, which is used to load the static data from directly database,
which is to be performed only once per game play. After the room data being loaded, the
ClientGameState creates a NewPlayerRequestEvent, which is sent to the server and results in the
addition of the new player to the room specified. This change in the game state is represented by a
NewPlayerEvent and sent to all the players in the corresponding room. Only then the main loop of the
game can be started. A GraphicsEngine object is created and initialized, and then it automatically starts
displaying the scene. Any event spawned by the IO Handler, in our case implemented by the
GraphicsEngine itself, is sent back to the game engine. The event is evaluated against a set of rules
(relations actually) in the Rule object existing in the ClientGameEngine, and the resulting event(s) are
transmitted to MessageSender, to be distributed to all related players. The client is now ready to receive
messages and process them, to modify the game state. The main loop executes as long as the player is
in game.

Page 68 of 77

:ClientGameEngin
e :MessageSender :GraphicsEngine :ClientGameEngin

e:DBConnector :MessageReceiver

:Rule

Player

loadGame()

<<create>>

loadRoom(id)

<<destroy>>

pushEvent(NewPlayerReq
uest)

processEvent(New Player
Event)

processEvent(New Player
Event)

<<create>>

initDisplay()

Display()

processEvent(Event)

processEvents(Events)

pushEvent(Events)

processEvents(Event) processEvents(Event)

5.2.5. Chat Engine: Client-Server Single Message Transmission Scenario

Chat functionality among the players is handled separately with its own message type and graphics
rendering module. When a player wants to send some text to other players, that text content is captured
by the GraphicsChatViewerModule and sent to MessageEncoder to be encoded. The resulting
ChatMessage is sent to the Connection object via MessageSender. Received and decoded, the actual
ChatMessage is transmitted finally to ServerChatModule by means of its sendPublicChatMessage() or
sendPrivateChatMessage() methods. This implies a request from the server to distribute the
ChatMessage that it received, and so it does. ServerChatModule encodes the ChatMessage and sends it
to Channel object through its notifyClientsOfEvents() method. Channel is responsible for distributing
the ChatMessage to the relevant targets. MessageReceiver module of the clients gets the message,
decode it and send it to the GraphicsChatViewer to be displayed.

Note that this is not implemented through the Event mechanism since it semantically forms a different
module. Those ChatMessages neither need ordering facility or no validation to check its integrity. They
simply sent and received without any concern, and displayed on the screen. This way, the network
interaction between players is compartmentalized into independent modules handled separately.

Page 69 of 77

Graphics
Chat Viewer

Module

Message
Encoder

Message
Decoder

Message
Sender

Message
Receiver

Message
Decoder

Message
Encoder Channel Chat ModuleConnection

Client-side Server-side

generateChatMessage

encodedChatMessage

SupplyChatMessage

transmitChatMessage

decode

getDecodedChatMessage

SendPublicChatMessage()

SendPrivateChatMessage

encode

getEncodedMessage

notifyClientsOfEvents

transmitChatMessage

decode()

getDecodedMessage

notifyModuleOfEvent

transmitSingleMessage

5.2.6. Client-Side Game Engine: Inventory Functions Scenario

Any change in the inventory is first triggered by an event generated by the GraphicsEngine
(implementing IOHandler) and sent to ClientGameEngine. The processing of the event by the engine
results in the call of act() method of the related object. Next, according to the type of the inventory
action, a corresponding message (pickObject(), leaveObject(), equipObject() or unequipObject()) is
sent to the Carrier object and the necessary adjustment of the items in Carrier's inventory is achieved.

Page 70 of 77

:GraphicsEngine :ClientGameEngin
e :Object

processEvent(InventoryEv
ent)

act(id,params)

Inventory

:Carrier

pickObject () [type=PICK]

leaveObject()
[type=LEAVE]

equipObject()
[type=EQUIP]

unequipObject()
[type=UNEQUIP]

5.2.7. AI Engine: Learning, Resolution and AI-Human Interaction Scenario

The AIPlayerDispatcher object, representing a living AI player, holds the data in the AI memory. Any
processing in the rule object resulting of the matching of the resultant Event given a causing Event
triggers the call of updateAIMemory method in the AI engine. Next AI Engine passes the Event pair to
all the responsible AI players (in our design all the players in the same room with the occurring event),
which is stored in their memory. After that, resolveEvents() method is called, generating resultant
Events given the pool of cause-consequence pairs in their memory. With this being completed, AI
informs the players by sending public messages to the ChatEngine, containing information about the
event they have deduced.

Page 71 of 77

:Rule :AIEngine :AIPlayerDispatch
er

updateAIMemory(roomID,
Event,Event)

addRelation(Event,Event)

AI Engine

:ChatEngine

resolveEvents()

sendChatMessage
(publicChatMessage)

5.3. Behavioral Design – Process Modeling

5.3.1. Player Movement Scenario

Any movement resulting in a change in position or orientation of the player generates a corresponding
event and passes to the client. Client sends this to the server, where the event is distributed and sent
back to a number of clients. Having received the event, player applies this event and updates its view of
the world accordingly.

Page 72 of 77

move

generateEvent

applyEvent

updateView

sendEvent

receiveEvent

distributeEvent

Player Client Server

5.3.2. Object Interaction Scenario

Player can click on an object in the room. This triggers the request of performing an action and checked
against validation. If it passes, a corresponding event is generated and sent to the object interacted. The
event is executed according to the rules defined in the object (determining its behavior) and the
resulting events are returned to the object. Next the object applies the event and makes the relevant
changes in the world. The user updates its view accordingly.

Page 73 of 77

click on object

generateEvent

updateView

getEvent

applyEvent

executeEvent

Player Object Rule

actionValid

5.3.3. Client-Side Event Processing Scenario

We have defined our Event to be abstract, having many implementing classes, all of which are handled
through one channel in Client Game Engine: processEvents() method. In this scenario, how different
types of events will be handled is clarified. Once any event arrives from the server to the client, this
method is called. It resolves the type of that event and processes accordingly. For example, one of the
more complex events, a room change, is resolved and the state machine goes to Change Room state.
Remove Player state removes the exiting player from the room. If changing player is the not the owner
player (of the executing client), another player has exited the room, so it returns back to wait more
events. Otherwise, it leads to the state of Switch Room. Current room is switched to the new room here,
and if the new room is null (meaning system exit rather than only room exit), client simply exits.
Otherwise, it updates the new room information and gets back to wait for events.

Page 74 of 77

Initial State

Wait Events

Evaluate Event Add Player

Remove Player

Change Room

Update Position

Apply Event

Switch room

Get Rule Result

loaded

eventArrived

processEvent
[newPlayer]

[roomExit]

[roomChange]

[displacement]

[interaction]

[ownplayer] [no new room]

[not null]

[null] other player

[new Room]

6. Interaction Plan
The game is highly interactive and responses in real time. We identified all possible interaction
methods. We have two main entities in our interaction model: Player and Object. The real players and
AI players are considered in the Player category and all the other things in the game are considered as
objects, such as walls, doors, lasers, keys etc. The methods are then assigned to relevant couples as
described below.

Player Player

Players can only speak to each other via chat engine. There are two types of chat message in the game:
public chat and private chat. Real players can talk to each other as well as with AI players. AI players
can also talk in the public chat. Other than chat players do not interact with each other. Of course, we
handle collision detection by defining bounding boxes around players.

Player Object

Our objects in the game can be divided in two groups: the ones that can be used by hand after picking it
up into the inventory and the others that can not be picked up into the inventory. Both of the objects
can be used in our game. For all objects in the game an action list is defined which contains the actions
that can be done with that object. We are thinking of two methods in selecting these actions. First
method is using objects’ and player’s bounding boxes. When an object and player come closer below a
predefined distance the action menu of that object prompts to the scene and you can select the desired
action from that action list. Second method is using picking strategy. You pick an object in the scene
and its action list is prompted to the scene. Of course the desired object must be within a predefined
distance. Picking up an object is an also action and you pick up an object by selecting ‘pick up’
command from the action list. The picked up objects can be used by hand, like keys, and these objects
also has defined actions for usage in hand, such as a key lock or unlock locks when it is used by hand.
Items in the inventory can also be dropped . The object will free fall to ground from the position of the
player’s hand. We handle all these interactions with our generic messages and our ‘event’ strategy.

Object Player

An object can do some effects according to the actions in its action list. They can hit or even harm the
players, such as lasers wound or kill people who touch them.

Object Object

An object can also interact with other objects in the game(in fact most of the rules in the game are
defined according to these interactions.). Of course these interaction are defined in the action lists of
that objects. For example, water and electric wire in our game are two objects. If they interact each
other an electric shock is triggered in the environment. Actually, their interactions are mostly defined in
the rules.

Page 75 of 77

7. Project Schedule

Page 76 of 77

ID Task Name Start Finish Duration
Apr 2007Dec 2006 Feb 2007 May 2007Jan 2007 Mar 2007

18/331/12 18/2 20/525/2 1/421/1 22/44/314/1 25/3 13/511/2 8/410/12 6/524/12 28/13/12 7/1 29/415/417/12 4/2 11/3

1 34w28/05/200703/10/2006Managing Project

4 2w 3d07/11/200620/10/2006Analysis Report

5 2w 4d04/12/200615/11/2006Initial Desing Report

6 4w 2d15/01/200715/12/2006Final Design Report

7 2d23/01/200722/01/2007Prototype Demo

17 31w07/05/200703.10.2006Developing Game Engine

18 8w 1d28/11/200603.10.2006Identifying Engine Requirements

19 3w 4d29/12/200605/12/2006Designing Engine Detailed

21 4d10/01/200705/01/2007Implementing Engine Prototype

25 11w 3d07/05/200715/02/2007Basic Physics Module

26 4w 2d16/03/200715/02/2007Collision Detection Module

27 13w 3d23/03/200720/12/2006I/O Module

29 3w 1d07/05/200716/04/2007Sound Module

33 11w 3d07/05/200715/02/2007Database Module

34 6w13/04/200705/03/2007GUI Module

38 3w 1d28/05/200707/05/2007Final Release

39 4d10/05/200707/05/2007Alpha Testing

40 4d15/05/200710/05/2007Beta Testing

41 1w 4d25/05/200715/05/2007Installation Manual

42 1w 4d25/05/200715/05/2007User Manual

43 1d28/05/200728/05/2007Final Demo

2 34w28/05/200703/10/2006Project Management

3 1w09/10/200603/10/2006Propasal

20 2w 2d26/12/200611/12/2006Designing engine Architexture

9

10

31w07/05/200703/10/2006Developing Game Concept

11

12

1w09/10/200603/10/2006Game Subject Decision

9w04/12/200603/10/2006Developing Scenerio and Character

7w18/01/200701/12/2006Designing Core Game Play

8 7w 2d14/03/200723/01/2007Developing Website

13 4w 4d23/02/200723/01/2007Developing Puzzles

14 1w 2d02/02/200725/01/2007Designing in Game Menu

15 4w 3d03/04/200702/03/2007Designing Start Menu

16 4w 3d03/04/200702/03/2007Designing Inventory

22 25w 1d03/04/200710/10/2006Main 3D Graphics for a Room

23 7w 3d25/04/200705/03/2007Implementing Models

24 3w 4d16/03/200720/02/2007Lighting and Shadows

28 2w23/03/200712/03/2007Chat Module

31 9w04/05/200705/03/2007Implementing Puzzles to the Game

32 4w 3d04/05/200704/04/2007Puzzle Learning of AI Players

30 6w25/04/200715/03/2007General AI Module

35 13w 1d02/03/200701/12/2006Designing Client Side Network
Detailed

36 13w 1d02/03/200701/12/2006Designing Server Side Network
Detailed

37 3w 1d07/05/200716/04/2007Integrating Modules

We have divided our timeline according to different types of work. We have 4 main categories:

• Project Management
• Game Concept Development
• Game Engine Development
• Final Release

Our project management will go through all the second semester. We are planning to develop website
for the second semester during the winter break. This site will contain information about our project
team, people can follow our project progress from there when it is ready. We will try to update our
website whenever something is added to the game.

We have developed most of our game concept so far. We are certain of our scenerio. Our game’s
success relies on the quality of the puzzles. The puzzles in our game forces players to work
collobaretevely to get out of the rooms and survive. We have created a few puzzles to show this point.
But we need to crate more puzzles. This winter break will be good opportunity to develop fantastic and
innovative puzzles. Besides puzzles we are planning to finish our in-game menu till the prototype
demo. But the start menu and inventory menu can only be developed at the end of March.

Developing the Game Engine is our main responsibility. Everything in the game is contained under this
concept. But we have also divided this part into modules. We will try to finish our main modules till
the end of the March which are Main 3D graphics for the rooms, design of the client and server side
nerwork. Additionally we will add modules that we have designed till the end of April, and lighting and
shadows will be handled even earlier. Our game contains limited game physics but it doesn’t need very
wide physics engine because players will be always in a room. So we can think we can handle this by
Ogre’s physics engine ODE which is embedded in Ogre. We are planning to finish basic physics
module design till the end of April with its main functionality collision detection. I/O Module and Chat
Module are very related with eachother and they will be both finished by the end of March. Sound
Module is still an optional module for us. At the end of our progress if we would find time we will try
to add this module. AI Module implementation is also one of the though tasks that we are facing, we
have divided this module into 2 main parts: General AI Module, and Puzzle Learning of AI Players,
Both of them are related with Implementing the Puzzles to the Game. All of these parts have to be
finished by the end April. Besides these modules Database have to be finished by the end of April as
well. At the end we have to integrate all of these modules.

After integration there comes the Final Release phase. For final release we have to finish alpha and beta
testing till the middle of the May. We know that we haven’t got enough time for testing but we wont
have much time left after integration. Of course we will prepare our installation and user’s manual
before the Final Demo. We hope we will come up with an enjoyable and addictive game at the end of
second semester.

Page 77 of 77

	1. Introduction
	1.1. Motivation
	1.2. Project Definition
	1.3. Overview of the Project Scope
	1.4. Goals and Challenges
	1.5. Comments on the Final Design Procedure
	1.5.1. Work from the Previous Phase
	1.5.2. Recent Progress

	1.6. Current Status in Prototype Implementation

	2. Game Play and Story
	2.1. General Story of the Game
	2.2. Puzzle1
	2.3. Puzzle2
	2.4. Puzzle3
	2.5. Puzzle4
	2.6. Game Play

	3. Interface Design
	3.1. Game Menu Design
	3.2. In Game Screen Design
	3.3. Inventory Menu Design

	4. Game Architecture
	4.1. High-Level Operation of the System
	4.1.1. Abstract Data Flow View (Level:0 DFD)
	4.1.2. Game-Core Data Flow View (Level:1 DFD “Game”)

	4.2. Overall Architecture
	4.3. Message Types
	4.3.1. Overview
	4.3.2. Message Priorities
	4.3.3. Description of the Fields Used
	4.3.4. Explanations of the Messages Used
	4.3.5. Achieving Game-State Consistency in a Chain of Interactions

	4.4. Puzzle Deployment

	5. Detailed Design
	5.1.1. Server-Side Network Backbone
	5.1.1.1. Server
	5.1.1.2. Skeleton
	5.1.1.3. Connection
	5.1.1.4. Channel
	5.1.1.5. Message Decoder
	5.1.1.6 Event Orderer

	5.1.2. Server-Side Game Engine
	5.1.2.1. Game State
	5.1.2.2. Data Loader

	5.1.3. Client-Side Network Backbone
	5.1.3.1. Client
	5.1.3.2. Stub

	5.1.4. Client-Side Game Engine
	5.1.4.1. Client Game State
	5.1.4.2. Core Objects
	5.1.4.3. Chat Module
	5.1.4.4. Graphics Engine
	5.1.4.5. AI Engine

	5.1.5. Database Model
	5.2. Behavioural Design – Interaction Modeling
	5.2.1. Server-Side Network Backbone: Initialization, Load-game and Event Processing Scenario
	5.2.2. Server-Side Game Engine: Event Receiving and Sending Scenario
	5.2.3. Client-Side Network Backbone: Load-game and Message Receiving (encoding/decoding) Scenario
	5.2.4. Client-Side Game Engine: Load-game & Event Processing Scenario
	5.2.5. Chat Engine: Client-Server Single Message Transmission Scenario
	5.2.6. Client-Side Game Engine: Inventory Functions Scenario
	5.2.7. AI Engine: Learning, Resolution and AI-Human Interaction Scenario

	5.3. Behavioral Design – Process Modeling
	5.3.1. Player Movement Scenario
	5.3.2. Object Interaction Scenario
	5.3.3. Client-Side Event Processing Scenario

	6. Interaction Plan
	7. Project Schedule

