

Middle East Technical University

Department of Computer Engineering

`A Unified News Exchange Server `

Detailed Design Report

Goncagül DEMİRDİZEN

Hilal KARAMAN

Ali Anıl SINACI

Ferhat ŞAHİNKAYA

“NewsAgent”
by

Fall, 2006

1 INTRODUCTION .. 3

1.1 Project Scope & Definition... 4

 2

1.2 Project Description.. 4

2 NEWSAGENT MODULES ... 7

2.1 NNTP Module... 7

2.2 Web Module.. 8

2.3 Mail Module.. 11

2.4 RSS Module .. 12

2.5 Atom Module .. 12

2.6 Authentication Module ... 13

2.7 System Log Module.. 13

3 USE CASES.. 14

3.1 Use Case Diagrams ... 14

3.2 Use Case Scenarios ... 22

4 MODELING ... 24

4.1 Data Modeling .. 24

4.1.1 Entity-Relationship Diagrams... 25

4.1.2 Entity-Sets... 31

4.1.3 Data Descriptions.. 32

4.1.4 Entity Descriptions.. 36

4.2 Functional Modeling... 45

4.2.1 Data Flow Diagrams ... 45

4.2.2 Process Specifications (PSEPC) ... 52

4.2.3 Data Dictionary... 58

5 CLASS DIAGRAMS.. 69

5.1 Article Management Module .. 69

5.2 User Management Module.. 74

5.3 Newsgroup Management Module... 79

5.4 Web Module.. 82

5.5 NNTP Commands Module ... 89

5.6 Mailing Module .. 94

5.7 RSS Module .. 98

5.8 Messaging Module.. 101

 3

5.9 Log Module... 103

6 SEQUENCE DIAGRAMS & SEQUENCE OF EVENTS..................................... 105

6.1 Sequence Diagrams... 105

6.2 Sequence of Events ... 122

7 NewsAgent INTERFACE... 131

8 TESTING PLAN AND PROCEDURES.. 138

8.1 Testing Plan .. 138

8.2 Testing Strategy .. 138

8.3 Testing Procedure ... 140

8.3.1 Unit Testing .. 140

8.3.2 Integration Testing .. 140

8.3.3 Security Testing .. 140

9 SYNTAX SPECIFICATION.. 141

9.1 Naming the Classes and Files ... 141

9.2 Naming Functions... 141

9.3 Naming Variables ... 141

9.4 Comment Conventions.. 142

10 IMPLEMENTATION PLAN ... 142

10.1 System Overview.. 142

10.2 System Requirements.. 144

10.3 Objectives & Tasks ... 145

11 GANTT CHART .. 152

12 CONCLUSION... 152

13 REFERENCES ... 152

14 APPENDIX... 153

1 INTRODUCTION
The design period of a software project is the most important part of the schedule since it

determines the other steps of the project. Until this time, we had specified our

requirements and in the light of our requirement analysis reviews, we have prepared the

 4

initial design of our project. In this period we have understood the details and different

aspects of the project more clearly and the system has been visualized in our minds

precisely. As i$T€ team, in our detailed design report, we examined our design issues in

initial design and specified our design in a detailed way. Through the design process, we

aimed to design an efficient and modular system which satisfies all concept of the

problem and tried to develop practical and applicable solutions to the problem. For this

purpose, we specified our system modules clearly and determined the interactions

between the modules and boundaries of the modules. We believe that our final design

satisfies the concept of the problem and provides a reasonable and a modular solution to

the problem.

1.1 Project Scope & Definition
Communication has always been a significant aspect in human beings’ lives. As the time

passes and technology evolves, it appears with different usages and new techniques are

discovered for serving communication. Accordingly, after Internet has started to be used

widely, communication became one of the most important usage areas of it, especially

electronic mails and online chat. Nowadays, most people use mailing lists, newsgroups or

web forums for communication and reaching data about a specific issue. Definitely, these

ways are more practical for now, when compared with searching whole Internet for a

specific data. For this reason, handling different access methods to data is very significant

for a news server. In fact, that is the reason for developing NewsAgent.

NewsAgent will provide users to reach data through web, tin, e-mail and news clients or

via e-mail and RSS options will provide user to reach data in a fast and consistent

manner. Furthermore, we can say that when NewsAgent takes its place in the market,

users will feel the comfortable way of reaching data from different platforms.

1.2 Project Description

NewsAgent will contain several components, each of which will address different

methods for communication. Each component will provide a different platform for

communication and we can differ each user by the component that he/she used. For this

reason, NewsAgent users can be named as NNTP user, RSS/Atom user, Web user, Mail

user and administrator. Here are some general features that will be in NewsAgent:

 5

� Administrators will be people who are responsible from the management of

newsgroups, users and user groups. Creating, removing new newsgroups or handling

of undesirable articles in any of the newsgroups will be in the scope of his/her

responsibilities. Moreover, they also deal with user management. When a candidate

user requests to be a user of our system, administrators will be responsible to accept

or reject their request and adding, deleting user and modifying user rights will also be

responsibilities of administrators.

� Web users will be able to access newsgroups and articles through a graphical user

interface. Web user will login to the system and after this authentication they will be

able to realize all article-based and newsgroup-based operations according to their

access level. An unauthenticated web user will be able to realize only part of these

operations since their access levels will cover a small set of these operations. Web

component will also provide management facilities for each user such as update user

info, change login info etc. and a user-friendly interface will provide user to reach

data, quickly.

� NNTP users will be able to access newsgroups through tin or NNTP clients, like

Mozilla, Thunderbird or Microsoft Outlook Express. They will also be separated as

authenticated and unauthenticated NNTP users. Authenticated NNTP users will be

able to realize all article-based and newsgroup-based operations according to their

access level. Unauthenticated NNTP users will be able to realize only part of these

operations.

� RSS/Atom users will be able to receive feeds from newsgroups according to their

wishes. We will create separate RSS and Atom feeds for every newsgroup and

whenever, a new article is posted we will append this article as a new item to our feed

tree of the related newsgroup and we will serialize it. We will also delete the old

items in the feed and users will be able to access new data via their RSS/Atom

readers.

� Atom is a little bit different from RSS in the sense that atom users will be able to send

insertion data to the feeds directly or update or delete data from feeds. NewsAgent

will provide this to the Atom end users and their insertion requests will be handled.

� We will present a mailing option for our users and users will be able to set / reset their

 6

mailing option and as a result e-mails will be sent to these users if they want to

receive post in a newsgroup via e-mail. Moreover, the users will be able to choose

different receiving options such as instant, daily, weekly etc. Mail users will be able

to receive mails from different newsgroups according to their wishes. Whenever a

new article is posted, e-mails related to that article will be sent to the users who

request to receive e-mail from that newsgroup according to their mail receiving

criteria. Moreover, mail users will be able to send posts to newsgroups as a new

thread or as a follow-up. When the user sends mail to the system we will check the

user is registered and send a verification mail to the sender. If the sender approves,

then the e-mails from registered users will be converted to article objects and inserted

as articles into newsgroups.

� NewsAgent will contain several user groups and each user group will have different

access rights. Authentication will specify access rights of each user and user will be

able to access different newsgroups according to their rights and newsgroups that they

are subscribed. In addition to user groups, also there will be a general access right

which will not need authentication and user will be able to access some subset of

newsgroups which is specified by the system administrators.

� NewsAgent will have a log mechanism in order to save all login information and any

configuration made in the system. For this purpose, we keep login logs and

configuration logs respectively. Log mechanism is important for security of the

system in the sense that the reason of any failure can be found by the help of logs and

also we will be able to keep track of the login logs denoting the users’ login and the

IP of the computer that they have logged in and any administrator configurations.

� NewsAgent will also provide extra features for the users. For example, web users will

be able to communicate with online users by the help of instant messaging

functionality and will be able to send messages to the offline users by the help of

private messaging. These messages will be displayed to the receiver when he/she

logins to the system through our web interface.

 7

2 NEWSAGENT MODULES

2.1 NNTP Module

Our NNTP module provides the connection between NTTP clients and NewsAgent. The

end-users connected via NNTP clients are served and their requests and the NNTP

commands sent to the server as a result of these requests are handled by the help of

NNTP module. The following figure shows the overview of our NNTP module basically.

This module accepts USENET NNTP commands such as POST, LIST, ARTICLE

commands which are sent as a result of posting article, listing newsgroups etc. requests

and maps these commands to the corresponding web service invocations by parsing these

NNTP commands and data. Then this module returns suitable NNTP reply codes and

necessary data to the clients with respect to the values returned by the web services.

During accesses to the server, system administrators may activate secure connections

through SSL (Secure Sockets Layer) by publishing the server’s public key. We will use

OpenSSL and Java built-in libraries to handle this feature.

In our system, NNTP end-users are classified as authorized and unauthorized users.

Unauthorized users can only reach only some subset of newsgroups, which are specified

by system administrators adjusting the newsgroup access rights. In fact, that is

reasonable, since user group of unauthorized users has access level to only these

newsgroups. If the user is authorized, he/she will have a more extensive access than

unauthorized users. However, there will also be different access rights between the user

groups of registered users. They will have the right of do the actions that their access

level contains. If user is registered, following functionalities will be provided to the user:

 8

• The user logins to the system by entering his/her username and password.

Username and password are controlled for validation from the database. If

username-password combination is not valid, the authentication process fails and

user cannot access the news as an authorized user. If the authentication process

results in a success, a session will be created for the user and an access level is

assigned to the user corresponding to the user group.

• After authentication process for registered users, they will have the right of

posting/reading articles, listing articles of a newsgroup, listing newsgroups, etc.

2.2 Web Module

Our Web module will handle the requests and activities realized via our web interface.

These requests and activities include administrative operations, news related activities,

the user activities, login and sign up actions and the private and instant messaging

activities. Therefore, our web module consists of 5 sub modules namely administration

module, user affairs module, news access module, authentication and registration module

and messaging module.

� Administration Module
Administration module deals with the administrative operations that the system

administrators are responsible for in our system. Our web interface will include an

administration interface for these operations and only the system administrators (users

who are member of the admin user group) will be able to access and make configurations

via this interface. The followings are the functionalities which our administration module

handles.

• Newsgroup Management: Administrators will have the right of creating new

newsgroups, deleting an existing newsgroup and make modifications on

newsgroup access levels etc. Such kind of newsgroup related operations are

handled in the concept of this module. Newsgroup information which the

administrator decides to add or the newsgroup id that will be deleted or

modified is obtained from the administrator through the administration

interface and administration module invokes related web services which

interact with the database layer in order to reflect the changes.

 9

• User Management: Administrators will have the right of adding new users,

deleting an existing user. Administration module also handles user related

operations of the administrators. As in the newsgroup management, required

input is obtained from the administrator and administration module invokes

the related user management web service and interacts with the database.

• User Group Management: Administrators create new user groups, remove

existing user groups and modify the user rights of the user groups in order to

adjust the access rights to the existing newsgroups. Administration module

invokes related web service for user group management and these web

services retrieve necessary data from database or reflect the necessary changes

to the database.

• Log Management: In our system, login actions and any configuration are

saved in logs and administrators can list logs or make any changes such as

deleting or modifying logs. Log management operations are also handled in

administration module.

� User Affairs Module
User Affairs module deals with the user activities related to the user info or account info.

There will be a user affairs interface in our system and the User Affairs module will be

responsible for the actions and operations related to the user info. The followings are the

user requests that the user affairs module handles.

 User will be able to

• display user info.

• update user info.

• change password.

User Affairs module interacts with the database and the web service layer and when a

user requests to display user info, it retrieves the user info from database and displays.

This module gets the new information or data from the user and updates the related fields

as a result of an update request.

� News Access Module
News Access Module will be responsible for the article and newsgroup related

operations. The user will request to list the newsgroups and news access module will

 10

interact with the database and retrieve the appropriate newsgroup according to the access

level of the user group that the user belong to. With the list of the newsgroups,

subscription or the mailing options will also be displayed to the user and the user will be

able to subscribe/unsubscribe to the newsgroups or set/reset mail receiving options from

these newsgroups. Mail receiving options will have different options such as instant,

daily and weekly. The user will determine the period which he/she requests to receive

mail for the articles in the newsgroup. For example, when weekly option is selected, the

user will receive mail once a week for that newsgroup and receive the articles in that one

week period.

When one of the newsgroups is selected, the article information of that group is retrieved

and the header, author and date information of the articles are displayed. On the other

hand, article operations are also handled in news access module. When the user selects

one of the articles displayed, the get article web service is invoked and it retrieves the

related article’s text from the database and displays the article content. Moreover, posting

operation is similar. Post article web service is invoked and it interacts with the database

access and inserts the posted article to the database. On the other hand, the user will be

able to cancel or update his/her articles and sort the newsgroups or articles in a

newsgroup according to some criteria such as name, creation or post date etc.

� Authentication & Registration Module
This module will be responsible for the login and sign up operations. When a user enters

his username and password in order to login through our web interface, authentication

module will receive the username and password. Then related web service will be

invoked to check whether the username password combination exist in database or not.

For security reasons, password will be held in a MD5 (Message-Digest algorithm 5)

format. This hashing technique will prevent anyone to access passwords of the users,

directly. After authentication a session will be created for the user and the user group of

the user will also be assigned.

Signing up to the system will also be realized via our web interface. A candidate user fills

the registration form which will be displayed as a result of sign up request and submits

this form. Registration module controls the validity of the form and interacts with the

 11

database and saves the user info. Moreover, this module sends a confirmation mail to the

administrators. If the administrator accepts the user, the user group and the access rights

are adjusted by the administrator and the username and randomly generated password are

sent to the user. After this candidate user turns out to be a system user.

� Messaging Module
Messaging module is responsible for the instant and private messaging issues. This

messaging concept is designed as an extra feature that NewsAgent presents to the users.

User will display the online users and be able to communicate with the online users. By

this way, some unnecessary data will not be sent as an article to the newsgroup. Users

will send each other as instant message. Private messaging is also another new feature

which is similar to instant messaging. Private messaging provides users to send messages

to any other users – online or offline –. Private messages will be shown to recipient when

he/she logs in to the system.

2.3 Mail Module

Mail module is responsible for the receiving e-mails and sending e-mails in our system.

• When our system receives an e-mail, first of all the system controls whether the

sender is an authenticated mail client or not. If the sender is authenticated then a

verification mail is sent to the sender whether he/she approves the insertion of the

mail as an article. Such kind of verification is important in order to prevent spam

mails. If the sender approves, the e-mail is converted to an article object, related

web service is invoked and inserted to the database. The article will be added to a

newsgroup which is specified in the address field of the mail content.

 12

• Users can access articles in a newsgroup via e-mail depending on whether he/she

sets his mailing options on. Of course, user will be able to receive mail from only

newsgroups which he/she can subscribe corresponding to his/her user group. For

a newsgroup, if the user requests articles as an e-mail according to the receiving

option such as instant, daily, weekly, mail module generates e-mails from the

articles and sends to the users.

2.4 RSS Module
Our system will provide RSS feeds for every newsgroup and RSS module will be

responsible for the generation and control of these feeds. If the user wants to follow a

newsgroup periodically, user can subscribe to the RSS feed of this newsgroup and by

using an RSS reader, he/she can reach articles in the newsgroup. After every post

operation, the RSS feed generator is called and the article is appended to the RSS feed of

the newsgroup that the article is posted. After a period, the feed will become to be large

and the old articles will be deleted from the feed.

2.5 Atom Module

Our system will also provide Atom feeds for every newsgroup and Atom module will be

responsible for the generation and control of these feeds. Users will be able to subscribe

to the Atom feed of this newsgroup and access articles in the newsgroup via their Atom

readers. After every post operation, the Atom feed generator is called and the article is

appended to the Atom feed of the newsgroup that the article is posted. After a period, the

feed will become to be large and the old articles will be deleted from the feed.

Moreover, Atom protocol has some advantages on RSS such that Atom is more powerful

for transferring binary data when compared to RSS and user can send insertion requests

directly to the Atom feeds, which is not possible for RSS feeds. Our ATOM module

handles these insertions, also deletion and update requests, which are carried in the same

manner with HTTP requests by related web services.

 13

2.6 Authentication Module
Authentication module is responsible for the authentication process and other modules

interact with authentication module as a result of a login action or authentication

necessity.

• As mentioned in previous modules, each user will be a member of a user-group

which specifies the access level of the user. During authentication username will

be checked for specifying whether username is in database or not.

• Username and password will be checked for correspondence between them by

invoking the related web service and interacting with the database.

• For security reasons, password will be held in a MD5 (Message-Digest algorithm

5) [references: http://en.wikipedia.org/wiki/MD5] format. This hashing technique

will prevent anyone to access passwords of the users, directly.

• After authentication a session will be created for the user and will live until the

user logs out or times out after a period.

• A user who is not authorized to the system will be able to access only some subset

of newsgroups and read only articles in these newsgroups.

2.7 System Log Module
System Log module is responsible for the login log and configuration log operations. As

mentioned before, every login operation and any configuration made in the system by

system administrators are saved in login logs and configuration logs respectively. In this

kind of a situation, log module inserts login log or configuration log by invoking the

related log web service for saving the logs.

 14

3 USE CASES

3.1 Use Case Diagrams

3.1.1 Signup Use Case

Flow of Events for sıgnup Use Case

Objective Allow candidate user to become a system user.
Precondition Access to the system through web interface.
Main Flow • Candidate user reaches the system via web module.

• Clicks ‘signup’ button.
• A user info form is displayed. Candidate user fills in this form

without a missing point.
• Candidate user submits the form.

Postcondition User waits for a confirmation message from administrators.
Then he/she becomes a user of the system.

3.1.2 Login Use Case

Flow of Events for LOGIN Use Case

Objective Allow users to be authenticated.
Precondition
Main Flow • User submits username and password.

• System checks this login data from the database.
• If it is not verified, user is rejected.
• If the username and password is correct, user is authenticated.
• User rights are determined according to this data.
• Administrative rights are also determined by login data.

Postcondition User is allowed to get into the system.

 15

3.1.3 Administrative Use Cases

Flow of Events for MAnage newsgroups use case

Objective Allow administrator to add or remove newsgroups
Precondition Administrative rights

(The user must be logged in as an administrator)
Main Flow • Administrator chooses ‘manage newsgroups’ option.

• In order to add a new newsgroup, administrator interacts with
‘add newsgroup’ interface, specifies necessary information
about the newsgroup and adds the newsgroup.

• In order to remove a new newsgroup, administrator interacts
with ‘delete newsgroup’ interface, selects the newsgroup and
removes it.

Postcondition New newsgroup is added to the system.
Deleted newsgroup does not exist in the system anymore.

Flow of Events for control & manage news

Objective Allow administrator to control and manage news in order to provide a

qualified environment.
Precondition Administrative rights

(The user must be logged in as an administrator)
Main Flow • Administrator controls news that are posted to the server.

• He/she has the right to delete news in case that it doesn’t suit the
newsgroup or generally, the system.

• Or administrators may warn the users about the messages they
sent, instead of deleting the news.

Postcondition Some messages may be deleted.

 16

Flow of Events for manage users use case

Objective Allow administrator to add/remove users and modify user’s rights
Precondition Administrative rights

(The user must be logged in as an administrator)
Main Flow • Administrators interact with ‘manage users’ interface.

• By approving submitted user forms, they can add a new user.
• Administrators have the right to remove a user who does not

satisfy the requirements to be a user from the system.
• Administrator can also change the user’s rights. These rights

determine the user’s access permission. Administrator can chage
user’s access permissions.

Postcondition New user is added.
A user is removed.
User rights are modified for any specified user.

3.1.4 Web Client Use Cases

Flow of Events for WeB Clıent’s update Account ınfo use case

Objective Allow users to modify their user information and change their password.
Precondition User must be logged into our system through web by interacting with

our web module.
Main Flow • After logging in, user can select ‘Update Account Info’ option.

• Then the user’s account info is displayed.
• Some fields will be displayed disabled. That is, the user will not

be able to change this info. For instance, username.
• Login data means username and password. User will be able to

 17

change password, by first entering the old password. If old
password is not confirmed, system will not allow the user to
change password. If it is correct the password will be updated
with the new entered one.

• User info means name, surname, phone, etc. User will be able to
change his/her user info. These changes will be reflected to the
database.

Postcondition User’s password or user info has changed and inserted into the database.

Flow of Events for WeB Clıent’s Newsgroup use cases

Objective Allow users to list/sort newsgroups, subscribe/unsubscribe to

newsgroups, set/reset e-mail receiving option through our web module.
Precondition User must be logged into our system through web by interacting with

our web module.
Main Flow • After logging in, user can select ‘List Newsgroups’ option. Then

newsgroups are listed. User can list his/her subscribed
newsgroups or all newsgroups of the news server.

• Sorting mechanism can differ according to the user’s choice.
User can sort them alphabetically, according to date, etc.

• After listing these newsgroups, user can select any of them and
subscribe to that newsgroup. Or vice versa, the user can
unsubscribe from a newsgroup that he/she is already subscribed
to.

• For the newsgroups that the user is subscribed to, the user can
set/reset mail receiving option. If it is set, articles that are posted
to that newsgroup are sent to the user as e-mail.

Postcondition Subscriptions or changes in e-mail receiving options are inserted into the
database.

 18

Flow of Events for WeB Clıent’s ARTıcle use cases

Objective Allow users to list, read, post or cancel articles through our web module.
Precondition User must be logged into our system through web by interacting with

our web module.
Main Flow • After selecting a newsgroup, user can list the articles belonging

to that group by clicking the name of that newsgroup.
• Articles are listed. Read articles are displayed in a different

color.
• Then, by clicking on the header, user can display the content of

that article.
• User can post a reply to this article by clicking ‘post a reply’

option.
• Instead of posting reply to any article, user can open a new

thread.
• In both situations, a form is displayed. User fills in the required

parts and sends the article.
• If the user wants to delete the article after sending, he/she can

select ‘delete article’ option. In order to delete the article, owner
of that article must be him/her.

Postcondition New article is inserted into database or an article is deleted from
database.

 19

Flow of Events for WeB Clıent’s messages use cases

Objective Allow users to send messages to other online/offline users.
Precondition User must be logged into our system through web by interacting with

our web module.
Main Flow • If the user wants to send message to another user, he/she can

select the user by double clicking his/her username in users list
which we will display.

• When the user is selected, a pop-up window is displayed and the
message is expected to be written there.

• Then the user presses “send” button, and the message is sent to
recipient.

• If the user wants to see the messages that are sent to him/her, the
user will firstly press “message inbox” button and overview of
all messages (sender, date, etc.) are displayed.

• The user can select any of these messages by clicking on the
header, and the message body is displayed.

Postcondition Sent messages are inserted into database with sender and receiver info.

3.1.5 NNTP End-user Use Cases

 20

Flow of Events for NNtp end-user use cases

Objective Allow users to list available newsgroups, list articles of a specified

newsgroup, read an article among these listed ones and post a new
article (either as a new thread or as a follow-up to an existing article)
through NNTP clients.

Precondition User must be connected to our system through an NNTP client (such as
Outlook Express, Thunderbird, etc.) by authentication.

Main Flow Flows of these events are mainly the same. Only the nntp response and
request codes differ.

• NNTP client sends a message specifying the end-user’s request.
• We map the action that corresponds to this message.
• Action is performed and reply code ant required information is

sent to the client.
Postcondition Then end-user is able to list newsgroups, list articles, read an article or

post an article to the news server through nntp according to the action
he/she performed.

3.1.6 RSS/Atom End-user Use Cases

Flow of Events for Rss/atom end-user use cases

Objective Allow users to reach the latest news of our server through news readers.
Precondition User has to subscribe to our newsgroups through RSS/Atom reader.
Main Flow • We will produce RSS/Atom feeds for each of our newsgroups.

• Feeds will be protected. So the user will be asked for username
& password by the news reader or attach username password to
the url, in order to subscribe to newsgroups.

• When subscribed, latest news will be displayed in the news
reader.

• User will be able to read any article among displayed ones.
Postcondition ---

 21

Flow of Events for atom end-user’s post artıcle use case

Objective Allow Atom end-users to make comments and reply to our news.
Precondition User has to subscribe to our newsgroups through Atom reader.
Main Flow • User will be able to post article to that newsgroup.
Postcondition Posted article is inserted into database under according newsgroup.

3.1.7 Mail User Use Cases

Flow of Events for atom end-user’s post artıcle use case

Objective Allow users to get the news from the server or send news to the server

without logging into the system.
Precondition User has to set mail receiving option for the newsgroup from our web

module.
Main Flow • If the user’s mail receiving option is set for a newsgroup, when a

new article is sent to that newsgroup, the article will be sent to
the user’s mail-box.

• In reverse direction, user will be able to send article to the news
server as e-mail by entering newsgroup@newsagent.com into
“to” field.

Postcondition Article(s) is(are) sent to the mail user, according to the period he/she has
specified. (daily or weekly).
Posted article is inserted into database under according newsgroup.

 22

3.2 Use Case Scenarios

Administrator:

Login: An administrator has to login to the system in order to realize administrative

roles. There will be a web user interface for administrative roles. After validation of login

information, the administrator will be able to manage newsgroups, users and news.

Manage Newsgroups: Administrator may add new newsgroups and remove existing

newsgroups in the content of the managing newsgroups scenario.

Manage Users: Administrator may add and remove users and modify the user rights.

Administrator will control users and will be able to restrict the user rights. There will be

specified user roles and rights, however, new rights can be granted to the users and

existing rights may be withdrawn.

Control & Manage News: An administrator will have the right of controlling and

managing the articles. Articles which do not suit the content of the newsgroup may be

cancelled. As a result of such a control on news, user roles and rights granted to the users

defined more precisely.

Candidate User:

Request Sign-up: A candidate user is a person who demands to sign up to the system via

web interface and as a result of a sign-up request, the candidate user has to submit a user

information form and if the administrators accept the request, the candidate user turns out

to be a real system user.

Web End-User:

Login: The user will login to the system in order to realize user roles. After validation of

user login information, the user will be able to list, subscribe/unsubscribe, and sort

newsgroups and post, read, cancel and sort articles.

List Newsgroups: The user will be able to list the newsgroups. In the concept of listing

newsgroups scenario, a user may list all newsgroups or the newsgroups that he/she has

been subscribed.

 23

Sort Newsgroups: The user will be able to sort the newsgroups according to some

criteria. These criteria can be alphabetical order, order according to date, etc.

Subscribe / Unsubscribe to Newsgroups: After listing the newsgroups, the user will be

able to subscribe and unsubscribe to the newsgroups.

List Articles: The user will be able to list articles belonging to any newsgroup, clicking

the name of that newsgroup.

Read Article: The user reads articles.

Post Article: The user posts articles. In the concept of posting articles, the user may open

a new thread or follow up to an existing article.

Set & Reset Mail Receiving Options: The user will be able to request to receive e-mail

for the articles posted. The user may want to receive e-mail for specified newsgroups or

want to receive e-mail for all newsgroups. Also the user may want to cancel the mail

receiving option and then no e-mails will be sent to the user from that newsgroup.

Update User Info: The user will be able to update user information such as his/her

personal information registered when signing up, e-mail address etc.

Change Login Data: The user may change login information. Generally user id of a user

is not allowed to be changed for most of the systems however the users may need to

change their passwords.

Send Message to Other Users: The user will be able to send messages to other users. If

the receiver user is online, then he/she will immediately receive the message. If the user

is offline, he/she will receive the message when he/she logs into the system. User will be

selected from the list of users, which we display.

Display Message Box: The user will display message inbox in order to see the overview

of messages that are sent to him/her.

Read Message: When any message is selected from this inbox, contents of it will be

displayed.

NNTP End-User:

The user will be able to realize the actions such as login, list newsgroups and articles,

post and read article as web users do. Only difference will be how we handle these

 24

requests. We will send responses to the messages that we receive from nntp clients,

according to the user’s needs. Results of these actions will be the same as web-user.

RSS/Atom End-User:

Subscribe / Unsubscribe to Newsgroups: RSS/Atom end-users will be able to subscribe

and unsubscribe to specific newsgroups. Each newsgroup will have its own feed so that

the user receives only the news from subscribed newsgroups.

Read Articles: As all users do, RSS users will read the news.

Post Article: Only Atom users will be able to post article to our system through a news

reader, not RSS users.

Mail User

When a user sets receiving mail option from web, that user becomes also a mail user.

Send Message to the News Server: Mail users send messages to the server through

SMTP protocol.

Receive e-mail from the News Server: When a new message is posted, mail users receive

that message as e-mail from the newsgroups if they are subscribed to that group.

4 MODELING

4.1 Data Modeling

As you all know, in a unified news exchange server the data design and storage of the

news, articles, newsgroups are the most important issues since the efficient access,

consistent and stable data are really valuable. Moreover, the data design constructs the

fundamentals of a system and the other parts or layers of the system are built on this basic

structure. Therefore, in order to construct a consistent and a powerful system, one has to

begin with a consistent data design. Keeping these in mind, we decided to store our data

in database. In our system, we will store our data in 2 different databases. In the

following figure, you can see how the mechanism works.

 25

The main database will be used to store main data such as articles, users, newsgroups,

etc. Other database will be used as an archive to store older articles and newsgroups. Also

the relation between newsgroups and articles will be stored in another table. These older

articles will not be stored in main database anymore. If any client requests an old article

which is already moved to the archive database by NewsAgent, system finds the article

from the archive database either by the message-id or server specific article number.

4.1.1 Entity-Relationship Diagrams

ER Diagrams For Main Database

 26

 27

 28

 29

ER Diagrams For Archive Database

 30

Relations

 31

4.1.2 Entity-Sets

Entity Sets For Main Database

Entity Sets For Archive Database

 32

4.1.3 Data Descriptions

The data description function is to deal with the structure of the data. We have taken each

entity and relation separately and given each attribute in each entity or relation a type so

the data is fully structured.

� Data with underlines are primary keys;
� Data with star have to be entered absolutely (NOT NULL);

Data Descriptions for Main Database

Articles

Data Type & Size Format

message_id* VARCHAR – 40 Text (UNIQUE)
content TEXT Text

Ng_articles

Data Type & Size Format

article_no* BIGSERIAL Number (AUTOINC)
message_id* VARCHAR – 40 Text (UNIQUE)
subject* VARCHAR – 60 Text
date* DATETIME Date/time
from_uid* BIGINT Number
from_mail* VARCHAR – 40 Text
reply_to VARCHAR – 40 Text
followup_to VARCHAR – 40 Text
relay_version* VARCHAR – 60 Text
posting_version* VARCHAR – 60 Text
lines* INTEGER Number
path* VARCHAR – 60 Text
expires DATETIME Date/time
references VARCHAR – 60 Text
distribution VARCHAR – 60 Text
control VARCHAR – 60 Text

Users

Data Type & Size Format

 33

user_id* BIGSERIAL Number (AUTOINC)
password* VARCHAR – 20 Text is hidden. ********
name* VARCHAR – 20 Text
surname* VARCHAR – 20 Text
username* VARCHAR – 40 Text (UNIQUE)
date_of_birth DATE Date
birth_place VARCHAR – 20 Text
phone* VARCHAR – 40 Text
e-mail* VARCHAR – 40 Text
signup_date* DATETIME Date/time
removed_date DATETIME Date/time
group_id* INTEGER Number
picture BLOB Binary
last_login_IP* VARCHAR – 20 Text
last_login_date_time* DATE Date
secret_question VARCHAR – 40 Text
secret_question_answer VARCHAR – 40 Text

User_groups

Data Type & Size Format

group_id* INTEGER Number
group_name* VARCHAR – 60 Text
access_level* INTEGER Number

Newsgroups

Data Type & Size Format

ng_id* INTEGER Number (AUTOINC)
ng_name* VARCHAR – 60 Text (UNIQUE)
created_by* BIGINT Number
creation_datetime* DATETIME Date/time
description VARCHAR – 60 Text

Ng_mails

Data Type & Size Format

mail_address* VARCHAR – 40 Text

 34

period VARCHAR – 10 Text

Ng_access_levels

Data Type & Size Format

ng_id* BIGINT Number
access_level* INT Number

Subscription

Data Type & Size Format

user_id* BIGINT Number
ng_id* INTEGER Number
wants_mail* BOOL Yes/no

Login_Log

Data Type & Size Format

user_id* BIGINT Number
login_date* DATETIME Date/time
login_IP* INET IP Specific Text

Action_Types

Data Type & Size Format

action_no* INT Number (AUTOINC)
id_type* TINYINT Number
action_name* VARCHAR - 100 Text

Configuration_Log

Data Type & Size Format

log_id* BIGINT Number (AUTOINC)
user_id* BIGINT Number
date_time* DATETIME Date/time
action_type* INT Number
id* BIGINT Number

 35

Online_users

Data Type & Size Format

user_id* BIGINT Number

Private_messages

Data Type & Size Format

receiver_id* BIGINT Number
sender_id* BIGINT Number
date_time* DATETIME Date/time
content TEXT Text

Data Descriptions for Archive Database

Articles

Data Type & Size Format

message_id* VARCHAR – 40 Text (UNIQUE)
subject* VARCHAR – 60 Text
content TEXT Text
date* DATETIME Date/time
from_uid* BIGINT Number
from_mail* VARCHAR – 40 Text
reply_to VARCHAR – 40 Text
followup_to VARCHAR – 40 Text
relay_version* VARCHAR – 60 Text
posting_version* VARCHAR – 60 Text
lines* INTEGER Number
path* VARCHAR – 60 Text
expires DATETIME Date/time
references VARCHAR – 60 Text
distribution VARCHAR – 60 Text
control VARCHAR – 60 Text

Newsgroups

Data Type & Size Format

ng_id* INTEGER Number

 36

ng_name* VARCHAR – 60 Text
created_by* BIGINT Number
is_deleted* BOOLEAN Yes/no
creation_datetime* DATETIME Date/time
deletion_datetime DATETIME Date/time
description VARCHAR – 60 Text

In_ng

Data Type & Size Format

message_id* VARCHAR – 40 Text
ng_id* INTEGER Number
article_no* BIGINT Number

4.1.4 Entity Descriptions

Entity & Relation Descriptions for Main Database

Articles

In our main database, we store all articles in a single table. For each newsgroup we create

a table and store overviews, not contents, of articles belonging to this newsgroup. When

the user selects a newsgroup, required headers for threading will be retrieved from

overview tables. This provides us to increase the system speed when our clients are

connected to our system via newsreaders that support overview database. If the user

clicks an article to see its contents, it is retrieved from main articles table. Keeping the

content of articles in a single table prevents multiple holding of the same article in

different newsgroup tables in case of cross posting. So, this entity contains message_id

and content of the messages only.

message_id*: Required `Message-ID` standard header is held in string message_id. This

attribute uniquely defines a message. The same message ID cannot be assigned to another

article because this id is created by the clients according to their systems and merging this

data with some information of the server.

content: This field is held in text format and stores the content of the article.

Ng_articles

 37

Ng_articles is a general name for lots of possible tables. When a new newsgroup is

created, an article table is created for that newsgroup with a specifying name. For

example, if a group named `Music` is created, a table named `Music_articles` is also

created. This table contains all necessary information (except content) about articles

belonging to that table. This way is chosen in order to prevent the database from multiple

storage of the content of same article when posted to different groups at the same time.

Some attributes are used for holding standard data for USENET messages and some

attributes are assigned by us locally for managing articles easily.

In USENET message format, [6] there are some required headers and some optional

headers. We hold these required headers and some of the optional headers in our

database, in order to obey universal USENET message standards. Below, the table’s

attributes are explained.

article_no*: This number specifies each article in the group uniquely; hence article_no is

the primary key of the Ng_articles entity. System assigns a unique number to each article

in a newsgroup to manage them more easily.

message_id*: This field is also held with article number because news readers may want

request any article by means of the universal message-ids. This is a foreign key

referencing to the Articles table.

subject*: Required `Subject` standard header is held in string subject. It is assigned by

sender and briefly defines what the article is about.

date*: Required `Date` standard header is held in date in date/time format. It is the time

that the article is posted to the network.

from_uid*: This is a local assignment that is required to know which user has posted the

article. It is a foreign key for this entity referencing user_id of Users entity.

from_mail*: Required `From` standard header is held in string from_mail. It is the mail

address of the sender of that article. This is a default mail address and foreign key which

references the attribute e-mail of Users entity.

reply_to: Optional `Reply-To` standard header is held in string reply_to. This string holds

the optional mail address of the sender if he/she wants to get mail for that article to the

specified address instead of from_mail.

 38

followup_to: Optional `Followup-To` standard header is held in string followup_to. If

this is not empty, all follow-ups to the article will be posted to the newsgroups specified

in this field. If it is empty, follow-ups will be posted to the newsgroup(s) that the message

was originally posted.

relay_version*: Required `Relay-Version` standard header is held in string

relay_version. This header shows the version of the program that is responsible for the

transmission of the article.

posting_version*: Required `Posting-Version` standard header is held in string

posting_version. This header identifies the software that is responsible for passing

this message into the network.

lines*: This header is also required and specifies how many lines the article has. It is held

in integer format.

path*: Path is a required header and shows the way that the article followed until

reaching the system. Path is held in string format and when a system forwards this article,

it concatenates its name to the path.

expires: This field is in date/time format and optional. If it exists, the article expires in

specified date and time.

references: This field is optional and held in string format consisting of article ID`s

which prompt the submission of this article. For instance, in a follow-up article, the

parent article exists in this field.

distribution: This field is held in string format and lists the newsgroups that the article

should be sent. This field alters the original newsgroup distribution.

Users

This entity contains all required information about the users which can be authorized or

unauthorized. Administrators are also users.

user_id*: This number specifies each user uniquely; hence user_id is the primary key of

the Users entity.

name*: This string field holds the name of the user.

surname*: This string field holds the surname of the user.

username*: This string field holds the username of the user, it is unique for each user.

 39

password*: This string field is the matched password for the username of the user .

date_of_birth: This date typed attribute holds the birth date of the user.

birth_place: This string typed attribute holds the birth place of the user.

phone*: This string field holds the cell phone number of the customer.
e-mail*: This text field holds the mail address of the customer.

signup_date*: This field holds the date and time that the user has signed up. This field is

of type date/time.

removed_date: This field is usually empty but if a user is removed from the database, this

field holds the date and time that the user is removed from the system.

group_id*: Group id specifies which user group the user belongs to. This is a foreign key

referencing group_id attribute of User_groups entity.

picture: Users can upload their pictures to the system. This picture is held in picture field

in BLOB format.

last_login_date_time: Date and time of last login of the user is kept for security.

last_login_IP: IP of the computer that the user last logged in is also kept.

secret_question: Secret question is kept in string format. It is asked in a case that the user

forgets his/her password.

secret_question_answer: Secret question’s answer is kept in string format also. It is used

in a case that the user forgets his/her password.

User_groups

This entity holds information about user groups. Each user will be a member of a pre-

determined user group. Each user group will have an access level. These access levels

will be used to determine whether a user will be able to access a specified newsgroup or

not. Since administrators will be treated in the same manner with other users, there is no

need to create a distinct administrator table. Administrative rights will be determined by

user groups.

group_id*: This number specifies each user group uniquely; hence group_id is the

primary key of the User_groups entity.

group_name*: This string field holds the name of the usergroup.

 40

access_level*: This integer field holds the access level of the user. For instance, if it is 1,

it means full access.

Newsgroups

This entity holds information about newsgroups. When a newsgroup is added, listed

information about that group is added to the table.

ng_id*: This number specifies each newsgroup uniquely; hence ng_id is the primary key

of the Newsgroups entity.

ng_name*: This string field holds the name of the newsgroup.

created_by*: This big integer typed field holds information about who created this

newsgroup. This is a foreign key of this entity referencing user_id attribute of Users

entity.

creation_datetime*: This field holds the date and time that the newsgroup is created.

This field is of type date/time.

description: This string field holds a brief description about what the newsgroup is about.

Ng_mails

Ng_mails is also a general name for lots of possible tables. When a new newsgroup is

created, a mails table is created for that newsgroup with a specifying name. For example,

if a group named `Cinema` is created, a table named `Cinema_mails` is also created. This

entity is formed in order to store mail addresses of people who subscribed to receive the

articles that are posted to the specified newsgroup as e-mail.

mail_address*: This string field holds the mail addresses of the users who want to

receive e-mails from the specified newsgroup.

period*: Period is a string and it is chosen by the user among some specified periods by

us. These periods may be ‘weekly’, ‘daily’, etc. If the user doesn’t want to receive mails

when the article is posted, he/she, for example chooses ‘weekly’ as a period. Then the

articles will be sent to the user weekly.

Ng_access_levels

 41

This table specifies access levels of each newsgroup to determine the user groups which

will be able to access to which newsgroup in the news server.

ng_id*: This field is the id specifies the newsgroups uniquely. This is a foreign key for

this relation referencing ng_id attribute of Newsgroups entity. ng_id, itself, is the primary

key of this table, since each newsgroup will be stored once in this table.

access_level*: This attribute stores an integer which specifies the access level of

newsgroups.

Subscription

This table specifies a relation among users and newsgroups. Users can be subscribed to

newsgroups. Required information about this subscription is held in this table.

user_id*: This field is the id of the user who subscribed to the newsgroup. This is a

foreign key for this relation referencing user_id attribute of Users entity. This field is a

subset of primary key.

ng_id*: This field is the id of the newsgroup which is subscribed by the user. This is a

foreign key for this relation referencing ng_id attribute of Newsgroups entity. This field is

also a subset of primary key.

¾ ng_id and user_id are primary keys of the relation together.

wants_mail*: This Boolean type is hold to know whether the user wants e-mail from this

newsgroup or not.

Login_Log

This table stores information about each log in of users. When for each log in to the

system, a row is inserted to this table which includes user_id of user, date and time of the

login and IP of the computer that user login to the system. Storing this information is

significant for a news server, like NewsAgent, since security is a key point. Also,

specifying the computer that user logged in to the system in his previous login is a smart

feature.

user_id*: This number specifies each user uniquely. This is a foreign key referencing to

the Users table.

 42

login_datetime*: This timestamp attribute stores the date and time of the login.

login_IP*: This attribute stores the ip address of the computer that user logged in to the

system.

¾ User_id and login_datetime together forms the primary key of this table, since we

consider that any user can login to the system once at any specified time.

Action_Types

This table, in fact, is stored for specifying the configuration actions of users which are

stored in configuration_log table. In fact, this table is mostly a static table, since there

will be no major change on this table when all action types have already been specified.

Only a small number of insertions, deletions and updates may be applied on this table

when an action type will be inserted, deleted or updated, respectively.

action_no*: This number specifies each action type uniquely. Action_no is the primary

key of this table. It will be auto incremented when a action is inserted to this table.

id_type*: This attribute specifies one of article_no, user_id, ng_id. This id is the

specification for on which type of data, the configuration can be done.

action_name*: action_name is just an attribute to specify the name of the action_type.

For instance, update of article may be a possible name for an action_name.

Configuration_Log

This table stores all configurations of users on database. When an insertion, deletion or

update is done, a row is inserted to the configuration_log table. Like login_log table, this

information is significant for security reasons. Storing configuration actions data in the

database provide us to control the configurations done on database by each user and when

this configuration is done.

log_id*: This field specifies the configuration log uniquely. It is the primary key of the

entity and incremented automatically.

user_id*: This attribute specifies the user who does the configuration. This user_id is a

foreign key to the Users table.

log_datetime*: This timestamp attribute stores the date and time of the configuration.

 43

action_no*: This integer stores the information of which configuration is done by the

user specified by user_id attribute. Since action types table stores all actions can be

applied by users, this attribute is a foreign key to action_types table.

id*: id attribute stores the id of the message, newsgroup or user on which configuration is

done. Since action_no table is storing whether the configuration is applied on a message,

a newsgroup or a user, it is easy to determine the id is related with whether a message, a

newsgroup or a user. By using this id and other attributes of this table, a config_log tuple

can easily be created.

Online_users

When a user logs in, id of that user is inserted into this table. When that user logs out, the

id is deleted from the table. We will show online users in our web module.

user_id*: This is the primary key and references the user_id field in users table.

Private_messages

Users will be able to send messages to other users. For each user, we will store messages

that are sent to him/her. User will be able to see the messages when he/she logs in to the

system. After reading the message, user can reply to that message. We will display

message history to the users.

receiver_id*: This is the user_id of the user to whom the message is sent.

sender_id*: This is the user_id of the user who sent the message.

date_time*: When the message is sent, the date and time of the message will be hold in

date_time field in date format.

content: This attribute holds the content of the private message.

Entity Descriptions for Archive Database

We are supposed not to delete old articles. As a result of this, after a period, there will be

a great deal of articles and the database will begin to be congested. In such a situation,

database access and retrievals will be slow. For this reason, we came up with a decision

of archiving old articles. We have an archiving criterion based on article load. For each

newsgroup, when a specific article load is exceeded, we archive some amount of articles

 44

for that group. This criterion can differ for different newsgroups. We will keep an archive

database and store the archived articles there. If the user wants to retrieve an archived

article, the content of the article will be retrieved from archive database. However,

retrieving an archived article will be a rare operation and most of the operations will

access our main database which will be faster after archiving mechanism.

Articles

This entity contains all necessary information about archived articles which are posted to

the news server. This information is the ones that are kept in ng_mails table in main

database, plus the content of the message.

Newsgroups

This entity is the same as Articles entity in main database except for the is_deleted and

deletion_datetime attributes of this newsgroups entity. is_deleted boolean attribute

specifies whether that newsgroup is deleted or not, since a deleted newsgroup can exist in

archive database but not main database. deletion_datetime attribute specifies the deletion

time of the newsgroup if it is deleted. Definitions of other attributes are as listed in

definition of main database entity.

 In_ng

This table specifies a relation among articles and newsgroups in archive database.

Articles belong to newsgroups. We needed this relation only for this database, since in

archive database; we do not hold different tables for different newsgroups that list the

articles posted to that newsgroup.

article_no*: This number specifies each article in the server uniquely; hence article_no is

the primary key of the Ng_articles entity. This is a foreign key referencing to the Articles

table.

message_id*: This field is also held with article number because news readers may want

request any article by means of the universal message-ids.

ng_id*: This field is a foreign key for this relation referencing ng_id of Newsgroups

entity. It defines which newsgroup the message belongs to.

¾ ng_id and message_id are primary key of the relation together.

 45

4.2 Functional Modeling

4.2.1 Data Flow Diagrams

4.2.1.1 LEVEL 0 DATA FLOW DIAGRAM

 46

4.2.1.2 LEVEL 1 DATA FLOW DIAGRAM

 47

4.2.1.3 LEVEL 2 DATA FLOW DIAGRAMS

 48

 49

 50

 51

 52

4.2.2 Process Specifications (PSEPC)

4.2.2.1 PSPECs for NNTP Module

PSPEC : Interact with NNTP Client
This process controls interaction for users who want to reach articles through NNTP Module.

These users are people who uses e-mail and news client software packages. When interacting

with NNTP Client, NNTP commands and data will be handled and these data will be sent to

the NNTP User Authentication process. However, if user wants to reach articles which can be

accessible by unauthenticated users and did not send authentication data, he/she will be able

to access newsgroups which have access level providing unauthenticated user accesses and

their articles.

PSPEC : NNTP User Authentication
Corresponding to the information sent from Interaction with NNTP Client, in this process

database access is handled for a control of username and password to specify user group of

the user. After the control, the result action can be authenticated user authentication or

rejection of user authentication data. User may send authentication data again if user

authentication command was rejected or he/she may act as an unauthenticated (if user wants

to reach articles which can be accessible by unauthenticated users and did not send

authentication data.) or authenticated user (if user authentication data has been already

accepted.). According to the result of authentication process, LoginLog table is updated and

its return status is handled. Unauthenticated NNTP users should specify their names and

passwords as anonymous; however that is not the case for web users.

PSPEC : Map NNTP Command
NNTP User Commands are sent from authenticated or unauthenticated users and these

commands are mapped to predefined NNTP commands. For instance, when user wants to post

an article to a newsgroup, its mapped command will be sent to Handle NNTP Commands

process. By having a Map NNTP Command process, a modular design is established for

handling NNTP Commands.

PSPEC : Handle NNTP Command
Mapped NNTP Commands are handled by this process. According to the mapped command

retrieved, related web service is called.

PSPEC : Process Related Web Service
Since mapped NNTP Command has already been determined by Map NNTP Command

process and its related web service has already been determined by Handle NNTP Command

 53

process, it is not a big deal to processing related web services. Detailed explanations about

Web Service processes are in Web Service processes part. In short, Web Service processes

handle each web service and by this way, the core of NewsAgent is accessed via web

services. Modularity is the main point for having such a Web Service processes.

Processing related web services (corresponding to the commands of NNTP user) ends NNTP

Module with a satisfied NNTP User.

4.2.2.2 PSPECs for Web Module

PSPEC : Interact with Web Client
This process controls interaction for users who want to reach articles through Web Module.

These users are people who uses NewsAgent web user interface. When interacting with Web

Client, user commands and data will be handled and these data will be sent to the Web User

Authentication process. However, if user wants to reach articles without any authentication

process, he/she will be able access some newsgroups specified as accessible without

authentication (in fact, access levels of newsgroups are specifications).

PSPEC : Web User Authentication
Corresponding to the information sent from Interaction with Web Client, in this process

database access is handled for a control of username and password to specify user group of

the user. Validity message or invalid user data will be returned from database access. If the

validity message is returned from database access, user access level is also returned to specify

to which groups will be accessible for user. After the control (according to the validity

message), the result action can be authenticated user authentication or rejection of user

authentication data. User may send authentication data again if user authentication command

was rejected or he/she may act as an unauthenticated (if user wants to reach articles which can

be accessible by unauthenticated users and did not send authentication data.) or authenticated

user (if user authentication data has been already accepted.). According to the result of

authentication process, LoginLog table is updated and its return status is handled.

PSPEC : Map Web Command
Web User Commands are sent from authenticated or unauthenticated web users. Users will

send their commands by using the web interface of NewsAgent. For instance, when user

wants to list articles of a newsgroup, he/she should click on the name of newsgroup from the

list of all newsgroups. After the specification of web user command, its mapped command

will be sent to Handle Web Client Commands process. By having Map Web Command

process, a modular design is established for handling Web Client Commands.

 54

PSPEC : Handle Web Client Command

Mapped Web Client Commands are handled by this process. According to the mapped

command retrieved, related web service is called.

PSPEC : Process Related Web Service
Since mapped Web Client Command has already been determined by Map Web Command

process and its related web service has already been determined by Handle Web Client

Command process, it is not a big deal to processing related web services. Detailed

explanations about Web Service processes are in Web Service processes part. In short, Web

Service processes handle each web service and by this way, the core of NewsAgent is

accessed via web services. Modularity is the main point for having such a Web Service

processes.

Processing related web services (corresponding to the commands of NNTP user) ends NNTP

Module with a satisfied NNTP User.

4.2.2.3 PSPECs for RSS/ATOM Module

Feed Updates are handled by this module. As mentioned earlier, NewsAgent will have feed

trees for each newsgroup and users will be able to subscribe each of them according to their

user groups. After updated RSS/ATOM readers will be able to retrieve updated article or

newsgroup information.

PSPEC : Update Feeds
Update feeds is the start process for updating feed trees. When there is a post, delete or in

general term an update on a newsgroup or article, update feeds process is started and

necessary update information is supplied to this process.

PSPEC : Create New Feed Node
When necessary information for an update is supplied by Update Feeds process to Create

New Feed Node, it creates a new free (not bound to any feed tree) feed node for insertions to

feed trees of different newsgroups.

PSPEC : Insert Feed Node to Feed Tree
After the creation of a new free feed node by Create New Feed Node process, feed node is

ready to be inserted to feed trees of newsgroups. Insert feed node process establishes a

connection to feed trees for newsgroups to which new feed node will be inserted. For each

feed tree that the new feed node will be inserted to, this process sends all data related with the

created free feed node and the newsgroup specification (for specifying to which feed tree the

feed node will be inserted to). After the insertion of the new feed node, status information is

 55

handled again by this process. This design of Insert Feed Node to Feed Tree process is, in

fact, so useful to handle cross-posting.

After all processes of RSS/ATOM module, when a user requests the feed of any newsgroup,

he/she will be able to get an updated version of feeds by the help of an RSS/ATOM reader.

4.2.2.4 PSPECs for SMTP Module

In fact, this module consists of two sub-modules, one for sending mails to mail-users and one

for receiving mails from mail-users. By using this module mail users will be able to post an

article to newsgroups and receive articles that are posted to newsgroups via e-mail from

NewsAgent server.

PSPEC : Interact with User (Port Listener)
This process interacts with mail user and when there is a new e-mail sent to any newsgroup of

NewsAgent, port listener will handle it. In fact, since NewsAgent will use James SMTP

Server, this will be handled by it.

PSPEC : SMTP User Authentication
SMTP User Authentication process gets SMTP User Authentication request from James

SMTP Server and sends a new e-mail to the sender to verify whether the sender is correct or

not. After the verification of the sender, mail can be posted to the related newsgroups as

articles. By this way, spams will not be posted as articles to newsgroups and this will be a

significant point for security. In fact, verification step makes SMTP User Authentication

process different from authentication in other modules.
PSPEC : Process Mail Command
After the authentication of mail-user, commands will be produced for converting the mail to

article format and sending it to specified newsgroups. Unauthenticated users will also be able

to send mail to any of the newsgroups and again verification step will be handled for them.

PSPEC : Map Mail to Article
After the specification of commands, mail should be mapped to article. By this way, mail will

be converted to article format and after that point mail will be sent to newsgroups as if it was

simply an article. Since it will be handled as an article related web services will be called to

insert the article to specified newsgroups.

PSPEC : Create Mail Sender Object

When necessary information for an update is supplied by Web Service processes to Create

Mail Sender Object process, it creates a new Mail Sender object and this object will be passed

 56

to Send Mail to Clients process. Coming data from Web Services part are explained in Web

Service process part in a detailed manner.

PSPEC : Send Mail to Clients

Creation of a Mail Sender Object is necessary before the application of this process. Since it

has already been done by Create Mail Sender Object process, after a control from the database

for mail users of the newsgroups to which the new article is sent, by using Mail Sender

Object, a mail is created (content of the mail can be retrieved from Mail Sender Object and

receipants are retrieved from the database.) and sent. By this way, a mail user will be able to

receive posts to newsgroups that he/she has subscribed beforehand.

Since user will be able to send mails to newsgroups of NewsAgent and receive new articles

via e-mail, mail-users will have most of the opportunities that Web or NNTP users have.

PSPECs for Web Service Processes
As explained in the process specifications of modules, when NewsAgent core will be

accessed, this will be done by the help of web services. This provides modularity in

NewsAgent.

PSPEC : Process Command

Web services will be called by processes according to the command that should be processed.

Process Command process is gate keeper for accessing web services. According to the request

it diverts data and command to related web services. There are three Web service sub-

modules; newsgroup, news, user which access newsgroup, article and user data respectively to

retrieve, insert or modify specified data in the command and data attached to it.

PSPEC : Handle Newsgroup Web Service

This process handles web services related to newsgroups. When an update or retrieval

on/from Newsgroups and its related tables on the database, Handle Newsgroup Web Service

will be activated by Process Command process. Depending on whether the data will be

retrieved or updated, it diverts command and data to one of the processes named as Call

Related Update Newsgroup Web Service and Call Related Retrieve Newsgroup Web Service.

PSPEC : Call Related Update Newsgroup Web Service
Updates on Newsgroups table will be done through this process. For instance, when name of a

newsgroup will be changed, this process will handle the connection to the database and will

make the specified change on Newsgroups table. In fact, it will be reasonable to update some

related data in other tables according to the updates on Newsgroups table such as ConfigLog.

In addition to that, when name of a newsgroup is changed, newsgroup name for Ng_articles

and Ng_mails will be changed. Also, after an update on a newsgroup, this should be reported

 57

to mail-users and RSS users. NewsAgent server will send mails to mail-users of the updated

newsgroup (Note that data named as Newsgroup Update info exist also in DFD for SMTP

Module). For reporting the update to RSS users, an article will be sent automatically to a

specific newsgroup (such as newsagent.announce.admin), by this way, users who are

subscribed to this newsgroup will be informed about the change.

PSPEC : Call Related Retrieve Newsgroup Web Service
Retrieves from Newsgroups table will be done through this process. For instance, when

articles of a newsgroup will be listed, this process will handle the connection to the database

and will retrieve the specified data from Newsgroups table. Since retrieval will not modify

any data about newsgroups there is no need to handle cases in Call Related Update

Newsgroup Web Services.

PSPEC : Handle News Web Service
This process handles web services related to articles. When an update or retrieval on/from

Articles and its related tables on the database, Handle News Web Service will be activated by

Process Command process. Depending on whether the data will be retrieved or updated, it

diverts command and data to one of the processes named as Call Related Update News Web

Service and Call Related Retrieve News Web Service.

PSPEC : Call Related Update News Web Service

Updates on Articles table will be done through this process. For instance, when a new article

is posted to a newsgroup, this process will handle the connection to the database and will

make the specified change on Articles table. In fact, it will be reasonable to update some

related data in other tables according to the updates on Articles table such as

Configuration_Log. In addition to that, when a new article is posted to any newsgroup, a new

tuple should be inserted to table Ng_articles (for related newsgroups only, of course). Also,

after a new article is posted, this should be reported to mail-users and RSS users. NewsAgent

server will send articles to mail-users via e-mail (Note that data named as News Update info

exist also in DFD for SMTP Module). Since article will be added to feed trees of specified

newsgroups, RSS users will easily access new posted articles.

PSPEC : Call Related Retrieve News Web Service
Retrieves from News table will be done through this process. For instance, when article

content will be retrieved, this process will handle the connection to the database and will

retrieve the specified data from Articles table. Since retrieval will not modify any data about

articles there is no need to handle cases in Call Related Update News Web Services.

 58

PSPEC : Handle User Web Service

This process handles web services related to users. When an update or retrieval on/from Users

and its related tables on the database, Handle Users Web Service will be activated by Process

Command process. Depending on whether the data will be retrieved or updated, it diverts

command and data to one of the processes named as Call Related Update Users Web Service

and Call Related Retrieve Users Web Service.

PSPEC : Call Related Update User Web Service
Updates on Users table will be done through this process. For instance, when a new user is

added, this process will handle the connection to the database and will insert data about the

user to Users table. In fact, it will be reasonable to update some related data in other tables

according to the updates on Users table such as ConfigLog.

PSPEC : Call Related Retrieve User Web Service
Retrieves from Users table will be done through this process. For instance, a user wants to see

his/her account information details this process will establish the database connection and

retrieval will be performed.

In general, Web Service Processes is the heart of NewsAgent, since it is the only way to

access to database. That is why it is accessible from each module. According to the result of

any retrieval or modification by any web service, status information will be returned and

according to that some other actions will be performed such as sending Newsgroup Update

Info to SMTP module.

4.2.3 Data Dictionary

Name: NNTP Client Commands&Data
Aliases: NNTP Requests
Where used/how used: NNTP Client (Output)

Interact with the NNTP Client 1.1 (Input)
Description:
NNTP Client sends requests as in format stated in RFC-977. It also sends the required article
information like server specific article number or universal message id.

Name: NNTP User Authorization Request
Aliases: NNTP Authentication
Where used/how used: Interact with the NNTP Client 1.1 (Output)

NNTP User Authorization 1.2 (Input)
Description:
If the user wants to access to a field which is not accessible by unauthorized users, system wants
the user to send his/her crypted username and password information. Afterwards client sends the
authentication request to the system.

 59

Name: User Info
Aliases: Username & Password
Where used/how used: NNTP User Authorization 1.2 (Output)

Users (Database) (Input)
Description:
To authenticate the user who applied through authentication request, user’s username and hashed
password is sent to the database. The passwords’ encrypted forms are matched to send back
validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

NNTP User Authorization 1.2 (Input)
Description:
If the password which the user entered matches with the one in the system database, a signal
indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: NNTP User Authorization 1.2 (Output)

LoginLog (Database) (Input)
Description:
To assure security criteria of NewsAgent, every login action is logged in the system. User’s
identifier, login date and time, the machine which the user connected to the system and a
descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

NNTP User Authorization 1.2 (Input)
Description:
This data is the result for acknowledgement indicating that the log information is successfully
inserted into the database.

Name: Authorized NNTP Commands
Aliases: Authenticated NNTP Requests
Where used/how used: NNTP User Authorization 1.2 (Output)

Map the NNTP Command 2.1 (Input)
Description:
Authenticated NNTP Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized NNTP User Commands
Aliases: Unauthenticated NNTP Commands
Where used/how used: Interact with the NNTP Client 1.1 (Output)

Map the NNTP Command 2.1 (Input)
Description:
NewsAgent will be flexible to allow editing the security preferences. If it is wanted, users may be
allowed to access the specified resources, articles from the database through the web services.

 60

Name: Mapped NNTP Command
Aliases: None
Where used/how used: Map the NNTP Command 2.1 (Output)

Handle NNTP Commands 5.1 (Input)
Description:
The NNTP commands taken through the port are parsed and mapped to the convenient functions
of the system. This data is the corresponding function calls of NNTP standard commands.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle NNTP Commands 5.1 (Output)

Process Related Web Service 6.1 (Input)
Description:
This information is used to find the related web service. Actually, this link is used to obey the
conventions. UDDI is not used in NewsAgent because we already know which web service does
what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)
Description:
This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive types
and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied NNTP Client (Input)
Description:
This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Web Client Commands & Data
Aliases: Web Client’s Requests
Where used/how used: Web Client (Output)

Interact with Web Client 1.3 (Input)
Description:
Web Client sends his/her requests to the system through NewsAgent web module.

Name: Web User Authorization Request
Aliases: Web User Authentication
Where used/how used: Interact with the Web Client 1.3 (Output)

Web User Authorization 1.4 (Input)
Description:
If the user wants to access to a field which is not accessible by unauthorized users, system wants
the user to send his/her crypted username and password information. Afterwards client sends the
authentication request to the system.

 61

Name: User Info
Aliases: Username & Password
Where used/how used: Web User Authorization 1.4 (Output)

Users (Database) (Input)
Description:
To authenticate the user who applied through authentication request, user’s username and hashed
password is sent to the database. The passwords’ encrypted forms are matched to send back
validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

Web User Authorization 1.4 (Input)
Description:
If the password which the user entered matches with the one in the system database, a signal
indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: Web User Authorization 1.4 (Output)

LoginLog (Database) (Input)
Description:
To assure security criteria of NewsAgent, every login action is logged in the system. User’s
identifier, login date and time, the machine which the user connected to the system and a
descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

Web User Authorization 1.4 (Input)
Description:
This data is the result for acknowledgement indicating that the log information is successfully
inserted into the database.

Name: Authorized Web Commands
Aliases: Authenticated Web Requests
Where used/how used: Web User Authorization 1.4 (Output)

Map the Web Command 3.1 (Input)
Description:
Authenticated Web Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized Web User Commands
Aliases: Unauthenticated Web Commands
Where used/how used: Interact with the Web Client 1.3 (Output)

Map the Web Command 3.1 (Input)

 62

Description:
NewsAgent will be flexible to allow editing the security preferences. If it is wanted, users may be
allowed to access the specified resources, articles from the database through the web services.

Name: Mapped Web Command
Aliases: None
Where used/how used: Map the Web Command 3.1 (Output)

Handle Web Client Commands 5.2 (Input)
Description:
The Web commands taken through the port are parsed and mapped to the convenient functions of
the system.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle Web Commands 5.2 (Output)

Process Related Web Service 6.2 (Input)
Description:
This information is used to find the related web service. Actually, this link is used to obey the
conventions. UDDI is not used in NewsAgent because we already know which web service does
what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)
Description:
This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive
types and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied Web Client (Input)
Description:
This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: New Article Request
Aliases: None
Where used/how used: RSS/ Atom Client – Reader, Aggregator (Output)

Feed Tree (Input)
Description:
RSS/Atom readers need the endpoint of the feed to subscribe. When they connect to the feed, they
can subscribe them easily out of the responsibility of NewsAgent.

Name: Feed Update Info
Aliases: None
Where used/how used: Update Feeds 11.1 (Output)

Create New Feed Node 11.2 (Input)

 63

Description:
When an article is posted to the system, after insertion to the database a feed entry is prepared
automatically to add to the feed. This procedure is also followed when any deletion or update
operation.

Name: Feed Node
Aliases: Feed Entry
Where used/how used: Create New Feed Node 11.2 (Output)

Insert Feed Node to Feed Tree 11.3 (Input)
Description:
This is the newly created or edited feed entry which will be added to the feed tree of the
corresponding news group.

Name: Feed Node Info
Aliases: None
Where used/how used: Insert Feed Node to Feed Tree 11.3 (Output)

Feed Tree (Input)
Description:
After required operations are done on the created or edited Feed Node it is transferred to the tree
and added to the tree as a new node.

Name: Status Info
Aliases: None
Where used/how used: Feed Tree (Output)

Insert Feed Node to Feed Tree 11.3 (Input)
Description:
The result of the add operation of the new node to the tree is returned to inform the system about
the success or failure of node operation on the tree.

Name: SMTP Command & Data
Aliases: None
Where used/how used: SMTP Client (Output)

Interact with User 1.5 – Port Listener (Input)
Description:
Mail Client sends his/her requests to the system through NewsAgent mail module. Actually this is
an electronic mail which has the address of a newsgroup in the system.

Name: SMTP-User Authorization Request
Aliases: SMTP-User E-Mail Address
Where used/how used: Interact with User – Port Listener 1.5 (Output)

SMTP-User Authorization 1.6 (Input)
Description:
If the user attempts to send e-mail to a non-public newsgroup, his/her e-mail address is checked if
it is already subscribed to that newsgroup’s email subscription table. This data is the mail address
of the user which is parsed out from the e-mail.

Name: Authorized SMTP Commands
Aliases: Authenticated SMTP Requests
Where used/how used: SMTP-User Authorization 1.6 (Output)

Process Main Command 7.1 (Input)

 64

Description:
If the user is authorized to send mail to the specified newsgroup it is carried as an authenticated
command.

Name: Unauthorized SMTP Commands
Aliases: Unauthenticated SMTP Requests
Where used/how used: Interact with User – Port Listener 1.5 (Output)

Process Main Command 7.1 (Input)
Description:
If the user is not authorized to send mail to the specified newsgroup it is carried as an
unauthenticated command. And it is rejected.

Name: Mail Info
Aliases: Node
Where used/how used: Process Main Command 7.1 (Output)

Map Mail to Article 7.2 (Input)
Description:
If the mail is decided to be posted to the server, it should be converted to the convenient data type.
This information is processed and mapped to an article data.

Name: Insert Article to Newsgroup Web Service Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Map Mail to Article 7.2 (Output)

Web Service (Input)
Description:
This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive types
and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied SMTP Client (Input)
Description:
This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Newsgroup Update Info
Aliases: None
Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)

Satisfied SMTP Client 8.1 (Input)
Description:
If any change occurs in the database related to the newsgroups this information is also transferred
to the mail module to publish this event to the subscribers of the newsgroup. Or if a new
newsgroup is created, this event is published to all users of the system to make them aware of the
newly created newsgroup.

Name: News Update Info
Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

 65

Satisfied SMTP Client 8.1 (Input)
Description:
If any change occurs in the database related to the articles this information is also transferred to
the mail module to publish this event to the subscribers of the newsgroup which the article
belongs to. Or if a new article is posted, it is mailed to the subscribers of the corresponding
newsgroup.

Name: Mail Sender Object
Aliases: None
Where used/how used: Satisfied SMTP Client 8.1 (Output)

Send Mail to Clients 8.2 (Input)
Description:
This is the mail object which is formed from the article object. This data will be directly converted
to the electronic mail to be sent to the mail client.

Name: Mail
Aliases: None
Where used/how used: Send Mail to Clients 8.2 (Output)

SMTP Client (Input)
Description:
The electronic mail which is sent to the mail client.

Name: Web Service Call Request
Aliases: None
Where used/how used: Map Commands to Web Service Commands (Output)

Process Command 5.1 (Input)
Description:
The data in Web Service Call Request is a mapped command which specify the web service call
that should be processed. All Web service calls are made through this data. Data specified in Web
Service Call Request are in fact an interface for a database access.

Name: Newsgroup Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle Newsgroup Web Service 6.3 (Input)
Description:
Newsgroup Web Service Command specifies Newsgroups table will be accessed in the database.
Newsgroup Web Service Handler will manage this data to determine the effect of it on the
database, whether it is retrieval or update command.

Name: Handle Update Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)

Call Related Update Newsgroup Web Service 9.1 (Input)
Description:
This data is an update command web service for newsgroups. Since update on newsgroups or
creation of a new newsgroup will cause updates on the database, namely on Newsgroups table, all
update command on a newsgroup will flow through this data. We have considered the creation of
a new newsgroup also as an update, since there will be a change on Newsgroups table.

 66

Name: Handle Retrieve Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)

Call Related Retrieve Newsgroup Web Service 10.1 (Input)
Description:
This data is a retrieve command web service for newsgroups. Retrieval is any access to the
database that does not cause any change on database. For this data, it is only retrievals from
Newsgroups table in the database. This data should be processed so that which data about any
newsgroup will be retrieved. This is done in Call Related Retrieve Newsgroup Web Service
process.

Name: News Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle News Web Service 6.4 (Input)
Description:
News Web Service Command specifies Articles table will be accessed in the database. News Web
Service Handler will manage this data to determine the effect of it on the database whether, it is
retrieval or update command.

Name: Handle Update News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)

Call Related Update News Web Service 10.2 (Input)
Description:
This data is an update command web service for articles. Since update on an already posted article
or posting a new article will cause updates on the database, namely on Articles table, all update
command on Articles table will flow through this data. We have considered posting a new article
is also as an update, since there will be a change on Articles table.

Name: Handle Retrieve News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)

Call Related Retrieve News Web Service 9.2 (Input)
Description:
This data is a retrieve command web service for articles. Retrieval is any access to the database
that does not cause any change on database. For this data, it is only retrievals from Articles table in
the database. This data should be processed so that which data about any article will be retrieved.
This is done in Call Related Retrieve News Web Service process.

Name: User Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle User Web Service 6.5 (Input)
Description:
User Web Service Command specifies Users table will be accessed in the database. User Web
Service Handler will manage this data to determine the effect of it on the database whether, it is
retrieval or update command.

Name: Handle Update User Web Service Request

 67

Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Update User Web Service 10.3 (Input)
Description:
This data is an update command web service for users. An update on Users table will flow
through this data. Although mostly account information of any user may be changed by admin of
NewsAgent, users themselves can, of course, change their account information. All these changes
on Users table is named as an update in web service of NewsAgent.

Name: Handle Retrieve User Web Service Request
Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Retrieve User Web Service 9.3 (Input)
Description:
This data is a retrieve command web service for users. Retrieval is any access to the database that
does not cause any change on database. For this data, it is only retrievals from Users table in the
database. This data should be processed so that which data about any article will be retrieved. This
is done in Call Related Retrieve User Web Service process. Mostly retrieving any user account
information will be accessed by admin of NewsAgent.

Name: Newsgroup Update Info
Aliases: None
Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)

Create Mail Sender Object 8.2 (Input)
Description:
This data specifies all changes on Newsgroups table on the database. Any update information for
Newsgroups table will flow through this data. Newsgroup name update is an instance of such
data. This data specifically used for sending mails to all users who request mails from news server
or only users who request mail from this newsgroup. For instance, when a new newsgroup is
created, it is reasonable to send mail to all mail users of NewsAgent, however when a name
update of a newsgroup is applied, it is reasonable to send mails only to mail users who request
mail only from the updated newsgroup.

Name: News Update Info
Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

Create Mail Sender Object 8.2 (Input)
Description:
This data specifies all changes on Articles table on the database. Any update information for
Articles table will flow through this data. Article name update is an instance of such data. This
data specifically used for sending mails to all users who request mails from news server or only
users who request mail from newsgroup that the article belongs to.

Name: Update User Request
Aliases: None
Where used/how used: Call Related Update User Web Service 10.3 (Output)

Users (Input)
Description:
This data specifies all changes on Users table on the database. Any update information for Users
table will flow through this data. User name update by an admin is an instance of such data.

 68

Name: Retrieve Newsgroup Request
Aliases: None
Where used/how used: Call Related Retrieve Newsgroup Web Service 10.1

(Output)
Newsgroups (Input)

Description:
This data specifies all retrieves from Newsgroups table on the database. Any retrieval information
from Newsgroups table will flow through this data. Newsgroup name retrieval by a user is an
instance of such data.

Name: Retrieve News Request
Aliases: None
Where used/how used: Call Related Retrieve News Web Service 9.2 (Output)

News (Input)
Description:
This data specifies all retrieves from Articles table on the database. Any retrieval information
from Articles table will flow through this data. Article header retrieval by a user is an instance of
such data.

Name: Retrieve User Request
Aliases: None
Where used/how used: Call Related Retrieve User Web Service 9.3 (Output)

Users (Input)
Description:
This data specifies all retrieves from Users table on the database. Any retrieval from Users table
will flow through this data. User name retrieval by another user is an instance of such data.

Name: Status Info
Aliases: None
Where used/how used: Database (Output)

Update/Retrieval Web Service (Input)
Description:
This data specifies whether the update/retrieval is completed successfully or not. In fact, this data
is used for controllable database applications.

 69

5 CLASS DIAGRAMS

5.1 Article Management Module

 70

¾ NewsWebService class is a web service that maintains all methods required for news

management. When it receives post article command, it calls MailHandler class and

FeedGenerator class.

¾ MailHandler class sends e-mail to the users who are subscribed to the newsgroups

those include that article. It is described in Mailing Module in detail.

¾ FeedGenerator class is called in order to append new article into feed. It is described

in Feed Generator module in detail.

¾ Article class is created after a post article command. Created article instance is

returned to NewsWebService class and NewsDatabaseAccess is called in order to

insert that article to the database.

¾ NewsDatabaseAccess class establishes connection with the database and creates

queries in order to retrieve data from database or insert data into database. Its methods

use these queries and do all the work related with articles.

¾ ArchiveManager class works on its own and checks whether any newsgroup exceeds

the size limit or any articles exceeds time limit. Archiving is done according to these

parameters; the user selects which criteria to be used for archiving.

Article Class
Attributes

 Name Type Description
message_id string The unique message_id assigned to the article
subject string The subject of the article
content string The content of the article
date date Posted date of the article
from_uid bigint Userid of the user who post the article
fromMail string Mail address of the user who post the article
replyTo string The message_id of the replied article
followupTo string The message id of the article being followup to
relayVersion string The relayVersion of the article
postingVersion string The postingVersion of the article
lines integer Number of lines in the article
expires date The date which the article expires
references string The message_id of the article being referenced
distribution string The distribution of the article
control string The control of the article

 71

Methods

Name Return Type Parameters Description

getmessage_id string void Returns the message_id
setmessage_id void string message_id Sets message_id attribute
getsubject string void Returns the subject
setsubject void string subject Sets subject attribute
getcontent string void Returns the content
setcontent void string content Sets content attribute
getdate date void Returns the date
setdate void date date Sets date attribute
getfrom_uid bigint void Returns the userid
setfrom_uid void int userid Sets from_uid attribute
getfromMail string void Returns the fromMail
setfromMail void string mail Sets fromMail attribute
getreplyTo string void Returns the replyTo
setreplyTo void string replyto Sets replyTo attribute
getfollowupTo string void Returns the followupTo
setfollowupTo void string followupto Sets followupTo attribute
getrelayVersion string void Returns the relayVersion
setrelayVersion void string relayVer Sets relayVersion attribute
getpostingVersion string void Returns the postingVersion
setpostingVersion void string postingVer Sets postingVersion attribute
getlines integer void Returns the number of lines
setlines void int lines Sets lines attribute
getexpires date void Returns the expire date
setexpires void date expires Sets expires attribute
getreferences string void Returns the references
setreferences void string references Sets references attribute
getdistribution string void Returns the distribution
setdistribution void string distribution Sets distribution attribute
getcontrol string void Returns the control
setcontrol void string control Sets control attribute

NewsWebService Class
Methods

Name Return Type Parameters Description

postArticle void void Posts article
getHeaders String[] int ng_id Retrieves headers
getBody String String message_id Retrieves body of the article

 72

getArticle Article String message_id Retrieves article
getNgArticles Article[] int ng_id Retrieves articles in newsgroup
getPreviousArticle Article void Retrieves previous article
getNextArticle Article void Retrieves next article
ngArticlesAfterDate Article[] date date Retrieves articles posted after a

given date

MailHandler Class
Methods

Name Return Type Parameters Description

generateMail String[] Article article Generates email from an article

mailSender void void Sends email

FeedGenerator Class
Attributes

 Name Type Description

feedTrees FeedTree[] Holds the feed trees of every newsgroup

Methods

Name Return Type Parameters Description

getFeedTrees FeedTree[] void Retrieves feed trees

setFeedTrees void Int[] ng_ids Sets feed tree contents
addNewFeed FeedTree[] Int ng_id Creates and adds new feed to

existing feed tree array
deleteFeed FeedTree[] Int ng_id Delete a newsgroup feed from

feed tree array
updateFeed FeedTree[] Int ng_id Update a newsgroup feed in

feed tree array
searchFeed FeedTree Int ng_id Search a feed in feed tree array
getFeed FeedTree Int ng_id Retrieves a newsgroup feed
convertToFeedNode FeedNode Article article Converts the article to feed

node
addNodeToFeed FeedTree FeedNode fn Appends node to feed tree
deleteNodeFromFeed FeedTree FeedNode fn Deletes node from feed tree
serialize void FeedTree ft Serializes the tree as xml

document

NewsDatabaseAccess Class
Attributes

 73

 Name Type Description

hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database

Methods

Name Return
Type

 Parameters Description

connect Connection String constr Connects to database
insertArticle Boolean Article article Inserts the posted article to

the database
deleteArticle Boolean String

mesage_id
Deletes the specified article

retrieveHeaders String[] Int ng_id Retrieves headers of the
newsgroup from database

retrieveBody String String
mesage_id

Retrieves body of the article

retrieveArticle Article String
mesage_id

Retrieves the specified
article

retrieveNgArticles Article[] Int ng_id Retrieves the articles of the
newsgroup

retrievePrevArticle Article void Retrieves previous article
retrieveNextArticle Article void Retrieves next article
retrieveArticlesBeforeDate Article[] date date Retrieves articles posted

before a given date
retrieveArticlesAfterDate Article[] date date Retrieves articles posted

after a given date

ArchiveManager Class
Attributes

 Name Type Description

archievePeriod integer Holds the archiving period of the articles
size integer Holds the archiving size of the article

Methods

Name Return Type Parameters Description
getArchivePeriod integer void Returns archive period
setArchivePeriod void Int period Sets archivePeriod attribute
getSize integer void Returns size

 74

setSize void Int size Sets size attribute
getOldArticles Article[] date date Retrieves articles before a given

date
archiveOldArticles void void Inserts the old articles into

archive database
getExceedingArticles Article[] Int size Retrieves articles exceeding a

given size
archiveExceedingArticles void void Inserts exceeding articles into

archive database

5.2 User Management Module

¾ UserManagementWebService class is a web service that maintains all methods

required for user management. It calls UserAdministration, User and Login classes.

 75

¾ UserAdministration class handles the administrative operations on users. When a

user wants to add, delete, modify users and usergroups, the related methods are called

and the modifications are reflected to the database. It calls UserDatabaseAccess class.

¾ Login class handles the login operation. It gets username and password and send login

info to database in order to be checked. It calls UserDatabase Access class.

¾ User class handles the user related operations of the user management such as update

user info, change login info, display user info etc. It calls UserDatabase Access class.

¾ UserDatabaseAccess class establishes connection with the database and creates

queries in order to retrieve data from database or insert, delete and modify data into

database. Its methods use these queries and do all the work related with users.

User Class
Attributes

 Name Type Description
user_id bigint Holds user_id of the user
username string Holds username of the user
password string Holds password of the user
name string Holds name of the user
surname string Holds surname of the user
dateOfBirth date Holds dateOfBirth of the user
phone string Holds phone of the user
e-mail string Holds e-mail of the user
signupDate date Holds signupDate of the user
lastLoginDate date Holds lastLoginDate of the user
lastLoginIP string Holds lastLoginIP of the user
removedDate date Holds removedDate of the user
groupId int Holds groupId of the user
picture BLOB Holds picture of the user
secretQuestion string Holds secretQuestion of the user
questionAnswer string Holds questionAnswer of the user

Methods

Name Return
Type

 Parameters Description

getuser_id int void Returns the user_id
setuser_id void int user_id Sets user_id attribute
getusername string void Returns the username
setusername void string username Sets username attribute
getpassword string void Returns the password

 76

setpassword void string password Sets password attribute
getdateOfBirth date void Returns the dateOfBirth
setdateOfBirth void date date Sets dateOfBirth attribute
getphone string void Returns the phone
setphone void string phone Sets phone attribute
gete-mail string void Returns the e-mail
sete-mail void string e-mail Sets e-mail attribute
getsignupDate date void Returns the signupDate
setsignupDate void date date Sets signupDate attribute
getlastLoginDate date void Returns the lastLoginDate
setlastLoginDate void date date Sets lastLoginDate attribute
getlastLoginIP string void Returns the lastLoginIP
setlastLoginIP void string IP Sets lastLoginIP attribute
getremovedDate date void Returns the removedDate
setremovedDate void date date Sets removedDate attribute
getgroupId int void Returns the groupId
setgroupId void int gr_id Sets groupId attribute
getpicture Object void Returns the picture
setpicture void Object pic Sets picture attribute
getsecretQuestion string void Returns the secretQuestion
setsecretQuestion void string question Sets secretQuestion attribute
getquestionAnswer string void Returns the questionAnswer
setquestionAnswer void string answer Sets questionAnswer attribute
getUserInfo User int user_id Retrieves user info
updateUserInfo void int user_id Updates user info
changePassword void String password Changes password
subscription void void Starts subscription process

UserManagementWebService Class
Methods

Name Return Type Parameters Description
login void String username,

String password
Starts the login process

getUserInfo User int user_id Retrieves user info
updateUserInfo void int user_id Updates user info
changePassword void String password Changes password
addUser void User user Adds new user
deleteUser void int user_id Deletes an existing user
modifyUserRights void void Updates the access rights of the

usergroups
listUserGroups String[] void Retrieves all usergroups

 77

listUsers User[] void Retrieves all users
addUserGroup void String groupname Adds new user group
deleteUserGroup void String groupname Deletes an existing user group
subscription void void Starts subscription process

UserDatabaseAccess Class
Attributes

 Name Type Description
hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database

Methods

Name Return
Type

 Parameters Description

connect Connection String constr Connects to database
insertNewUser Boolean User user Inserts the user to the

database
deleteUser Boolean int user_id Deletes the specified user
retrieveUserInfo User Int user_id Retrieves user info of the

user from database
checkLoginInfo Boolean String username,

String password
Validates the login data

retrieveUsers User[] void Retrieves all users from
database

retrieveUserGroups String[] void Retrieves all usergroups
from database

insertNewUserGroup Boolean String group Inserts new user groups
deleteUserGroup Boolean String group Deletes specified user group
updatePassword void String pwd Changes the existing

password
insertSubscription Boolean int user_id,

int ng_id
Inserts the subscription info
to the database

updateUserRights void String group Updates the user rights of
the specified user group

Login Class
Attributes

 Name Type Description
username string Holds the username of the articles

 78

password string Holds the password size of the article

Methods

Name Return Type Parameters Description
getUsername string void Returns username
setUsername void String username Sets username attribute
getPassword string void Returns password
setPassword void String password Sets password attribute
sendLoginInfo void String username,

String password
Sends login data to the
database in order to be
controlled

UserAdministration Class
Methods

Name Return Type Parameters Description
getUserInfo User int user_id Retrieves user info
updateUserInfo void int user_id Updates user info
changePassword void String password Changes password
addUser void User user Adds new user
deleteUser void int user_id Deletes an existing user
modifyUserRights void void Updates the access rights of the

usergroups
listUserGroups String[] void Retrieves all usergroups
listUsers User[] void Retrieves all users
addUserGroup void String groupname Adds new user group
deleteUserGroup void String groupname Deletes an existing user group
subscription void void Starts subscription process

 79

5.3 Newsgroup Management Module

¾ NgManagementWebService class is a web service that maintains all methods

required for newsgroup management. When system administrators request to list, add,

delete and modify a newsgroups, its methods addNewsgroup(), deleteNewsgroup(),

modifyNewsgroup() are invoked and the modifications are reflected to the database.

¾ NgDatabaseAccess class establishes connection with the database and creates queries

in order to retrieve data from database or insert, delete and modify data into database.

Its methods use these queries and do all the work related with newsgroups.

¾ Subscription class handles the user’s subscription and mailing option change. When a

user wants to subscribe to a newsgroup or unsubscribe from an existing one or request

to receive email related to the new posts to the newsgroup or request to cancel the mail

receiving option set before, the methods of the Subscription class are activated and

NgDatabaseAccess class is called in order to reflect the modifications to the database.

NgManagementWebService Class
Methods

Name Return Type Parameters Description
addNewsgroup Boolean String gr_name Adds new newsgroup with

specified name
deleteNewsgroup Boolean String gr_name Deletes the existing newsgroup

with the specified name

 80

modifyNewsgroup void String gr_name Modifies the newsgroup with
the specified name

listNewsgroups String[] void Lists all newsgroups
ngsCreatedAfterDate String[] date date Lists newsgroups created after

the given date.

NgDatabaseAccess Class
Attributes

 Name Type Description
hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database

Methods

Name Return
Type

 Parameters Description

connect Connection String constr Connects to database
insertNewsGroup Boolean String gr_name Inserts newsgroup to the

database
deleteNewsGroup Boolean int id Deletes the specified

newsgroup
retrieveNewsgroups String[] void Retrieves newsgroups

from database
modifyNewsgroup void int id Retrieves body of the

article
validateNG Boolean int id Returns if the specified

newsgroup is valid or not
retrieveNewsgroupAfterDate String[] date date Retrieves articles posted

after a given date

Subscription Class
Attributes

 Name Type Description
ngID integer Holds the newsgroup id to be subscribed
userID integer Holds the userid of the user who requests to subscribe

Methods

Name Return
Type

 Parameters Description

 81

getngID integer void Returns ngID
setngID void Int ng_id Sets ngID attribute
getuserID integer void Returns userID
setuserID void Int user_id Sets userID attribute
subscribe void Int user_id,

Int ng_id
Sets subscription request for the
specified user to the specified
newsgroup

unsubscribe void Int user_id,
Int ng_id

Releases the subscription request
for the specified user to the
specified newsgroup

setMailOption void Int user_id,
Int ng_id

Sets receiving e-mail option for
the specified user and from the
specified newsgroup

resetMailOption void Int user_id,
Int ng_id

Resets receiving e-mail option
for the specified user and from
the specified newsgroup

 82

5.4 Web Module

Web module classes are implemented in order to accomplish communication with the server

via web. The main WebModule class includes user, request and response attributes. The user

is an instance of User class, request is an HttpServletRequest and response is an

HttpServlerResponse. According to the request, this class calls ControlLogin class,

UserManagementForm class, HandleNewsGroups class, NewUserForm class or

AdministrativeForm class.

¾ ControlLogin class checks the login data (username and password) of the user from

database through UserManagementWebService.

¾ HandleNewsGroups class handles requests related with newsgroups such as

newsgroup listing, subscription and getting newsgroup articles. Listing and retrieving

articles are handled by NgManagementWebService and subscription method calls

SubscriptionForm. This class lists newsgroups than can be subscribed by that user,

shows checkboxes stating whether subscribed or not, whether the user wants e-mail or

not. If a user requests to subscribe, unsubscribe or set/reset mailing option, it handles

these requests.

¾ UserManagementForm class includes methods that are related with the user’s own

modifications on his/her info. Change password is accomplished by

UserManagementWebService, editing subscription info calls SubscriptionForm and

editing user info uses UserInfoForm.

¾ UserInfoForm class displays user info, retrieves user’s info after modifications and

sends this info into database via UserManagementWebService.

¾ NewUserForm class is called when a new user wants to be added. It checks

availability of the user to be added (e.g. e-mail conflict with another user or wrong e-

mail), if it is available, user is added to the database and MailConfirmation is called.

¾ MailConfirmation class generates links and sends this link to the user via e-mail for

confirmation. When user clicks the link from that e-mail, he/she will be authenticated

and user rights, user group for that user will be set.

¾ AdministrativeForm class includes administrative actions which can be

accomplished by admin type users. When an administrator modifies users, newsgroups

or articles, that means UserManagementForm or NgManagementForm classes are

called, actions realized by administrator are hold in an instance of the class

AdministrativeLog class.

 84

¾ UserManagementForm class includes methods related with the modifications on the

users made by administrator. These modifications are retrieving users, retrieving and

updating user info, adding and deleting users and editing user’s preferences.

¾ NgManagementForm class includes methods related with the modifications on the

newsgroups made by administrator. These modifications are retrieving newsgroup

names, retrieving a specified newsgroup, adding and deleting newsgroups, archiving

and articles. When administrator creates a newsgroup, he/she sends e-mail to all users

and when a newsgroup is deleted, an e-mail is sent to the users who are subscribed to

that newsgroup. Retrieving and updating user info methods use UserInfoForm class.

WebModule Class
Attributes

 Name Type Description
request HttpServletR

equest
Holds the request

response HttpServletR
esponse

Holds the response

user User Holds the user info

Methods

Name Return Type Parameters Description
getRequest HttpServletR

equest
void Retrieves request

setRequest void HttpServletRequest req Sets request attribute
getResponse HttpServletR

esponse
void Retrieves response

setResponse void HttpServletResponse Sets response attribute
getUser User void Retrieves user info
setUser void User user Sets user attribute
doGet void HttpServletRequest req,

HttpServletResponse res
Handles the Http Get requests

doPost void HttpServletRequest req,
HttpServletResponse res

Handles the Http Post requests

loginForm void void Opens login form for the web
users for login operation

rejectForm void void Rejects the form and sent
information

newUserForm void void Opens a signup form for the
candidate users to signup

 85

acceptForm void void Accepts the information sent
with the form

userManagement
Form

void void Opens form for user operations
such as update info etc

administrativeFor
m

void void Opens form for administrative
operations

NewUserForm Class
Methods

Name Return Type Parameters Description
signUp void User user Gets the sign up info and saves
checkAvailability Boolean User user Controls if there is missing or

invalid info
addUser Boolean User user Adds the user in a different

category until confirmation
addMailAddress void String addr Saves mail address for confirmation
mailConfirmation void String addr Sends confirmation mail to the user

UserManagementForm Class
Methods

Name Return Type Parameters Description
changePassword Boolean String pwd Gets new password from the user

and changes the password
editSubsReq void void Updates the subscription info for

the user
editUserInfo void User user Gets new user info and updates

according to changes

HandleNewsGroups Class
Methods

Name Return Type Parameters Description
listNewsGroups String[] void Lists all newsgroups
subscriptionForm void void Opens a subscription formfor the

users in order to subscribe and set
mailing options

getArticles Article[] int ng_id Retrieves articles for the specified
newsgroup

ControlLogin Class

 86

Attributes

 Name Type Description
username string Holds the username
password string Holds the password

Methods

Name Return Type Parameters Description

getUsername String void Returns username
setUsername void String uname Sets username attribute
getPassword String void Returns password
setPassword void String pwd Sets password attribute
checkLogin Boolean void Controls whether the username and

password is a valid combination

MailConfirmation Class
Methods

Name Return
Type

 Paramet
ers

Description

generateLink void void Generates confirmation link
sendConfMail void String

mail
Sends confirmation mail to the user

acceptConfLink void void Accepts confirmation
setUserAccessRi
ght

void void Sets access rights of the newly added
user

setUserGroupID void int id Sets usergroup id for the user

AdminUserManagementForm Class
Methods

Name Return

Type

 Paramet

ers

Description

retrieveUsers User[] void Retrieves all the users
retrieveUserInfo User int

user_id
Retrieves the user info of a specified user

updateUserInfo void int
user_id

Updates user info

addNewUser Boolean User
user

Adds new user to the system after
confirmation

 87

deleteUser Boolean int
user_id

Deletes user from the system

editUserPreferen
ces

void int
user_id

Updates some user preferences

AdminNgManagementForm Class
Methods

Name Return Type Parameters Description
retrieveNewsgroups String[] void Retrieves all newsgroups
retrieveNewsgroup String int ng_id Retrieves the newsgroup specified

by the ng_id
addNewsgroup Boolean String name Adds a new newsgroup as a result

of admin request
deleteNewsgroup Boolean int ng_id Deletes the newsgroup with id

ng_id as a result of admin request
archiveNgArticles Boolean int ng_id,

String Criteria
Archieve the articles in the
specified newsgroup according to
the criteria given

updateArticles Boolean int ng_id Updates some properties of articles
deleteArticle Boolean String mes_id Deletes the article whose message

id is mes_id

AdministrativeLog Class
Attributes

 Name Type Description
userID integer Holds the userID of the admin
datetime dateTime Holds the date and time of the configuration
logAction integer Holds the action type

Methods

Name Return Type Parameters Description
getUserID integer void Returns userID
setUserID void Int user_id Sets UserID attribute
getdateTime dateTime void Returns date and time of the action
setdateTime void dateTime dt Sets dateTime attribute
getLogAction integer void Retrieves log action type
setLogAction void int act Sets logAction attribute
insertAdminLogs Boolean void Adds Configuration logs as a result

 88

of changes

SubscriptionForm Class
Attributes

 Name Type Description
ngIDs integer[] Holds the newsgroup ids
subscribedNgIDs integer[] Holds the ids of subscribed newsgroups for the user
subscribedMailNd
IDs

integer[] Holds the ids of subscribed and mail requested
newsgroups for the user

Methods

Name Return
Type

 Parameters Description

getAvailableNGs String[] void Retrieves newsgroups
listNGsubsCheckBoxes void void Displays subscription options for

the newsgroups
listMailSubsCheckBoxes void void Displays mail receiving options
handleNGsubsReq Boolean subscription

subs
Gets the subscription request and
post the request to database access

handleMailSubsReq Boolean subscription
subs

Gets the mail option set/reset
request and post the request to
database access

AdministrativeForm Class
Methods

Name Return Type Parameters Description
manageUsers void void Directs admin to the user

mangement form as a result of user
mangement request

manageNewsgroups void void Directs admin to the newsgroup
mangement form as a result of
newsgroup mangement request

selfManagement void void Directs admin to userInfo Form in
order to change / update user info

UserInfoForm Class
Methods

Name Return Type Parameters Description
retrieveUserInfo User void Retrieves the user info of the user

 89

displayUserInfo void int user_id Displays the user info retrieved fro
database

sendUpdates void User user As a result of change or update
sends the updates to the database

5.5 NNTP Commands Module

¾ PortListener class is a thread and listens the specified port continuously. When a new

message arrives, an instance of ConnectionHandler class is created. The information

about sender of the message also arrives when message is sent. With this information,

user’s session info is checked by calling SessionHandler class. If user’s session exists,

it is updated. If not, a new session is created after username and password check.

¾ SessionHandler class calls session related methods. If a new session is created,

Session class is instantiated and returned to SessionHandler and added to the sessions

array.

 90

¾ NNTPhandler class is created by ConnectionHandler. ConnectionHandler passes the

message it received from the socket to NNTPhandler. NNTPhandler calls

CommandHandlerFactory which has a hashtable including available NNTP

commands. According to command, it calls related implementing class of interface

CommandHandler. CommandHandler creates PortWriter after handling the

command. PortWriter class receives result of the command and writes it to the port.

 91

NNTP extension commands are not considered yet, but the interface modularity of interface

CommandHandler is very extensible to add new commands for command handling

operations.

PortListener Class

Attributes

 Name Type Description
portNo integer holds the portNo that the server listens
defaultPort integer holds the default port number
securePort integer holds the secure port number
portMode string holds the port mode

Methods

Name Return
Type

 Parameters Description

getportNo integer void Returns port number
setportNo void int potno Sets portNo attribute
getdefaultPort integer void Returns default port number
setdefaultPort void int defport Sets defaultPort attribute
getsecurePort integer void Returns secure port number
setsecurePort void int secport Sets securePort attribute
getPortMode string void Returns port mode
setPortMode void string mode Sets portMode attribute
setToDefault void void Sets to portNo to defaultPort value
setToSecure void void Sets to portNo to securePort value
changePort void int pno Changes portNo to pno
listenPort void void Listens the port specified with the

portNo

Session Class

Attributes

 Name Type Description
user User Holds the user
timeout Time Holds the timeout for the session
startDateTime dateTime Holds the start date and time of the session
IPAddress string Holds the IPAddress
defaultTimeOut Time Holds the default time out for the session

 92

Methods

Name Return
Type

 Parameters Description

getUser User void Returns the user that the session is
created for

setUser void User user Sets user attribute
getTimeOut Time void Returns the timeout for he session
setTimeOut void Time t Sets timeout attribute
getStartDateTime DateTime void Returns the start date and time of

the session
setStartDateTime void DateTime dt Sets the startDateTime attribute
getIPAddress String void Returns the IPAddress that the

user connects from
setIPAddress void String IP Sets IPAddress attribute
getDefaultTimeOut Time void Returns default time out fort he

session
setDefaultTimeOut void Time t Sets defaultTimeOut attribute
resetTimeOut void void Resets the timeout value of the

session
kill void void Kills the session

ConnectionHandler Class

Attributes

 Name Type Description
socket Socket Holds the socket which handles the connection

Methods

Name Return
Type

 Parameters Description

isUserSessionExist Boolean int user_id Returns if the user has a session,
has authenticated

checkLogin Boolean String
uname,
String pwd

If the session does not exist,
controls whether the login data is
valid

createNewSession Session User user,
String IP

Creates a new session for a valid
user

rejectConnection void String IP If the login data is invalid or there
is any other problem, it rejects the
connection

 93

SessionHandler Class

Attributes

 Name Type Description
sessions Session[] Holds the sessions of the authenticated users

Methods

Name Return
Type

 Parameters Description

addNewSession void Session ses Adds a new session object to the
current session array

killSession void int id Kills the session
updateSession void int id Updates the session
resetSession void int id Resets the session
searchSession Session int id Searches for a specific session
sessionExists boolean int id Returns whether the session exists

or not

PortWriter Class

Attributes

 Name Type Description
portNo integer Holds the port number
IPno string Holds IP
message string Holds the message written

Methods

Name Return
Type

 Parameters Description

writeToPort Boolean String mes Writes the message to the socket
created on the portNo

NNTPHandler Class

Attributes

 Name Type Description
NNTPMessage String Holds the NNTP command sent by an NNTP client

Methods

 94

Name Return
Type

 Parameters Description

callCommandHandlerFac
tory

void String
Command

Creates a
commandHandlerFactory object in
order to map the command

CommandHandlerFactory Class

Attributes

 Name Type Description
hashtable HashTable Holds the hash table of the NNTP commands

Methods

Name Return
Type

 Parameters Description

getCommandHandler Object String
Command

Maps the command with the right
commandHandler and returns the
CommandHandler fort he
command

CommandHandler Class

Methods

Name Return
Type

 Parameters Description

sendResult Object void Returns the result of the command
handleCommand void void Handles the mapped command.

Since this class is interface class,
this function will be implemented
in child classes.

5.6 Mailing Module

Sending Mail

 95

Receiving Mail

Since NewsAgent maintains the functionality to send e-mail to the users and receive e-mail

from users, mailing module is examinde in 2 subparts. First part is mail sending; that means

sending mail to the users who wanted to receive mail from the newsgroups that he/she is

subscribed to. Second part is mail receiving; that means receiving the e-mails from users and

inserting them into database as if they were posted from web or NNTP.

For the First part:

¾ MailHandler class is called when a new article is posted, inserted into database and a

message is returned as it is inserted into database. It generates e-mail using the header,

sender and body of article it received and creates an instance of MailSender.

 96

¾ MailSender class maintains the information about the user and sends e-mail to the

user via smtp.

For the Second Part:

¾ SmtpPortListener class is a thread. It listens the specified port and creates an

instance of SmtpConnectionHandler when a message is received from that port.

¾ SmtpConnectionHandler class checks whether the user who sends the e-mail is

authenticated or not. According to the result of this check, it accepts or rejects the

user. After acception, it calls SmtpMailReceiver.

¾ SmtpMailReceiver class creates an instance of article class and creation of this article

calls the related web service and then the article is inserted into database.

Mail Sender Class

Attributes

 Name Type Description
user User Holds the sender of the article
IPaddress string Holds the IPaddress
address string Holds the mail address of the user to be sent
Mail string Holds the mail content

Methods

Name Return Type Parameters Description
getUser User void Returns the sender of the article
setUser void User user Sets user attribute
getIPaddress string void Returns the IPaddress
setIPaddress void string IP Sets IPaddress attribute
getAddress string void Returns the mailaddress
setAddress void string address Sets mailaddress attribute
getMail string void Returns generated Mail
setMail void String Mail Sets Mail attribute
sendMail void void Sends e-mail to the users

SMTPPortListener Class

Attributes

 Name Type Description
portNo int Holds the port number that the server listens
defaultPort int Holds the default port number

 97

Methods

Name Return Type Parameters Description
getPortNo int void Returns the port number that the

server listens
setPortNo void int portno Sets the portNo attribute
getdefaultPort int void Returns the default port number
setdefaultPort void int defPortNo Sets defaultPort attribute
listenPort void void Listens to the port in order to

serve the client requests

SMTPMailReceiver Class

Attributes

 Name Type Description
sender User Holds the sender of the e-mail received
subject string Holds the subject of the e-mail
content string Holds the content of the e-mail
ngID int Holds the newsgroup id of the newsgroup that the mail

is sent to
date dateTime Holds the sent date and time of the mail

Methods

Name Return Type Parameters Description
getSender User void Returns the sender of the e-mail
setSender void User sender Sets the sender attribute
getSubject string void Returns the subject of the e-mail
setSubject void String subject Sets subject attribute
getNgID int void Returns ngID of the newsgroup

that the mail is sent to
setNgID void int id Sets the ngID attribute
getDateTime dateTime void Returns the date and time that the

mail is sent
setDateTime void dateTime date Sets dateTime attribute

SMTPConnectionHandler Class

Attributes

 Name Type Description

 98

user User Holds the user who connects an sends mail
socket Socket Holds the socket that the connection is established

through

Methods

Name Return Type Parameters Description
isUserAuthenticated Boolean void Returns if the sender is a valid

user or not
acceptMail void String mail Accepts the e-mail in order to

add as an article and generates
an article

rejectMail void void Rejects e-mail and does not
generate an article

5.7 RSS Module

Users will be able to reach hot news from NewsAgent using their RSS readers. For this

reason, we create an RSS feed including recently posted news. This module deals with RSS

related jobs.

¾ FeedGenerator class is called when a new article is posted and inserted into the

database. As shown in article management module, article management web service

calls this class. FeedGenerator class has an array of feed trees which are instances of

 99

FeedTree class. Each newsgroup has its own feed tree, since a user may subscribe to

any of them individually. For example, if the web service for inserting an article is

invoked, it generates a request to the FeedGenerator after confirming the insertion of

the article to the database. This request is to add a new entry for the specified

newsgroup tree associated with the newly added article. FeedTree finds the

corresponding feed tree and calls the method to add the article to the tree. Update and

delete operations follows the same steps as in adding a new article.

¾ FeedTree class is a tree of feed nodes. It is a logical representation of the xml

document. The listed methods above maintain the tree. Each tree has a maximum size.

When the tree exceeds this size, the oldest entry of the tree is deleted to maintain the

size. After each change operation to the tree, it serializes the tree to the file path

specified by “url” attribute of the class. Now, any feed aggregators realize the changes

when it checks out the feed for new news.

¾ FeedNode is a logical representation of the xml of a single article. It is appended to

the related feed tree when a new post is inserted into database.

FeedNode Class

Attributes

 Name Type Description
title string The title of the article(node)
link string The link of the article(node)
description string The description of the article
pubDate date Publish date of the article
guid URI URI of the article

Methods

Name Return Type Parameters Description
getTitle string void Returns the title
setTitle void string title Sets title attribute
getLink string void Returns the link
setLink void string link Sets link attribute
getDescription string void Returns the description
setDescription void string description Sets description attribute
getPubDate date void Returns the pubDate
setPubDate void date date Sets pubDate attribute
getGuid URI void Returns the guid

 100

setGuid void URI uri Sets guid attribute

FeedTree Class

Attributes

 Name Type Description
ng_id bigint The newsgroup id
title string The title of the tree
link string The link of the tree
description string Description of the tree
pubDate date PublishDate of the tree
language string
lastBuildDate date
docs string
generator string
managingEditor string
webMaster string
maxSize int
currentSize int
root FeedNode
depth int
version string
url string

Methods

Name Return Type Parameters Description
get<attributename> Attribute

type
void Returns the attributes

set<attributename> void Type var Sets attributes
addNode FeedTree FeedNode nd,

FeedTree tr
Adds feed node to feed tree

removeNode FeedTree FeedNode nd,
FeedTree tr

Removes feed node from tree

searchNode FeedNode FeedNode nd,
FeedTree tr

Searches feed node in the tree

nodeExists Boolean FeedNode nd,
FeedTree tr

Returns if the node exists or not

updateNode void FeedNode nd,
FeedTree tr

Updates feed node in the tree

serialize void void Serializes the tree as xml

 101

document
generateFromFile void string filename Generates tree from xml

document

5.8 Messaging Module

MessageSender Class

Attributes

 Name Type Description
userID integer Holds the id of the user that the message to be sent.

Methods

Name Return Type Parameters Description
getUserID int void Returns the id of the user that the

message is to be sent
setUserID void int id Sets userID attribute
sendMessage Boolean String Message Sends message to the user
displayStatusMes void Boolean status Sends a status message to the sender

 102

of the message denoting the success
or failure of sending operation.

MessageDBAccess Class

Attributes

 Name Type Description
hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database

Methods

Name Return
Type

 Parameters Description

retrieveMessage string int id Retrieves body of the
specified message.

insertMessage Boolean string content Inserts a sent message to the
database.

deleteMessage Boolean int id Deletes a specified message
from database.

MessageHandler Class

Attributes

 Name Type Description
userID int Holds the id of the receiver.
content string Holds the content of the message

Methods

Name Return Type Parameters Description
getUserID int void Returns the id of the receiver
setUserID void int id Sets the userID attribute
getContent string void Returns the content of the message
setContent void String content Sets content attribute
generateMessage string void Forms a message from the content.
messageSender void void Sends the message

MessageAccess Class

 103

Methods

Name Return Type Parameters Description
listMessages string[] int id Returns the messages sent to the

user
getMessage string int mes_id Retrieves the specified message

MessageForm Class

Methods

Name Return Type Parameters Description
displayForm void void Displays the message form

according to a user request.

5.9 Log Module

¾ LogManagementWebService class is a web service that maintains required methods

for login log and configuration log operations. This class calls LogDatabaseAccess

class to reflect the modifications into the database.

 104

¾ LogDatabaseAccess class establishes connection with the database and creates queries

in order to retrieve data from database or insert and modify data into database. Its

methods use these queries and do all the work related with logs.

LogManagementWebService Class

Methods

Name Return Type Parameters Description
addLoginlog Boolean int user_id,

date date,
string IP

Adds login logs after every
login operation

deleteLoginlog Boolean int log_id Deletes login log when the
admin requests

modifyLoginlog Boolean int log_id Modifies login log when the
admin requests

getLoginlog String[] void Retrieves all login logs
addConfigurationlog Boolean int user_id,

date date,
string IP,
int type

Adds configuration logs after
every system operation

deleteConfigurationlog Boolean int log_id Deletes configuration log
when the admin requests

modifyConfigurationlog Boolean int log_id Modifies configuration log
when the admin requests

getConfigurationlog String[] void Retrieves all configuration
logs

LogDatabaseAccess Class

Attributes

 Name Type Description
hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database

Methods

Name Return Type Parameters Description
insertLoginlog Boolean String query Inserts login logs after every

login operation into the login
log table in the database

 105

deleteLoginlog Boolean String query Deletes login log when the
admin requests from the
database

updateLoginlog Boolean String query Updates login log when the
admin requests

retrieveLoginlog String[] String query Retrieves all login logs from
database

insertConfigurationlog Boolean String query Adds configuration logs after
every system operation into
the configuration log table

deleteConfigurationlog Boolean String query Deletes configuration log
when the admin requests
from the database

updateConfigurationlog Boolean String query Updates configuration log
when the admin requests in
the database

retrieveConfigurationlog String[] String query Retrieves all configuration
logs in the database

6 SEQUENCE DIAGRAMS & SEQUENCE OF EVENTS

6.1 Sequence Diagrams

6.1.1 Login and Authentication

 107

6.1.2 Signup

 108

6.1.3 User Management

 109

6.1.4 Usergroup Management

 110

6.1.5 Newsgroup Management

 111

6.1.6 Admin Log Control

 112

6.1.7 Subscription

 113

6.1.8 Update User Info

 114

6.1.9 Web User Operations

For unauthenticated web users, the user does not login to the system and can request only a small set of article operations.

 115

6.1.10 Sending Messages

 116

6.1.11 Reading Messages

 117

6.1.12 Authenticated NNTP User Operations

 118

6.1.13 Unauthenticated NNTP User Operations

 119

6.1.14 Feed Generation

 120

6.1.15 Sending E-mails

 121

6.1.16 Receiving E-mails

 122

6.2 Sequence of Events

Login and Authentication
Main Sequence

1. The user sends his/her username and password to the controlLogin unit.

2. ControlLogin gets username and password and invokes the checkLogin() method of

UserManagementWS.

3. UserManagementWS calls sendLoginInfo() method of Login in order to send

username and password to the database.

4. UserDatabaseAccess is activated in order to check username and password with the

database.

5. After checking the login data, according to the query result if the query result is

failure displayError() method is called in order to inform the user about unsuccessful

login. If the query result is success, createSession() method of Session unit is called

and addLoginLog() is invoked.

6. LogWS activates the LogDatabaseAccess in order to insert login log to the database.

Sign up
Main Sequence

1. A candidate user requests to sign up to the system.

2. NewUserForm unit gets this request and display a user form.

3. getUserInfo() method of User is called and user info is stored in a User object.

4. User info is sent to the database by activating insertNewUser() method of

UserDatabaseAccess.

5. According to the queryResult returned, if the user is added successfully, configuration

mail is sent.

6. If it is accepted, inserted user info is updated. User group and access rights are

determined. If not, the user info is deleted.

User Management
Main Sequence

1. Administrator sends a user management request in the AdministratorForm unit.

2. Administrator is directed to UserManagementForm unit.

3. Administrator requests to add a new user.

 123

4. addUser() method of the UserManagementWS is invoked.

5. UserManagementWS calls the addUser() method of UserAdministration.

6. In order to insert new user, UserDatabaseAccess is activated with the

insertNewUser() method.

Alternative Sequence

3. Administrator requests to delete a user.

4. deleteUser() method of the UserManagementWS is invoked.

5. UserManagementWS calls the deleteUser() method of UserAdministration.

6. In order to delete user, UserDatabaseAccess is activated with the deleteUser()

 method.

Alternative Sequence

3. Administrator requests to update a user.

4. updateUser() method of the UserManagementWS is invoked.

5. UserManagementWS calls the updateUser() method of UserAdministration.

6. In order to update user, UserDatabaseAccess is activated with the

updateUserInfo()

 method.

7. According to the queryResult returned, if the operation is successful,

 addConfigurationLog() method of the LogWS is invoked.

8. insertConfigLog() method of LogDatabaseAccess is called.

9. A message is displayed to the admin denoting the success of the operation.

User Group Management
Main Sequence

1. Administrator sends a user group management request in AdministratorForm unit.

2. Administrator is directed to UserManagementForm unit.

3. Administrator requests to add a new user group.

4. addUserGroup() method of the UserManagementWS is invoked.

5. UserManagementWS calls the addUserGroup() method of UserAdministration.

6. In order to insert new user group, UserDatabaseAccess is activated with the

insertNewUserGroup() method.

Alternative Sequence

3. Administrator requests to delete a user group.

4. deleteUserGroup() method of the UserManagementWS is invoked.

 124

5. UserManagementWS calls the deleteUserGroup() method of UserAdministration.

6. In order to delete user group, UserDatabaseAccess is activated with the

 deleteUserGroup() method.

Alternative Sequence

3. Administrator requests to modify user rights.

4. modifyUserRights() method of the UserManagementWS is invoked.

5. UserManagementWS calls the modifyUserRights() method of UserAdministration.

6. UserDatabaseAccess is activated with the updateUserGroup() method.

Alternative Sequence

3. Administrator requests to list user groups.

4. ListUserGroups() method of the UserManagementWS is invoked.

5. UserManagementWS calls the ListUserGroups() method of UserAdministration.

6. UserDatabaseAccess is activated with the retrieveUserGroups() method.

7. According to the queryResult returned, if the operation is successful,

 addConfigurationLog() method of the LogWS is invoked.

8. insertConfigLog() method of LogDatabaseAccess is called.

9. A message is displayed to the admin denoting the success of the operation.

NewsGroup Management
Main Sequence

1. Administrator sends a newsgroup management request in AdministratorForm unit.

2. Administrator is directed to NGManagementForm unit.

3. Administrator requests to add a new newsgroup.

4. addNewsgroup() method of the NgManagementWS is invoked.

5. In order to insert new newsgroup, NgDatabaseAccess is activated with the

insertNewsgroup() method.

Alternative Sequence

3. Administrator requests to delete a newsgroup.

4. deleteNewsgroup() method of the NgManagementWS is invoked.

5. In order to delete newsgroup, NgDatabaseAccess is activated with the

 deleteNewsGroup() method.

Alternative Sequence

3. Administrator requests to modify newsgroup.

4. modifyNewsgroup() method of the NgManagementWS is invoked.

 125

5. NgDatabaseAccess is activated with the modifyNewsroup() method.

Alternative Sequence

3. Administrator requests to list newsgroups.

4. ListNewsgroups() method of the NgManagementWS is invoked.

5. NgDatabaseAccess is activated with the retrieveNewsgroups() method.

6. According to the queryResult returned, if the operation is successful,

 addConfigurationLog() method of the LogWS is invoked.

7. insertConfigLog() method of LogDatabaseAccess is called.

8. A message is displayed to the admin denoting the success of the operation.

Admin Log Control
Main Sequence

 1. Admin requests to control login and configuration logs.

 2. getConfigurationLog() / getLoginLog() method of LogWS is invoked.

 3. LogDatabaseAccess is activated with retrieveConfigurationLog /

 retrieveLoginLog() method.

Alternative Sequence

 2. deleteConfigurationLog() / deleteLoginLog() method of LogWS is invoked.

 3. LogDatabaseAccess is activated with deleteConfigurationLog /

 deleteLoginLog() method.

Alternative Sequence

 2. modifyConfigurationLog() / modifyLoginLog() method of LogWS is invoked.

 3. LogDatabaseAccess is activated with updateConfigurationLog /

 updateLoginLog() method.

 4. According to the query result returned, a message is displayed to the admin

 denoting the success of the operation.

Subscription
Main Sequence

1. User lists newsgroups.

2. handleNewsgroups() method is called and the subscriptionForm is also displayed to

the user.

3. The user requests to subscribe or set/reset mailing option by activating subscribe() or

requestEmail() methods of Subscription.

 126

4. NGDatabaseAccess is activated with the validateNG() method in order to control the

access rights of the newsgroup and the user etc.

5. A validationResult is returned and according to the validationResult if it is invalid, the

operation is rejected. If it is valid, subscription() method of the UserManagementWS

is invoked.

6. UserDatabaseAccess is activated with the insertSubsInfo() method.

7. A result denoting the success of the query is returned.

8. If the result is a failure, the user is directed to the subscription form. If it is success, a

message is displayed to the user.

Update User Info
Main Sequence

 1. User requests to update user info or change password.

 2. editUserInfo() or changePassword() method of UserForm is called.

 3. Current user info or login data is retrieved and displayed to the user by the help of

 UserInfoForm.

 4. updateUserInfo() or changePassword() method of UserManagementWS is invoked

 5. UserDatabaseAccess is activated with updateUser method and the changes are

 saved to the database.

 6. A queryResult is returned denoting the success of the query.

 7. Finally, changes and updates are displayed to the user.

Web User Operations
Main Sequence

1. The user sends his/her username and password to the controlLogin unit.

2. ControlLogin gets username and password and invokes the checkLogin() method of

UserManagementWS.

3. UserManagementWS calls sendLoginInfo() method of Login in order to send

username and password to the database.

4. UserDatabaseAccess is activated in order to check username and password with the

database.

5. After checking the login data, a queryResult is returned denoting the success of the

login.

 127

6. If the queryResult is success, the user will have the right to realize web user

operations. For example, the user may request to realize article operations.

7. Article operations such as read article, post article etc.is activated by the help of

postArticle() / readArticle() methods of HandleNewsGroups.

8. postArticle() / readArticle() methods of NewsWS are invoked for these operations.

9. NewsDatabaseAccess is activated with the insertArticle() / retrieveArticle() methods

in order to insert to posted article to the database or retrieve the requested article from

database.

10. A result is returned.

11. According to the returned result, a message denoting the success or failure of the

operation or the article retrieved is displayed to the user.

Sending Messages
Main Sequence

1. The user requests to send message to either an online or an offline user.

2. displayForm method of MessageForm is called for a selected user to send a message.

3. MessageHandler retrieves the content of the message and the user id of the receiver.

4. It generates a message and activates MessageSender with the method sendMessage.

5. MessageSender interacts with the MessageDBAccess and activates insertMessage

method.

6. According to the queryResult, a status message denoting the success or failure of the

sending message operation is displayed to the user.

Reading Messages
Main Sequence

1. The user requests to list the messages he/she received.

2. listMessages method of HandleMessage is activated.

3. HandleMessage activates the retrieveMessages method of MessageDBAccess in order

to get the messages of that user.

4. Messages are returned to the user with an overview of displaying subject sender and

date etc.

5. If the user requests to read a message by clicking on it, getMessage method of

HandleMessage is activated.

 128

6. HandleMessages activates the retrieveMessage method of MessageDBAccess in order

to get the message content.

7. Message Content is displayed to the user.

Authenticated NNTP User Operations
Main Sequence

1. PortListener listens to the related port in order to serve NNTP client requests.

2. When a request comes, SessionHandler is activated in order to check wether the user

session exists or not.

3. A session result is returned and if the session exists for the user, command is passed to

the NNTPHandler.

4. NNTPHandler creates CommandHandlerFactory object in order to hash the command.

5. The command is mapped to one of the CommandHandler classes such as PostNews,

List, ReadNews etc.

6. This class handles the command and invokes the related web service of NewsWS. For

example for the post operation, postArticle() is invoked.

7. NewsDatabaseAccess is activated with the related method for database operation. For

example for the post operation, insertArticle() method is called.

8. A queryResult is returned.

9. According to the result, PortWriter is activated with the writetoPort() method and

related data is written to the port.

Alternative Sequence

 3. If the session does not exist, checkLogin() method of the connectionHandler is called.

 4. checkLogin() method of the UserManagementWS is invoked in order to control

 login data.

 5. UserDatabaseAccess is activated with checkLoginInfo() method.

 6. A result is returned denoting the success of the login data control.

 7. If the result is invalid, the operation is rejected.

 8. If the result is valid, a new session is created.

 9. After creation of the session, the NNTP command is directed to the NNTPHandler

 and the same sequence is followed.

UnAuthenticated NNTP User Operations

 129

Unauthenticated NNTP users only realize a small set of operations whch do not require being

an authenticated user.

Main Sequence

1. PortListener listens to the related port in order to serve NNTP client requests.

2. When a request comes, SessionHandler is activated in order to check wether the user

session exists or not.

3. A session result is returned and if the session exists for the user, command is passed to

the NNTPHandler.

4. NNTPHandler creates CommandHandlerFactory object in order to hash the command.

5. The command is mapped to one of the CommandHandler classes such as PostNews,

List, ReadNews etc.

6. This class handles the command and invokes the related web service of NewsWS. For

example for the post operation, postArticle() is invoked.

7. NewsDatabaseAccess is activated with the related method for database operation. For

example for the post operation, insertArticle() method is called.

8. A queryResult is returned.

9. According to the result, PortWriter is activated with the writetoPort() method and

related data is written to the port.

Feed Generation

Main Sequence

1. A post article operation is accomplished, by invoking postArticle() method of

NewsWS and inserting the article to the database.

2. If the article is successfully inserted, generateFeed() method of NewsWS is invoked in

order to generate a new RSS and ATOM feed.

3. NewsWS calls addnodetofeed() method of FeedGenerator in order to add the last

posted article to the related feed.

4. FeedGenerator accesses the FeedTree object and calls its addNode() method.

5. addNode() method of the FeedTree creates a new FeedNode and appends this new

node to the current feed tree and returns this tree.

6. FeedGenerator gets the updated tree and serialize its content.

Sending Emails
Main Sequence

 130

1. A post article operation is accomplished, by invoking postArticle() method of

NewsWS and inserting the article to the database.

2. If the article is successfully inserted, sendMail() method of NewsWS is invoked in

order to send email to the users who requests to receive email from that newsgroup

simultaneously.

3. NewsWS calls generateMail() method of MailHandler in order to form an email from

the related article.

4. After generating the email, sendMail() method of the MailSender is called.

5. In order to get the email addresses of the users who request to receive email from that

newsgroup, UserDatabaseAccess is activated with retrieveEmail() method.

6. Email addresses of the related users are retrieved from database and emails are sent to

these addresses.

Receiving Emails
Main Sequence

1. Our PortListener listens port related to the incoming emails.

2. When an email is received, SMTPConnectionHandler is activated in order to check

whether the mail client is registered or not.

3. checkEmail() method of the UserManagementWS is invoked in order to control the

email address of the user.

4. UserDatabaseAccess is activated with retrieveEmail() method.

5. A result is returned and according to the result, if such an email address is registered,

generateArticle() method of SMTPMailReceiver is called in order to generate an

article from the received email.

6. NewsDatabaseAccess is activated in order to insert the generated article to the

database.

7. If such an email address is not registered, email is rejected.

 131

7 NewsAgent INTERFACE

Login Interface

In our login interface, we included two different panels. The first one is for user who have

already signed-up to NewsAgent, that is the users who have a username and password. As

usual, username and password fiels are expected to be filled with a valid username and

password tuple. If the login data is correct, than the user is directed to the main page

according to the user type. Administrators will be directed to admin page. If the user checks

the check-box which lies under “Login” button, user’s session will not time-out. Otherwise,

when a specified time (1 hour, for example) passes without any user action, the session will

time-out. In other panel, if the people who do not have an account click “Signup” button,

he/she will be directed to “Signup Interface”. If “Have a site tour” is clicked, since the user is

not authenticated, he/she will be directed to a general page including the newsgroups that do

not require authentication if there are any.

 132

Signup Interface

In signup interface, we have the fields which are required to be filled in order to add the

candidate user as a system user. If anyone who is already a user presses “Signup” button in

login screen accidentally, he/she can return using the hyperlink “Login” here. Firstname and

surname are required. Username is selected by the user, however, since it is unique in the

system, user can check the availability of the username pressing “Check Availability” button.

If it is already used, user has to choose another username. User has to choose a password

which is minimum 8 characters long and has to retype it in order to verify. E-mail and phone

number are also required. Invalid e-mails will not be accepted. This is accomplished by a

confirmation link which is sent to this mail address by the administrators. The user’s account

will be activated when he/she follows this link. Birthday and birth place are also required.

 133

Secret question is any question that the user selects among the ones we offered. The question

and answer are kept in order to use if the user forgets his/her password. By using “Submit”

button the user can send the form to the administrators and waits until the account is activated.

By “Clear” button, user can clear the screen.

Update User Info & Change Password Interfaces

In “Update User Info” screen, first name, last name, email, phone number, birthday,

birthplace, secret question and its answer are displayed. These fields will be enabled and user

will be able to update these information. “Edit” button saves changes and “Clear Changes”

button clears the changes. “Upload Picture” part is optional and by clicking “Browse...”

button, user can select a picture from the computer he/she uses. If there is already a picter in

the user’s account, uploaded one is written on it. If “Remove Picture” button is clicked,

existing picture of the user will be removed.

 134

In “Change Password” screen, username is displayed but the user will not be able to change it.

In “Password” field, old password is expected to be entered. And new password is expected to

be entered 2 times in order to verify it. Then the password is changed by pressing “Change

Password” button.

 135

Interface for Newsgroup Subscriptions

This interface displays all available newsgroups for the user. If the user is subscribed to a

newsgroup, the check-box for that newsgroup is displayed checked. If the user wants to

subscribe or unsubscribe to a newsgroup, he/she checks or unchecks the check-box and click

“Save Options” button.

 136

“My Newsgroups” Interface

In this interface, we display all newsgroups that the user is subscribed to. For these newsgroups, the user can check mailing option and choose

one of daily and weekly in order to receive articles as e-mails from that newsgroup. If daily is checked, articles will be sent to the users daily and

if weekly is checked, articles will be sent to the user weekly. “Save options” button saves the changes mae on mail receiving options.

 137

Interface For Reading Articles

In this interface, newsgroups are listed on the left side, with indicating parent-child relations.

The user can select any newsgroup from left, and the headers are displayed on the right. When

a header is clicked, the content of the article is displayed below the headers.

8 TESTING PLAN AND PROCEDURES

8.1 Testing Plan

Our aim is to find errors and make a good test that has a high probability of finding an error.

We also want to make sure that there are no defects in the product.

After we have generated the source code, we are going to test our program to identify the

errors and remove them before delivery to the customer. Our goal is to correct as many errors

as possible early in our software development cycle. In order to acquire this we have to design

a series of test cases that have a high likelihood of finding errors.

8.2 Testing Strategy

Since NewsAgent has different layers and modules, testing strategy will differ for each

subpart of the product. We present a testing schema below, which will briefly explain our

testing strategy.

In general, we will follow a bottom-up strategy for testing. Therefore, we will start from

database layer as shown in the schema. For this layer, we will apply unit tests in order to

check performance and correctness of our database queries. We will test our retrievals,

insertions and modifications. Testing of this part is very important since each web service and

its methods use the data returned from database layer and insert data into database through

this layer. Any mistaken coding error in this layer can cause many problems in above layers.

After testing database layer, we will pass to web services layer. Any operation in NewsAgent

will be handled by web services. So testing this part is another important issue in testing the

product. For testing our web services, we will deploy each of them separately and invoke

related methods. We will check whether each web service works correctly.

Then we will test our modules; NNTP Module, Mail Module, RSS Module and Web Module.

While testing these modules, we will follow a different strategy which is top-down testing

strategy.

 139

 Testing Strategy of NewsAgent

 140

8.3 Testing Procedure

8.3.1 Unit Testing

In the unit test case we will be testing the separate modules of the software. White box

testing will be used where each module or component of the software is tested individually.

By this type of testing we have advantages as mentioned below.

 i) As the knowledge of internal coding structure is prerequisite, it becomes very easy to find

out which type of input/data can help in testing the application effectively.

ii) The other advantage of white box testing is that it helps in optimizing the code

iii) It helps in removing the extra lines of code, which can bring in hidden defects.

We will be carrying out unit testing in order to check if the particular module or unit of code

is working fine. The Unit Testing comes at the very basic level as it is carried out as and when

the unit of the code is developed or a particular functionality is built.

We will be looking for entry and exit conditions of the data. We will make sure that all the

components work without any troubles. The test primarily is carried out by the programmer

who designed and implemented the module. Lead tester will than carry out test on the

modules to finalize the testing.

8.3.2 Integration Testing

In this testing period we will be looking for any signs of the collision between our software

components and those of the clients. We want to make sure there is no confusion among the

application on the network when they are running simultaneously.

As we know, integration testing is testing of combined parts of an application to determine if

they function together correctly. The 'parts' can be code modules, individual applications,

client and server applications on a network, etc. And this type of testing is especially relevant

to client/server and distributed systems. We will be carefully looking for any sort of collision

between several different applications.

8.3.3 Security Testing

Testing the security of a news server is really a key point and also testing is an inevitable

feature of NewsAgent. Since NewsAgent may be used in workplaces or foundations where

security of data is the most important issue, security should be handled carefully. NewsAgent

will use SSL for handling security issues. SSL provides data encryption which will be used in

transmission of passwords. Also, newsgroups and articles should not be accessed by users

 141

who have not right to access them. Security testing will be done by controlling the flow of

data in different modules of NewsAgent and will be useful for finding out any security holes.

9 SYNTAX SPECIFICATION

Coding standards occupy large amounts for big projects which have multiple developers and

coders. These standards are so important that some big companies, military services and

governmental services only rely on the products which have been produced through a very

strictly specified line. This line is determined by the rules. Every developer included in the

project must obey these rules.

Not being a big company, even not a company, we can also benefit some rules to simplify the

understandability and readability of the codes. As a team we will develop the system together,

but most of the time we will work on the code at different time slots. So, with the help of the

CVS and a predefined specification rules will prevent us the get in conflicts and doing wrong

things.

We have agreed on some coding conventions to benefit the syntax specification.

9.1 Naming the Classes and Files

All classes will have names beginning with a capital letter. The classes with more than one

word will have a capital letter at the beginning of each word. For

instance,“ConnectionHandler” is a suitable class name in NewsAgent.

For the files of the Java classes, Java has a restriction that the file name must be same as the

class name inside. Evert file can only include one class. But that class can contain multiple

classes.

9.2 Naming Functions

Function names start with lower-case letters and continue until a new word starts. New word

stars with capital letter and continues with lower-case letters. For example

"checkLoginInfo()" is a suitable function name in NewsAgent.

9.3 Naming Variables

Variable names start with a letter indicating the scope of that variable.

• "m" --> attribute of a class. Indicating that member variable of a class.

• "v" --> parameter of a function. Indicating that scope of the variable is the function

that it is passed.

 142

• "l" --> local variable. Indicating that the variable is defined locally.

After the initial letter, variable name continues with a letter sequence indicating the type of it.

• "int" --> indicating that the variable is an integer variable.

• "float" --> indicating that the variable is a float variable.

• "double" --> indicating that the variable is a double variable.

• "str" --> indicating that the variable is a string variable.

• "obj" --> indicating that the variable is an object.

After these conventions are applied, the usual naming conventions mentioned above are

applied to the variables. Suitable variable examples are as follows;

• "mstrUsername"

• "mintPortNo"

• "mobjConnectionHandler"

9.4 Comment Conventions

Commenting is also a critical issue to increase the understandability of the code. Since each

java class is defined in separate files we have decided to have detailed information at the

beginning of each file as described follows:

 /* **

 /* File name:

 /* Created by:

 /* Created at: (Date:DD.MM.YY – Time: HH:MM:SS)

 /* Modified by:

 /* Modified at: (Date:DD.MM.YY – Time: HH:MM:SS)

 /* Description:

 **/

10 IMPLEMENTATION PLAN

10.1 System Overview

System Description

NewsAgent is mainly a pull based news server except the e-mail module because all e-mail

protocols operates on push based architectures, supporting many features and standards.

NewsAgent includes a core which operates on the data and identity management. Articles,

 143

user information and all related data is stored in a database, and the archived information is

stored in another database. NewsAgent core is in charge of management of these databases.

NewsAgent core is in connection to the outside world only with the ports of its web services.

All other modules and functioning parts reach the required data through these xml web

services. This great feature encapsulates the core of the system and makes it a standalone

engine. Interoperability is highly achieved by means of the web services because any other

operating system, any other software implemented in any other programming language and

platform can connect to the core and operate on the data consistently by the help of xml web

services.

External modules of the NewsAgent are Web Module, NNTP Module, RSS/Atom Module and

E-Mail Module. Web Module interact with the internet users through the web browsers and is

the more effective and functional module of the NewsAgent. All user account functionalities,

admin facilities and news server operations can be done through this module. NNTP Module

acts as a mapping engine of the USENET NNTP commands to the appropriate web service

operations and returns the required data and reply codes to the news reader. RSS/Atom

Module handles the syndication operations which is very popular among the internet users

nowadays. Lastly the E-Mail module gives the system the ability to communicate through the

e-mail protocol to send or retrieve the articles of the newsgroups.

System Organization

Organization of the system is described in the figure below.

 144

Web service invocations connect the modules to the core and abstract it as a standalone

engine. In the core, only access way is through the access layer of the system. And if change

occurs in the database which requires notification it creates the required e-mails and appends

the required RSS/Atom feeds.

10.2 System Requirements

Hardware Requirements

¾ For Developer

A minimum of 512 MB DDRAM

A minimum of 5 GB free space on hard disk, for database storage and server

applications

A Pentium IV or equivalent AMD processor

Internet Connection

 145

Network Card

¾ For Server Applications

A minimum of 1 GB DDRAM

A minimum of 50 GB free space on hard disk, for huge database storage and large

number of server applications

A Pentium IV or equivalent AMD processor

Internet Connection

Software Requirements

¾ Java as a programming language. JDK 1.5.X

¾ Eclipse as development environment

¾ Apache 2.2 HTTP server

¾ Apache Tomcat 5.5 for Servlet Container

¾ Apache Axis 1.4 for XML Web Services

¾ Apache WSDL2Java Tool

¾ TCP-Mon Tool

¾ PostgreSQL 8.2 Database Management System

¾ Hibernate for Object-Relational Database Management.

¾ Java Studio Creator 2 1.0

10.3 Objectives & Tasks

Although we are not a commercial company, even not a company, we will try to do our best

and we will get proud of it if somebody uses benefit of out product, NewsAgent. So, we have

determined on some objectives for this purpose.

Objectives

• Implementing the NewsAgent core as a standalone server and make it interoperable as

much as possible.

• Implementing all the modules of the system.

• Getting the feedback from the end users. According to the feedbacks, implementing

new modules and meet the rapidly changing internet technology needs.

 146

Completed Tasks

New tasks are assigned to the team members after the date of completion of the final design

report. Until this day, as Iste Team, we have worked on several modules of the NewsAgent.

¾ We have implemented part of NNTP server to handle 2 NNTP commands.

¾ We have created a RSS feed by software and subscribed it from a reader.

¾ We have used “JAMES” which includes a SMTP server for our module, we have sent

and received e-mails through that program and we have parsed the e-mails.

¾ We have spent a lot of time on XML Web Services. We have completely deployed

some services for practice. We have sent and received Java objects embedded in the

SOAP messages which we will use for article and user data transfer between the

modules and the NewsAgent core.

According to the completed tasks, now Iste Team is ready to design the implementation

structure and combine the different architecture and make them work together in a very

consistent way.

Major Tasks & Work Packages

Major tasks are arranged under the suitable Work Packages. Strict deadlines are determined

for the Work Packages for the next semester.

Work Package 1: Core Implementation

This work package includes the implementation of the NewsAgent core. Core is the backbone

of the system and it has many implementation details. Core implementation is divided into 3

main parts.

� Database Layer Implementation

Database layer implements all the required functionalities for database access. This layer

uses the benefit of the Hibernate tool. By the help of this tool database operations will be

easier and more consistent.

Database Layer operations are also divided into 2 parts, because module implementations

will use the operations implemented in the database layer. So they might have been

concurrently implemented.

¾ News Server Operations Implementation

These operations are the article and newsgroup related functionalities.

o Article Handlers (Retrieval, Insertion, Deletion, Update)

 147

o Article Parsers/Generators

o Newsgroups Handlers(Retrieval, Insertion, Deletion, Update)

o Newsgroup Access Rights Handlers

o Archiving Decision

o Article Archiving

o Newsgroup Archiving

o Archive Article Handlers

o Archive Newsgroup Handlers

o Article Logging Handlers

o Newsgroup Logging Handlers

o Milestone

¾ User Operations Implementation

These operations are user account related operations.

o User Sign-up – New Account Creation

o Password Creators

o Auto-generated Confirmation Links

o Confirmation Handlers

o User Info(Password, Demographic data, E-mail options etc…) Retrieval,

Update

o User Deletion

o User Logging Handlers

o User Access Rights Handlers

o Subscription/Unsubscription Manager

o Milestone

¾ Private Messaging and Chatting Operations Implementation

These operations are the messaging related operations between the online users of web

module of the NewsAgent.

o Private Message Handlers (Retrieval, Insertion, Deletion, Update)

o User-Message Handlers

o Chat Log

o Milestone

 148

� Web Services Layer Implementation

Web Services Layer implements the XML Web Services and acts as a bridge between the

modules and the Database Layer. Also Web Services Layer is responsible for triggering

the Mail Generator and RSS/Atom Feed Generator.

Actually this layer includes the web services mapping of the functions listed for Database

Layer. The extra implementations are listed as follows.

o WSDL(Web Service Description Language) Implementation

o Skeleton Implementations

o Binding Implementations

o Deployment of Services

o Mail Triggers

o RSS/Atom Triggers

o Integration

o Milestone

� Mail Generator Implementation

This part generates e-mail messages and sends them to the appropriate receivers upon the

coming trigger from the Web Services Layer.

o Mail Generator

o Article Object Parser

o Receiver Handlers

o JAMES Server Access Layer

o E-Mail Sending

o Logging Handler

o Integration

� RSS/Atom Feed Generator Implementation

This part generates RSS/Atom Feeds messages and appends them to the appropriate

existing feeds upon the coming trigger from the Web Services Layer.

o Feed Generation

o Feed Selection

o Feed Appending

o Feed Load Handlers

o Logging Handler

 149

o Integration

o Milestone

Work Package 2: NNTP Module Implementation

This work package includes the implementation of the USENET NNTP module of the

NewsAgent.

o Port Listening

o Connection Handling

o Authentication Manager

o NNTP-Command Handlers

o Security Manager

o SSL/TLS integration

o Session Manager

o Logging Handler

o Integration

o Milestone

o RELEASE: NewsAgent 1.0

Work Package 3: E-Mail Module Implementation

This work package implements the E-Mail module operating embedded in the JAMES SMTP

server of Apache. It accepts the e-mails from the subscribed users. And it avoids from the

spam mailing by using the confirmation strategy.

o Mail Parser

o Authentication Manager

o E-mail Confirmation Manager

o E-mail Submission Manager

o Logging Handler

o Integration

o Milestone

o RELEASE: NewsAgent 1.1

Work Package 4: Atom Module Implementation

This work package implements the Atom Module of NewsAgent. Atom module accepts

entries from the Atom users and calls the required web services.

 150

o Entry Manager

o Authentication Manager

o Feed Handlers

o Logging Handler

o Integration

o Milestone

o RELEASE: NewsAgent 1.2

Work Package 5: Web Module Implementation

This work package includes the implementation of the most complex module of NewsAgent.

At this step, web module will be implemented step by step. To ensure the concurrent and

consistent implementation, it is divided into

� Graphical User Interface (GUI) Design

At this part, user friendly and easy-to-use web pages will be designed.

o Home Page Design

o Sign-in Page Design

o Sign-up Page Design

o Account Information Page Design

o Article Operations Page Design

o Newsgroups Operations Page Design

o Private Messaging Page Design

o Chat Pop-up Page Design

o Integration

� News Server Operations Implementation

At this part, the designed web pages related to the news server operations such as articles

and newsgroups will be converted to the functioning pages by implementing the required

servlet classes and JSP pages. These classes are the corresponding servlets of the pages

listed in the GUI Design Part.

o Article Operations Page Classes

o Newsgroups Operations Page Classes

o Corresponding Web Service Invocations

o Integration

o Milestone

 151

� User Account Operations Implementation

At this part, the designed web pages related to the user operations will be converted to the

functioning pages by implementing the required servlet classes and JSP pages. These

classes are the corresponding servlets of the pages listed n the GUI Design Part.

o Home Page Classes

o Sign-in Page Classes

o Sign-up Page Classes

o Account Information Page Classes

o Corresponding Web Service Invocations

o Integration

o Milestone

� Private Messaging and Chatting Operations Implementation

At this part, the designed web pages related to the private messaging and chatting will be

converted to the functioning pages by implementing the required servlet classes and JSP

pages. These classes are the corresponding servlets of the pages listed in the GUI Design

Part.

o Private Messaging Page Classes

o Chat Pop-up Page Design

o Chatting Handlers

o Synchronization Handlers

o Corresponding Web Service Invocation

o Integration

o Milestone

o RELEASE: NewsAgent 2.0

Work Package 6: Testing and Debugging

This work package includes the testing and debugging phases of the project period. At this

stage it is assumed that all the functionalities are implemented and only testing issues are

remained.

o Unit Testing

o Integration Testing

o Security Testing

 152

o Robustness Tests

o Milestone

o RELEASE: Testing Reports

Work Package 7: Documentation

This work package includes the required documentation of the project.

o Installation Manual

o Users Manual

o Developers Manual

Work Package 8: Final Releasing

This work package is the final step of NewsAgent project. Packaging of the project and

releasing of the entire project is included in this work package. Actually, this “sum up” stage

includes hard tasks which include the arrangement of the installation files and release notes.

o RELEASE: NewsAgent 2.1 Final Releases

11 GANTT CHART
Gantt chart of NewsAgent is presented in APPENDIX.

12 CONCLUSION

To sum up, throughout this report we presented the detailed design issues and the main

structure of the system in a detailed way. Each module of the system is visualized using

different diagrams and the concepts and discussions on them were explained clearly. These

diagrams and discussions on different aspects of NewsAgent provide it to be handled by using

different techniques which will be useful for observing different modules of NewsAgent from

different point of views. We believe that we have made benefit of the detailed design report in

the sense that design issues and modules of the system became stable in our minds. This

design period will guide us in the implementation of the system.

13 REFERENCES

1. http://www.tcpipguide.com

2. http://en.wikipedia.org/wiki/MD5

3. http://www.ietf.org/rfc/rfc0850.txt

 153

4. www.ietf.org/rfc/rfc977.txt

14 APPENDIX

 154

 155

 156

 157

 158

