Middle East Technical University

o

Department of Computer Engineering

$

"A Unified News Exchange Server °

Detailed Design Report

Goncagiil DEMIRDIZEN
Hilal KARAMAN
Ali Anil SINACI
Ferhat SAHINKAYA

“NewsAgent"

I INTRODUCTION ...ttt ettt et e e e evee e e et a e e e sneaaeeeennsaeeesennsaaaens
1.1 Project Scope & Definition..........cccvierieiiiieiiieiierie ettt ettt

1.2 Project DESCIIPLION.cectieiieeiieiieeitesite ettt e sete et sieeebeeseeeebeesabeenbeesaneeneeas 4

NEWSAGENT MODULES ..ottt 7
2.1 NNTP MOGUIC....ceieiiiieiiee ettt 7
2.2 WED MOQUIE.....coeiiiiee ettt e 8
23 Mail MOAUIE. ..ot et 11
2.4 RSS MOAUIC ..ottt et 12
2.5 ALOM MOAUIE ... 12
2.6 Authentication ModUlecooiiiiiiiiiiiiiie e 13
2.7 System Log MOAUIE..........cooiieiiiiiieiiecieeeee et 13

USE CASES ettt ettt ettt et ettt et sae e aeenees 14
3.1 USE CaSE DIQZIAIMSc..vvieiiiiieciieecieeeeieeeeiee et e e e e sveeeeaeeesaeesnaeeenseesnsaeeens 14
3.2 USE CaASE SCONATIOS ...cuveeirieniieeiiieiie et eite et site et et e et e bt e st e steeenbeenaeeenseeneeas 22

MODELING ...ttt sttt sttt sttt ettt be et eatesbeenesanens 24
4.1 Data MOAEIINGooeivieeiiieeiiieceeeee et e et e e e e sabee e 24

4.1.1 Entity-Relationship Diagrams...........ccccuveeeiieeiiiieiiieeieeeee e 25

4.1.2 BNty -SetS . ..eouiiiieieeteetee et 31

4.1.3 Data DESCIIPHIONS ...c.uveiiieiieeiieiie et eeiee et e ste et see bt e seae e beesaaeenbeeseneensees 32

4.1.4 Entity DeSCIIPIONS. ...cccuvieeriiieiiieeiiie ettt eiee e sree e s 36
4.2 Functional MOdelNg........cccoeviiiiiiiiiiieiieeieesiie ettt s 45

4.2.1 Data FIow DIagramscccceccieieiiieeiiieesiee ettt 45

422 Process Specifications (PSEPC)cccooiiiiiiiiiiiiieieeceeeeee e, 52

423 Data DICtIONATYeeuiieiiieiieeiieeiie ettt ettt et eee et seae e eseaeenbeeseneensees 58

CLASS DIAGRAMS ...ttt sttt 69
5.1 Article Management Modulec..oooviieiiiieiiieciiccee e 69
5.2 User Management Module..........c.ccoceriiniriiiniiniiiiiniceiceceeeeee e 74
5.3 Newsgroup Management Module.............cocieriieiiiiniiiiieniieeee e 79
54 WeED MOAUIC......oiiiiiiiiiiieeee ettt 82
5.5 NNTP Commands Modulecooeiiiiiniiiiiiiieeeeeeeeee e 89
5.6 Mailing ModUIEc.oooiiiiiiiiiie e 94
5.7 RSSMOQUIC ..ottt 98
5.8 Messaging ModULE.........cooiiiiiiiiecieeee e 101

5.9 LOZMOQUIC......cooiiiiiieiiee et ens 103

6 SEQUENCE DIAGRAMS & SEQUENCE OF EVENTScooiiiiiiiieeeene 105
6.1 Sequence DIaGIams.........c.eeecvieiiieeeiiieeie et eee et eesve e e e e eeaeeeaee e eennns 105
6.2 Sequence Of EVENLScocoiiiiiiiiiieiecicetcce e 122

7 NewsAgent INTERFACE........cccooiiiie e 131

8 TESTING PLAN AND PROCEDURES.......ccccootiiiieieienieeeeeee e 138
8.1 TeStING PLanveiiiiiicie et et 138
8.2 TeStING StrATEEY ...evveeueeurirtieieritesieete ettt sttt ettt ae e 138
8.3 Testing ProCedurecceeeiiiiiieiiieieeie ettt 140

8.3.1 UNIE TESTINE 1vveeevvieeeiiieeeiieeeieeeiiee ettt estee et eessaeeeeaeeseaeeesneesnseeenenes 140
8.3.2 INtegration TeSHINGccueeeiviieeiiieeiie ettt e 140
833 SECUTTLY TESHNGeovvevieiiriieiteieeteee ettt 140

9 SYNTAX SPECIFICATION......eoiitiiiitiieitesitete ettt sttt s 141
9.1 Naming the Classes and Filescccoocieriiiiiiniiiiiieieceece e 141
0.2 Naming FUNCHIONScc.eiiiiiiiiiii ettt saee e eesveeesaeeenes 141
0.3 Naming Variablesccooouieiiiiiiiiieieee e 141
9.4 Comment CONVENLIONS.c.eeruirierieeierieriteieetesteenteetesitesteetesieeseeesesaeesseenees 142

10 IMPLEMENTATION PLAN ...ttt 142
TO.1 SYStEM OVEIVIEW ...eeeiiiieiiiieeiieeeiieeeiteeeieeesteeesteeessaeessseeesaseeessseesnnseesnnseeens 142
10.2 System REqQUITEMENLS.cueiiriiiieiiieeiiieeeieeesieeesieeesteeesreeeeveeeeaeeenaeesnnee e 144
10.3 ObJectiVes & TasKSc.coouiriiriiiiiiiieiiereee et 145

11 GANTT CHART ..ottt s 152

12 CONCLUSION ...ttt ettt sttt sttt sttt et e st ensesseenseenees 152

13 REFERENCES ...ttt sttt e 152

14 APPENDIX ...ttt ettt ettt nae et eneenes 153

1 INTRODUCTION

The design period of a software project is the most important part of the schedule since it
determines the other steps of the project. Until this time, we had specified our

requirements and in the light of our requirement analysis reviews, we have prepared the

initial design of our project. In this period we have understood the details and different
aspects of the project more clearly and the system has been visualized in our minds
precisely. As i$T€ team, in our detailed design report, we examined our design issues in
initial design and specified our design in a detailed way. Through the design process, we
aimed to design an efficient and modular system which satisfies all concept of the
problem and tried to develop practical and applicable solutions to the problem. For this
purpose, we specified our system modules clearly and determined the interactions
between the modules and boundaries of the modules. We believe that our final design
satisfies the concept of the problem and provides a reasonable and a modular solution to

the problem.

1.1 Project Scope & Definition

Communication has always been a significant aspect in human beings’ lives. As the time
passes and technology evolves, it appears with different usages and new techniques are
discovered for serving communication. Accordingly, after Internet has started to be used
widely, communication became one of the most important usage areas of it, especially
electronic mails and online chat. Nowadays, most people use mailing lists, newsgroups or
web forums for communication and reaching data about a specific issue. Definitely, these
ways are more practical for now, when compared with searching whole Internet for a
specific data. For this reason, handling different access methods to data is very significant
for a news server. In fact, that is the reason for developing NewsAgent.

NewsAgent will provide users to reach data through web, tin, e-mail and news clients or
via e-mail and RSS options will provide user to reach data in a fast and consistent
manner. Furthermore, we can say that when NewsAgent takes its place in the market,

users will feel the comfortable way of reaching data from different platforms.

1.2 Project Description

NewsAgent will contain several components, each of which will address different
methods for communication. Each component will provide a different platform for
communication and we can differ each user by the component that he/she used. For this
reason, NewsAgent users can be named as NNTP user, RSS/Atom user, Web user, Mail

user and administrator. Here are some general features that will be in NewsAgent:

<

o
*

o
*

Administrators will be people who are responsible from the management of
newsgroups, users and user groups. Creating, removing new newsgroups or handling
of undesirable articles in any of the newsgroups will be in the scope of his/her
responsibilities. Moreover, they also deal with user management. When a candidate
user requests to be a user of our system, administrators will be responsible to accept
or reject their request and adding, deleting user and modifying user rights will also be
responsibilities of administrators.

Web users will be able to access newsgroups and articles through a graphical user
interface. Web user will login to the system and after this authentication they will be
able to realize all article-based and newsgroup-based operations according to their
access level. An unauthenticated web user will be able to realize only part of these
operations since their access levels will cover a small set of these operations. Web
component will also provide management facilities for each user such as update user
info, change login info etc. and a user-friendly interface will provide user to reach
data, quickly.

NNTP users will be able to access newsgroups through tin or NNTP clients, like
Mozilla, Thunderbird or Microsoft Outlook Express. They will also be separated as
authenticated and unauthenticated NNTP users. Authenticated NNTP users will be
able to realize all article-based and newsgroup-based operations according to their
access level. Unauthenticated NNTP users will be able to realize only part of these
operations.

RSS/Atom users will be able to receive feeds from newsgroups according to their
wishes. We will create separate RSS and Atom feeds for every newsgroup and
whenever, a new article is posted we will append this article as a new item to our feed
tree of the related newsgroup and we will serialize it. We will also delete the old
items in the feed and users will be able to access new data via their RSS/Atom
readers.

Atom is a little bit different from RSS in the sense that atom users will be able to send
insertion data to the feeds directly or update or delete data from feeds. NewsAgent
will provide this to the Atom end users and their insertion requests will be handled.

We will present a mailing option for our users and users will be able to set / reset their

o
*

mailing option and as a result e-mails will be sent to these users if they want to
receive post in a newsgroup via e-mail. Moreover, the users will be able to choose
different receiving options such as instant, daily, weekly etc. Mail users will be able
to receive mails from different newsgroups according to their wishes. Whenever a
new article is posted, e-mails related to that article will be sent to the users who
request to receive e-mail from that newsgroup according to their mail receiving
criteria. Moreover, mail users will be able to send posts to newsgroups as a new
thread or as a follow-up. When the user sends mail to the system we will check the
user is registered and send a verification mail to the sender. If the sender approves,
then the e-mails from registered users will be converted to article objects and inserted
as articles into newsgroups.

NewsAgent will contain several user groups and each user group will have different
access rights. Authentication will specify access rights of each user and user will be
able to access different newsgroups according to their rights and newsgroups that they
are subscribed. In addition to user groups, also there will be a general access right
which will not need authentication and user will be able to access some subset of
newsgroups which is specified by the system administrators.

NewsAgent will have a log mechanism in order to save all login information and any
configuration made in the system. For this purpose, we keep login logs and
configuration logs respectively. Log mechanism is important for security of the
system in the sense that the reason of any failure can be found by the help of logs and
also we will be able to keep track of the login logs denoting the users’ login and the
IP of the computer that they have logged in and any administrator configurations.
NewsAgent will also provide extra features for the users. For example, web users will
be able to communicate with online users by the help of instant messaging
functionality and will be able to send messages to the offline users by the help of
private messaging. These messages will be displayed to the receiver when he/she

logins to the system through our web interface.

2 NEWSAGENT MODULES
2.1 NNTP Module

Our NNTP module provides the connection between NTTP clients and NewsAgent. The
end-users connected via NNTP clients are served and their requests and the NNTP
commands sent to the server as a result of these requests are handled by the help of

NNTP module. The following figure shows the overview of our NNTP module basically.

NNTP commands invokes WS
=»] NNTP (Network > EB
News Transfer SERVICES
Protocol) Module
{ K returned data

NNTP reply codes
and data

This module accepts USENET NNTP commands such as POST, LIST, ARTICLE
commands which are sent as a result of posting article, listing newsgroups etc. requests
and maps these commands to the corresponding web service invocations by parsing these
NNTP commands and data. Then this module returns suitable NNTP reply codes and
necessary data to the clients with respect to the values returned by the web services.
During accesses to the server, system administrators may activate secure connections
through SSL (Secure Sockets Layer) by publishing the server’s public key. We will use
OpenSSL and Java built-in libraries to handle this feature.

In our system, NNTP end-users are classified as authorized and unauthorized users.
Unauthorized users can only reach only some subset of newsgroups, which are specified
by system administrators adjusting the newsgroup access rights. In fact, that is
reasonable, since user group of unauthorized users has access level to only these
newsgroups. If the user is authorized, he/she will have a more extensive access than
unauthorized users. However, there will also be different access rights between the user
groups of registered users. They will have the right of do the actions that their access

level contains. If user is registered, following functionalities will be provided to the user:

e The user logins to the system by entering his/her username and password.
Username and password are controlled for validation from the database. If
username-password combination is not valid, the authentication process fails and
user cannot access the news as an authorized user. If the authentication process
results in a success, a session will be created for the user and an access level is
assigned to the user corresponding to the user group.

e After authentication process for registered users, they will have the right of

posting/reading articles, listing articles of a newsgroup, listing newsgroups, etc.

2.2 Web Module

Our Web module will handle the requests and activities realized via our web interface.
These requests and activities include administrative operations, news related activities,
the user activities, login and sign up actions and the private and instant messaging
activities. Therefore, our web module consists of 5 sub modules namely administration
module, user affairs module, news access module, authentication and registration module
and messaging module.
% Administration Module

Administration module deals with the administrative operations that the system
administrators are responsible for in our system. Our web interface will include an
administration interface for these operations and only the system administrators (users
who are member of the admin user group) will be able to access and make configurations
via this interface. The followings are the functionalities which our administration module
handles.

e Newsgroup Management: Administrators will have the right of creating new
newsgroups, deleting an existing newsgroup and make modifications on
newsgroup access levels etc. Such kind of newsgroup related operations are
handled in the concept of this module. Newsgroup information which the
administrator decides to add or the newsgroup id that will be deleted or
modified is obtained from the administrator through the administration
interface and administration module invokes related web services which

interact with the database layer in order to reflect the changes.

e User Management: Administrators will have the right of adding new users,
deleting an existing user. Administration module also handles user related
operations of the administrators. As in the newsgroup management, required
input is obtained from the administrator and administration module invokes
the related user management web service and interacts with the database.

e User Group Management: Administrators create new user groups, remove
existing user groups and modify the user rights of the user groups in order to
adjust the access rights to the existing newsgroups. Administration module
invokes related web service for user group management and these web
services retrieve necessary data from database or reflect the necessary changes
to the database.

e Log Management: In our system, login actions and any configuration are
saved in logs and administrators can list logs or make any changes such as
deleting or modifying logs. Log management operations are also handled in
administration module.

% User Affairs Module
User Affairs module deals with the user activities related to the user info or account info.
There will be a user affairs interface in our system and the User Affairs module will be
responsible for the actions and operations related to the user info. The followings are the
user requests that the user affairs module handles.

User will be able to

e display user info.

e update user info.

e change password.

User Affairs module interacts with the database and the web service layer and when a
user requests to display user info, it retrieves the user info from database and displays.
This module gets the new information or data from the user and updates the related fields
as a result of an update request.

% News Access Module
News Access Module will be responsible for the article and newsgroup related

operations. The user will request to list the newsgroups and news access module will

interact with the database and retrieve the appropriate newsgroup according to the access
level of the user group that the user belong to. With the list of the newsgroups,
subscription or the mailing options will also be displayed to the user and the user will be
able to subscribe/unsubscribe to the newsgroups or set/reset mail receiving options from
these newsgroups. Mail receiving options will have different options such as instant,
daily and weekly. The user will determine the period which he/she requests to receive
mail for the articles in the newsgroup. For example, when weekly option is selected, the
user will receive mail once a week for that newsgroup and receive the articles in that one
week period.

When one of the newsgroups is selected, the article information of that group is retrieved
and the header, author and date information of the articles are displayed. On the other
hand, article operations are also handled in news access module. When the user selects
one of the articles displayed, the get article web service is invoked and it retrieves the
related article’s text from the database and displays the article content. Moreover, posting
operation is similar. Post article web service is invoked and it interacts with the database
access and inserts the posted article to the database. On the other hand, the user will be
able to cancel or update his/her articles and sort the newsgroups or articles in a

newsgroup according to some criteria such as name, creation or post date etc.

% Authentication & Registration Module

This module will be responsible for the login and sign up operations. When a user enters
his username and password in order to login through our web interface, authentication
module will receive the username and password. Then related web service will be
invoked to check whether the username password combination exist in database or not.
For security reasons, password will be held in a MD5 (Message-Digest algorithm 5)
format. This hashing technique will prevent anyone to access passwords of the users,
directly. After authentication a session will be created for the user and the user group of
the user will also be assigned.

Signing up to the system will also be realized via our web interface. A candidate user fills
the registration form which will be displayed as a result of sign up request and submits

this form. Registration module controls the validity of the form and interacts with the

10

database and saves the user info. Moreover, this module sends a confirmation mail to the
administrators. If the administrator accepts the user, the user group and the access rights
are adjusted by the administrator and the username and randomly generated password are

sent to the user. After this candidate user turns out to be a system user.

« Messaging Module
Messaging module is responsible for the instant and private messaging issues. This
messaging concept is designed as an extra feature that NewsAgent presents to the users.
User will display the online users and be able to communicate with the online users. By
this way, some unnecessary data will not be sent as an article to the newsgroup. Users
will send each other as instant message. Private messaging is also another new feature
which is similar to instant messaging. Private messaging provides users to send messages
to any other users — online or offline —. Private messages will be shown to recipient when

he/she logs in to the system.

2.3 Mail Module

Mail module is responsible for the receiving e-mails and sending e-mails in our system.

e When our system receives an e-mail, first of all the system controls whether the
sender is an authenticated mail client or not. If the sender is authenticated then a
verification mail is sent to the sender whether he/she approves the insertion of the
mail as an article. Such kind of verification is important in order to prevent spam
mails. If the sender approves, the e-mail is converted to an article object, related
web service is invoked and inserted to the database. The article will be added to a

newsgroup which is specified in the address field of the mail content.

SMTP (Simple .
e-mails ——=» Mail Transfer invokes WS
Protocol) Module

WEB
SERVICES

. AR

11

e Users can access articles in a newsgroup via e-mail depending on whether he/she
sets his mailing options on. Of course, user will be able to receive mail from only
newsgroups which he/she can subscribe corresponding to his/her user group. For
a newsgroup, if the user requests articles as an e-mail according to the receiving
option such as instant, daily, weekly, mail module generates e-mails from the

articles and sends to the users.

2.4 RSS Module

Our system will provide RSS feeds for every newsgroup and RSS module will be
responsible for the generation and control of these feeds. If the user wants to follow a
newsgroup periodically, user can subscribe to the RSS feed of this newsgroup and by
using an RSS reader, he/she can reach articles in the newsgroup. After every post
operation, the RSS feed generator is called and the article is appended to the RSS feed of
the newsgroup that the article is posted. After a period, the feed will become to be large
and the old articles will be deleted from the feed.

2.5 Atom Module

Our system will also provide Atom feeds for every newsgroup and Atom module will be
responsible for the generation and control of these feeds. Users will be able to subscribe
to the Atom feed of this newsgroup and access articles in the newsgroup via their Atom
readers. After every post operation, the Atom feed generator is called and the article is
appended to the Atom feed of the newsgroup that the article is posted. After a period, the
feed will become to be large and the old articles will be deleted from the feed.

Moreover, Atom protocol has some advantages on RSS such that Atom is more powerful
for transferring binary data when compared to RSS and user can send insertion requests
directly to the Atom feeds, which is not possible for RSS feeds. Our ATOM module
handles these insertions, also deletion and update requests, which are carried in the same

manner with HTTP requests by related web services.

12

article from
Atom client i WEB
——5{ Atom Module |1Vokes WS SERVICES

-y ___

2.6 Authentication Module

Authentication module is responsible for the authentication process and other modules

interact with authentication module as a result of a login action or authentication

necessity.

As mentioned in previous modules, each user will be a member of a user-group
which specifies the access level of the user. During authentication username will
be checked for specifying whether username is in database or not.

Username and password will be checked for correspondence between them by
invoking the related web service and interacting with the database.

For security reasons, password will be held in a MD5 (Message-Digest algorithm
5) [references: http://en.wikipedia.org/wiki/MDS5] format. This hashing technique
will prevent anyone to access passwords of the users, directly.

After authentication a session will be created for the user and will live until the
user logs out or times out after a period.

A user who is not authorized to the system will be able to access only some subset

of newsgroups and read only articles in these newsgroups.

2.7 System Log Module

System Log module is responsible for the login log and configuration log operations. As

mentioned before, every login operation and any configuration made in the system by

system administrators are saved in login logs and configuration logs respectively. In this

kind of a situation, log module inserts login log or configuration log by invoking the

related log web service for saving the logs.

13

3 USE CASES

3.1 Use Case Diagrams

3.1.1 Signup Use Case

O
A

Candidate User

Flow of Events for signup Use Case

Objective Allow candidate user to become a system user.
Precondition | Access to the system through web interface.
Main Flow e Candidate user reaches the system via web module.

Clicks ‘signup’ button.

A user info form is displayed. Candidate user fills in this form
without a missing point.

Candidate user submits the form.

Postcondition

User waits for a confirmation message from administrators.
Then he/she becomes a user of the system.

3.1.2 Login Use Case

User

Flow of Events for LOGIN Use Case

Objective Allow users to be authenticated.
Precondition
Main Flow User submits username and password.

System checks this login data from the database.

If it is not verified, user is rejected.

If the username and password is correct, user is authenticated.
User rights are determined according to this data.
Administrative rights are also determined by login data.

Postcondition

User is allowed to get into the system.

14

3.1.3 Administrative Use Cases

Acld

=<extend>> _ Meywsgraup

_—

—
—

Manage -
Mleyysgroups &
~
- Remove
<<extend=>
Administrator ey sgrou

Flow of Events for MAnage newsgroups use case

Objective Allow administrator to add or remove newsgroups

Precondition | Administrative rights
(The user must be logged in as an administrator)

Main Flow e Administrator chooses ‘manage newsgroups’ option.

e In order to add a new newsgroup, administrator interacts with
‘add newsgroup’ interface, specifies necessary information
about the newsgroup and adds the newsgroup.

e In order to remove a new newsgroup, administrator interacts
with ‘delete newsgroup’ interface, selects the newsgroup and
removes it.

Postcondition | New newsgroup is added to the system.
Deleted newsgroup does not exist in the system anymore.

Control & Manage — <<extend=> —{ Dealete Mews
MEnes:

Administrator

Flow of Events for control & manage news

Objective Allow administrator to control and manage news in order to provide a
qualified environment.

Precondition | Administrative rights
(The user must be logged in as an administrator)

Main Flow e Administrator controls news that are posted to the server.

e He/she has the right to delete news in case that it doesn’t suit the
newsgroup or generally, the system.

e Or administrators may warn the users about the messages they
sent, instead of deleting the news.

Postcondition | Some messages may be deleted.

15

<<extend>»_ - Add User
—

—
—

—
Manage
4 — <<egtend=> —{ Remove Lser
zers ;

-
—_
—_
-

Administrator ccpntendss — Madify User
Rightz

Flow of Events for manage users use case

Objective Allow administrator to add/remove users and modify user’s rights

Precondition | Administrative rights
(The user must be logged in as an administrator)

Main Flow e Administrators interact with ‘manage users’ interface.

e By approving submitted user forms, they can add a new user.

e Administrators have the right to remove a user who does not
satisfy the requirements to be a user from the system.

e Administrator can also change the user’s rights. These rights
determine the user’s access permission. Administrator can chage
user’s access permissions.

Postcondition | New user is added.
A user is removed.
User rights are modified for any specified user.

3.1.4 Web Client Use Cases

Change
Login Data
Update
Web End-User Uzer Infa

Flow of Events for WeB Client’s update Account info use case

Objective Allow users to modify their user information and change their password.

Precondition | User must be logged into our system through web by interacting with
our web module.

Main Flow e After logging in, user can select ‘Update Account Info’ option.

e Then the user’s account info is displayed.

e Some fields will be displayed disabled. That is, the user will not
be able to change this info. For instance, username.

e Login data means username and password. User will be able to

16

change password, by first entering the old password. If old
password is not confirmed, system will not allow the user to
change password. If it is correct the password will be updated
with the new entered one.

e User info means name, surname, phone, etc. User will be able to
change his/her user info. These changes will be reflected to the
database.

Postcondition | User’s password or user info has changed and inserted into the database.

List
Meswsgroups

Sornt Mewsgroups

Subzcribes
Unzubscribe
o Mewssgroups

SetReszet e-mail
Receiving Option

Web End-User

Flow of Events for WeB Client’s Newsgroup use cases

Objective Allow users to list/sort newsgroups, subscribe/unsubscribe to
newsgroups, set/reset e-mail receiving option through our web module.

Precondition | User must be logged into our system through web by interacting with
our web module.

Main Flow e After logging in, user can select ‘List Newsgroups’ option. Then
newsgroups are listed. User can list his/her subscribed
newsgroups or all newsgroups of the news server.

e Sorting mechanism can differ according to the user’s choice.
User can sort them alphabetically, according to date, etc.

e After listing these newsgroups, user can select any of them and
subscribe to that newsgroup. Or vice versa, the user can
unsubscribe from a newsgroup that he/she is already subscribed
to.

e For the newsgroups that the user is subscribed to, the user can
set/reset mail receiving option. If it is set, articles that are posted
to that newsgroup are sent to the user as e-mail.

Postcondition | Subscriptions or changes in e-mail receiving options are inserted into the
database.

17

Web End-User

Fead
Aicle

c<extends> Open Mewy
—— Thread
——
Pozt ™
Aricle

Cancel % . ¢ Message Owner
Atticle <<include>= Werification

Flow of Events for WeB Client’s ARTIcle use cases

Objective

Allow users to list, read, post or cancel articles through our web module.

Precondition

User must be logged into our system through web by interacting with
our web module.

Main Flow

After selecting a newsgroup, user can list the articles belonging
to that group by clicking the name of that newsgroup.

Articles are listed. Read articles are displayed in a different
color.

Then, by clicking on the header, user can display the content of
that article.

User can post a reply to this article by clicking ‘post a reply’
option.

Instead of posting reply to any article, user can open a new
thread.

In both situations, a form is displayed. User fills in the required
parts and sends the article.

If the user wants to delete the article after sending, he/she can
select ‘delete article’ option. In order to delete the article, owner
of that article must be him/her.

Postcondition

New article is inserted into database or an article is deleted from
database.

18

Send message
to other users

Display
message-hox

Web End-User

Read
Messane

Flow of Events for WeB Client’s messages use cases

Objective

Allow users to send messages to other online/offline users.

Precondition | User must be logged into our system through web by interacting with

our web module.

Main Flow

e [fthe user wants to send message to another user, he/she can
select the user by double clicking his/her username in users list
which we will display.

e When the user is selected, a pop-up window is displayed and the
message is expected to be written there.

e Then the user presses “send” button, and the message is sent to
recipient.

e If the user wants to see the messages that are sent to him/her, the
user will firstly press “message inbox” button and overview of
all messages (sender, date, etc.) are displayed.

e The user can select any of these messages by clicking on the
header, and the message body is displayed.

Postcondition | Sent messages are inserted into database with sender and receiver info.

3.1.5 NNTP End-user Use Cases

HHTP End-User Read <<extend=>"
Article

List
Meswsgroups
/. <<extend=> Cipen hew

Thread

19

Flow of Events for NNtp end-user use cases

Objective Allow users to list available newsgroups, list articles of a specified
newsgroup, read an article among these listed ones and post a new
article (either as a new thread or as a follow-up to an existing article)
through NNTP clients.

Precondition | User must be connected to our system through an NNTP client (such as
Outlook Express, Thunderbird, etc.) by authentication.

Main Flow Flows of these events are mainly the same. Only the nntp response and
request codes differ.
e NNTP client sends a message specifying the end-user’s request.
e We map the action that corresponds to this message.
e Action is performed and reply code ant required information is
sent to the client.

Postcondition | Then end-user is able to list newsgroups, list articles, read an article or
post an article to the news server through nntp according to the action
he/she performed.

3.1.6 RSS/Atom End-user Use Cases

Subscribes
Unzubscribe
o Mewsgroups

RSS/Atom End-User Read Aicle

Flow of Events for Rss/atom end-user use cases

Objective Allow users to reach the latest news of our server through news readers.
Precondition | User has to subscribe to our newsgroups through RSS/Atom reader.
Main Flow e We will produce RSS/Atom feeds for each of our newsgroups.

e Feeds will be protected. So the user will be asked for username
& password by the news reader or attach username password to
the url, in order to subscribe to newsgroups.

e When subscribed, latest news will be displayed in the news
reader.

e User will be able to read any article among displayed ones.

Postcondition

20

Fost Aricle

Atom End-User

Flow of Events for atom end-user’s post article use case

Objective Allow Atom end-users to make comments and reply to our news.
Precondition | User has to subscribe to our newsgroups through Atom reader.
Main Flow e User will be able to post article to that newsgroup.
Postcondition | Posted article is inserted into database under according newsgroup.

3.1.7 Mail User Use Cases

Send message to
the Mews Server
via SMTP

Mail-User Receive e-mail from

the Mewws Server

Flow of Events for atom end-user’s post article use case

Objective Allow users to get the news from the server or send news to the server
without logging into the system.

Precondition | User has to set mail receiving option for the newsgroup from our web
module.

Main Flow e If'the user’s mail receiving option is set for a newsgroup, when a
new article is sent to that newsgroup, the article will be sent to
the user’s mail-box.

e In reverse direction, user will be able to send article to the news

server as e-mail by entering newsgroup@newsagent.com into
“to” field.

Postcondition | Article(s) is(are) sent to the mail user, according to the period he/she has
specified. (daily or weekly).
Posted article is inserted into database under according newsgroup.

21

3.2 Use Case Scenarios

Administrator:

Login: An administrator has to login to the system in order to realize administrative
roles. There will be a web user interface for administrative roles. After validation of login
information, the administrator will be able to manage newsgroups, users and news.
Manage Newsgroups: Administrator may add new newsgroups and remove existing
newsgroups in the content of the managing newsgroups scenario.

Manage Users: Administrator may add and remove users and modify the user rights.
Administrator will control users and will be able to restrict the user rights. There will be
specified user roles and rights, however, new rights can be granted to the users and
existing rights may be withdrawn.

Control & Manage News: An administrator will have the right of controlling and
managing the articles. Articles which do not suit the content of the newsgroup may be
cancelled. As a result of such a control on news, user roles and rights granted to the users

defined more precisely.

Candidate User:

Request Sign-up: A candidate user is a person who demands to sign up to the system via
web interface and as a result of a sign-up request, the candidate user has to submit a user
information form and if the administrators accept the request, the candidate user turns out

to be a real system user.

Web End-User:

Login: The user will login to the system in order to realize user roles. After validation of
user login information, the user will be able to list, subscribe/unsubscribe, and sort
newsgroups and post, read, cancel and sort articles.

List Newsgroups: The user will be able to list the newsgroups. In the concept of listing
newsgroups scenario, a user may list all newsgroups or the newsgroups that he/she has

been subscribed.

22

Sort Newsgroups: The user will be able to sort the newsgroups according to some
criteria. These criteria can be alphabetical order, order according to date, etc.

Subscribe / Unsubscribe to Newsgroups: After listing the newsgroups, the user will be
able to subscribe and unsubscribe to the newsgroups.

List Articles: The user will be able to list articles belonging to any newsgroup, clicking
the name of that newsgroup.

Read Article: The user reads articles.

Post Article: The user posts articles. In the concept of posting articles, the user may open
a new thread or follow up to an existing article.

Set & Reset Mail Receiving Options: The user will be able to request to receive e-mail
for the articles posted. The user may want to receive e-mail for specified newsgroups or
want to receive e-mail for all newsgroups. Also the user may want to cancel the mail
receiving option and then no e-mails will be sent to the user from that newsgroup.

Update User Info: The user will be able to update user information such as his/her
personal information registered when signing up, e-mail address etc.

Change Login Data: The user may change login information. Generally user id of a user
is not allowed to be changed for most of the systems however the users may need to
change their passwords.

Send Message to Other Users: The user will be able to send messages to other users. If
the receiver user is online, then he/she will immediately receive the message. If the user
is offline, he/she will receive the message when he/she logs into the system. User will be
selected from the list of users, which we display.

Display Message Box: The user will display message inbox in order to see the overview
of messages that are sent to him/her.

Read Message: When any message is selected from this inbox, contents of it will be

displayed.

NNTP End-User:

The user will be able to realize the actions such as login, list newsgroups and articles,

post and read article as web users do. Only difference will be how we handle these

23

requests. We will send responses to the messages that we receive from nntp clients,

according to the user’s needs. Results of these actions will be the same as web-user.

RSS/Atom End-User:
Subscribe / Unsubscribe to Newsgroups: RSS/Atom end-users will be able to subscribe

and unsubscribe to specific newsgroups. Each newsgroup will have its own feed so that
the user receives only the news from subscribed newsgroups.
Read Articles: As all users do, RSS users will read the news.
Post Article: Only Atom users will be able to post article to our system through a news

reader, not RSS users.

Mail User

When a user sets receiving mail option from web, that user becomes also a mail user.
Send Message to the News Server: Mail users send messages to the server through
SMTP protocol.

Receive e-mail from the News Server: When a new message is posted, mail users receive

that message as e-mail from the newsgroups if they are subscribed to that group.

4 MODELING
4.1 Data Modeling

As you all know, in a unified news exchange server the data design and storage of the
news, articles, newsgroups are the most important issues since the efficient access,
consistent and stable data are really valuable. Moreover, the data design constructs the
fundamentals of a system and the other parts or layers of the system are built on this basic
structure. Therefore, in order to construct a consistent and a powerful system, one has to
begin with a consistent data design. Keeping these in mind, we decided to store our data
in database. In our system, we will store our data in 2 different databases. In the

following figure, you can see how the mechanism works.

24

retrieve article request

Database Access Layer

: if exists © :
| | |

. . I
: Main Archive I
I Database if doesn't exist Database I
| |
1 1

The main database will be used to store main data such as articles, users, newsgroups,
etc. Other database will be used as an archive to store older articles and newsgroups. Also
the relation between newsgroups and articles will be stored in another table. These older
articles will not be stored in main database anymore. If any client requests an old article
which is already moved to the archive database by NewsAgent, system finds the article

from the archive database either by the message-id or server specific article number.

4.1.1 Entity-Relationship Diagrams

ER Diagrams For Main Database

25

date_of bith

secret_ques
_ aNEWED

@

last logm [P
tion
last login
i —

C S

action no

Action_types

26

Onlme users

27

; aficle no
message id

distnibuton

references

posting wersi

o1l
Ng articles

relay_wersion

sender_1d FPrivate messages

date

recemver_id

subscription

28

ER Diagrams For Archive Database

content y
suhbject

diztnbution

/'

B

osting verst
ot

Archive articles

from uid

date
confrol

creation datetine

’

Newsgroups

29

Relations

Ng mails

Tsers

Users

Articles

Ng articles

{0.m)

message id

In ng

Izl sub
scription

Subscoption

{0.m)

Users

User groups

Newsgroups

Fosted by

0.1}

Users

Articles

30

4.1.2 Entity-Sets

Entity Sets For Main Database

Articles Users Online nsers MNeswsgroups
message jd*: String uger id*: Bignt user_id* : Biglt ng_id* : Integer
content Text password® : Btring ng name® : Sting
name* : String Private messages created by* : Biglnt
Ng_atticles sumame™* ; String receiver id* : Biglt areation datetime* : Date
: o usemarne® : String sender id* : Pight description ; String
At date_of hirth - Date P
m;s;j gee&i* - Stein - birth_place : Stnng content; Text Ng access levels
djate* Date ; phonc” ; Hiting ng id* : Integer
Fom wd* - Bigint .E'ml;t S*mrégt Logn_log accees level* : Integer
i sigmip_date*: date T
ﬁum—m?jlf 'Stimng last login date time* : date uS'EL—Ld‘ : E_l%g?e ~ m
ety L . g lagt login [P* : Sting Ml = St:i - g_mai _S _
followup_to © Stiing Pl i ogin P . Stnng il address® : String
relay wersion™ : Siting aroup_id* - Integer : period* Sting
posting wersion® : Stang pictﬁm : ELOB Confimuation log
lmtelsl*: gﬁ?gﬁr searet question: Sting : d*'_%l.ghﬁ}t Subscription
capires - Dete e mmn s | | o Due wse i Bight
references | Sting Stiing adion_type :. Integer ngid* :*mtager
distribution ; String id* " String vants mrail* Boolean
control Stang Uzer groups
goup id* ;- Integer Action types
group_tame* ; Siring acfion oo - e
access_lewel™ : [nteger id ty_pe: Meg;grer

Entity Sets For Archive Database

Archive articles

message id* : String
subject* . Sting
content © Tex
date® : Date
frormn uid* : Bigint
from meil* : String
reply to: String
follownp to: String
relay wersion® Sting
posting wersion® . Stnng
lines* : Integer
path* : String
exzpires : Date
references ;. Stiing
distribution : Sting
cortrol @ String

action name: String

Mewsgroups

ng id*: Integer

ng name® ; Stang
created byt o Biglnt
is deleted® : Bodean
creation datetime® ; Date
deletion datetitme ; Date
description : Sting

In_ng
meszage id*: Biring
ng id* : Integer
article no* ; Integer

31

4.1.3 Data Descriptions

The data description function is to deal with the structure of the data. We have taken each

entity and relation separately and given each attribute in each entity or relation a type so

the data is fully structured.

®,

+« Data with underlines are primary keys;

+« Data with star have to be entered absolutely (NOT NULL);

Data Descriptions for Main Database

Avrticles
‘ Data | Type & Size ‘ Format
| message_id* | VARCHAR - 40 | Text (UNIQUE)
| content | TEXT | Text
Ng_articles
‘ Data | Type & Size ‘ Format
| article_no* | BIGSERIAL ' Number (AUTOINC)
| message_id* | VARCHAR - 40 | Text (UNIQUE)
| subject* ' VARCHAR - 60 | Text
| date* | DATETIME | Date/time
| from_uid* | BIGINT ' Number
| from mail* | VARCHAR - 40 | Text
' reply_to | VARCHAR - 40 | Text
' followup_to | VARCHAR - 40 | Text
| relay version* | VARCHAR - 60 | Text
| posting_version* | VARCHAR - 60 | Text
| lines* | INTEGER | Number
| path* | VARCHAR - 60 | Text
| expires | DATETIME | Date/time
' references | VARCHAR - 60 | Text
' distribution | VARCHAR - 60 | Text
' control | VARCHAR - 60 | Text
Users

‘ Data

| Type & Size

‘ Format

32

| user_id* | BIGSERIAL | Number (AUTOINC)

| password* | VARCHAR - 20 | Text is hidden. *##ksk

| name* | VARCHAR - 20 | Text

| surname* | VARCHAR - 20 | Text

| username* | VARCHAR - 40 ' Text (UNIQUE)

| date_of birth | DATE ' Date

| birth_place | VARCHAR - 20 | Text

| phone* | VARCHAR - 40 | Text

| e-mail* | VARCHAR — 40 | Text

| signup_date* | DATETIME | Date/time

| removed_date | DATETIME | Date/time

| group_id* | INTEGER ' Number

| picture | BLOB | Binary
last login IP* VARCHAR - 20 Text

| last_login_ | |

' last_login_date_time* | DATE | Date

| secret_question | VARCHAR - 40 | Text

| secret_question_answer | VARCHAR - 40 | Text
User_groups

‘ Data | Type & Size ‘ Format

| group_id* | INTEGER ' Number

| group_name* | VARCHAR - 60 | Text

| access_level* | INTEGER | Number
Newsgroups

‘ Data | Type & Size ‘ Format

| ng_id* | INTEGER ' Number (AUTOINC)

| ng_name* | VARCHAR - 60 | Text (UNIQUE)

' created_by* | BIGINT ' Number

| creation_datetime* | DATETIME | Date/time

' description | VARCHAR - 60 | Text
Ng_mails

‘ Data | Type & Size ‘ Format

| mail address* | VARCHAR - 40 | Text

33

| period | VARCHAR - 10 | Text
Ng_access levels

‘ Data | Type & Size | Format

| ng_id* | BIGINT | Number

| access_level* | INT | Number
Subscription

‘ Data | Type & Size | Format

| user_id* | BIGINT | Number

| ng_id* | INTEGER | Number

| wants_mail* | BOOL | Yes/no
Login _Log

‘ Data | Type & Size | Format

| user_id* | BIGINT | Number

| login_date* | DATETIME | Date/time

' login_IP* | INET | IP Specific Text
Action _Types

‘ Data | Type & Size ‘ Format

| action_no* | INT | Number (AUTOINC)

| id_type* | TINYINT | Number

| action name* | VARCHAR - 100 | Text
Configuration Log

‘ Data | Type & Size | Format

| log_id* | BIGINT | Number (AUTOINC)

| user id* | BIGINT | Number

| date_time* | DATETIME | Date/time

| action_type* | INT | Number

| id* | BIGINT | Number

34

Online users

‘ Data | Type & Size ‘ Format

| user_id* | BIGINT | Number
Private messages

‘ Data | Type & Size ‘ Format

| receiver_id* | BIGINT ' Number

| sender_id* | BIGINT | Number

| date_time* | DATETIME | Date/time

| content | TEXT | Text
Data Descriptions for Archive Database
Avrticles

‘ Data | Type & Size ‘ Format

| message_id* | VARCHAR - 40 | Text (UNIQUE)

| subject* | VARCHAR - 60 | Text

| content | TEXT | Text

| date* | DATETIME | Date/time

| from_uid* | BIGINT ' Number

| from_mail* | VARCHAR - 40 | Text

| reply_to | VARCHAR - 40 | Text

' followup_to | VARCHAR - 40 | Text

' relay_version* | VARCHAR - 60 | Text

| posting_version* | VARCHAR - 60 | Text

| lines* | INTEGER | Number

| path* | VARCHAR - 60 | Text

| expires | DATETIME | Date/time

' references | VARCHAR - 60 | Text

' distribution | VARCHAR - 60 | Text

" control | VARCHAR - 60 | Text
Newsgroups

‘ Data | Type & Size ‘ Format

| ng_id* | INTEGER | Number

35

ng name* VARCHAR - 60 Text

created by* BIGINT Number
is_deleted* BOOLEAN Yes/no
creation_datetime* DATETIME Date/time
deletion_datetime DATETIME Date/time
description VARCHAR - 60 Text
In_ng

Data Type & Size Format
message_id* VARCHAR - 40 Text
ng_id* INTEGER Number
article no* BIGINT Number

4.1.4 Entity Descriptions

Entity & Relation Descriptions for Main Database

Articles

In our main database, we store all articles in a single table. For each newsgroup we create
a table and store overviews, not contents, of articles belonging to this newsgroup. When
the user selects a newsgroup, required headers for threading will be retrieved from
overview tables. This provides us to increase the system speed when our clients are
connected to our system via newsreaders that support overview database. If the user
clicks an article to see its contents, it is retrieved from main articles table. Keeping the
content of articles in a single table prevents multiple holding of the same article in
different newsgroup tables in case of cross posting. So, this entity contains message id
and content of the messages only.

message id*: Required ‘Message-ID" standard header is held in string message_id. This
attribute uniquely defines a message. The same message ID cannot be assigned to another
article because this id is created by the clients according to their systems and merging this
data with some information of the server.

content: This field is held in text format and stores the content of the article.

Ng_articles

36

Ng articles is a general name for lots of possible tables. When a new newsgroup is
created, an article table is created for that newsgroup with a specifying name. For
example, if a group named "Music’ is created, a table named "Music_articles” is also
created. This table contains all necessary information (except content) about articles
belonging to that table. This way is chosen in order to prevent the database from multiple
storage of the content of same article when posted to different groups at the same time.
Some attributes are used for holding standard data for USENET messages and some
attributes are assigned by us locally for managing articles easily.

In USENET message format, [6] there are some required headers and some optional
headers. We hold these required headers and some of the optional headers in our
database, in order to obey universal USENET message standards. Below, the table’s
attributes are explained.

article no*: This number specifies each article in the group uniquely; hence article no is
the primary key of the Ng_articles entity. System assigns a unique number to each article
in a newsgroup to manage them more easily.

message_id*: This field is also held with article number because news readers may want
request any article by means of the universal message-ids. This is a foreign key
referencing to the Articles table.

subject*: Required 'Subject’ standard header is held in string subject. It is assigned by
sender and briefly defines what the article is about.

date*: Required ‘Date’ standard header is held in date in date/time format. It is the time
that the article is posted to the network.

from_uid*: This is a local assignment that is required to know which user has posted the
article. It is a foreign key for this entity referencing user_id of Users entity.

from_mail*: Required 'From" standard header is held in string from_mail. It is the mail
address of the sender of that article. This is a default mail address and foreign key which
references the attribute e-mail of Users entity.

reply_to: Optional ‘Reply-To" standard header is held in string reply_to. This string holds
the optional mail address of the sender if he/she wants to get mail for that article to the

specified address instead of from_mail.

37

followup_to: Optional "Followup-To" standard header is held in string followup_to. If
this is not empty, all follow-ups to the article will be posted to the newsgroups specified
in this field. If it is empty, follow-ups will be posted to the newsgroup(s) that the message
was originally posted.

relay_version*: Required ‘Relay-Version' standard header is held in string
relay_version. This header shows the version of the program that is responsible for the
transmission of the article.

posting_version*: Required ‘Posting-Version' standard header is held in string
posting_version. This header identifies the software that is responsible for passing
this message into the network.

lines*: This header is also required and specifies how many lines the article has. It is held
in integer format.

path*: Path is a required header and shows the way that the article followed until
reaching the system. Path is held in string format and when a system forwards this article,
it concatenates its name to the path.

expires: This field is in date/time format and optional. If it exists, the article expires in
specified date and time.

references: This field is optional and held in string format consisting of article ID's
which prompt the submission of this article. For instance, in a follow-up article, the
parent article exists in this field.

distribution: This field is held in string format and lists the newsgroups that the article

should be sent. This field alters the original newsgroup distribution.

Users

This entity contains all required information about the users which can be authorized or
unauthorized. Administrators are also users.

user_id*: This number specifies each user uniquely; hence user_id is the primary key of
the Users entity.

name*: This string field holds the name of the user.

surname*: This string field holds the surname of the user.

username*: This string field holds the username of the user, it is unique for each user.

38

password*: This string field is the matched password for the username of the user .
date_of_birth: This date typed attribute holds the birth date of the user.

birth_place: This string typed attribute holds the birth place of the user.

phone*: This string field holds the cell phone number of the customer.

e-mail*: This text field holds the mail address of the customer.

signup_date*: This field holds the date and time that the user has signed up. This field is
of type date/time.

removed_date: This field is usually empty but if a user is removed from the database, this
field holds the date and time that the user is removed from the system.

group_id*: Group id specifies which user group the user belongs to. This is a foreign key
referencing group_id attribute of User_groups entity.

picture: Users can upload their pictures to the system. This picture is held in picture field
in BLOB format.

last_login_date_time: Date and time of last login of the user is kept for security.
last_login_IP: IP of the computer that the user last logged in is also kept.
secret_question: Secret question is kept in string format. It is asked in a case that the user
forgets his/her password.

secret_question_answer: Secret question’s answer is kept in string format also. It is used

in a case that the user forgets his/her password.

User_groups

This entity holds information about user groups. Each user will be a member of a pre-
determined user group. Each user group will have an access level. These access levels
will be used to determine whether a user will be able to access a specified newsgroup or
not. Since administrators will be treated in the same manner with other users, there is no
need to create a distinct administrator table. Administrative rights will be determined by
user groups.

group id*: This number specifies each user group uniquely; hence group_id is the
primary key of the User_groups entity.

group_name*: This string field holds the name of the usergroup.

39

access_level*: This integer field holds the access level of the user. For instance, if it is 1,

it means full access.

Newsgroups

This entity holds information about newsgroups. When a newsgroup is added, listed
information about that group is added to the table.

ng_id*: This number specifies each newsgroup uniquely; hence ng_id is the primary key
of the Newsgroups entity.

ng_name*: This string field holds the name of the newsgroup.

created_by*: This big integer typed field holds information about who created this
newsgroup. This is a foreign key of this entity referencing user_id attribute of Users
entity.

creation_datetime*: This field holds the date and time that the newsgroup is created.
This field is of type date/time.

description: This string field holds a brief description about what the newsgroup is about.

Ng mails

Ng mails is also a general name for lots of possible tables. When a new newsgroup is
created, a mails table is created for that newsgroup with a specifying name. For example,
if a group named "Cinema’ is created, a table named "Cinema mails’ is also created. This
entity is formed in order to store mail addresses of people who subscribed to receive the
articles that are posted to the specified newsgroup as e-mail.

mail_address*: This string field holds the mail addresses of the users who want to

receive e-mails from the specified newsgroup.

period*: Period is a string and it is chosen by the user among some specified periods by
us. These periods may be ‘weekly’, ‘daily’, etc. If the user doesn’t want to receive mails
when the article is posted, he/she, for example chooses ‘weekly’ as a period. Then the

articles will be sent to the user weekly.

Ng access levels

40

This table specifies access levels of each newsgroup to determine the user groups which
will be able to access to which newsgroup in the news server.

ng id*: This field is the id specifies the newsgroups uniquely. This is a foreign key for
this relation referencing ng_id attribute of Newsgroups entity. ng_id, itself, is the primary
key of this table, since each newsgroup will be stored once in this table.

access_level*: This attribute stores an integer which specifies the access level of

newsgroups.

Subscription

This table specifies a relation among users and newsgroups. Users can be subscribed to
newsgroups. Required information about this subscription is held in this table.
user_id*: This field is the id of the user who subscribed to the newsgroup. This is a
foreign key for this relation referencing user_id attribute of Users entity. This field is a
subset of primary key.
ng id*: This field is the id of the newsgroup which is subscribed by the user. This is a
foreign key for this relation referencing ng_id attribute of Newsgroups entity. This field is
also a subset of primary key.

» ng_id and user_id are primary keys of the relation together.
wants_mail*: This Boolean type is hold to know whether the user wants e-mail from this

newsgroup or not.

Login _Log

This table stores information about each log in of users. When for each log in to the
system, a row is inserted to this table which includes user id of user, date and time of the
login and IP of the computer that user login to the system. Storing this information is
significant for a news server, like NewsAgent, since security is a key point. Also,
specifying the computer that user logged in to the system in his previous login is a smart
feature.

user_id*: This number specifies each user uniquely. This is a foreign key referencing to

the Users table.

41

login datetime*: This timestamp attribute stores the date and time of the login.

login_IP*: This attribute stores the ip address of the computer that user logged in to the
system.
» User id and login_datetime together forms the primary key of this table, since we

consider that any user can login to the system once at any specified time.

Action_Types

This table, in fact, is stored for specifying the configuration actions of users which are
stored in configuration log table. In fact, this table is mostly a static table, since there
will be no major change on this table when all action types have already been specified.
Only a small number of insertions, deletions and updates may be applied on this table
when an action type will be inserted, deleted or updated, respectively.

action no*: This number specifies each action type uniquely. Action no is the primary
key of this table. It will be auto incremented when a action is inserted to this table.
id_type*: This attribute specifies one of article no, user id, ng id. This id is the
specification for on which type of data, the configuration can be done.

action name*: action name is just an attribute to specify the name of the action_type.

For instance, update of article may be a possible name for an action_name.

Configuration Loqg

This table stores all configurations of users on database. When an insertion, deletion or
update is done, a row is inserted to the configuration log table. Like login log table, this
information is significant for security reasons. Storing configuration actions data in the
database provide us to control the configurations done on database by each user and when
this configuration is done.

log id*: This field specifies the configuration log uniquely. It is the primary key of the
entity and incremented automatically.

user_id*: This attribute specifies the user who does the configuration. This user id is a
foreign key to the Users table.

log_datetime*: This timestamp attribute stores the date and time of the configuration.

42

action_no*: This integer stores the information of which configuration is done by the
user specified by user id attribute. Since action types table stores all actions can be
applied by users, this attribute is a foreign key to action_types table.

id*: id attribute stores the id of the message, newsgroup or user on which configuration is
done. Since action_no table is storing whether the configuration is applied on a message,
a newsgroup or a user, it is easy to determine the id is related with whether a message, a
newsgroup or a user. By using this id and other attributes of this table, a config_log tuple

can easily be created.

Online users

When a user logs in, id of that user is inserted into this table. When that user logs out, the
id is deleted from the table. We will show online users in our web module.

user_id*: This is the primary key and references the user_id field in users table.

Private messages

Users will be able to send messages to other users. For each user, we will store messages
that are sent to him/her. User will be able to see the messages when he/she logs in to the
system. After reading the message, user can reply to that message. We will display
message history to the users.

receiver_id*: This is the user id of the user to whom the message is sent.

sender_id*: This is the user id of the user who sent the message.

date time*: When the message is sent, the date and time of the message will be hold in
date_time field in date format.

content: This attribute holds the content of the private message.

Entity Descriptions for Archive Database

We are supposed not to delete old articles. As a result of this, after a period, there will be
a great deal of articles and the database will begin to be congested. In such a situation,
database access and retrievals will be slow. For this reason, we came up with a decision
of archiving old articles. We have an archiving criterion based on article load. For each

newsgroup, when a specific article load is exceeded, we archive some amount of articles

43

for that group. This criterion can differ for different newsgroups. We will keep an archive
database and store the archived articles there. If the user wants to retrieve an archived
article, the content of the article will be retrieved from archive database. However,
retrieving an archived article will be a rare operation and most of the operations will
access our main database which will be faster after archiving mechanism.

Articles

This entity contains all necessary information about archived articles which are posted to
the news server. This information is the ones that are kept in ng_mails table in main
database, plus the content of the message.

Newsgroups

This entity is the same as Articles entity in main database except for the is_deleted and
deletion_datetime attributes of this newsgroups entity. is_deleted boolean attribute
specifies whether that newsgroup is deleted or not, since a deleted newsgroup can exist in
archive database but not main database. deletion_datetime attribute specifies the deletion
time of the newsgroup if it is deleted. Definitions of other attributes are as listed in

definition of main database entity.

In_ng

This table specifies a relation among articles and newsgroups in archive database.
Articles belong to newsgroups. We needed this relation only for this database, since in
archive database; we do not hold different tables for different newsgroups that list the
articles posted to that newsgroup.

article no*: This number specifies each article in the server uniquely; hence article no is
the primary key of the Ng_articles entity. This is a foreign key referencing to the Articles
table.

message_id*: This field is also held with article number because news readers may want
request any article by means of the universal message-ids.

ng id*: This field is a foreign key for this relation referencing ng_id of Newsgroups
entity. It defines which newsgroup the message belongs to.

» ng id and message id are primary key of the relation together.

44

4.2 Functional Modeling

4.2.1 Data Flow Diagrams

4211 LEVEL 0DATAFLOW DIAGRAM

. - Web-user's
Web-user ——"Commands & Daga

: L
Mail-user |—— Cmﬂ“*“

-
¥
oo o
T S = O
o ¥ L e=E =
s = =Bl ==
___.--"" =55 £ =
2o 55 £
= =d o
Admm - =B
=358 B3
= o mE A =
£33 b
Grr;.,T,rf. 4
=
i

//
‘\

/' NNTP-user

NNTP
Client \
2
Zy S
-2 ol
W - &
. =% = =
RS5/Atom kg %9 P-4
b Y A = o
et [T 98, %

Conliguration Infp

News Agent
Database

4 :

s Effectre
Gl

\ Mews S erver

Satisfied

Effectrve
i g

Satistied
Web-user

Satisfied
Maluser

hlanagement

45

4.2.1.2 LEVEL 1DATAFLOW DIAGRAM
Receiye g
Request RSS Client

Feed una
Latus [nfo
pratt

L"‘

\qgnhwﬂ

Users
:c
L Feed Tree
_xi‘; }
NNTP — o &
Client | ¢ &
G”"fna,,d liegy E):“)QK}
‘{a
Call
Related
Mapped Web Serviee
Request 2 o Di.spfay Stanyg
T Managem<™ FER five News
g isp! ay S Gy
Management

Web Web-clien .
eb Lser
Comimang
; T Newsgroups

Client Comnnds g Daig

N
s

¥ g O
- ot
SMTP co ; 3 ; &
Client 5 &
? E &F Co\
Digplay Statvs

Request

2
£
E
&
P
=
5
£
k4
Satishied
Mail-user

Articles \“

Newsgroups

46

4213 LEVEL 2 DATA FLOW DIAGRAMS

NNTP Client

/Cammands&[)al

d
al 1%
: "hﬁ‘t? =
NNTP UnaulhDrIZCdeT{;rP C“mmand
Client User Comm
Users 2
he ™ . :
5, = Web
4 ” E Sen?ce : }E{@b Sw'p-.
r;;}_.f- = ﬂj:f ﬁ"{ | ‘fC'g_l-
-J"(::‘ /ff‘% l‘.'.gtt
C“ ll%
I"J% " ocf ' \-l%%
I @%/qé'ﬂ
e .d})@" ".3‘,-5

%
ogin Inf, ‘W.pf. \
e “ Satisfied NNTP
: Clhient

47

Web Client

/C ommands& Dat

Web Unauthorized Wehb
St User Command
e
252
bﬁb Qﬁ? B o
69 '\I} P T
| ¥ o 58
' 57 r
6 S7
o = T
s =4
¢
Gy,
& %,
%% |
o eh SF“:;:‘
e a—Ca Red
l Web
Ogin Infy __S_c_““‘f__ 1
\ Sbendbﬂc
Gty Inf; disried Web
Lty g — Loginlog an (V] Sati Cs. ol
N Re = » Client
e Tested g,

48

New Article

RSS/Atom
Client
(Reader)

Feed Tree

ced Nodd

49

SMTP
Client

50

se
_siou? wpd 5
NETEE nfe

e

Update
ewsgrou|
Request

Newsgroups
taws 1nfo
Retrieve
TewsiEtow
chuest N —
£
&
s &
s
T
%%b
Web Service
all chulast WS BT

1atus info

Mews Web
Service Command

rewsupdate____———p-
Info
i {{Dd.
Handle upld‘,, dre
ews Web 5 Neuw
gcw‘lcc o e‘l'!.rﬁ'x; \‘
3 —
L
f;.%’?q? Lany,, I ﬁ;__.!/
Jé’l ."‘:4;1@6(}
G L b
m A£G 0 |
2 ' -’aﬁy‘. Retrieve
) -
%-:4_ Request A
o %)
a%c.. Status lnfo—/
Update
Handle update User I
User Weh REq11ss|_-_'""““~L —
Service Request m
£, tatus Info
&, b e
q’/“_l ?'%::eb
ey,

Retrieve
User
Request

Status Info

51

4.2.2 Process Specifications (PSEPC)

4.2.2.1 PSPECs for NNTP Module
PSPEC : Interact with NNTP Client

This process controls interaction for users who want to reach articles through NNTP Module.
These users are people who uses e-mail and news client software packages. When interacting
with NNTP Client, NNTP commands and data will be handled and these data will be sent to
the NNTP User Authentication process. However, if user wants to reach articles which can be
accessible by unauthenticated users and did not send authentication data, he/she will be able
to access newsgroups which have access level providing unauthenticated user accesses and
their articles.

PSPEC : NNTP User Authentication

Corresponding to the information sent from Interaction with NNTP Client, in this process
database access is handled for a control of username and password to specify user group of
the user. After the control, the result action can be authenticated user authentication or
rejection of user authentication data. User may send authentication data again if user
authentication command was rejected or he/she may act as an unauthenticated (if user wants
to reach articles which can be accessible by unauthenticated users and did not send
authentication data.) or authenticated user (if user authentication data has been already
accepted.). According to the result of authentication process, LoginLog table is updated and
its return status is handled. Unauthenticated NNTP users should specify their names and
passwords as anonymous; however that is not the case for web users.

PSPEC : Map NNTP Command

NNTP User Commands are sent from authenticated or unauthenticated users and these
commands are mapped to predefined NNTP commands. For instance, when user wants to post
an article to a newsgroup, its mapped command will be sent to Handle NNTP Commands
process. By having a Map NNTP Command process, a modular design is established for
handling NNTP Commands.

PSPEC : Handle NNTP Command

Mapped NNTP Commands are handled by this process. According to the mapped command
retrieved, related web service is called.

PSPEC : Process Related Web Service

Since mapped NNTP Command has already been determined by Map NNTP Command

process and its related web service has already been determined by Handle NNTP Command

52

process, it is not a big deal to processing related web services. Detailed explanations about
Web Service processes are in Web Service processes part. In short, Web Service processes
handle each web service and by this way, the core of NewsAgent is accessed via web
services. Modularity is the main point for having such a Web Service processes.

Processing related web services (corresponding to the commands of NNTP user) ends NNTP

Module with a satisfied NNTP User.

4.2.2.2 PSPECs for Web Module
PSPEC : Interact with Web Client

This process controls interaction for users who want to reach articles through Web Module.
These users are people who uses NewsAgent web user interface. When interacting with Web
Client, user commands and data will be handled and these data will be sent to the Web User
Authentication process. However, if user wants to reach articles without any authentication
process, he/she will be able access some newsgroups specified as accessible without
authentication (in fact, access levels of newsgroups are specifications).

PSPEC : Web User Authentication

Corresponding to the information sent from Interaction with Web Client, in this process
database access is handled for a control of username and password to specify user group of
the user. Validity message or invalid user data will be returned from database access. If the
validity message is returned from database access, user access level is also returned to specify
to which groups will be accessible for user. After the control (according to the validity
message), the result action can be authenticated user authentication or rejection of user
authentication data. User may send authentication data again if user authentication command
was rejected or he/she may act as an unauthenticated (if user wants to reach articles which can
be accessible by unauthenticated users and did not send authentication data.) or authenticated
user (if user authentication data has been already accepted.). According to the result of
authentication process, LoginLog table is updated and its return status is handled.

PSPEC : Map Web Command

Web User Commands are sent from authenticated or unauthenticated web users. Users will
send their commands by using the web interface of NewsAgent. For instance, when user
wants to list articles of a newsgroup, he/she should click on the name of newsgroup from the
list of all newsgroups. After the specification of web user command, its mapped command
will be sent to Handle Web Client Commands process. By having Map Web Command

process, a modular design is established for handling Web Client Commands.

53

PSPEC : Handle Web Client Command

Mapped Web Client Commands are handled by this process. According to the mapped
command retrieved, related web service is called.

PSPEC : Process Related Web Service

Since mapped Web Client Command has already been determined by Map Web Command
process and its related web service has already been determined by Handle Web Client
Command process, it is not a big deal to processing related web services. Detailed
explanations about Web Service processes are in Web Service processes part. In short, Web
Service processes handle each web service and by this way, the core of NewsAgent is
accessed via web services. Modularity is the main point for having such a Web Service
processes.

Processing related web services (corresponding to the commands of NNTP user) ends NNTP

Module with a satisfied NNTP User.

4.2.2.3 PSPECs for RSS/ATOM Module

Feed Updates are handled by this module. As mentioned earlier, NewsAgent will have feed
trees for each newsgroup and users will be able to subscribe each of them according to their
user groups. After updated RSS/ATOM readers will be able to retrieve updated article or

newsgroup information.

PSPEC : Update Feeds

Update feeds is the start process for updating feed trees. When there is a post, delete or in
general term an update on a newsgroup or article, update feeds process is started and
necessary update information is supplied to this process.

PSPEC : Create New Feed Node

When necessary information for an update is supplied by Update Feeds process to Create
New Feed Node, it creates a new free (not bound to any feed tree) feed node for insertions to
feed trees of different newsgroups.

PSPEC : Insert Feed Node to Feed Tree

After the creation of a new free feed node by Create New Feed Node process, feed node is
ready to be inserted to feed trees of newsgroups. Insert feed node process establishes a
connection to feed trees for newsgroups to which new feed node will be inserted. For each
feed tree that the new feed node will be inserted to, this process sends all data related with the
created free feed node and the newsgroup specification (for specifying to which feed tree the

feed node will be inserted to). After the insertion of the new feed node, status information is

54

handled again by this process. This design of Insert Feed Node to Feed Tree process is, in
fact, so useful to handle cross-posting.

After all processes of RSS/ATOM module, when a user requests the feed of any newsgroup,
he/she will be able to get an updated version of feeds by the help of an RSS/ATOM reader.

4.2.2.4 PSPECs for SMTP Module

In fact, this module consists of two sub-modules, one for sending mails to mail-users and one
for receiving mails from mail-users. By using this module mail users will be able to post an
article to newsgroups and receive articles that are posted to newsgroups via e-mail from
NewsAgent server.

PSPEC : Interact with User (Port Listener)

This process interacts with mail user and when there is a new e-mail sent to any newsgroup of
NewsAgent, port listener will handle it. In fact, since NewsAgent will use James SMTP
Server, this will be handled by it.

PSPEC : SMTP User Authentication

SMTP User Authentication process gets SMTP User Authentication request from James
SMTP Server and sends a new e-mail to the sender to verify whether the sender is correct or
not. After the verification of the sender, mail can be posted to the related newsgroups as
articles. By this way, spams will not be posted as articles to newsgroups and this will be a
significant point for security. In fact, verification step makes SMTP User Authentication
process different from authentication in other modules.

PSPEC : Process Mail Command

After the authentication of mail-user, commands will be produced for converting the mail to
article format and sending it to specified newsgroups. Unauthenticated users will also be able
to send mail to any of the newsgroups and again verification step will be handled for them.
PSPEC : Map Mail to Article

After the specification of commands, mail should be mapped to article. By this way, mail will
be converted to article format and after that point mail will be sent to newsgroups as if it was
simply an article. Since it will be handled as an article related web services will be called to
insert the article to specified newsgroups.

PSPEC : Create Mail Sender Object

When necessary information for an update is supplied by Web Service processes to Create

Mail Sender Object process, it creates a new Mail Sender object and this object will be passed

55

to Send Mail to Clients process. Coming data from Web Services part are explained in Web
Service process part in a detailed manner.

PSPEC : Send Mail to Clients

Creation of a Mail Sender Object is necessary before the application of this process. Since it
has already been done by Create Mail Sender Object process, after a control from the database
for mail users of the newsgroups to which the new article is sent, by using Mail Sender
Object, a mail is created (content of the mail can be retrieved from Mail Sender Object and
receipants are retrieved from the database.) and sent. By this way, a mail user will be able to
receive posts to newsgroups that he/she has subscribed beforehand.

Since user will be able to send mails to newsgroups of NewsAgent and receive new articles
via e-mail, mail-users will have most of the opportunities that Web or NNTP users have.
PSPECs for Web Service Processes

As explained in the process specifications of modules, when NewsAgent core will be
accessed, this will be done by the help of web services. This provides modularity in
NewsAgent.

PSPEC : Process Command

Web services will be called by processes according to the command that should be processed.
Process Command process is gate keeper for accessing web services. According to the request
it diverts data and command to related web services. There are three Web service sub-
modules; newsgroup, news, user which access newsgroup, article and user data respectively to
retrieve, insert or modify specified data in the command and data attached to it.

PSPEC : Handle Newsgroup Web Service

This process handles web services related to newsgroups. When an update or retrieval
on/from Newsgroups and its related tables on the database, Handle Newsgroup Web Service
will be activated by Process Command process. Depending on whether the data will be
retrieved or updated, it diverts command and data to one of the processes named as Call
Related Update Newsgroup Web Service and Call Related Retrieve Newsgroup Web Service.
PSPEC : Call Related Update Newsgroup Web Service

Updates on Newsgroups table will be done through this process. For instance, when name of a
newsgroup will be changed, this process will handle the connection to the database and will
make the specified change on Newsgroups table. In fact, it will be reasonable to update some
related data in other tables according to the updates on Newsgroups table such as Configlog.
In addition to that, when name of a newsgroup is changed, newsgroup name for Ng_articles

and Ng_mails will be changed. Also, after an update on a newsgroup, this should be reported

56

to mail-users and RSS users. NewsAgent server will send mails to mail-users of the updated
newsgroup (Note that data named as Newsgroup Update info exist also in DFD for SMTP
Module). For reporting the update to RSS users, an article will be sent automatically to a
specific newsgroup (such as newsagent.announce.admin), by this way, users who are
subscribed to this newsgroup will be informed about the change.

PSPEC : Call Related Retrieve Newsgroup Web Service

Retrieves from Newsgroups table will be done through this process. For instance, when
articles of a newsgroup will be listed, this process will handle the connection to the database
and will retrieve the specified data from Newsgroups table. Since retrieval will not modify
any data about newsgroups there is no need to handle cases in Call Related Update
Newsgroup Web Services.

PSPEC : Handle News Web Service

This process handles web services related to articles. When an update or retrieval on/from
Articles and its related tables on the database, Handle News Web Service will be activated by
Process Command process. Depending on whether the data will be retrieved or updated, it
diverts command and data to one of the processes named as Call Related Update News Web
Service and Call Related Retrieve News Web Service.

PSPEC : Call Related Update News Web Service

Updates on Articles table will be done through this process. For instance, when a new article
is posted to a newsgroup, this process will handle the connection to the database and will
make the specified change on Articles table. In fact, it will be reasonable to update some
related data in other tables according to the updates on Articles table such as
Configuration_Log. In addition to that, when a new article is posted to any newsgroup, a new
tuple should be inserted to table Ng_articles (for related newsgroups only, of course). Also,
after a new article is posted, this should be reported to mail-users and RSS users. NewsAgent
server will send articles to mail-users via e-mail (Note that data named as News Update info
exist also in DFD for SMTP Module). Since article will be added to feed trees of specified
newsgroups, RSS users will easily access new posted articles.

PSPEC : Call Related Retrieve News Web Service

Retrieves from News table will be done through this process. For instance, when article
content will be retrieved, this process will handle the connection to the database and will
retrieve the specified data from Articles table. Since retrieval will not modify any data about

articles there is no need to handle cases in Call Related Update News Web Services.

57

PSPEC : Handle User Web Service

This process handles web services related to users. When an update or retrieval on/from Users
and its related tables on the database, Handle Users Web Service will be activated by Process
Command process. Depending on whether the data will be retrieved or updated, it diverts
command and data to one of the processes named as Call Related Update Users Web Service
and Call Related Retrieve Users Web Service.

PSPEC : Call Related Update User Web Service

Updates on Users table will be done through this process. For instance, when a new user is
added, this process will handle the connection to the database and will insert data about the
user to Users table. In fact, it will be reasonable to update some related data in other tables
according to the updates on Users table such as Configl.og.

PSPEC : Call Related Retrieve User Web Service

Retrieves from Users table will be done through this process. For instance, a user wants to see
his/her account information details this process will establish the database connection and
retrieval will be performed.

In general, Web Service Processes is the heart of NewsAgent, since it is the only way to
access to database. That is why it is accessible from each module. According to the result of
any retrieval or modification by any web service, status information will be returned and
according to that some other actions will be performed such as sending Newsgroup Update

Info to SMTP module.

4.2.3 Data Dictionary

Name: NNTP Client Commands&Data

Aliases: NNTP Requests
Where used/how used: NNTP Client (Output)

Interact with the NNTP Client 1.1 (Input)

Description:
NNTP Client sends requests as in format stated in RFC-977. It also sends the required article

information like server specific article number or universal message id.

Name: NNTP User Authorization Request
Aliases: NNTP Authentication
Where used/how used: Interact with the NNTP Client 1.1 (Output)

NNTP User Authorization 1.2 (Input)

Description:

If the user wants to access to a field which is not accessible by unauthorized users, system wants
the user to send his/her crypted username and password information. Afterwards client sends the
authentication request to the system.

58

Name: User Info
Aliases: Username & Password
Where used/how used: NNTP User Authorization 1.2 (Output)

Users (Database) (Input)

Description:

To authenticate the user who applied through authentication request, user’s username and hashed
password is sent to the database. The passwords’ encrypted forms are matched to send back
validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

NNTP User Authorization 1.2 (Input)

Description:

If the password which the user entered matches with the one in the system database, a signal
indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: NNTP User Authorization 1.2 (Output)

LoginLog (Database) (Input)

Description:

To assure security criteria of NewsAgent, every login action is logged in the system. User’s
identifier, login date and time, the machine which the user connected to the system and a
descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

NNTP User Authorization 1.2 (Input)

Description:

This data is the result for acknowledgement indicating that the log information is successfully
inserted into the database.

Name: Authorized NNTP Commands
Aliases: Authenticated NNTP Requests
Where used/how used: NNTP User Authorization 1.2 (Output)

Map the NNTP Command 2.1 (Input)

Description:

Authenticated NNTP Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized NNTP User Commands
Aliases: Unauthenticated NNTP Commands
Where used/how used: Interact with the NNTP Client 1.1 (Output)

Map the NNTP Command 2.1 (Input)

Description:

NewsAgent will be flexible to allow editing the security preferences. If it is wanted, users may be
allowed to access the specified resources, articles from the database through the web services.

59

Name: Mapped NNTP Command
Aliases: None
Where used/how used: Map the NNTP Command 2.1 (Output)

Handle NNTP Commands 5.1 (Input)

Description:

The NNTP commands taken through the port are parsed and mapped to the convenient functions
of the system. This data is the corresponding function calls of NNTP standard commands.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle NNTP Commands 5.1 (Output)

Process Related Web Service 6.1 (Input)

Description:

This information is used to find the related web service. Actually, this link is used to obey the
conventions. UDDI is not used in NewsAgent because we already know which web service does
what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)

Description:

This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive types
and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied NNTP Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Web Client Commands & Data
Aliases: Web Client’s Requests
Where used/how used: Web Client (Output)

Interact with Web Client 1.3 (Input)

Description:

Web Client sends his/her requests to the system through NewsAgent web module.
Name: Web User Authorization Request

Aliases: Web User Authentication

Where used/how used: Interact with the Web Client 1.3 (Output)
Web User Authorization 1.4 (Input)

Description:

If the user wants to access to a field which is not accessible by unauthorized users, system wants
the user to send his/her crypted username and password information. Afterwards client sends the
authentication request to the system.

60

Name: User Info
Aliases: Username & Password
Where used/how used: Web User Authorization 1.4 (Output)

Users (Database) (Input)

Description:

To authenticate the user who applied through authentication request, user’s username and hashed
password is sent to the database. The passwords’ encrypted forms are matched to send back
validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

Web User Authorization 1.4 (Input)

Description:

If the password which the user entered matches with the one in the system database, a signal
indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: Web User Authorization 1.4 (Output)

LoginLog (Database) (Input)

Description:

To assure security criteria of NewsAgent, every login action is logged in the system. User’s
identifier, login date and time, the machine which the user connected to the system and a
descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

Web User Authorization 1.4 (Input)

Description:

This data is the result for acknowledgement indicating that the log information is successfully
inserted into the database.

Name: Authorized Web Commands
Aliases: Authenticated Web Requests
Where used/how used: Web User Authorization 1.4 (Output)

Map the Web Command 3.1 (Input)

Description:

Authenticated Web Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized Web User Commands
Aliases: Unauthenticated Web Commands
Where used/how used: Interact with the Web Client 1.3 (Output)

Map the Web Command 3.1 (Input)

61

Description:

NewsAgent will be flexible to allow editing the security preferences. If it is wanted, users may be
allowed to access the specified resources, articles from the database through the web services.

Name: Mapped Web Command
Aliases: None
Where used/how used: Map the Web Command 3.1 (Output)

Handle Web Client Commands 5.2 (Input)

Description:

The Web commands taken through the port are parsed and mapped to the convenient functions of
the system.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle Web Commands 5.2 (Output)

Process Related Web Service 6.2 (Input)

Description:

This information is used to find the related web service. Actually, this link is used to obey the
conventions. UDDI is not used in NewsAgent because we already know which web service does
what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)

Description:

This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive
types and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied Web Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: New Article Request

Aliases: None

Where used/how used: RSS/ Atom Client — Reader, Aggregator (Output)
Feed Tree (Input)

Description:

RSS/Atom readers need the endpoint of the feed to subscribe. When they connect to the feed, they
can subscribe them easily out of the responsibility of NewsAgent.

Name: Feed Update Info
Aliases: None
Where used/how used: Update Feeds 11.1 (Output)

Create New Feed Node 11.2 (Input)

Description:

When an article is posted to the system, after insertion to the database a feed entry is prepared
automatically to add to the feed. This procedure is also followed when any deletion or update
operation.

Name: Feed Node
Aliases: Feed Entry
Where used/how used: Create New Feed Node 11.2 (Output)

Insert Feed Node to Feed Tree 11.3 (Input)

Description:
This is the newly created or edited feed entry which will be added to the feed tree of the

corresponding news group.

Name: Feed Node Info

Aliases: None

Where used/how used: Insert Feed Node to Feed Tree 11.3 (Output)
Feed Tree (Input)

Description:

After required operations are done on the created or edited Feed Node it is transferred to the tree
and added to the tree as a new node.

Name: Status Info
Aliases: None
Where used/how used: Feed Tree (Output)

Insert Feed Node to Feed Tree 11.3 (Input)

Description:

The result of the add operation of the new node to the tree is returned to inform the system about
the success or failure of node operation on the tree.

Name: SMTP Command & Data
Aliases: None
Where used/how used: SMTP Client (Output)

Interact with User 1.5 — Port Listener (Input)

Description:
Mail Client sends his/her requests to the system through NewsAgent mail module. Actually this is

an electronic mail which has the address of a newsgroup in the system.

Name: SMTP-User Authorization Request
Aliases: SMTP-User E-Mail Address
Where used/how used: Interact with User — Port Listener 1.5 (Output)

SMTP-User Authorization 1.6 (Input)

Description:

If the user attempts to send e-mail to a non-public newsgroup, his/her e-mail address is checked if
it is already subscribed to that newsgroup’s email subscription table. This data is the mail address
of the user which is parsed out from the e-mail.

Name: Authorized SMTP Commands
Aliases: Authenticated SMTP Requests
Where used/how used: SMTP-User Authorization 1.6 (Output)

Process Main Command 7.1 (Input)

63

Description:

If the user is authorized to send mail to the specified newsgroup it is carried as an authenticated
command.

Name: Unauthorized SMTP Commands
Aliases: Unauthenticated SMTP Requests
Where used/how used: Interact with User — Port Listener 1.5 (Output)

Process Main Command 7.1 (Input)

Description:

If the user is not authorized to send mail to the specified newsgroup it is carried as an
unauthenticated command. And it is rejected.

Name: Mail Info
Aliases: Node
Where used/how used: Process Main Command 7.1 (Output)

Map Mail to Article 7.2 (Input)
Description:

If the mail is decided to be posted to the server, it should be converted to the convenient data type.
This information is processed and mapped to an article data.

Name: Insert Article to Newsgroup Web Service Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Map Mail to Article 7.2 (Output)

Web Service (Input)

Description:

This data is the SOAP message which is required to invoke web services and carry information
between the services and the invokers. The parameters, returning values including primitive types
and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied SMTP Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Newsgroup Update Info
Aliases: None
Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)

Satistied SMTP Client 8.1 (Input)

Description:

If any change occurs in the database related to the newsgroups this information is also transferred
to the mail module to publish this event to the subscribers of the newsgroup. Or if a new
newsgroup is created, this event is published to all users of the system to make them aware of the
newly created newsgroup.

Name: News Update Info
Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

64

Satisfied SMTP Client 8.1 (Input)
Description:

If any change occurs in the database related to the articles this information is also transferred to
the mail module to publish this event to the subscribers of the newsgroup which the article
belongs to. Or if a new article is posted, it is mailed to the subscribers of the corresponding
newsgroup.

Name: Mail Sender Object
Aliases: None
Where used/how used: Satisfied SMTP Client 8.1 (Output)

Send Mail to Clients 8.2 (Input)

Description:

This is the mail object which is formed from the article object. This data will be directly converted
to the electronic mail to be sent to the mail client.

Name: Mail
Aliases: None
Where used/how used: Send Mail to Clients 8.2 (Output)
SMTP Client (Input)
Description:
The electronic mail which is sent to the mail client.
Name: Web Service Call Request
Aliases: None
Where used/how used: Map Commands to Web Service Commands (Output)

Process Command 5.1 (Input)

Description:

The data in Web Service Call Request is a mapped command which specify the web service call
that should be processed. All Web service calls are made through this data. Data specified in Web
Service Call Request are in fact an interface for a database access.

Name: Newsgroup Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle Newsgroup Web Service 6.3 (Input)
Description:

Newsgroup Web Service Command specifies Newsgroups table will be accessed in the database.
Newsgroup Web Service Handler will manage this data to determine the effect of it on the
database, whether it is retrieval or update command.

Name: Handle Update Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)

Call Related Update Newsgroup Web Service 9.1 (Input)

Description:

This data is an update command web service for newsgroups. Since update on newsgroups or
creation of a new newsgroup will cause updates on the database, namely on Newsgroups table, all
update command on a newsgroup will flow through this data. We have considered the creation of
a new newsgroup also as an update, since there will be a change on Newsgroups table.

65

Name: Handle Retrieve Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)
Call Related Retrieve Newsgroup Web Service 10.1 (Input)

Description:

This data is a retrieve command web service for newsgroups. Retrieval is any access to the
database that does not cause any change on database. For this data, it is only retrievals from
Newsgroups table in the database. This data should be processed so that which data about any
newsgroup will be retrieved. This is done in Call Related Retrieve Newsgroup Web Service
process.

Name: News Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle News Web Service 6.4 (Input)
Description:

News Web Service Command specifies Articles table will be accessed in the database. News Web
Service Handler will manage this data to determine the effect of it on the database whether, it is
retrieval or update command.

Name: Handle Update News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)
Call Related Update News Web Service 10.2 (Input)

Description:

This data is an update command web service for articles. Since update on an already posted article
or posting a new article will cause updates on the database, namely on Articles table, all update
command on Articles table will flow through this data. We have considered posting a new article
is also as an update, since there will be a change on Articles table.

Name: Handle Retrieve News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)

Call Related Retrieve News Web Service 9.2 (Input)

Description:

This data is a retrieve command web service for articles. Retrieval is any access to the database
that does not cause any change on database. For this data, it is only retrievals from Articles table in
the database. This data should be processed so that which data about any article will be retrieved.
This is done in Call Related Retrieve News Web Service process.

Name: User Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle User Web Service 6.5 (Input)
Description:

User Web Service Command specifies Users table will be accessed in the database. User Web
Service Handler will manage this data to determine the effect of it on the database whether, it is
retrieval or update command.

Name: Handle Update User Web Service Request

66

Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Update User Web Service 10.3 (Input)

Description:

This data is an update command web service for users. An update on Users table will flow
through this data. Although mostly account information of any user may be changed by admin of
NewsAgent, users themselves can, of course, change their account information. All these changes
on Users table is named as an update in web service of NewsAgent.

Name: Handle Retrieve User Web Service Request
Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Retrieve User Web Service 9.3 (Input)

Description:

This data is a retrieve command web service for users. Retrieval is any access to the database that
does not cause any change on database. For this data, it is only retrievals from Users table in the
database. This data should be processed so that which data about any article will be retrieved. This
is done in Call Related Retrieve User Web Service process. Mostly retrieving any user account
information will be accessed by admin of NewsAgent.

Name: Newsgroup Update Info

Aliases: None

Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)
Create Mail Sender Object 8.2 (Input)

Description:

This data specifies all changes on Newsgroups table on the database. Any update information for
Newsgroups table will flow through this data. Newsgroup name update is an instance of such
data. This data specifically used for sending mails to all users who request mails from news server
or only users who request mail from this newsgroup. For instance, when a new newsgroup is
created, it is reasonable to send mail to all mail users of NewsAgent, however when a name
update of a newsgroup is applied, it is reasonable to send mails only to mail users who request
mail only from the updated newsgroup.

Name: News Update Info
Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

Create Mail Sender Object 8.2 (Input)

Description:

This data specifies all changes on Articles table on the database. Any update information for
Articles table will flow through this data. Article name update is an instance of such data. This
data specifically used for sending mails to all users who request mails from news server or only
users who request mail from newsgroup that the article belongs to.

Name: Update User Request

Aliases: None

Where used/how used: Call Related Update User Web Service 10.3 (Output)
Users (Input)

Description:

This data specifies all changes on Users table on the database. Any update information for Users
table will flow through this data. User name update by an admin is an instance of such data.

67

Name: Retrieve Newsgroup Request

Aliases: None
Where used/how used: Call Related Retrieve Newsgroup Web Service 10.1
(Output)

Newsgroups (Input)
Description:
This data specifies all retrieves from Newsgroups table on the database. Any retrieval information

from Newsgroups table will flow through this data. Newsgroup name retrieval by a user is an
instance of such data.

Name: Retrieve News Request

Aliases: None

Where used/how used: Call Related Retrieve News Web Service 9.2 (Output)
News (Input)

Description:

This data specifies all retrieves from Articles table on the database. Any retrieval information
from Articles table will flow through this data. Article header retrieval by a user is an instance of
such data.

Name: Retrieve User Request

Aliases: None

Where used/how used: Call Related Retrieve User Web Service 9.3 (Output)
Users (Input)

Description:

This data specifies all retrieves from Users table on the database. Any retrieval from Users table
will flow through this data. User name retrieval by another user is an instance of such data.

Name: Status Info
Aliases: None
Where used/how used: Database (Output)
Update/Retrieval Web Service (Input)

Description:

This data specifies whether the update/retrieval is completed successfully or not. In fact, this data
is used for controllable database applications.

68

5 CLASS DIAGRAMS

5.1 Article Management Module

calls

Article

o LD -insssags il bagant
: -subject: strng
+eenetatehdail(} -cotent siring
Hnailsencen v _date date
~fronn_ el bagind
-t bdad: stong
NewsWebService -replyTo: strng
crzates uses fullowipTo. guig
+postArtcle) : . -rafayVersion shng
+getHeadersi) -postingVersion: siring
+etBodyi) -line:_i uteger
et Article() -axpires: date
+getMgArticles() -references: sting
+getPrevious Asticle() -distnbtion stang
+getMext Article() ~conttrol string
g ArticlesAfterDate)
+gzt=atmbute name)
+act<attnbute name={}
E calls
FeedGenerator
-fezdTrees: FeadTree|] NewsDatabaseAccess
-hostmame: string
+%r¢TF¢¢4ﬂ" rehu -pronfi ibegsy
tsetFeedTiees() s -sEmALE sting
+addMNewFaad() -password: string
rtdelemfeed() +eonnacti)
+updateFeed(} et AR
?ﬁgﬁfﬂm HetieveHeadss()

g +etieveBody()
+oonvertToFeadModeal) P,
+addNodeToFeed() B m‘;leq“
+deleteNodeFromFead() e
+gethMostUpdated Feed() i ﬁl' Aticled)
:ggz:‘tﬁ;g:ﬁ';jk HetneveArticlesBetorsDate()
+write AITFile(} i +retiieve Articles AfterDrate()

ArchiveManager
-archivePeniod: indeger
S1Ze itegey
+getArchivePemod)
tast ArcluvePenod()
+HgatSize)
+aetBize()
et Articles))
tarchiveCld Articles)
+eetExceedingNgl)
+archiveExceadinggi)

69

NewsWebService class is a web service that maintains all methods required for news
management. When it receives post article command, it calls MailHandler class and
FeedGenerator class.

MailHandler class sends e-mail to the users who are subscribed to the newsgroups
those include that article. It is described in Mailing Module in detail.

FeedGenerator class is called in order to append new article into feed. It is described
in Feed Generator module in detail.

Article class is created after a post article command. Created article instance is
returned to NewsWebService class and NewsDatabaseAccess is called in order to
insert that article to the database.

NewsDatabaseAccess class establishes connection with the database and creates
queries in order to retrieve data from database or insert data into database. Its methods
use these queries and do all the work related with articles.

ArchiveManager class works on its own and checks whether any newsgroup exceeds

the size limit or any articles exceeds time limit. Archiving is done according to these

parameters; the user selects which criteria to be used for archiving.

Article Class
Attributes

Name Type Description
message id string The unique message id assigned to the article
subject string The subject of the article
content string The content of the article
date date Posted date of the article
from_uid bigint Userid of the user who post the article
fromMail string Mail address of the user who post the article
replyTo string The message id of the replied article
followupTo string The message id of the article being followup to
relayVersion string The relayVersion of the article
postingVersion string The postingVersion of the article
lines integer Number of lines in the article
expires date The date which the article expires
references string The message_id of the article being referenced
distribution string The distribution of the article
control string The control of the article

70

Methods
Name

getmessage id
setmessage id
getsubject
setsubject
getcontent
setcontent
getdate

setdate

getfrom uid
setfrom_uid
getfromMail
setfromMail
getreplyTo
setreplyTo
getfollowupTo
setfollowupTo
getrelayVersion
setrelayVersion
getpostingVersion
setpostingVersion
getlines

setlines
getexpires
setexpires
getreferences
setreferences
getdistribution
setdistribution
getcontrol
setcontrol

Return Type Parameters
string void

void string message id
string void

void string subject
string void

void string content
date void

void date date

bigint void

void int userid

string void

void string mail

string void

void string replyto
string void

void string followupto
string void

void string relayVer
string void

void string postingVer
integer void

void int lines

date void

void date expires
string void

void string references
string void

void string distribution
string void

void string control

NewsWebService Class

Methods
Name

postArticle
getHeaders
getBody

Return Type Parameters
void void
String[] intng_id
String

Description

Returns the message id
Sets message id attribute
Returns the subject

Sets subject attribute
Returns the content

Sets content attribute
Returns the date

Sets date attribute

Returns the userid

Sets from_uid attribute
Returns the fromMail

Sets fromMail attribute
Returns the replyTo

Sets replyTo attribute
Returns the followupTo
Sets followupTo attribute
Returns the relayVersion
Sets relayVersion attribute
Returns the postingVersion
Sets postingVersion attribute
Returns the number of lines
Sets lines attribute

Returns the expire date
Sets expires attribute
Returns the references

Sets references attribute
Returns the distribution
Sets distribution attribute
Returns the control

Sets control attribute

Description

Posts article
Retrieves headers

String message id | Retrieves body of the article

71

getArticle Article String message id
getNgArticles Article[] intng_id
getPreviousArticle Article void
getNextArticle Article void
ngArticlesAfterDate | Article[] date date

MailHandler Class

Methods

Name Return Type Parameters
generateMail String[] Article article
mailSender void void

FeedGenerator Class

Retrieves article

Retrieves articles in newsgroup
Retrieves previous article
Retrieves next article

Retrieves articles posted after a
given date

Description
Generates email from an article

Sends email

Attributes
Name Type Description
feedTrees FeedTree[] Holds the feed trees of every newsgroup
Methods
Name Return Type Parameters Description

getFeedTrees FeedTree[] void Retrieves feed trees

setFeedTrees void Int[] ng_ids Sets feed tree contents

addNewFeed FeedTree[] Int ng_id Creates and adds new feed to
existing feed tree array

deleteFeed FeedTree[] Intng_id Delete a newsgroup feed from
feed tree array

updateFeed FeedTree[] Intng_id Update a newsgroup feed in
feed tree array

searchFeed FeedTree Int ng_id Search a feed in feed tree array

getFeed FeedTree Intng_id Retrieves a newsgroup feed

convertToFeedNode FeedNode Article article

addNodeToFeed FeedTree FeedNode fn
deleteNodeFromFeed | FeedTree FeedNode fn
serialize void FeedTree ft

NewsDatabaseAccess Class
Attributes

Converts the article to feed
node

Appends node to feed tree
Deletes node from feed tree

Serializes the tree as xml
document

72

Name Type Description
hostname string Holds the hostname of the database
portNo integer Holds the portNo of the database
username string Holds the username of the database
password string Holds the password of the database
Methods
Name Return Parameters Description
Type
connect Connection | String constr Connects to database
insertArticle Boolean Article article Inserts the posted article to
the database
deleteArticle Boolean String Deletes the specified article
mesage_id
retrieveHeaders String|[] Intng id Retrieves headers of the
newsgroup from database
retrieveBody String String Retrieves body of the article
mesage_id
retrieveArticle Article String Retrieves the specified
mesage_id article
retrieveNgArticles Article[] Int ng_id Retrieves the articles of the
newsgroup
retrievePrevArticle Article void Retrieves previous article
retrieveNextArticle Article void Retrieves next article
retrieveArticlesBeforeDate | Article[] date date Retrieves articles posted
before a given date
retrieveArticlesAfterDate Article[] date date Retrieves articles posted
after a given date
ArchiveManager Class
Attributes
Name Type Description
archievePeriod integer Holds the archiving period of the articles
size integer Holds the archiving size of the article
Methods
Name Return Type | Parameters Description
getArchivePeriod integer void Returns archive period
setArchivePeriod void Int period Sets archivePeriod attribute
getSize integer void Returns size

73

| setSize | void Int size ' Sets size attribute
getOldArticles Article[] date date Retrieves articles before a given
date
archiveOldArticles void void Inserts the old articles into
archive database
getExceedingArticles Article[] Int size Retrieves articles exceeding a
given size
archiveExceedingArticles | void void Inserts exceeding articles into
archive database
5.2 User Management Module
UserAdministration
UserManagementWebService
+addUser()
- +deletelser()
Hogng) calls +HinodifyUserRights)
+getUsarinfo) HisfLUsers()
+updateUserinfol) HistUserGrougs(}
+ehangePassword() +addUserGroup()
FaddUser() . . +deleteUserGroup() %
+deleteUser() _ ~ o HgetlISerTnfol)
+ modifyUserRights() TSl
+hstlUserGroups() .
+listUsers() ~ _
+addUserGrougd) . Login s
+delateUserGroup() “d-nsemame sting cazts
+subscription() -password: string UserDatabaseAccess
+getUsemame() -hostname: string
+setUseramed() -porthlo: integer
+eetPasswoid() -usemmame: string
+sendLogminfo() password: stiing
User +eonneet()
. id: bzt X +checkLogininfo()
_13:{;1“;%:;]@ calls +retnevellserlnfo)
createsses |-password. stiiig +unsertUserinfof)
-naime: string +updatePassword()
-surmame: string HnsertNewUser()
-dateOfBirth date tdeletellser)
-birthPlace: string “updateUserRights()
-phone: string createl) HetnevellsaGronps()
-e-mail: string efievel Jsers()
-signupDiate: date +nserMewUserGroup()
JastLoginDate: date +deleteUserGronp)

lastLoginl P sting
~removed Date: date
-groupld: integer
-picture: BLOB
-secretCuestion: string
-uestionAIBWer sting
+get<attnbute name={)
Saet<attnbute name={)
+updatellserlnfol)
+changePassword()
+getUserTndol)
subscription)

+nsertSubscoption()

» UserManagementWebService class is a web service that maintains all methods

required for user management. It calls UserAdministration, User and Login classes.

74

» UserAdministration class handles the administrative operations on users. When a

user wants to add, delete, modify users and usergroups, the related methods are called

and the modifications are reflected to the database. It calls UserDatabaseAccess class.

» Login class handles the login operation. It gets username and password and send login

info to database in order to be checked. It calls UserDatabase Access class.

» User class handles the user related operations of the user management such as update

user info, change login info, display user info etc. It calls UserDatabase Access class.

> UserDatabaseAccess class establishes connection with the database and creates

queries in order to retrieve data from database or insert, delete and modify data into

database. Its methods use these queries and do all the work related with users.

User Class
Attributes

Name
user_id
username
password
name
surname
dateOfBirth
phone
e-mail
signupDate
lastLoginDate
lastLoginIP
removedDate
groupld
picture
secretQuestion
questionAnswer

Methods

Name

getuser id
setuser_id
getusername
setusername

getpassword

Type
bigint
string
string
string
string
date
string
string
date
date
string
date
int
BLOB
string

string

Return
Type
int
void
string
void
string

Description

Holds user_id of the user

Holds username of the user

Holds password of the user

Holds name of the user

Holds surname of the user
Holds dateOfBirth of the user
Holds phone of the user

Holds e-mail of the user

Holds signupDate of the user
Holds lastLoginDate of the user
Holds lastLoginIP of the user
Holds removedDate of the user

Holds groupld of the user

Holds picture of the user

Holds secretQuestion of the user

Holds questionAnswer of the user

Parameters

void

int user_id
void

string username

void

Description

Returns the user id
Sets user _id attribute
Returns the username
Sets username attribute
Returns the password

75

setpassword
getdateOfBirth
setdateOfBirth
getphone
setphone
gete-mail
sete-mail
getsignupDate
setsignupDate
getlastLoginDate
setlastLoginDate
getlastLoginIP
setlastLoginIP
getremovedDate
setremovedDate
getgroupld
setgroupld
getpicture
setpicture
getsecretQuestion
setsecretQuestion
getquestionAnswer
setquestionAnswer
getUserInfo
updateUserInfo
changePassword
subscription

void
date
void
string
void
string
void
date
void
date
void
string
void
date
void
int
void
Object
void
string
void
string
void
User
void
void
void

string password
void

date date

void

string phone
void

string e-mail
void

date date

void

date date

void

string IP

void

date date

void

int gr id

void

Object pic
void

string question
void

string answer
int user_id

int user_id
String password
void

UserManagementWebService Class

Methods

Name

login

getUserInfo
updateUserInfo
changePassword
addUser
deleteUser
modifyUserRights

listUserGroups

Return Type
void

User
void
void
void
void
void

String[]

Parameters

String username,
String password

int user_id

int user id
String password
User user

int user_id

void

void

Sets password attribute
Returns the dateOfBirth
Sets dateOfBirth attribute
Returns the phone

Sets phone attribute

Returns the e-mail

Sets e-mail attribute
Returns the signupDate

Sets signupDate attribute
Returns the lastLoginDate
Sets lastLoginDate attribute
Returns the lastLoginIP

Sets lastLoginIP attribute
Returns the removedDate
Sets removedDate attribute
Returns the groupld

Sets groupld attribute
Returns the picture

Sets picture attribute
Returns the secretQuestion
Sets secretQuestion attribute
Returns the questionAnswer
Sets questionAnswer attribute
Retrieves user info

Updates user info

Changes password

Starts subscription process

Description
Starts the login process

Retrieves user info
Updates user info
Changes password
Adds new user

Deletes an existing user

Updates the access rights of the
usergroups

Retrieves all usergroups

76

listUsers User([] void Retrieves all users
addUserGroup void String groupname | Adds new user group
deleteUserGroup void String groupname | Deletes an existing user group
subscription void void Starts subscription process

UserDatabaseAccess Class

Description
Holds the hostname of the database
Holds the portNo of the database

Holds the username of the database
Holds the password of the database

Attributes
Name Type

hostname string

portNo integer

username string

password string

Methods

Name Return

Type

connect Connection

insertNewUser Boolean

deleteUser Boolean

retrieveUserInfo User

checkLoginInfo Boolean

retrieveUsers User][]

retrieveUserGroups String|]

insertNewUserGroup Boolean

deleteUserGroup Boolean

updatePassword void

insertSubscription Boolean

updateUserRights void

Login Class

Attributes

Name Type
username string

Parameters

String constr
User user

int user_id
Int user id

String username,
String password

void
void

String group
String group
String pwd

int user_id,
intng_id
String group

Description

Connects to database

Inserts the user to the
database

Deletes the specified user

Retrieves user info of the
user from database

Validates the login data

Retrieves all users from
database

Retrieves all usergroups
from database

Inserts new user groups
Deletes specified user group

Changes the existing
password

Inserts the subscription info
to the database

Updates the user rights of
the specified user group

Description

Holds the username of the articles

password

Methods

Name
getUsername
setUsername
getPassword
setPassword
sendLoginInfo

string

Return Type Parameters
string void

void String username
string void

void String password
void String username,

UserAdministration Class

Methods

Name
getUserInfo
updateUserInfo
changePassword
addUser
deleteUser
modifyUserRights

listUserGroups
listUsers
addUserGroup
deleteUserGroup
subscription

Return Type
User
void
void
void
void
void

String[]
User(]
void
void
void

String password

Parameters
int user id
int user id
String password
User user
int user_id
void

void
void
String groupname
String groupname
void

Holds the password size of the article

Description
Returns username
Sets username attribute
Returns password
Sets password attribute

Sends login data to the
database in order to be
controlled

Description
Retrieves user info
Updates user info
Changes password
Adds new user
Deletes an existing user

Updates the access rights of the
usergroups

Retrieves all usergroups
Retrieves all users

Adds new user group

Deletes an existing user group
Starts subscription process

78

5.3 Newsgroup Management Module

NaoManagemenfWebService

calls
NegDatabaseAccess
-hostname: sting
-portNo: integer

-nsemane; sting
-passwond: sting

+eet<attnbutename=()
+get<attnbutename=()
Feonnect()
+msertMewsgroup()
+ieleteNewsgroup
+madifyMNewsgroup()
+retrieveN ewsgronps()
+retieveNgAfterDatel)

calls

+addMNawsgroup()
HleleteMeawsgionp()
+modifyMewsGroup()
HistNewsgronps(}
+ngsCreated AfterDated)

Subscription

-nglly mteger
-user]D bagnt

+set=atinbatename =)
+get=attmbutename=()
+subscrbe()
Hnstibsenbel)
+sethalOption()
+resethail Optiond}

User
-user 1d: baging
-lsemalne: sinng
-password string
LA SHing
-SHITERITE: Siring
-dateOfBnthe date
birthPlace: string
-photee sting
-e-1nal; stong
-sigmipDate: date
dastLoginDate: date
AastLoginiP; shing
-remmoved Date: date
-grongplel infegsr
-picture: BLOB
-secrefljuestion: shing
-questionAnswer, sting

creates

+get=attnlate name=()
+set<attniute name=()
+updateUserlnfof)
+changePassword(}
+getlUserinfo)
+snbsenption()

» NgManagementWebService class is a web service that maintains all methods

required for newsgroup management. When system administrators request to list, add,

delete and modify a newsgroups, its methods addNewsgroup(), deleteNewsgroup(),

modifyNewsgroup() are invoked and the modifications are reflected to the database.

NgDatabaseAccess class establishes connection with the database and creates queries

in order to retrieve data from database or insert, delete and modify data into database.

Its methods use these queries and do all the work related with newsgroups.

Subscription class handles the user’s subscription and mailing option change. When a

user wants to subscribe to a newsgroup or unsubscribe from an existing one or request

to receive email related to the new posts to the newsgroup or request to cancel the mail

receiving option set before, the methods of the Subscription class are activated and

NgDatabaseAccess class is called in order to reflect the modifications to the database.

NgManagementWebService Class

Methods

Name
addNewsgroup

deleteNewsgroup

Return Type Parameters
Boolean String gr name
Boolean String gr name

Description

Adds new newsgroup with
specified name

Deletes the existing newsgroup
with the specified name

79

modifyNewsgroup void

listNewsgroups String][]
ngsCreatedAfterDate | String[]

NgDatabaseAccess Class
Attributes

Name Type
hostname string
portNo integer
username string

password string
Methods
Name

connect
insertNewsGroup

deleteNewsGroup
retrieveNewsgroups
modifyNewsgroup
validateNG

retrieveNewsgroupA fterDate

Subscription Class

Attributes
Name Type
nglD integer
userlD integer
Methods
Name Return

Type

String gr name Modifies the newsgroup with
the specified name

void Lists all newsgroups

date date Lists newsgroups created after
the given date.

Description
Holds the hostname of the database
Holds the portNo of the database
Holds the username of the database
Holds the password of the database

Return Parameters Description

Type

Connection | String constr Connects to database

Boolean String gr name | Inserts newsgroup to the
database

Boolean int id Deletes the specified
newsgroup

String[] void Retrieves newsgroups
from database

void int id Retrieves body of the
article

Boolean int id Returns if the specified

newsgroup is valid or not

String[] date date Retrieves articles posted
after a given date

Description
Holds the newsgroup id to be subscribed
Holds the userid of the user who requests to subscribe

Parameters Description

80

getngID
setngID
getuserID
setuserID
subscribe

unsubscribe

setMailOption

resetMailOption

integer
void
integer
void
void

void

void

void

void
Intng_id
void

Int user_id

Int user id,
Intng_id

Int user id,
Intng_id

Int user id,
Intng_id

Int user id,
Intng_id

Returns ngID

Sets ngID attribute
Returns userID

Sets userID attribute

Sets subscription request for the
specified user to the specified
newsgroup

Releases the subscription request
for the specified user to the
specified newsgroup

Sets receiving e-mail option for
the specified user and from the
specified newsgroup

Resets receiving e-mail option
for the specified user and from
the specified newsgroup

81

5.4 Web Module

L d

WebModule calls UserManagementForm AdministrativeLog |
srziuest: HitpSarvlat s ~oserID b_'g"“
szsponse; HitpServlet +changePassword]) -dnteTu_ne date
E i T, o : -logAction
sel: Laet +editSnbscoptionRegi) =
tgetRequesti) teditUseringol) Iff“ ’??:I[H;:
+setRequesti} bl

LR Cantollogin UserlnfoF orm +getDateTime()
+getResponse() -usemane: sting DateTimal
+sztResponsel) rond sk raetimic ey

-password: siring - - et A stignD)

il e calls ._ +olisplayUserlnfof) B
+setlsar) -t eiUErAne) : +retrieveUserinfof) At

etlUsen(efT T : :
+doGet() FEsilisadtey = +sendUpeates) tHnsertAdminlog()
+doPost() +zetPassword])) 1 [
4loginForm() +setPassword() SubscriptionForm

2 +checkLogind} : - =
+ejectForm) -nglDs: integer [| 5 2
+HiewT serFormm) -subscribedtlglDs: integer [] # %
+acceptF o) -subscribedbdalNglD: mt []
+userhanagemantFormi = -

el et AvadlableMNewsGroups)) ;

:E:;:mlismmemmﬂ HistHgEnbsenptonCheckBosxes() AR v eEne
Lot HandleNewsGroups HistMailSubsCheckBoxes()
HiandleMgSubscrptioneqi) gl e
T +Hhandlzhal SubsFeagi) HnanazsNewsEon s |
" st ewsGronps() Y :
calls calls +anbscnptionFomn) il mm&“mgememu
+get Articles(}
calls g
3
NewUserForm I
3 NghanagementForm
Hsignlipd) UserhanagementF orm (for admin)
Helisck Avadabdity{) (for admin)
HacldUser) b SOSPR—
" refisveNewsgrompal)
+av.;1;‘::::1331|_;_.1:|l:h:'::aﬂ MaitAddressConfirmation +ietnevel Tsers) +retrieveN ewsgronpl)
TR A +retnevellsarinfol) +raddNewsgronupi}
calls generate Lk +updatellserIngol) +ilzleteMevwsgronp()
FtaendConihail) +addNewlser +archivell g Articlss()
+acceptonfinuationlank) ileletel T2 FnpdateArticlas()
+aetllzerAccessRight() +edifUserPreferences() +elelete Anticled)

aetUserConp D

82

Web module classes are implemented in order to accomplish communication with the server
via web. The main WebModule class includes user, request and response attributes. The user
is an instance of User class, request is an HttpServletRequest and response is an
HttpServlerResponse. According to the request, this class calls ControlLogin class,
UserManagementForm class, HandleNewsGroups class, NewUserForm class or
AdministrativeForm class.

» ControlLogin class checks the login data (username and password) of the user from
database through UserManagementWebService.

» HandleNewsGroups class handles requests related with newsgroups such as
newsgroup listing, subscription and getting newsgroup articles. Listing and retrieving
articles are handled by NgManagementWebService and subscription method calls
SubscriptionForm. This class lists newsgroups than can be subscribed by that user,
shows checkboxes stating whether subscribed or not, whether the user wants e-mail or
not. If a user requests to subscribe, unsubscribe or set/reset mailing option, it handles
these requests.

» UserManagementForm class includes methods that are related with the user’s own
modifications on his/her info. Change password is accomplished by
UserManagementWebService, editing subscription info calls SubscriptionForm and
editing user info uses UserInfoForm.

» UserInfoForm class displays user info, retrieves user’s info after modifications and
sends this info into database via UserManagementWebService.

» NewUserForm class is called when a new user wants to be added. It checks
availability of the user to be added (e.g. e-mail conflict with another user or wrong e-
mail), if it is available, user is added to the database and MailConfirmation is called.

» MailConfirmation class generates links and sends this link to the user via e-mail for
confirmation. When user clicks the link from that e-mail, he/she will be authenticated
and user rights, user group for that user will be set.

» AdministrativeForm class includes administrative actions which can be
accomplished by admin type users. When an administrator modifies users, newsgroups
or articles, that means UserManagementForm or NgManagementForm classes are
called, actions realized by administrator are hold in an instance of the class

AdministrativeLLog class.

» UserManagementForm class includes methods related with the modifications on the

users made by administrator. These modifications are retrieving users, retrieving and

updating user info, adding and deleting users and editing user’s preferences.

» NgManagementForm class includes methods related with the modifications on the

newsgroups made by administrator. These modifications are retrieving newsgroup

names, retrieving a specified newsgroup, adding and deleting newsgroups, archiving

and articles. When administrator creates a newsgroup, he/she sends e-mail to all users

and when a newsgroup is deleted, an e-mail is sent to the users who are subscribed to

that newsgroup. Retrieving and updating user info methods use UserInfoForm class.

WebModule Class

Attributes

Name

request
response

user

Methods

Name
getRequest

setRequest
getResponse

setResponse
getUser
setUser
doGet

doPost
loginForm

rejectForm

newUserForm

Type
HttpServletR
equest

HttpServletR
esponse

User

Return Type

HttpServletR

equest
void

HttpServletR

esponse
void
User
void
void
void
void

void

void

Description
Holds the request

Holds the response

Holds the user info

Parameters
void

HttpServletRequest req
void

HttpServletResponse
void
User user

HttpServletRequest req,
HttpServletResponse res

HttpServletRequest req,
HttpServletResponse res
void

void

void

Description
Retrieves request

Sets request attribute
Retrieves response

Sets response attribute
Retrieves user info

Sets user attribute

Handles the Http Get requests

Handles the Http Post requests

Opens login form for the web
users for login operation

Rejects the form and sent
information

Opens a signup form for the
candidate users to signup

84

acceptForm void
userManagement | void
Form
administrativeFor | void
m
NewUserForm Class
Methods
Name Return Type
signUp void
checkAvailability Boolean
addUser Boolean
addMailAddress void
mailConfirmation void
UserManagementForm Class
Methods
Name Return Type
changePassword Boolean
editSubsReq void
editUserInfo void
HandleNewsGroups Class
Methods
Name Return Type
listNewsGroups String][]
subscriptionForm void
getArticles Article[]

ControlLogin Class

void

void

void

Parameters
User user
User user

User user

String addr
String addr

Parameters
String pwd

void

User user

Parameters
void
void

intng_id

Accepts the information sent
with the form

Opens form for user operations
such as update info etc

Opens form for administrative
operations

Description
Gets the sign up info and saves

Controls if there is missing or
invalid info

Adds the user in a different
category until confirmation

Saves mail address for confirmation
Sends confirmation mail to the user

Description

Gets new password from the user
and changes the password

Updates the subscription info for
the user

Gets new user info and updates
according to changes

Description
Lists all newsgroups

Opens a subscription formfor the
users in order to subscribe and set
mailing options

Retrieves articles for the specified
newsgroup

85

Attributes

Name
username

password
Methods
Name

getUsername
setUsername
getPassword
setPassword
checkLogin

Type
string
string

Return Type

String
void
String
void
Boolean

MailConfirmation Class

Methods

Name

generateLink
sendConfMail

acceptConfLink

setUserAccessRi
ght

setUserGrouplID

Return
Type
void
void

void
void

void

Description
Holds the username
Holds the password
Parameters Description
void Returns username
String uname Sets username attribute
void Returns password
String pwd Sets password attribute
void Controls whether the username and
password is a valid combination
Paramet | Description
ers
void Generates confirmation link
String Sends confirmation mail to the user
mail
void Accepts confirmation
void Sets access rights of the newly added
user
int id Sets usergroup id for the user

AdminUserManagementForm Class

Methods
Name
retrieveUsers
retrieveUserInfo
updateUserInfo

addNewUser

Return
Type

User([]
User

void

Boolean

Paramet

€rs

void
int
user id
int
user id
User
user

Description

Retrieves all the users

Retrieves the user info of a specified user
Updates user info

Adds new user to the system after
confirmation

86

deleteUser

editUserPreferen

Cces

Deletes user from the system

Updates some user preferences

Boolean int
user_id

void int
user_id

AdminNgManagementForm Class

Methods

Name

retrieveNewsgroups
retrieveNewsgroup

addNewsgroup

deleteNewsgroup

archiveNgArticles

updateArticles
deleteArticle

Return Type
String[]
String

Boolean

Boolean

Boolean

Boolean
Boolean

AdministrativeL.og Class

Attributes

Name
userID
datetime
logAction

Methods

Name

getUserID
setUserID
getdateTime
setdateTime
getLogAction
setLogAction

insertAdminLogs

Type Description
integer Holds the userID of the admin
dateTime Holds the date and time of the configuration
integer Holds the action type
Return Type | Parameters Description
integer void Returns userID
void Int user id Sets UserlD attribute
dateTime void Returns date and time of the action
void dateTime dt Sets dateTime attribute
integer void Retrieves log action type
void int act Sets logAction attribute
Boolean void Adds Configuration logs as a result

Parameters
void
intng_id
String name

intng_id

int ng_id,
String Criteria

intng_id
String mes_id

Description

Retrieves all newsgroups
Retrieves the newsgroup specified
by the ng_id

Adds a new newsgroup as a result
of admin request

Deletes the newsgroup with id
ng_id as a result of admin request

Archieve the articles in the
specified newsgroup according to
the criteria given

Updates some properties of articles

Deletes the article whose message
id is mes_id

87

SubscriptionForm Class

of changes

Attributes
Name Type Description
nglDs integer|] Holds the newsgroup ids
subscribedNgIDs | integer(] Holds the ids of subscribed newsgroups for the user
subscribedMailNd | integer[] Holds the ids of subscribed and mail requested
IDs newsgroups for the user
Methods
Name Return Parameters | Description
Type
getAvailableNGs String[] void Retrieves newsgroups
listNGsubsCheckBoxes void void Displays subscription options for
the newsgroups
listMailSubsCheckBoxes void void Displays mail receiving options
handleNGsubsReq Boolean | subscription | Gets the subscription request and
subs post the request to database access
handleMailSubsReq Boolean | subscription Gets the mail option set/reset
subs request and post the request to
database access
AdministrativeForm Class
Methods
Name Return Type | Parameters Description
manageUsers void void Directs admin to the user
mangement form as a result of user
mangement request
manageNewsgroups void void Directs admin to the newsgroup
mangement form as a result of
newsgroup mangement request
selfManagement void void Directs admin to userInfo Form in
order to change / update user info
UserInfoForm Class
Methods
Name Return Type Parameters Description
retrieveUserInfo User void Retrieves the user info of the user

88

displayUserInfo void int user_id Displays the user info retrieved fro
database

sendUpdates void User user As a result of change or update
sends the updates to the database

5.5 NNTP Commands Module

PortListener SessionHa
(thread) ConnectionHandler = ey
-sessions: Session] |
-portNo. infeger {fread) TaddNewSession()
-defaltPort mteger crentes -socket: Socket calls +lallSession(}
-securePort: integer F+isUserSessionExist() j PR
-porthiode: stnng +checkLogin() +1'E$¢ tSessicn()
gl naiENCwsElany +searchSession()
+getPortNol) +HgjectConnection) +sessionExists()
HetDefanltPort)
+etDetauliPort() g o
HaatSecurePort() :T{' g
+eetSecurePort() - Z
+setPortModa() E
+HeetPortMode) ' :
+setToDeault() NNTPhandier e
+setToSecure() -MINTPimessage: string Session
+changePort() +eallCommandHandlerFactory () "ll‘i'ﬂe'i:[:ﬁ’“.
HistenPort -fnneC it tune
0 g -startDateTime: datetune
= -[Paddress: stnng
-defanltTineOut: fime
i HgetUsen)
CommandHandlerFactory Eﬁ%ﬁ] 0
ey
PortWriter i - +sefTimeOut()
(thread) Hstatic)get CommandHandler(} +getStartDate()
-portio: integer gﬁgﬂ;gﬂtw
o ST g +setiPaddress()
_m&?bﬂge Lt “ +get[}efault'1"i.u.1ecut(j
+wnteToPc:rt{} 1 +setDefanltTimeont()
<<interfaces= HesetTimeCnt()
creates CommandHandler +illf)
+HhandlsCommand)
+sendResuli()

» PortListener class is a thread and listens the specified port continuously. When a new
message arrives, an instance of ConnectionHandler class is created. The information
about sender of the message also arrives when message is sent. With this information,
user’s session info is checked by calling SessionHandler class. If user’s session exists,
it is updated. If not, a new session is created after username and password check.

» SessionHandler class calls session related methods. If a new session is created,
Session class is instantiated and returned to SessionHandler and added to the sessions

array.

89

» NNTPhandler class is created by ConnectionHandler. ConnectionHandler passes the
message it received from the socket to NNTPhandler. NNTPhandler calls
CommandHandlerFactory which has a hashtable including available NNTP
commands. According to command, it calls related implementing class of interface
CommandHandler. CommandHandler creates PortWriter after handling the

command. PortWriter class receives result of the command and writes it to the port.

=<implementation class=>
GetArticle

<<implementation clags=>
Head

=<implementation clags=>
Boddy

<<implementation clags=>
St

<<implementation class=>
Group

=<jimplementation classs=
Help

==interface==
<<fjmplementition clags=> | CommandHandler

Ihave +handled” onumand)
: +azandBezult()

=<implementation class>>
Last

=<jmplementation class=>
List

=<implementation class==
Newsgroups

<< fimjlementation claxss:>
MNewMews

==<implementation class==
MNext

=<implementation classs==
Fuost

=<jmplementation class>>
it

==implementation class>>
Slave

90

NNTP extension commands are not considered yet, but the interface modularity of interface

CommandHandler is very extensible to add new commands for command handling

operations.

PortListener Class

Attributes
Name Type
portNo integer
defaultPort integer
securePort integer
portMode string
Methods
Name Return
Type
getportNo integer
setportNo void
getdefaultPort integer
setdefaultPort void
getsecurePort integer
setsecurePort void
getPortMode string
setPortMode void
setToDefault void
setToSecure void
changePort void
listenPort void
Session Class
Attributes
Name Type
user User
timeout Time
startDateTime dateTime
IPAddress string

defaultTimeOut Time

Description
holds the portNo that the server listens
holds the default port number

Parameters

void

int potno
void

int defport
void

int secport
void
string mode
void

void

int pno

void

Description
Holds the user
Holds the timeout for the session

holds the secure port number
holds the port mode

Description

Returns port number

Sets portNo attribute

Returns default port number

Sets defaultPort attribute

Returns secure port number

Sets securePort attribute

Returns port mode

Sets portMode attribute

Sets to portNo to defaultPort value
Sets to portNo to securePort value
Changes portNo to pno

Listens the port specified with the
portNo

Holds the start date and time of the session
Holds the IPAddress
Holds the default time out for the session

91

Methods
Name
getUser

setUser
getTimeOut
setTimeOut
getStartDateTime

setStartDateTime
getIPAddress

setIPAddress
getDefaultTimeOut

setDefaultTimeOut
resetTimeOut

kill

Return
Type
User

void
Time
void
DateTime

void
String

void

Time

void
void

void

ConnectionHandler Class

Attributes

Name
socket

Methods
Name
1sUserSessionExist

checkLogin

createNewSession

rejectConnection

Type
Socket

Return
Type
Boolean

Boolean

Session

void

Parameters
void

User user
void
Time t
void

DateTime dt
void

String IP
void

Time t
void

void

Description

Parameters
int user_id

String
uname,
String pwd
User user,
String IP
String IP

Description

Returns the user that the session is
created for

Sets user attribute
Returns the timeout for he session
Sets timeout attribute

Returns the start date and time of
the session

Sets the startDateTime attribute

Returns the IPAddress that the
user connects from

Sets IPAddress attribute

Returns default time out fort he
session

Sets defaultTimeOut attribute

Resets the timeout value of the
session

Kills the session

Holds the socket which handles the connection

Description

Returns if the user has a session,
has authenticated

If the session does not exist,
controls whether the login data is
valid

Creates a new session for a valid
user

If the login data is invalid or there
is any other problem, it rejects the
connection

92

SessionHandler Class

Attributes
Name Type Description
sessions Session[] Holds the sessions of the authenticated users
Methods
Name Return Parameters | Description
Type
addNewSession void Session ses Adds a new session object to the
current session array
killSession void int id Kills the session
updateSession void int id Updates the session
resetSession void int id Resets the session
searchSession Session int id Searches for a specific session
sessionExists boolean int id Returns whether the session exists
or not
PortWriter Class
Attributes
Name Type Description
portNo integer Holds the port number
[Pno string Holds IP
message string Holds the message written
Methods
Name Return Parameters | Description
Type
writeToPort Boolean String mes Writes the message to the socket
created on the portNo
NNTPHandler Class
Attributes
Name Type Description
NNTPMessage String Holds the NNTP command sent by an NNTP client
Methods

93

Name Return Parameters
Type
callCommandHandlerFac | void String
tory Command
CommandHandlerFactory Class
Attributes
Name Type Description
hashtable HashTable
Methods
Name Return Parameters
Type
getCommandHandler Object | String
Command
CommandHandler Class
Methods
Name Return Parameters
Type
sendResult Object | void
handleCommand void void

5.6 Mailing Module

Sending Mail

Description

Creates a
commandHandlerFactory object in
order to map the command

Holds the hash table of the NNTP commands

Description

Maps the command with the right
commandHandler and returns the
CommandHandler fort he
command

Description

Returns the result of the command

Handles the mapped command.
Since this class is interface class,
this function will be implemented
in child classes.

94

MailHandler MailSender
user: User
HgenerateMad() calls I -IPaddiess .‘?mm
+mailSender() -address: string
e-mall: strng
+getlUsen()
+aetllsen}
+eetlPO)
+aetTPO)
+getAddress()
taetAddress()
+gethlal()
+aethal()
+aetudhaill)
Receiving Mail
Article
(Thread) SmipMailReceiver -message_id: bignt
émrrmummr :ﬁ;':él L;:‘;’::;a -subject; string
atMo: inteser - : Elring ;
:Idjd‘atllle"lugcf -ngll): infeger -:::I?tui;:ﬂ BHng
+getPortNod) dateTime: date 'ﬁ_‘ E _;_ e
+eetPortiNog) +petSenderi) . .0111_ul_: I
HoptDefaultPort() +eetSender() -fromMail: string
+aetDefanltPort) +aetSubyect() —replyTo: strng
HistenPor() +aptSubject() ~followapTo: string
-relay Version: string
o -postingVersion: sting
g calls -lines: mteger
& ~expiras: date
creates —1'~‘.:IEIFII¢I_%$: $t1‘iJ'!g
*-distnbution: stning
1 -gontrol: string
(Thread)

SmipConnectionHandler +get=<attibute name=()
-socket: Socket +ast<atinbute name=(}
-user; User
-header =ring
-Content: Sring
+isUserAnhenticated])
+accepthial()
+rejecthlanli)

Since NewsAgent maintains the functionality to send e-mail to the users and receive e-mail
from users, mailing module is examinde in 2 subparts. First part is mail sending; that means
sending mail to the users who wanted to receive mail from the newsgroups that he/she is
subscribed to. Second part is mail receiving; that means receiving the e-mails from users and
inserting them into database as if they were posted from web or NNTP.

For the First part:

» MailHandler class is called when a new article is posted, inserted into database and a
message is returned as it is inserted into database. It generates e-mail using the header,

sender and body of article it received and creates an instance of MailSender.

95

> MailSender class maintains the information about the user and sends e-mail to the

user via smtp.

For the Second Part:

» SmtpPortListener class is a thread. It listens the specified port and creates an

instance of SmtpConnectionHandler when a message is received from that port.

» SmtpConnectionHandler class checks whether the user who sends the e-mail is

authenticated or not. According to the result of this check, it accepts or rejects the

user. After acception, it calls SmtpMailReceiver.

» SmtpMailReceiver class creates an instance of article class and creation of this article

calls the related web service and then the article is inserted into database.

Mail Sender Class

Attributes

Name
user
[Paddress
address
Mail

Methods

Name
getUser
setUser
getIPaddress
setIPaddress
getAddress
setAddress
getMail
setMail
sendMail

Type
User
string
string

string

Return Type
User

void

string

void

string

void

string

void

void

SMTPPortListener Class

Attributes

Name
portNo
defaultPort

Type
int

int

Description
Holds the sender of the article
Holds the IPaddress
Holds the mail address of the user to be sent
Holds the mail content

Parameters Description
void Returns the sender of the article
User user Sets user attribute
void Returns the IPaddress
string [P Sets [Paddress attribute
void Returns the mailaddress

string address Sets mailaddress attribute

void Returns generated Mail

String Mail Sets Mail attribute

void Sends e-mail to the users
Description

Holds the port number that the server listens
Holds the default port number

96

Methods

Name Return Type
getPortNo int
setPortNo void

getdefaultPort int
setdefaultPort void
listenPort void

SMTPMailReceiver Class

Attributes
Name Type
sender User
subject string
content string
nglD int
date dateTime
Methods
Name Return Type
getSender User
setSender void
getSubject string
setSubject void
getNgID int
setNgID void
getDateTime dateTime
setDateTime void

Parameters
void

int portno
void

int defPortNo
void

Description

Returns the port number that the
server listens

Sets the portNo attribute
Returns the default port number
Sets defaultPort attribute

Listens to the port in order to
serve the client requests

Description

Holds the sender of the e-mail received
Holds the subject of the e-mail
Holds the content of the e-mail

Holds the newsgroup id of the newsgroup that the mail

1S sent to

Holds the sent date and time of the mail

Parameters
void
User sender
void
String subject
void

int id
void

dateTime date

SMTPConnectionHandler Class

Attributes

Name Type

Description
Returns the sender of the e-mail
Sets the sender attribute
Returns the subject of the e-mail
Sets subject attribute

Returns ngID of the newsgroup
that the mail is sent to

Sets the ngID attribute

Returns the date and time that the
mail is sent

Sets dateTime attribute

Description

97

FgenerateFromPiled)

| user | User | Holds the user who connects an sends mail ‘
socket Socket Holds the socket that the connection is established
through
Methods
| Name ' Return Type | Parameters Description
isUserAuthenticated | Boolean void Returns if the sender is a valid
user or not

acceptMail void String mail Accepts the e-mail in order to

add as an article and generates
an article
rejectMail void void Rejects e-mail and does not
generate an article
5.7 RSS Module
FeedTree

-ng_id: bigint

-title sting

-hnk: string

-descoption: string

FeedNode 'r“bD“le: d"h*_e FeedGenerator

: : -language: shing -

HiEe Suing -lastBuildDate: date -feedTrees: FeedTree]]
M stng; -docs: string

:dflf];;?gj:mg -gensrator: strng +getFeedTees()

_P 5id: URI -managingEditor: string +setFeedTrees()

B -webMaster: string +addMNewFead()
T - Size +deleteFead()

Gelll ; -cinrentSize reme FupdateFesd()
+getTitle() L SERLE GRS -root: FeedMode e SNGH WEH +searchFead()
+setlmk) -depth: infeger HgetFeed()
+getLinkl() ~ -version: stig FeonvertToFesdMads()
+setDescrplion() -l sting +addModeToFeed()
+getDescription) +deleteModeFromFeed()
*setPubDate() +gat<atiribute nama=(} +getMostUpdatedFeed()
+get|i'ul_:r[)_ate{'j| +set<attribute name=() +getMostPopularFesd()
+setChud() +addNode() eetLeastPopulaFead()
+getGuid() +removeNode() twiiteAllToFileQ

HaaarchMode()
+nodeExasts)
+updateMode()
+aemalize()

Users will be able to reach hot news from NewsAgent using their RSS readers. For this

reason, we create an RSS feed including recently posted news. This module deals with RSS

related jobs.

» FeedGenerator class is called when a new article is posted and inserted into the

database. As shown in article management module, article management web service

calls this class. FeedGenerator class has an array of feed trees which are instances of

98

FeedTree class. Each newsgroup has its own feed tree, since a user may subscribe to
any of them individually. For example, if the web service for inserting an article is
invoked, it generates a request to the FeedGenerator after confirming the insertion of
the article to the database. This request is to add a new entry for the specified
newsgroup tree associated with the newly added article. FeedTree finds the
corresponding feed tree and calls the method to add the article to the tree. Update and
delete operations follows the same steps as in adding a new article.

» FeedTree class is a tree of feed nodes. It is a logical representation of the xml
document. The listed methods above maintain the tree. Each tree has a maximum size.
When the tree exceeds this size, the oldest entry of the tree is deleted to maintain the
size. After each change operation to the tree, it serializes the tree to the file path
specified by “url” attribute of the class. Now, any feed aggregators realize the changes
when it checks out the feed for new news.

» FeedNode is a logical representation of the xml of a single article. It is appended to

the related feed tree when a new post is inserted into database.

FeedNode Class

Attributes
Name Type Description

title string The title of the article(node)
link string The link of the article(node)
description string The description of the article
pubDate date Publish date of the article
guid URI URI of the article
Methods

Name Return Type Parameters Description
getTitle string void Returns the title
setTitle void string title Sets title attribute
getLink string void Returns the link
setLink void string link Sets link attribute
getDescription string void Returns the description
setDescription void string description | Sets description attribute
getPubDate date void Returns the pubDate
setPubDate void date date Sets pubDate attribute
getGuid URI void Returns the guid

99

| setGuid | void | URI uri | Sets guid attribute
FeedTree Class
Attributes
| Name | Type | Description
| ng_id | bigint | The newsgroup id
| title | string | The title of the tree
| link | string | The link of the tree
| description | string ' Description of the tree
| pubDate | date | PublishDate of the tree
| language | string |
| lastBuildDate ' date |
| docs ' string |
generator	string
managingEditor	string
webMaster	string
maxSize int	
currentSize int	
root	FeedNode
depth	int
version	string
url	string
Methods	
Name	Return Type
get<attributename>	Attribute void Returns the attributes
type	
set<attributename>	void ' Type var ' Sets attributes
addNode FeedTree FeedNode nd, Adds feed node to feed tree
FeedTree tr
removeNode FeedTree FeedNode nd, Removes feed node from tree
FeedTree tr
searchNode FeedNode FeedNode nd, Searches feed node in the tree
FeedTree tr
nodeExists Boolean FeedNode nd, Returns if the node exists or not
FeedTree tr
updateNode void FeedNode nd, Updates feed node in the tree
FeedTree tr
' serialize ' void ' void ' Serializes the tree as xml

100

document

generateFromFile void string filename Generates tree from xml
document
5.8 Messaging Module
MessageDBAccess
MessageAccess
calls +,| Tostname:string
/| porthMoint
+listMessages() -username:string
+getMessage() -password;string
+retrieveMessage()
MessageForm +insertMessage()
+deleteMessage() <
calls
+displayFormi)
calls
S
MessageHandler MessageSender
-content:string -userlD:int
-userlD:int ﬁ
+get<attribute>() calls +get<attribute=()
+set<attribute=() +set<attribute={()
+generateMessage() +5§mdMessage(}l
+messageSender() +displayStatushMes()
MessageSender Class
Attributes
Name Type Description
userID integer Holds the id of the user that the message to be sent.
Methods
Name Return Type Parameters Description
getUserID int void Returns the id of the user that the
message is to be sent
setUserID void int id Sets userID attribute
sendMessage Boolean String Message Sends message to the user
displayStatusMes void Boolean status Sends a status message to the sender

101

MessageDBAccess Class

of the message denoting the success
or failure of sending operation.

Attributes
Name Type Description

hostname string Holds the hostname of the database

portNo integer Holds the portNo of the database

username string Holds the username of the database

password string Holds the password of the database

Methods

Name Return Parameters Description
Type

retrieveMessage string int id Retrieves body of the
specified message.

insertMessage Boolean string content Inserts a sent message to the
database.

deleteMessage Boolean int id Deletes a specified message
from database.

MessageHandler Class

Attributes

Name Type Description

userID int Holds the id of the receiver.

content string Holds the content of the message

Methods

Name Return Type Parameters Description

getUserID int void Returns the id of the receiver

setUserID void int id Sets the userID attribute

getContent string void Returns the content of the message

setContent void String content Sets content attribute

generateMessage | string
messageSender void

MessageAccess Class

void
void

Forms a message from the content.
Sends the message

102

Methods

Name | Return Type | Parameters | Description
listMessages string[] int id Returns the messages sent to the
user
| getMessage | string " int mes_id | Retrieves the specified message

MessageForm Class

Methods

Name |Return Type | Parameters

| Description

displayForm

void void

Displays the message form
according to a user request.

5.9 Log Module

LogManagementWebService

+addLogindog()
FleleteLoginlog)

+Fmodify Loginlog])
+getLogmnlog()
+addConfigurationlog)
+deleteC onfpurationlog()
Frodify Configirationiog)
FeetConfigmationlog))

S

LogDatabaseAccess

+oommect()
HnsentLognlog)
+HdelateLogmlog!)
FupdateLogindog)
+retrieveLoginlog()
+insertConfigurationlog()
HeleteConfignmtionlog()
FugdateConfignrationlogi)
+refrisveC onfiguratonlog(}

» LogManagementWebService class is a web service that maintains required methods

for login log and configuration log operations. This class calls LogDatabaseAccess

class to reflect the modifications into the database.

103

» LogDatabaseAccess class establishes connection with the database and creates queries

in order to retrieve data from database or insert and modify data into database. Its

methods use these queries and do all the work related with logs.

LogManagementWebService Class

Methods
Name
addLoginlog
deleteLoginlog
modifyLoginlog

getLoginlog

addConfigurationlog

deleteConfigurationlog

modifyConfigurationlog

getConfigurationlog

Return Type
Boolean
Boolean
Boolean

String[]
Boolean

Boolean
Boolean

String[]

LogDatabaseAccess Class

Attributes

Name
hostname
portNo
username
password

Methods

Name
insertLoginlog

Type

string
integer
string
string

Parameters

int user_id,
date date,
string 1P

int log_id
int log_id

void

int user _id,
date date,
string IP,
int type

int log_id

int log_id

void

Description

Adds login logs after every
login operation

Deletes login log when the
admin requests

Modifies login log when the
admin requests

Retrieves all login logs

Adds configuration logs after
every system operation

Deletes configuration log
when the admin requests

Modifies configuration log
when the admin requests

Retrieves all configuration
logs

Description

Holds the hostname of the database
Holds the portNo of the database

Holds the username of the database
Holds the password of the database

Return Type
Boolean

Parameters

String query

Description

Inserts login logs after every
login operation into the login
log table in the database

104

deleteLoginlog

updateLoginlog
retrieveLoginlog

insertConfigurationlog

deleteConfigurationlog

updateConfigurationlog

retrieveConfigurationlog

Boolean

Boolean
String[]

Boolean

Boolean

Boolean

String[]

String query

String query
String query

String query

String query

String query

String query

Deletes login log when the
admin requests from the
database

Updates login log when the
admin requests

Retrieves all login logs from
database

Adds configuration logs after
every system operation into
the configuration log table

Deletes configuration log
when the admin requests
from the database

Updates configuration log
when the admin requests in
the database

Retrieves all configuration
logs in the database

6 SEQUENCE DIAGRAMS & SEQUENCE OF EVENTS

6.1 Sequence Diagrams

6.1.1 Login and Authentication

105

LogDatahase Access

:Ulser | |-conmollogin| |17 serlViana germentWs UserDatabased ccess | | ..S&&lﬂﬂn | [Logws I |
I

I | | | |

] | | | | |

getUsemame) 1 I I — I

getPassword() | [_l |

. I

checkLogin() | | sendlogmlna) checkLoginkfo() |

g, - uErFRESUIE
[success) o
[Iug’nFailed] — created ession) -
B displayEsron [success] — o [mEElozmi
- || addlomrlog’ o

6.1.2 Sighup

Newlserkom User

Camilinate Lser

Slgnupi

petlserinfod) i insertNewUsen)

MailConfiguration

guerviesuli

[iuery Result = suceess]

sendC onthizil]

U{l‘r_‘plfilﬂff_ ki)

[Conf' == suceess]
unclatel 'serinde)

TCont— tailure] ™
deletelUser(}

107

6.1.3 User Management

—‘-kﬁll&im AdmuustrativeForm | | TherhfamagementForm | | UsehanagementWs | | TherAdmoustration| | UseiTatabase Access LoghWi ogllatabasesccess
! I
1 | : 1 : | |
: : | : 1 | i
1 | | | | : :
— R |_ 1] I X
wael e ™ !
A b)) . AdldUzerRegi) L ! !
adldUsen . T :
DeletellserReq() addUser() inserfNewllser() |
> deletel Teni’} e |
Updatel TzerRleql) - deletel et deletelTzen} |
uplatel Tz} i
- updatel Tzer{) . !
wprilatel eIt } :
B 1
] 1
| 1
displayMessagel) . e Result
[quervEesult ==mccess] imsertConfigiog)
o] addContigneationlog] |

108

6.1.4 Usergroup Management

Users dmin)| | LAdministrativeFomm | | UsedviragementFom | | UsedularagementWs | | LT serd drrind stration MzeDatabased coess LogWs Loglatabesef coess

i | | | |

! | I I |
rmmntUsmGMupﬁf—l | I I |
| I

[I
| I
| I
AdAUGReg) | |
e addUserSrongy

Dektel I Regy() > | ddUsiGouply insertNew Isex() ' '
- —> deletellzerGmuap) 3= [|

Ibdifyt Iseright » | deletelserCromp)
Reql) - _ _ - deletel TserCHrog) | |

roodifiJsefights () >
rodififJserRizhtal) | I
LeCRe0 - wpdate e o) . | |
1| LtUserGrogs() ListllserChrmp) retrieveUserChoups() | |
— | I
PSRRI omemEesdt (:
displasdvssaged) — -
o [querBesul ==succesd] ‘
N addConfimuatiorlog?)

109

6.1.5 Newsgroup Management

User(£ derir) - i chripn strativeF omm HiohdaragementFomn | | Hehdane gementWebservice | | MNalatabasedccess
I I | | I
I | | | I
] mamageNG) 1 i -

addMgRequesty
add ews group])

del etelaRequestD insert ewsgroup)
deletellevwegrouply |

mod FHNgRequest) deleteMewsgoup)
modi - lewsgroup) |

trodifyNews group()
%mlaﬂessag;

[queryFenil = success)
addConfiguratiorlog))

110

6.1.6 Admin Log Control

Ul (A dimand

getConfirationlog()

deleteConfigiationlog(h

mochfy Confimmationlos(o

getLogmlog(} N

deleteLogmlog(} >
modifvLoginlog(

csplay()

LogVs

retriev e onfigmationlogl

deleteConfimuationlog])

updateConfigationlog(|

deleteLoginlog s

updateLogmlog|)

111

6.1.7 Subscription

Tzer Handl eMessmCrronps | | Suhscript onforn MGDatabased coess :Useﬂxﬂnrgs:rﬁnmtw TTzetDatabased coess
I I I [
! | | ! | | |
5 | | ! | | |
lisz=waGrauprs] - —
harelleNews) ' ' '
subsctibe() I I |
. 3
requestEmail) " validate NG I |
I I
| Jaldatorflesult |
J["“:J”fﬂm@fs‘ﬁ [validstinResut==ali] sbseriptiond) | | jcenSubein)
| reject() i
« — e e esdt | e st
[tesult= =success) [esul= =faihue]
display ne cesslbssaze() direc tSubsFonu)

112

6.1.8 Update User Info

Lser AlzerFonmm TlaetlnfoFonm| | JsetduanagementVWs et DB A coess
l ' |

- | | !
editl Tzerledt() [| —- | !
- " retievelTzedndb)] |

chargePassword() ispia updateUsed rfiof) . L

chmgePasswnrﬂJ{lr_
update Taen)
.. qenBesult |
- displar Tpdates() ||

113

6.1.9 Web User Operations

e Web) Wehbodule ccortrollogn | | 1sedvanagerentiWs Login MzetDatabacef cress
| :
I | '
I : | | ! I
. ! | |
]]] S
getlserrame) 1 I
getPasswordy _ _
g checklogin | | sendLoginInfo¢
- f hec kLoginInf()
e L queylesat T]
Mserd'omm Mm“ ewsWE MewsDB A ccess
| [
[eueryHesnlt = succeess] [|
articleCperatioma) - —
l stértick() .
: postirtiek() maertbrtic
reacliaticle)) Tetacl]) | | k() "
* fetievehrtck(),
- — displayivkssage() e L geergfesdt T

For unauthenticated web users, the user does not login to the system and can request only a small set of article operations.

114

6.1.10 Sending Messages

| dEker | | IkessazeFonn | | I‘-.-'Iass_&gl eHarrler | | 'I‘_-.g'haaaggl Sender | | IvkssazeDBbCcess
| | |
I I | I |
— I | I |
dispbyForm [| e I |
getContent - | |
getUzed D

':Feremtehfhssage

sendlvkssage

—isphyStatislvkssage

i

115

6.1.11 Reading Messages

ger | Hardkelvkssages | | NkssagelBbccess
| |
I | |
. | |
—L |
betlvbssages
ressages retiwel‘u‘hssages=
g - e
getlvbssage (T

retienelbasgze

e

116

6.1.12 Authenticated NNTP User Operations

SessionHandler

Litenfort]y islkerSession
Exst{) |:|
s&ssmnR.esult
............ CorrrandHand er -
= | PofWter| |:
— Doy | (Pt | Commmatiande
[sessionF.esult exists] I
gt TPMEs sage() Hask() ﬁ‘ifsihéﬁ. |
handkComrrandy
witteto o))
(Cormect onHatd e :Usm’hfhrgﬂwnmw UeerDB Access

[FeszionResult not exists] I I T

checld ogin()
-.I—| checkLogmInfog) .._’_| retrievel Tzedndbi)

-

pesult == invaldll | prgult ==vali) l
__]BJBCU::' createMewS essiond)

117

6.1.13

Unauthenticated NNTP User Operations

Boiie]

ComrendHandler
LT — Factory
f |
' |
' |
| |
I |
- |
gett TP eszage) _
= Hash) et tate
Nessazel
bandleC ormrrand)

THewrsDB A coess

¥

i S

e to Port])

118

6.1.14 Feed Generation

NewsDRAceess | |FesiGeator Feedode

——

I
I
postatticlel isertiaticlel) n

¥

ety esult
[q_lzlequequi == g1 cess)

[quersflesult == failng:
_ enon)

—

e sut = success]
i IEerembeFeedﬂ —
L

aeeennn . ObplybEssage)

119

6.1.15 Sending E-mails

MNewsDRAccess | |[MeilHandler| |[MailSender]| UserDBAcoess
|

—

|
|
poaatticlel} irsertlaticle() 1

¥

cjueryHemlt
[q_ﬁect}rﬁesuli == grcess)

[cperyesult == failmg
P

—

[queryBesult = success)

rerateFeed()
P

120

6.1.16

Receiving E-mails

; SMTPComnection | |MeerAdministration|| . SMTPWBIRECEVE! | {150 DR & cress
B =L LserDBAccess T —=SEILADSA LLESS
| Hin!dﬁ Wa I = I
Mail_Client
- | I | [l I
! I I | | | |
J_liStEI]PDI’UGI L igUzer _l I | l |
= Autherticated) - | | | |
checkFErail I
I
I
I
Eathertication P eslt
R e |
[Authenti dedFesult == tme]
genetatedirtic B{) - nserthrtick()
[&nutherficatedR esult == fake]
rejec vl
e e] queyBesult .

121

6.2 Sequence of Events

Login and Authentication

Main Sequence

1.
2.

The user sends his/her username and password to the controlLogin unit.

ControlLogin gets username and password and invokes the checkLogin() method of
UserManagementWS.

UserManagementWS calls sendLoginInfo() method of Login in order to send
username and password to the database.

UserDatabaseAccess is activated in order to check username and password with the
database.

After checking the login data, according to the query result if the query result is
failure displayError() method is called in order to inform the user about unsuccessful
login. If the query result is success, createSession() method of Session unit is called
and addLoginLog() is invoked.

LogWS activates the LogDatabaseAccess in order to insert login log to the database.

Sign up

Main Sequence

1.

2
3.
4

A candidate user requests to sign up to the system.

. NewUserForm unit gets this request and display a user form.

getUserInfo() method of User is called and user info is stored in a User object.

User info is sent to the database by activating insertNewUser() method of
UserDatabaseAccess.

According to the queryResult returned, if the user is added successfully, configuration
mail is sent.

If it is accepted, inserted user info is updated. User group and access rights are

determined. If not, the user info is deleted.

User Management

Main Sequence

1. Administrator sends a user management request in the AdministratorForm unit.
2. Administrator is directed to UserManagementForm unit.

3. Administrator requests to add a new user.

122

4. addUser() method of the UserManagementWS is invoked.
5. UserManagementWS calls the addUser() method of UserAdministration.
6. In order to insert new user, UserDatabaseAccess is activated with the
insertNewUser() method.
Alternative Sequence
3. Administrator requests to delete a user.
4. deleteUser() method of the UserManagementWS is invoked.
5. UserManagementWS calls the deleteUser() method of UserAdministration.
6. In order to delete user, UserDatabaseAccess is activated with the deleteUser()
method.
Alternative Sequence
3. Administrator requests to update a user.
4. updateUser() method of the UserManagementWS is invoked.
5. UserManagementWS calls the updateUser() method of UserAdministration.

6. In order to update user, UserDatabaseAccess is activated with the
updateUserInfo()
method.

7. According to the queryResult returned, if the operation is successful,
addConfigurationLog() method of the LogWS is invoked.
8. insertConfiglog() method of LogDatabaseAccess is called.

9. A message is displayed to the admin denoting the success of the operation.

User Group Management
Main Sequence

1. Administrator sends a user group management request in AdministratorForm unit.
2. Administrator is directed to UserManagementForm unit.
3. Administrator requests to add a new user group.
4. addUserGroup() method of the UserManagementWS is invoked.
5. UserManagementWS calls the addUserGroup() method of UserAdministration.
6. In order to insert new user group, UserDatabaseAccess is activated with the
insertNewUserGroup() method.

Alternative Sequence
3. Administrator requests to delete a user group.

4. deleteUserGroup() method of the UserManagementWS is invoked.

123

5.

6.

UserManagementWS calls the deleteUserGroup() method of UserAdministration.
In order to delete user group, UserDatabaseAccess is activated with the

deleteUserGroup() method.

Alternative Sequence

3.
4,
5.
6.

Administrator requests to modify user rights.

modifyUserRights() method of the UserManagementWS is invoked.
UserManagementWS calls the modifyUserRights() method of UserAdministration.
UserDatabaseAccess is activated with the updateUserGroup() method.

Alternative Sequence

3.

N

Administrator requests to list user groups.

ListUserGroups() method of the UserManagementWS is invoked.
UserManagementWS calls the ListUserGroups() method of UserAdministration.
UserDatabaseAccess is activated with the retrieveUserGroups() method.
According to the queryResult returned, if the operation is successful,
addConfigurationLog() method of the LogWS is invoked.

insertConfigLog() method of LogDatabaseAccess is called.

A message is displayed to the admin denoting the success of the operation.

NewsGroup Management

Main Sequence

1.

2.
3.
4.
5.

Administrator sends a newsgroup management request in AdministratorForm unit.
Administrator is directed to NGManagementForm unit.

Administrator requests to add a new newsgroup.

addNewsgroup() method of the NgManagementWS is invoked.

In order to insert new newsgroup, NgDatabaseAccess is activated with the

insertNewsgroup() method.

Alternative Sequence

3.
4.
5

Administrator requests to delete a newsgroup.
deleteNewsgroup() method of the NgManagementWS is invoked.
In order to delete newsgroup, NgDatabaseAccess is activated with the

deleteNewsGroup() method.

Alternative Sequence

3.
4,

Administrator requests to modify newsgroup.

modifyNewsgroup() method of the NgManagementWS is invoked.

124

5. NgDatabaseAccess is activated with the modifyNewsroup() method.
Alternative Sequence

3. Administrator requests to list newsgroups.

4. ListNewsgroups() method of the NgManagementWS is invoked.

5. NgDatabaseAccess is activated with the retrieveNewsgroups() method.

6. According to the queryResult returned, if the operation is successful,

addConfigurationLog() method of the LogWS is invoked.
7. insertConfiglog() method of LogDatabaseAccess is called.

8. A message is displayed to the admin denoting the success of the operation.

Admin Log Control
Main Sequence
1. Admin requests to control login and configuration logs.
2. getConfigurationLog() / getLoginLog() method of LogWS is invoked.
3. LogDatabaseAccess is activated with retrieveConfigurationLog /
retrieveLoginLog() method.
Alternative Sequence
2. deleteConfigurationLog() / deleteLoginLog() method of LogWS is invoked.
3. LogDatabaseAccess is activated with deleteConfigurationLog /
deleteLoginLog() method.
Alternative Sequence
2. modifyConfigurationLog() / modifyLoginLog() method of LogWS is invoked.
3. LogDatabaseAccess is activated with updateConfigurationLog /
updateLoginLog() method.
4. According to the query result returned, a message is displayed to the admin

denoting the success of the operation.

Subscription
Main Sequence
1. User lists newsgroups.
2. handleNewsgroups() method is called and the subscriptionForm is also displayed to
the user.
3. The user requests to subscribe or set/reset mailing option by activating subscribe() or

requestEmail() methods of Subscription.

125

NGDatabaseAccess is activated with the validateNG() method in order to control the
access rights of the newsgroup and the user etc.

A validationResult is returned and according to the validationResult if it is invalid, the
operation is rejected. If it is valid, subscription() method of the UserManagementWS
is invoked.

UserDatabaseAccess is activated with the insertSubsInfo() method.

A result denoting the success of the query is returned.

If the result is a failure, the user is directed to the subscription form. If it is success, a

message is displayed to the user.

Update User Info

Main Sequence

1. User requests to update user info or change password.

2. editUserInfo() or changePassword() method of UserForm is called.

3. Current user info or login data is retrieved and displayed to the user by the help of
UserInfoForm.

4. updateUserInfo() or changePassword() method of UserManagementWS is invoked

5. UserDatabaseAccess is activated with updateUser method and the changes are
saved to the database.

6. A queryResult is returned denoting the success of the query.

7. Finally, changes and updates are displayed to the user.

Web User Operations

Main Sequence

1.
2.

The user sends his/her username and password to the controlLogin unit.

ControlLogin gets username and password and invokes the checkLogin() method of
UserManagementWS.

UserManagementWS calls sendLoginInfo() method of Login in order to send
username and password to the database.

UserDatabaseAccess is activated in order to check username and password with the
database.

After checking the login data, a queryResult is returned denoting the success of the

login.

126

10.
11.

If the queryResult is success, the user will have the right to realize web user
operations. For example, the user may request to realize article operations.

Article operations such as read article, post article etc.is activated by the help of
postArticle() / readArticle() methods of HandleNewsGroups.

postArticle() / readArticle() methods of NewsWS are invoked for these operations.
NewsDatabaseAccess is activated with the insertArticle() / retrieveArticle() methods
in order to insert to posted article to the database or retrieve the requested article from
database.

A result is returned.

According to the returned result, a message denoting the success or failure of the

operation or the article retrieved is displayed to the user.

Sending Messages

Main Sequence

1.

2
3
4.
5

The user requests to send message to either an online or an offline user.

displayForm method of MessageForm is called for a selected user to send a message.
MessageHandler retrieves the content of the message and the user id of the receiver.

It generates a message and activates MessageSender with the method sendMessage.
MessageSender interacts with the MessageDBAccess and activates insertMessage
method.

According to the queryResult, a status message denoting the success or failure of the

sending message operation is displayed to the user.

Reading Messages

Main Sequence

1.
2.
3.

The user requests to list the messages he/she received.

listMessages method of HandleMessage is activated.

HandleMessage activates the retrieveMessages method of MessageDBAccess in order
to get the messages of that user.

Messages are returned to the user with an overview of displaying subject sender and
date etc.

If the user requests to read a message by clicking on it, getMessage method of

HandleMessage is activated.

127

6.

7.

HandleMessages activates the retrieveMessage method of MessageDBAccess in order
to get the message content.

Message Content is displayed to the user.

Authenticated NNTP User Operations

Main Sequence

1.
2.

PortListener listens to the related port in order to serve NNTP client requests.
When a request comes, SessionHandler is activated in order to check wether the user

session exists or not.

. A session result is returned and if the session exists for the user, command is passed to

the NNTPHandler.

NNTPHandler creates CommandHandlerFactory object in order to hash the command.
The command is mapped to one of the CommandHandler classes such as PostNews,
List, ReadNews etc.

This class handles the command and invokes the related web service of NewsWS. For

example for the post operation, postArticle() is invoked.

. NewsDatabaseAccess is activated with the related method for database operation. For

example for the post operation, insertArticle() method is called.
A queryResult is returned.
According to the result, PortWriter is activated with the writetoPort() method and

related data is written to the port.

Alternative Sequence

3,
4,

© 0 N o

If the session does not exist, checkLogin() method of the connectionHandler is called.
checkLogin() method of the UserManagementWS is invoked in order to control

login data.

UserDatabaseAccess is activated with checkLoginInfo() method.

A result is returned denoting the success of the login data control.

If the result is invalid, the operation is rejected.

If the result is valid, a new session is created.

After creation of the session, the NNTP command is directed to the NNTPHandler

and the same sequence is followed.

UnAuthenticated NNTP User Operations

128

Unauthenticated NNTP users only realize a small set of operations whch do not require being

an authenticated user.

Main Sequence

1.
2.

PortListener listens to the related port in order to serve NNTP client requests.
When a request comes, SessionHandler is activated in order to check wether the user

session exists or not.

. A session result is returned and if the session exists for the user, command is passed to

the NNTPHandler.

NNTPHandler creates CommandHandlerFactory object in order to hash the command.
The command is mapped to one of the CommandHandler classes such as PostNews,
List, ReadNews etc.

This class handles the command and invokes the related web service of NewsWS. For

example for the post operation, postArticle() is invoked.

. NewsDatabaseAccess is activated with the related method for database operation. For

example for the post operation, insertArticle() method is called.
A queryResult is returned.
According to the result, PortWriter is activated with the writetoPort() method and

related data is written to the port.

Feed Generation

Main Sequence

1.

A post article operation is accomplished, by invoking postArticle() method of
NewsWS and inserting the article to the database.

If the article is successfully inserted, generateFeed() method of NewsWS is invoked in
order to generate a new RSS and ATOM feed.

NewsWS calls addnodetofeed() method of FeedGenerator in order to add the last
posted article to the related feed.

FeedGenerator accesses the FeedTree object and calls its addNode() method.
addNode() method of the FeedTree creates a new FeedNode and appends this new
node to the current feed tree and returns this tree.

FeedGenerator gets the updated tree and serialize its content.

Sending Emails

Main Sequence

129

A post article operation is accomplished, by invoking postArticle() method of
NewsWS and inserting the article to the database.

If the article is successfully inserted, sendMail() method of NewsWS is invoked in
order to send email to the users who requests to receive email from that newsgroup
simultaneously.

NewsWS calls generateMail() method of MailHandler in order to form an email from
the related article.

After generating the email, sendMail() method of the MailSender is called.

In order to get the email addresses of the users who request to receive email from that
newsgroup, UserDatabaseAccess is activated with retrieveEmail() method.

Email addresses of the related users are retrieved from database and emails are sent to

these addresses.

Receiving Emails

Main Sequence

1.
2.

Our PortListener listens port related to the incoming emails.

When an email is received, SMTPConnectionHandler is activated in order to check
whether the mail client is registered or not.

checkEmail() method of the UserManagementWS is invoked in order to control the
email address of the user.

UserDatabaseAccess is activated with retrieveEmail() method.

A result is returned and according to the result, if such an email address is registered,
generateArticle() method of SMTPMailReceiver is called in order to generate an
article from the received email.

NewsDatabaseAccess is activated in order to insert the generated article to the
database.

If such an email address is not registered, email is rejected.

130

7 NewsAgent INTERFACE

Login Interface

You must login to use MNewsAgent.

Login Box

Username | :andanceylan

Password |ssissesssses

O naot time-out authentication

Don't you have a NewsAgent account?

Hawve a site tour | | Signup

News Agent
by

i$T€ Yazilum

In our login interface, we included two different panels. The first one is for user who have
already signed-up to NewsAgent, that is the users who have a username and password. As
usual, username and password fiels are expected to be filled with a valid username and
password tuple. If the login data is correct, than the user is directed to the main page
according to the user type. Administrators will be directed to admin page. If the user checks
the check-box which lies under “Login” button, user’s session will not time-out. Otherwise,
when a specified time (1 hour, for example) passes without any user action, the session will
time-out. In other panel, if the people who do not have an account click “Signup” button,
he/she will be directed to “Signup Interface”. If “Have a site tour” is clicked, since the user is
not authenticated, he/she will be directed to a general page including the newsgroups that do

not require authentication if there are any.

131

Signup Interface

Already have a username? Login

* First Hame ; Candan
* Surname : Ceylan
* Username : candanceylan

Check Availability

* Password : TTTITIITII
* Re-type Password sENBEBERENE

(Minimum 6 characters.)

* E-mail : candanceylan@gmail com

* Phone : 03122101466

* Birthday : 16 |» 04 18984 b
* Birth Place : Giresun

* Secret Question : Wihat is your favourite cartoon chars s
* Answer : YWinnie The Pooh
submit | | Clear

In signup interface, we have the fields which are required to be filled in order to add the
candidate user as a system user. If anyone who is already a user presses “Signup” button in
login screen accidentally, he/she can return using the hyperlink “Login” here. Firstname and
surname are required. Username is selected by the user, however, since it is unique in the
system, user can check the availability of the username pressing “Check Availability” button.
If it is already used, user has to choose another username. User has to choose a password
which is minimum 8 characters long and has to retype it in order to verify. E-mail and phone
number are also required. Invalid e-mails will not be accepted. This is accomplished by a
confirmation link which is sent to this mail address by the administrators. The user’s account

will be activated when he/she follows this link. Birthday and birth place are also required.

132

Secret question is any question that the user selects among the ones we offered. The question
and answer are kept in order to use if the user forgets his/her password. By using “Submit”
button the user can send the form to the administrators and waits until the account is activated.

By “Clear” button, user can clear the screen.

Update User Info & Change Password Interfaces

Update your user account

* First Mame : Candan
* Surname : Ceylan
* E-mail : candanceylan@amail.com

* Phone : D31221D14EE|
* Birthday : 16+ 04 1985 hd

* Birth Place : Giresun
Upload Picture : CaDocurments and SettingstFerhatDeskio

Upload Picture | | Remove picture |
* Secret Question : What is your favourite cartoon character? s
* Answer : Ternel Reis
| Edit | | clearchanges

In “Update User Info” screen, first name, last name, email, phone number, birthday,
birthplace, secret question and its answer are displayed. These fields will be enabled and user
will be able to update these information. “Edit” button saves changes and “Clear Changes”
button clears the changes. “Upload Picture” part is optional and by clicking “Browse...”
button, user can select a picture from the computer he/she uses. If there is already a picter in
the user’s account, uploaded one is written on it. If “Remove Picture” button is clicked,

existing picture of the user will be removed.

133

Change your password

* Username :
* Password :

*Hew Password :

* Re-type New

Password :

candanceylan
(11212 1]])}
(2121312 1]])

({Minimum 6 characters.)

Chanoe Password

In “Change Password” screen, username is displayed but the user will not be able to change it.

In “Password” field, old password is expected to be entered. And new password is expected to

be entered 2 times in order to verify it. Then the password is changed by pressing “Change

Password” button.

134

Interface for Newsgroup Subscriptions

p Subscriptions

|

Subscription | Newsgroups 4
] newsagent.admin.duyuru
newsagent.admin.destek
] newsagent.dersler.ceng140
newsagent.dersler.ceng213
O] newsagent.dersler.ceng315
newsagent.dersler.ceng3a1
] newsagent.dersler.ceng3s2
newsagent.dersler.ceng443
] newsagent.dersler.ceng4 77
newsagent.eglence.qgeyik
] newsagent.eglence.oyun
newsagent.kultur.kitap
newsagent. kultur.muzik
F] newsagent.kultur.sinema
newsagent.spor.haskethol
] newsagent.spor.futhol

Sawe Options

This interface displays all available newsgroups for the user. If the user is subscribed to a
newsgroup, the check-box for that newsgroup is displayed checked. If the user wants to
subscribe or unsubscribe to a newsgroup, he/she checks or unchecks the check-box and click

“Save Options” button.

135

“My Newsgroups” Interface

My Newsgroups

DailyWeekhy 4 Mailing Option * | Newsgroup i
O Daily O Weekly] newsagent.dersler.ceng3s2

O Daily O Weekly O newsagent.dersler.cengd43

O Daily O Weekly Ol newsagent.dersler.cengd?7

O Daily (O Weekly] newsagent.eglence.geyik

O Daily O Weekly O newsagent.ilan.satilik

O Daily O weekly O newsagent.kultur.kitap

O Daily O weekly L newsagent.kultur.sinema

O Daily O Weekly O newsagent.spor.bhaskethol

O Daily O Weekly O newsagent.spor.futhol

Sawve Cptions

In this interface, we display all newsgroups that the user is subscribed to. For these newsgroups, the user can check mailing option and choose
one of daily and weekly in order to receive articles as e-mails from that newsgroup. If daily is checked, articles will be sent to the users daily and

if weekly is checked, articles will be sent to the user weekly. “Save options” button saves the changes mae on mail receiving options.

136

Interface For Reading Articles

UszerAccount Mewsgroup Options Subscriptions
Mewsgroups Aricles

+ [0 newsagent.duyuru w [[5 Satilik Araba (12.01.2007)
[newsagent.duyuru.alim-satim [Re:satilikAraba (12.01.2007)

+ [newsagent.adrmin + [0) Re:Satilik Araba (13.01.2007)
[newsagentadmin.destek [Re:Satilik Araba (14.01.2007)
[newsagentadmin.duyuru [Re:satiidi(15.01.2007)

- newsagent.kultur 1998 rmodel Sahin aracimi sativorum.

E] newsagent. kultur kitap]]]
FPazarlik payi vardir.
newsagent kultur.sinema

o iletisim icin ahmetsahing@amail.com
newsadgent kultur dizi

[

E] nesrsagent. kultur tivatro

[
v newsagent.eglence

E‘] neswsagent.eglence.geyik

E] newsadent.eglence.ayun

E] newsadgent.eglence.muzik
v‘ newsagent.dersler

E newsadgent.dersler.ceng3s?
E] newsagent.dersler.cengdd4
E]

newsagent.derslercengd 77

137

In this interface, newsgroups are listed on the left side, with indicating parent-child relations.
The user can select any newsgroup from left, and the headers are displayed on the right. When

a header is clicked, the content of the article is displayed below the headers.

8 TESTING PLAN AND PROCEDURES
8.1 Testing Plan

Our aim is to find errors and make a good test that has a high probability of finding an error.
We also want to make sure that there are no defects in the product.

After we have generated the source code, we are going to test our program to identify the
errors and remove them before delivery to the customer. Our goal is to correct as many errors
as possible early in our software development cycle. In order to acquire this we have to design

a series of test cases that have a high likelihood of finding errors.

8.2 Testing Strategy

Since NewsAgent has different layers and modules, testing strategy will differ for each
subpart of the product. We present a testing schema below, which will briefly explain our
testing strategy.

In general, we will follow a bottom-up strategy for testing. Therefore, we will start from
database layer as shown in the schema. For this layer, we will apply unit tests in order to
check performance and correctness of our database queries. We will test our retrievals,
insertions and modifications. Testing of this part is very important since each web service and
its methods use the data returned from database layer and insert data into database through
this layer. Any mistaken coding error in this layer can cause many problems in above layers.
After testing database layer, we will pass to web services layer. Any operation in NewsAgent
will be handled by web services. So testing this part is another important issue in testing the
product. For testing our web services, we will deploy each of them separately and invoke
related methods. We will check whether each web service works correctly.

Then we will test our modules; NNTP Module, Mail Module, RSS Module and Web Module.
While testing these modules, we will follow a different strategy which is top-down testing

strategy.

—_

NNTP
Module

Top-down
Testing
Strategy

__,_...--"""_h__‘___
—
Mail RSS WEB
Module Module Module

[

Web Services Layer

s

Database Layer

DATABASE

Testing Strategy of NewsAgent

Testing

Bottom-Up

Strategy

139

8.3 Testing Procedure

8.3.1 Unit Testing

In the unit test case we will be testing the separate modules of the software. White box
testing will be used where each module or component of the software is tested individually.
By this type of testing we have advantages as mentioned below.

i) As the knowledge of internal coding structure is prerequisite, it becomes very easy to find
out which type of input/data can help in testing the application effectively.
i) The other advantage of white box testing is that it helps in optimizing the code
ii1) It helps in removing the extra lines of code, which can bring in hidden defects.

We will be carrying out unit testing in order to check if the particular module or unit of code
is working fine. The Unit Testing comes at the very basic level as it is carried out as and when
the unit of the code is developed or a particular functionality is built.

We will be looking for entry and exit conditions of the data. We will make sure that all the
components work without any troubles. The test primarily is carried out by the programmer
who designed and implemented the module. Lead tester will than carry out test on the

modules to finalize the testing.

8.3.2 Integration Testing

In this testing period we will be looking for any signs of the collision between our software
components and those of the clients. We want to make sure there is no confusion among the
application on the network when they are running simultaneously.

As we know, integration testing is testing of combined parts of an application to determine if
they function together correctly. The 'parts' can be code modules, individual applications,
client and server applications on a network, etc. And this type of testing is especially relevant
to client/server and distributed systems. We will be carefully looking for any sort of collision

between several different applications.

8.3.3 Security Testing

Testing the security of a news server is really a key point and also testing is an inevitable
feature of NewsAgent. Since NewsAgent may be used in workplaces or foundations where
security of data is the most important issue, security should be handled carefully. NewsAgent
will use SSL for handling security issues. SSL provides data encryption which will be used in

transmission of passwords. Also, newsgroups and articles should not be accessed by users

140

who have not right to access them. Security testing will be done by controlling the flow of

data in different modules of NewsAgent and will be useful for finding out any security holes.

9 SYNTAX SPECIFICATION

Coding standards occupy large amounts for big projects which have multiple developers and
coders. These standards are so important that some big companies, military services and
governmental services only rely on the products which have been produced through a very
strictly specified line. This line is determined by the rules. Every developer included in the
project must obey these rules.

Not being a big company, even not a company, we can also benefit some rules to simplify the
understandability and readability of the codes. As a team we will develop the system together,
but most of the time we will work on the code at different time slots. So, with the help of the
CVS and a predefined specification rules will prevent us the get in conflicts and doing wrong
things.

We have agreed on some coding conventions to benefit the syntax specification.

9.1 Naming the Classes and Files

All classes will have names beginning with a capital letter. The classes with more than one
word will have a capital letter at the beginning of each word. For
instance,“ConnectionHandler” is a suitable class name in NewsAgent.

For the files of the Java classes, Java has a restriction that the file name must be same as the
class name inside. Evert file can only include one class. But that class can contain multiple

classes.

9.2 Naming Functions

Function names start with lower-case letters and continue until a new word starts. New word
stars with capital letter and continues with lower-case letters. For example

"checkLoginInfo()" is a suitable function name in NewsAgent.

9.3 Naming Variables

Variable names start with a letter indicating the scope of that variable.

n

e "m" --> attribute of a class. Indicating that member variable of a class.

e "v" -=> parameter of a function. Indicating that scope of the variable is the function

that it is passed.

141

e "|"-->local variable. Indicating that the variable is defined locally.
After the initial letter, variable name continues with a letter sequence indicating the type of it.
e "int" --> indicating that the variable is an integer variable.
e '"float" --> indicating that the variable is a float variable.
e '"double" --> indicating that the variable is a double variable.
e str" --> indicating that the variable is a string variable.
e "obj" --> indicating that the variable is an object.
After these conventions are applied, the usual naming conventions mentioned above are
applied to the variables. Suitable variable examples are as follows;
e "mstrUsername"
e "mintPortNo"

¢ "mobjConnectionHandler"

9.4 Comment Conventions

Commenting is also a critical issue to increase the understandability of the code. Since each
java class is defined in separate files we have decided to have detailed information at the
beginning of each file as described follows:

[sk R sk s R s o

/* File name:

/* Created by:

/* Created at: (Date:DD.MM.YY — Time: HH:MM:SS)

/* Modified by:

/* Modified at: (Date:DD.MM.YY — Time: HH:MM:SS)

/* Description:

**/

10 IMPLEMENTATION PLAN

10.1System Overview

System Description

NewsAgent is mainly a pull based news server except the e-mail module because all e-mail
protocols operates on push based architectures, supporting many features and standards.

NewsAgent includes a core which operates on the data and identity management. Articles,

142

user information and all related data is stored in a database, and the archived information is

stored in another database. NewsAgent core is in charge of management of these databases.

NewsAgent core is in connection to the outside world only with the ports of its web services.
All other modules and functioning parts reach the required data through these xml web
services. This great feature encapsulates the core of the system and makes it a standalone
engine. Interoperability is highly achieved by means of the web services because any other
operating system, any other software implemented in any other programming language and
platform can connect to the core and operate on the data consistently by the help of xml web

services.

External modules of the NewsAgent are Web Module, NNTP Module, RSS/Atom Module and
E-Mail Module. Web Module interact with the internet users through the web browsers and is
the more effective and functional module of the NewsAgent. All user account functionalities,
admin facilities and news server operations can be done through this module. NNTP Module
acts as a mapping engine of the USENET NNTP commands to the appropriate web service
operations and returns the required data and reply codes to the news reader. RSS/Atom
Module handles the syndication operations which is very popular among the internet users
nowadays. Lastly the E-Mail module gives the system the ability to communicate through the

e-mail protocol to send or retrieve the articles of the newsgroups.

System Organization

Organization of the system is described in the figure below.

143

NNTP Mail Atom Weh
Module Module Module Module

Web Services Layer

|

|

|

|

I

|

|
RSS/Atom |
Feed Generator| |
|

|

I

|

|

|

|

|

|

Mail Generator Database Access Layer

DATABASE

NewsAgent Core_l

Web service invocations connect the modules to the core and abstract it as a standalone
engine. In the core, only access way is through the access layer of the system. And if change
occurs in the database which requires notification it creates the required e-mails and appends

the required RSS/Atom feeds.

10.2System Requirements

Hardware Requirements

» For Developer
A minimum of 512 MB DDRAM
A minimum of 5 GB free space on hard disk, for database storage and server
applications
A Pentium IV or equivalent AMD processor

Internet Connection

144

Network Card

For Server Applications

A minimum of 1 GB DDRAM

A minimum of 50 GB free space on hard disk, for huge database storage and large
number of server applications

A Pentium IV or equivalent AMD processor

Internet Connection

Software Requirements

A\

V V V V V V V VYV V

Java as a programming language. JDK 1.5.X

Eclipse as development environment

Apache 2.2 HTTP server

Apache Tomcat 5.5 for Servlet Container

Apache Axis 1.4 for XML Web Services

Apache WSDL2Java Tool

TCP-Mon Tool

PostgreSQL 8.2 Database Management System
Hibernate for Object-Relational Database Management.

Java Studio Creator 2 1.0

10.3Objectives & Tasks

Although we are not a commercial company, even not a company, we will try to do our best

and we will get proud of it if somebody uses benefit of out product, NewsAgent. So, we have

determined on some objectives for this purpose.

Objectives

Implementing the NewsAgent core as a standalone server and make it interoperable as

much as possible.

Implementing all the modules of the system.

Getting the feedback from the end users. According to the feedbacks, implementing

new modules and meet the rapidly changing internet technology needs.

Completed Tasks

New tasks are assigned to the team members after the date of completion of the final design
report. Until this day, as Iste Team, we have worked on several modules of the NewsAgent.
» We have implemented part of NNTP server to handle 2 NNTP commands.
» We have created a RSS feed by software and subscribed it from a reader.
» We have used “JAMES” which includes a SMTP server for our module, we have sent
and received e-mails through that program and we have parsed the e-mails.
» We have spent a lot of time on XML Web Services. We have completely deployed
some services for practice. We have sent and received Java objects embedded in the
SOAP messages which we will use for article and user data transfer between the
modules and the NewsAgent core.
According to the completed tasks, now Iste Team is ready to design the implementation
structure and combine the different architecture and make them work together in a very

consistent way.

Major Tasks & Work Packages

Major tasks are arranged under the suitable Work Packages. Strict deadlines are determined

for the Work Packages for the next semester.

Work Package 1: Core Implementation
This work package includes the implementation of the NewsAgent core. Core is the backbone
of the system and it has many implementation details. Core implementation is divided into 3
main parts.
+ Database Layer Implementation
Database layer implements all the required functionalities for database access. This layer
uses the benefit of the Hibernate tool. By the help of this tool database operations will be
easier and more consistent.
Database Layer operations are also divided into 2 parts, because module implementations
will use the operations implemented in the database layer. So they might have been
concurrently implemented.
» News Server Operations Implementation
These operations are the article and newsgroup related functionalities.

0 Article Handlers (Retrieval, Insertion, Deletion, Update)

146

© 0O 0O 0O o o oo o o o

Article Parsers/Generators

Newsgroups Handlers(Retrieval, Insertion, Deletion, Update)
Newsgroup Access Rights Handlers

Archiving Decision

Article Archiving

Newsgroup Archiving

Archive Article Handlers

Archive Newsgroup Handlers

Article Logging Handlers

Newsgroup Logging Handlers

Milestone

» User Operations Implementation

These operations are user account related operations.

0]

© O O O

© ©0 O O O

User Sign-up — New Account Creation

Password Creators

Auto-generated Confirmation Links

Confirmation Handlers

User Info(Password, Demographic data, E-mail options etc...) Retrieval,
Update

User Deletion

User Logging Handlers

User Access Rights Handlers

Subscription/Unsubscription Manager

Milestone

» Private Messaging and Chatting Operations Implementation

These operations are the messaging related operations between the online users of web

module of the NewsAgent.

0]

0}
0}
o

Private Message Handlers (Retrieval, Insertion, Deletion, Update)
User-Message Handlers
Chat Log

Milestone

147

s Web Services Layer Implementation

Web Services Layer implements the XML Web Services and acts as a bridge between the

modules and the Database Layer. Also Web Services Layer is responsible for triggering

the Mail Generator and RSS/Atom Feed Generator.

Actually this layer includes the web services mapping of the functions listed for Database

Layer. The extra implementations are listed as follows.

(0]

O O O O O o o©°

WSDL(Web Service Description Language) Implementation
Skeleton Implementations

Binding Implementations

Deployment of Services

Mail Triggers

RSS/Atom Triggers

Integration

Milestone

+« Mail Generator Implementation

This part generates e-mail messages and sends them to the appropriate receivers upon the

coming trigger from the Web Services Layer.

(0]

©O O O O O o©

Mail Generator

Article Object Parser
Receiver Handlers

JAMES Server Access Layer
E-Mail Sending

Logging Handler

Integration

s RSS/Atom Feed Generator Implementation

This part generates RSS/Atom Feeds messages and appends them to the appropriate

existing feeds upon the coming trigger from the Web Services Layer.

o
o
o
(o]
(o]

Feed Generation
Feed Selection
Feed Appending
Feed Load Handlers
Logging Handler

148

O Integration

0 Milestone

Work Package 2: NNTP Module Implementation
This work package includes the implementation of the USENET NNTP module of the

NewsAgent.

©O 0O 0O 0O o o o o o o o

Port Listening

Connection Handling
Authentication Manager
NNTP-Command Handlers
Security Manager
SSL/TLS integration
Session Manager

Logging Handler
Integration

Milestone

RELEASE: NewsAgent 1.0

Work Package 3: E-Mail Module Implementation

This work package implements the E-Mail module operating embedded in the JAMES SMTP

server of Apache. It accepts the e-mails from the subscribed users. And it avoids from the

spam mailing by using the confirmation strategy.

0]

o 0O 0O O O o o

Mail Parser

Authentication Manager
E-mail Confirmation Manager
E-mail Submission Manager
Logging Handler

Integration

Milestone

RELEASE: NewsAgent 1.1

Work Package 4: Atom Module Implementation

This work package implements the Atom Module of NewsAgent. Atom module accepts

entries from the Atom users and calls the required web services.

149

Entry Manager
Authentication Manager
Feed Handlers

Logging Handler

Integration

o O OO O O O

Milestone
0 RELEASE: NewsAgent 1.2
Work Package 5: Web Module Implementation
This work package includes the implementation of the most complex module of NewsAgent.
At this step, web module will be implemented step by step. To ensure the concurrent and

consistent implementation, it is divided into

s Graphical User Interface (GUI) Design

At this part, user friendly and easy-to-use web pages will be designed.
0 Home Page Design

Sign-in Page Design

Sign-up Page Design

Account Information Page Design

Article Operations Page Design

Newsgroups Operations Page Design

Private Messaging Page Design

Chat Pop-up Page Design

0O 0O 0O 0O o 0o o o

Integration

% News Server Operations Implementation

At this part, the designed web pages related to the news server operations such as articles
and newsgroups will be converted to the functioning pages by implementing the required
servlet classes and JSP pages. These classes are the corresponding servlets of the pages
listed in the GUI Design Part.

Article Operations Page Classes

Newsgroups Operations Page Classes

Corresponding Web Service Invocations

Integration

© O O O O

Milestone

150

¢+ User Account Operations Implementation
At this part, the designed web pages related to the user operations will be converted to the
functioning pages by implementing the required servlet classes and JSP pages. These
classes are the corresponding servlets of the pages listed n the GUI Design Part.
0 Home Page Classes
Sign-in Page Classes
Sign-up Page Classes
Account Information Page Classes
Corresponding Web Service Invocations

Integration

©O O 0O O O o©

Milestone

¢ Private Messaging and Chatting Operations Implementation

At this part, the designed web pages related to the private messaging and chatting will be
converted to the functioning pages by implementing the required servlet classes and JSP
pages. These classes are the corresponding servlets of the pages listed in the GUI Design
Part.

Private Messaging Page Classes

Chat Pop-up Page Design

Chatting Handlers

Synchronization Handlers

Corresponding Web Service Invocation

Integration

Milestone

RELEASE: NewsAgent 2.0

0O 0O 0O 0O o 0o o o

Work Package 6: Testing and Debugging
This work package includes the testing and debugging phases of the project period. At this
stage it is assumed that all the functionalities are implemented and only testing issues are
remained.

0 Unit Testing

O Integration Testing

0 Security Testing

151

0 Robustness Tests
0 Milestone
0 RELEASE: Testing Reports

Work Package 7: Documentation

This work package includes the required documentation of the project.
0 Installation Manual
0 Users Manual

0 Developers Manual

Work Package 8: Final Releasing

This work package is the final step of NewsAgent project. Packaging of the project and
releasing of the entire project is included in this work package. Actually, this “sum up” stage
includes hard tasks which include the arrangement of the installation files and release notes.

0 RELEASE: NewsAgent 2.1 Final Releases

11 GANTT CHART

Gantt chart of NewsAgent is presented in APPENDIX.

12 CONCLUSION

To sum up, throughout this report we presented the detailed design issues and the main
structure of the system in a detailed way. Each module of the system is visualized using
different diagrams and the concepts and discussions on them were explained clearly. These
diagrams and discussions on different aspects of NewsAgent provide it to be handled by using
different techniques which will be useful for observing different modules of NewsAgent from
different point of views. We believe that we have made benefit of the detailed design report in
the sense that design issues and modules of the system became stable in our minds. This

design period will guide us in the implementation of the system.

13 REFERENCES

1. http://www.tcpipguide.com
2. http://en.wikipedia.org/wiki/MD5
3. http://www.ietf.org/rfc/rfc0850.txt

152

4., www.ietf.org/rfc/rfc977.txt

14 APPENDIX

WBS |Name Start Finish Work Duration |Slack Cost | Assigned to
1 - WORK PACKAGE 1 (Core Implementation) Jan1 May 16 .135d 135d .26d .0)
Tl ¥ News Server Operations Implementation Jan 1 Jan 24 23d 3h 23d 3h 137d 4h 0
Ll Article Handlers Janl Jan 4 4d ad 157d 4]
10D Article Parsers/Generators Jan 3 Jans 3d 3d 156d 1]
1713 Newsgroups Handlers Jans Jan7 3d 3d 154d 0
1.1.4 Newsgroup Access Rights Handlers Jang Jan 10 3d 3d 151d 4]
1.1.5 Archiving Decision Jan 10 Jan 12 3d 3d 143d 1]
1506 Article Archiving Jan 13 Jan 18 6d 6d 143d 0
1.1.7 Newsgroup Archiving Jan 14 Jan 17 4d 4d 144d 4]
1.1.8 Archive Article Handlers Jan 17 Jan 18 3d 3d 137d (1]
1.1.9 Archive Newsgroup Handlers Jan 21 Jan 22 2d 2d 135d 4h ©
1.1.10 Article Logging Handlers Jan 22 Jan 23 2d 2d 136d 4]
1.1.11 Newsgroup Logging Handlers Jan 23 Jan 24 1d3h 1d3h 137d 4h 0
101512 MILESTONE Jan 24 Jan 24 MN/A MNJA 138d [s]
1.2 = User Operations Implementation Jan 21 Feb 10 21d 21d 12o0d 0
AL User Sign-up — New Account Creation Jan 21 Jan 24 4d ad 137d 4]
1.2.2 Password Creators. Jan 23 Jan 24 2d 2d 137d 0
1.2.3 Auto-generated Confirmation Links Jan 24 Jan 25 2d 2d 133d 0
1.24 Confirmation Handlers Jan 26 Jan 28 3d 3d 133d 0
1.25 User Info Retrieval, Update Jan 28 Jan 31 3d 3d 130d 1]
1.2:6 User Deletion Feb 1 Feb 2 2d 2d 128d 0
1.2.7 User Logging Handlers Feb 2 Feb 4 3d 3d 125d 4]
1.2.8 User Access Rights Handlers Feb 4 Feb 6 3d 3d 124d 1]
1.2.9 Subscription/Unsubscription Manager Feb 7 Feb 10 4d 4d 120d 0
1.2.10 MILESTONE Feb 10 Feb 10 MJA MJA 121d 0
1.3 ~ Web Services Layer Implementation Jan 5 May 16 131d 131d 26d 0
1.3.1 WSDL(Web Service Description Language) Implementation Jans May 14 130d 130d 27d 0
i 1 Skeleton Implementations Jans May 14 130d 130d 27d 0
1:3.3 Deployment of Services Jans May 14 130d 130d 27d 0
1.3.4 Mail Triggers Apr 11 Apr 15 5d 5d 56d 0

153

26 |week 1, 2007 |week 2, 2007 Week 3, 2007 Week 4, 2007 |Week

WBS Name Work 28 |28 |30 |31 |1 |2 (3 (4 |5 |6 |7 |8 (8§ |10 |11 |12 |13 (14 |15 |16 |17 |1B |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 13t
& ¥ WORK PAC 135d Project start ' F :
1.1 = News Se 23d 3h 200 3 N
1.1.1 Article | 4d — 3
112 Article 3d B :
113 Mewsgr 2d —]
1.14 Newsgr 3d — i
115 Archivir 3d :_il
116 Article ¢ 6d [
117 MNewsgr 4d ‘
118 Archive 3d 1
119 Archive 2d 3
1110 Article | 2d i
1.1.11 Newsgr 1d 3h ‘
1.1.12 MILEST' NfA 3 4
12 < User Ope21d w I
Tl User Si 4d —
122 Passwo 2d 3 :b
123 Auto-ge 2d 1
1.2.4 Confirre 3d 3 -
125 User Inl 3d i
1.2.6 User D¢ 2d ‘
127 User L 3d
128 User Ac 3d w
128 Subscri 4d r 3
1.2.10 MILEST! MNfA [-
1.3 = Web Ser 131d [-
13.1 WSDL(w 130d l N
132 Skeleto 130d i
133 Deployr 130d ‘
1.3.4 Mail Tri¢ 5d
135 RSS/At 5d i
Week 5, 2007 Week 6, 2007 Week 7, 2007 Week 8, 2007 Week 9, 2007
WBS |Name Work 28 (2930 (311 2 |3 4 |5 |6 |7 |8 |9 |10 |11 |12 {13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |1 |2
. e rre—— | | 1 il) 1 1 iz it st el | I il it st S
23 ¥ Mews Se 23d 3h
111 Article + 4d
112 Article | 3d
bR MNewsgr 3d
1.1.4 MNewsgr 3d
1.15 Archivir 3d
T Article s 6d
1.1.7 Newsgr 4d
1.1.8 Archive 3d
1.1.8 Archive 2d
L1110 Article | 2d
Ll Newsgr 1d 3h
Lil.12 MILEST! M/A =
1.2 ¥ User Ope¢21d
IR User Si 4d
1.2.2 Passwo 2d =
1:2.3 Auto-ge 2d —
1.2.4 Confirrr 3d —_
T User Inl 2d =
1.2.6 User Dt 2d | —
27 User Lc 3d [
1.2.8 User Ac 3d *
1.2.8 Subscri 4d
l.2.10 MILEST! MN/A
i ¥ Web Ser 131d
1.3.1 WsDL(v 130d
1.3.2 Skeleto 130d
1;3:3 Deployr 130d
1.3.4 Mail Tri¢ 5d
135 RSS/ALe 5d

154

Week 9, 2007 ‘Week 10, 2007 Week 11, 2007 Week 12, 2007 Week 13, 2007

WBS Name Work 25 (2627 281 |2 |3 |a |5 |6 |7 |8 |8 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 [29 |3
. Expyerm— 1 122 | | | 1 | 122 127]
11 ¥ News Se 23d 3h
111 Article + 4d
1172 Article f 3d
13133 Newsgr 3d
114 Newsgr 3d
115 Archivir 3d
115 Article 1 6d
1.17 Newsgr 4d
118 Archive 3d
119 Archive 2d
1.1.10 Article | 2d
1.1.11 Newsgr 1d 3h
1112 MILEST' NfA
12 ~ User Ope¢21d
1 User Si 4d
1.22 Passwo 2d
142:3 Auto-ge 2d
124 Confirr 3d
1.25 User Inl 3d
1.26 User D¢ 2d
127 User Le 3d
128 User Ac 3d
1.29 Subscri 4d
1.2.10 MILEST! MjA
13 ~ Web Ser 131d
131 WSDL(v 130d
132 Skeleto 130d
1.33 Deployr 130d
134 Mail Tri¢ 5d
g7 RSS/AL: 5d
tk 17, 2007 |week 18, 2007 |week 19, 2007 \week 20, 2007 |week 21, 2007
WBS |Name Work |24 |25 |26 |27 (28 |29 (3011 |2 |3 |4 |5 |6 (7 (8 |8 |10 |11 |12 (13|14 |15 |16 |17 [18 |19 (20 |21 |22 (23 |24 |25 |
& ¥ WORK PAC 135d X
1.1 ¥ News Se 23d 3h
1.1.1 Article 4d
1712 Article F 3d
113 Newsgr 3d
1.1.4 Newsgr 3d
115 Archivir 3d
1.16 Article » 6d
1.1.7 Newsgr 4d
118 Archive 3d
1.1.9 Archive 2d
1.1.10 Article 1 2d
1.1.11 Newsgr 1d 3h
2 MILEST! NjA
1.2 ¥ User Ope21d
1.2.1 User 5i 4d
122 Passwo 2d
1.2.3 Auto-ge 2d
1.2.4 Confirm 3d
1325 User Inl 3d
1.26 User D¢ 2d
1.2.7 User Lc 3d
1.2.8 User Ac 3d
1.2.9 Subscri 4d "
1.2.10 MILEST! MjA —
1.3 ¥ Web Ser 131d]
1.3.1 WSDL(v 130d —
132 Skeleto 130d
1.3.3 Deployr 130d [—
1.3.4 Mail Tri¢ 5d 4
135 RSS/Ate 5d

155

‘WBS
138
137
14
14.1
142
14.3
144
145
14586
147
15
15.1
152
153
154
155
158
157

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211

3.1

WBS

2,10
211
3
31
3.2
3.3
3.4
35
3.6
37
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
5

5.1

1z
13
14
15
1.6
1.7

S I R T B

1.8

5.2.1

Name

Integration

MILESTONE

= Mail Generator Implementation

Mail Generator

Article Object Parser
Receiver Handlers

JAMES Server Access Layer
E-Mail Sending

Logging Handler

Integration

- RSS/Atom Feed Generator Implementation

Feed Generation
Feed Selection
Feed Appending
Feed Load Handlers
Logging Handler
Integration

MILESTONE

~ Work Package 2: NNTP Module Implementation

Port Listening
Connection Handling
Authentication Manager
NNTP-Command Handlers
Security Manager
SSL/TLS integration
Session Manager
Logging Handler
Integration

MILESTONE

RELEASE: NewsAgent 1.0

= Work Package 3: E-Mail Module Implementation

Mail Parser

Name

MILESTOMNE
RELEASE: NewsAgent 1.0

¥ Work Package 3: E-Mail Module Implementation

Mail Parser

Authentication Manager
E-mail Confirmation Manager
E-mail Submission Manager
Logging Handler

Integration

MILESTONE

RELEASE: NewsAgent 1.1

= Work Package 4. Atom Module Implementation

Entry Manager
Authentication Manager
Feed Handlers

Logging Handler
Integration

MILESTONE

RELEASE: NewsAgent 1.2

= Work Package 5: Web Module Implementation
= Graphical User Interface (GUI) Design

Home Page Design

Sign-in Page Design

Sign-up Page

Account Information Page

Article Operations Page Design
MNewsgroups Operations Page Design
Private Messaging Page Design

Chat Pop-up Page Design

Integration

= News Server Operations Implementation

Article Operations Page Classes

Start
May 10
May 16
Apr 1l
Aprl
Apr 3
Apr 4
Apr7
Apr9
Apr 10
Aprl2
Apr 1
Aprl
Apr 2
Apr 4
Apr7
Aprg
Apr 10
Apr 12
Jan 15
Jan 15
Jan 16
Jan 18
Jan 20
Feb 1
Feb 4
Feb 7
Feb g
Feb 10
Feb 10
Feb 11
Feb 27
Feb 27

Finish

May 15

May 16
Apr 15
Apr 3
Apr 4
Apr g
Apr 15
Apr 10
Aprll
Apr 13
Apr 12
Apr 3
Apr 4
Aprg
Aprg
Apr 10
Aprll
Apr 12
Feb 11
Jan 16
Jan 17
Jan 20
Jan 23
Feb 4
Feb 7
Feb 9
Feb 10
Feb 10
Feb 10
Feb 11
Mar 11
Feb 27

Finish

Feb 10
Feb 11
Mar 11
Feb 27
Mar 2
Mar 4
Mar 5
Mar 7
Mar 9
Mar 10
Mar 11
Apr 10
Mar 29
Mar 31
Apr 3
Apr5
Apr 7
Apr 9
Apr 10
May 25
May 21
Jan 13
Jan 14
Jan 14
Jan 14
Jan 14
Jan 14
Apr 17
Apr 23
May 21
May 25
Jan 20

Work

6d

NIA
15d
3d
2d
&d
ad
2d
2d
2d
11d
3d
2d
3d
3d
2d
2d
NIA

2d
2d
3d
ad
ad
ad
3d
2d
1d
1d
1d

1d

131d
&d

Duration

“&d

NIA
15d
3d
2d
&d
ad
2d
2d
2d
11d
3d
2d
3d
3d
2d
2d
NIA
28d
2d
2d
3d
ad
ad
ad
3d
2d

Duration

131d
6d

Slack
26d
26d
56d
68d
67d
62d
s6d
61d
60d
sed
60d
68d
67d
65d
62d
61d
60d
60d
119d
145d
144d
141d
138d
126d
123d
121d
120d
120d
120d
115d
91d
103d

Slack

120d
11sd
91d
103d
100d
9ad
57d
95d
93d
92d
91d
61d
73d
71d
sad
66d
64d
62d
51d
16d
2od
148d
147d
147d
147d
147d
147d
s4d
48d
20d
16d
141d

O o 00 000 OO0 O©OOOOO® SO0 000000 e oo o0 o0 o0 0 oo o o

Cost Assigned to

Cost |Assigned to

© @ 0 O 0 O 00 0 OO0 S 0 00 0 o 0006 o o o0 0 0 o000 e o o

156

WBS Name Start Finish Work Duration |Slack Cost Assigned to

CIr D Frvars MEssayy rays Leagn AR LT ou oy o v
5158 Chat Pop-up Page Design Apr 17 Apr 23 7d 7d 48d 0
5.1.9 Integration May 15 May 21 7d 7d 20d 0
5.2 ¥ Mews Server Operations Implementation Jan 15 May 25 131d 131d 16d 0
52.1 Article Operations Page Classes Jan 15 Jan 20 6d 6d 141d [
522 Newsgroups Operations Page Classes Feb 20 Feb 23 ad ad 107d 0
52.3 Corresponding Web Service Invocations Mar 1 Mar 4 4d ad 98d 0
52.4 Integration May 15 May 25 11d 11d 16d 0
525 MILESTONE May 25 May 25 1d 1d 16d 0
515 = User Account Operations Implementation Mar 5 Mar 17 13d 13d 8s5d 0
53.1 Home Page Classes Mar 5 Mar 15 11d 11d a87d 0
532 Sign-in Page Classes Mar 5 Mar 15 11d 11d 87d 0
53.3 Sign-up Page Classes Mar 5 Mar 15 11d 11d 87d 0
53.4 Account Information Page Classes Mar 5 Mar 15 11d 11d 87d 0
53.5 Corresponding Web Service Invocations Mar 5 Mar 15 11d 11d 87d 0
53.6 Integration Mar 15 Mar 18 2d 2d 86d 0
537 MILESTONE Mar 17 Mar 17 1d 1d 8sd 0
5.4 ¥ Private Messaging and Chatting Operations Implementation Jan 21 May 25 125d 125d 16d 0
5.4.1 Private Messaging Page Classes May 10 May 19 10d 1od 22d 0
5.4.2 Chat Pop-up Page Design May 10 May 18 10d 10d 22d 0
5.4.3 Chatting Handlers May 10 May 189 10d 10d 22d [
5.4.4 Synchronization Handlers May 10 May 18 10d 10d 22d 0
545 Corresponding Web Service Invocations May 19 May 21 3d 3d 2od 0
5.4.6 Integration Jan 21 Jan 23 3d 3d 138d 0
547 MILESTONE May 24 May 25 2d 2d 16d 0
5.4.8 RELEASE: NewsAgent 2.0 May 25 May 25 1d 1d 16d 0
5] = Work Package 6: Testing and Debugging May 15 Jun 1 18d 18d ad 0
6.1 Unit Testing May 15 May 18 4d ad 23d 0
6.2 Integration Testing May 19 May 22 4d ad 19d 0
6.3 Security Testing May 23 May 26 4d ad 15d 0
6.4 Robustness Tests May 27 May 31 5d 5d 10d 0
6.5 MILESTONE May 31 May 31 1d 1d 10d 0
6.6 RELEASE Testing Reports lun 1 lun 1 1d 1d od 0

|WBS |Name Start Finish ‘Work Duration | Slack |Cost Assigned to
5.2.5 MILESTONE May 25 1d 1d 16d 0
5.3 ¥ User Account Operations Implementation Mar 17 13d 13d 85d 0
5.3.1 Home Page Classes Mar 15 11d 11d 87d a
5.3.2 Sign-in Page Classes Mar 15 11d 11d 87d 0
5.3.3 Sign-up Page Classes Mar 15 11d 11d g7d 0
5.3.4 Account Information Page Classes Mar 15 11d 11d 87d o
5.3.5 Corresponding Web Service Invocations Mar 15 11d 11d 87d 0
5.3.6 Integration Mar 16 2d 2d 86d a
537 MILESTONE Mar 17 1d 1d 8s5d 0
5.4 = Private Messaging and Chatting Operations Implementation May 25 125d 125d 16d 0
5.4.1 Private Messaging Page Classes May 19 10d lod 22d 0
5.4.2 Chat Pop-up Page Design May 19 10d 10d 22d o
5.4.3 Chatting Handlers May 19 10d 10d 22d [
5.4.4 Synchronization Handlers May 19 10d 10d 22d 0
5.4.5 Corresponding Web Service Invocations May 21 3d 3d 20d]
5.4.8 Integration Jan 23 3d 3d 138d 0
5.4.7 MILESTONE May 25 2d 2d 16d 0
5.4.8 RELEASE: NewsAgent 2.0 May 25 1d 1d 16d 0
6 ¥ Work Package 6: Testing and Debugging Jun1 18d 18d ad 0
6.1 Unit Testing May 18 4d 4d 23d a
6.2 Integration Testing May 22 4d 4d 18d]
6.3 Security Testing May 26 4d 4d 15d 0
6.4 Robustness Tests May 31 sd 5d 10d 0
6.5 MILESTONE May 31 1d 1d 10d 0
6.6 RELEASE Testing Reports Jun 1 1d 1d 9d]
7 = Work Package 7: Documentation Jun 4 13d 13d 6d (]
7.1 Installation Manual May 25 3d 3d 16d 0
7.2 Users Manual May 30 5d 5d 11d o
7.3 Developers Manual Jun 4 5d 5d 6d 0

|8 ~ Work Package 8: Final Releasing Jun 10 id 1d 0

RELEASE: NewsAgent 2

9 RELEASE: Testing Reports Jan 1 1d 1d 160d]

157

WBS

5.2.4
5.2.5
5.3
531
532
533
5.3.4
535
5.3.6
537
5.4
5.4.1
5.4.2
5.4.3
5.4.4
545
5.4.6
5.4.7
5.4.8
6

6.1
6.2
6.3
6.4
6.5

7.1

7.2

7ac]

8.1

Name

Integration
MILESTONE

¥ User Account Operations Implementation
Home Page Classes
Sign-in Page Classes
Sign-up Page Classes
Account Information Page Classes
Corresponding Web Service Invocations
Integration

MILESTONE

Start

May 15
May 25
Jan 1
Mar 5
Mar 5
Mar 5
Mar 5
Mar 5
Jan1

Jan1

¥ Private Messaging and Chatting Operations Im Jan 1

Private Messaging Page Classes
Chat Pop-up Page Design
Chatting Handlers
Synchronization Handlers
Corresponding Web Service Invocations
Integration
MILESTONE
RELEASE: NewsAgent 2.0
¥ Work Package 6: Testing and Debugging
Unit Testing
Integration Testing
Security Testing
Robustness Tests
MILESTONE
¥ Work Package 7: Documentation
Installation Manual
Users Manual
Developers Manual
¥ Work Package 8: Final Releasing
RELEASE: NewsAgent 2.4 Final Release
RELEASE: Testing Reports

Jan
Jan
Jan
Jan
Jan
Jan

Jan

e

Jan

Finish

May 25
May 25
Mar 15
Mar 15
Mar 15
Mar 15
Mar 15
Mar 15
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1
Jan 1

Jan 1

Work

11d

Duration | Slack

11d
1d
74d
11d
11d
11d
11d
11d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d
1d

71d
71d
71d
71d
71d
71d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
144d
laad
144d
144d
144d
144d

Cost |Assigned to

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

158

