Middle East Technical University

o

Department of Computer Engineering

‘fik

"A Unified News Exchange Server °

Initial Design Report

Goncagiil DEMIRDIZEN
Hilal KARAMAN
Ali Anil SINACI
Ferhat SAHINKAYA

“NewsAgent"

by

1$T€ Yazilim

Fall, 2006

I INTRODUCTIONooiiiiiiiiiiiiieteteeeee ettt e 5

1.1 Project Scope & Definition..........cccuiieeiieeiiieeiie e 5
1.2 Project DeSCIIPION.eeiutieiiieiieiie ettt ettt ettt ettt sttt e sate e e e eneeas 6

2 NEWSAGENT MODULES ..ottt sttt 8
2.1 WED MOAUIE.......coiiiiiiiiiiee e et 8
2.2 NNTP MOQUIC....ceeiiieieeiieeeeeee ettt 8
23 Mail MOQUIE......ceeiiiiiit et ettt et 9
2.4 RSS/AtOm MOAUIC....cc.eiiiiiiiiiiieiteiecte et 10
2.5 Authentication ModUIEccoooiiiiiiiiiiiiieeeee e 10

3 USE CASES . ettt sttt et ae et esseebeeneesaeenee 11
3.1 USE CASE DIAGRAMS ..ottt 11
3.1.1 Use Case Diagram for Administratorcocceeeeveeieeneenenieneeneeieneenne 11
3.1.2 Use Case Diagram for Candidate USer..........ccceeeierieeiienieniieiieeieenen. 11
3.1.3 Use Case Diagram for Web End-USser.........cccocvveeeiieiiiienciiicieeceeeen 12
3.14 Use Case Diagram for NNTP End-USer.........coceceviiviiiinicncininicnenee. 12
3.1.5 Use Case Diagram for RSS/Atom End-User........cccooceeveieniiniiienienieenen. 13
3.1.6 Use Case Diagram for Mail-USerccccoevvieviieiiienieeiienieeieeee e 13

3.2 USE CASE SCENARIOS......oiiiteecteeee ettt 13

4 MODELLING ..ottt sttt ettt et e esteentesseesseenseeneenseensesneens 16
4.1 DATA MODELLING........cooieiteiectieie ettt ettt sae e 16
4.1.1 Entity-Relationship Diagrams............cccoeeveriieniieniiieniienieeieeeee e 17
4.1.2 Data DESCIIPLIONS.......eeeiieeriieeciieeeieeeeiee et ee et e et e e eeareeeareesneeesanee s 23
4.13 Entity DeSCIIPLIONS. ...ccciiieeiieeciieeeiieeeteeesree et et e et e e eraeesreeesaree s 27
4.1.4 Creating NewsAgent Databasecccceeveerieneniineenenicneeneceeeceeen 35

4.2 FUNCTIONAL MODELLING ...c..eeottiiinitiienienieeieeitenieeie ettt 41
4.2.1 Data FIOW DIa@ramscccceecvieriiieiiieiiieiieeie et e 41
4.2.2 D1 D3 (618 0] 4 V-1 2SRRI 48

5 CLASS DIAGRAMS. ..ottt ettt s seenaesne e 61
5.1 Article Management Moduleoooieviiiniieiiieniecieeeee e 61
5.2 User Management MoOdUl@............cccueeuieriiiiiienieeiieeie e 63

5.3 Newsgroup Management Module.............coocoieriiiiiiniiiiniiniieiee e 64

54 WeED MOAUIC......iiiiiiiiiiieeee et 65
5.5 NNTP Commands Moduleccocueiiiiiiiiiiiiiiiieeeeeeeee e 67
5.6 Mailing ModUIEccoooiiiiiiiiii e 70
5.7 RSSMOQUIC.....cooiiiiiiiiiiite e e 71
5.8 LOZMOQUIC.......oooiiiiiieiieeieee et 73

SEQUENCE DIAGRAMS ...ttt 73
6.1 Login and AUuthentiCationc.ceerieriieiiienieeiieee e 73
6.2 N3 Te3 110 o OO P U PSURURRIURURPON 75
6.3 USEr ManagemeNnteeerueeiiiieeiiieeiieeeiteeeieeesieeesteeesireeessseeesreesnsneesnseeenns 76
6.4 Usergroup Management.........c..eeeeiiiieeeeriiieeeeiieeeeeieeeeesiieeeeeseeeeeesnneeeeeeneens 77
6.5 Newsgroup Managementc.ceerueeriiiieiiiiieniieeriee ettt e st esiee e 78
6.6 Admin Log Control..........cccoeiiiiiiiiiiiiiieieetee et 79
6.7 SUDSCTIPHION ...ttt e e et e et eeeaeeeaaeeenneeeenseees 80
6.8 Update User INFO.......oeeiiieiiiiecie ettt sree e 81
6.9 Web USEr OPerations.......cc.cecueeierieriiinienieeienitenie ettt st et eine e 82
6.10 Authenticated NNTP User Operations...........eccueeeveerieenieenieenieenieenieesreeneennns 83
6.11 Unauthenticated NNTP User Operations..........c..ccveeeeerieerieerreenieenieenveenneenens 84
6.12 Feed Generationccccueeiiiiiiiiiiinieeieete ettt 85
6.13 Sending E-mailS.......cccouiiiiiiiiiiieeeeeeee e 86
6.14 Receiving E-mailS.......cccooiiiiiiiiiiiiiiieiee e 87

TESTING PLAN AND PROCEDURES.......cccoiiiiiniiiinieeeeeeeeeesteeee e 88
7.1 TeStING PLaNeviieiiiicie e e e 88
7.2 TEStING StrAtEEY ...vveieiiieeiiie ettt e e e e eeeaae e ebaeeenbeeennees 88
7.3 Testing Procedurecc.ooouieiiiiiiiie e 90

7.3.1 UNIE TESTING .eeevvieiiieiieeie ettt ettt ettt eeebeesbeessaeensees 90

7.3.2 Inte@ration TeStINGcceeereiiieiiieeciee e 90

7.3.3 SECUTTLY TESTING ..vveeeevieeeiieeeieeectee et et ee e eee et e et e e e eaeeeraeeenreeeenns 90

SYNTAX SPECIFICATIONccciiiieiieieeiieie ettt se e esaenes 91
8.1 Naming the Flasses and Files..........ccccoooiieiiiiiiiiiiiiicicceeece e 91
8.2 NamMING FUNCHONSuiiiiiieiiiie ettt et es 92

8.3 Naming Variablescccuiiiiiiiiiiieiie ettt 92

8.4 Comment CONVENLIONS.c..eruiertirieriietieieeteenteeteetesteenteeseesteeteseeesseesseeneeseeenne 92
O GANTT CHART ..ottt st ettt ensenseene s 93
10 CONCLUSION ..ottt ettt ete ettt et ae st eseesaessaeseessesseesseessesseesensaens 93
11 REFERENCES ...ttt sttt 95
12 APPENDIX ...ttt sttt ettt naeeaeene e 95

1 INTRODUCTION

We had specified our requirements in our requirements analysis report and in the light of
our requirements analysis reviews, we have prepared the initial design of our project. In
initial design of NewsAgent we have understood the details and different aspects of the
project more clearly and the system began to visualize in our minds precisely. In the
design process, we aimed to design an efficient and modular system which satisfies all
concept of the problem and tried to develop practical and applicable solutions to the
problem. According to this purpose, we present the initial design of our system in this
report. We aimed to visualize and embody our system with the help of different kinds of
diagrams and specifications. We believe that all concept of the project is stable in our
minds and we will try to develop the details of the design successfully in the light of our

initial approaches to NewsAgent.

1.1 Project Scope & Definition

Communication has always been a significant aspect in human beings’ lives. As the time
passes and technology evolves, it appears with different usages and new techniques are
discovered for serving communication. Accordingly, after Internet has started to be used
widely, communication became one of the most important usage areas of it, especially
electronic mails and online chat. Nowadays, most people use mailing lists, newsgroups or
web forums for communication and reaching data about a specific issue. Definitely, these
ways are more practical for now, when compared with searching whole Internet for a
specific data. For this reason, handling different access methods to data is very significant

for a news server. In fact, that is the reason for developing NewsAgent.

NewsAgent will provide users to reach data through web, tin, e-mail and news clients or
via e-mail and RSS options will provide user to reach data in a fast and consistent
manner. Furthermore, we can say that when NewsAgent takes its place in the market,

users will feel the comfortable way of reaching data from different platforms.

1.2 Project Description

NewsAgent will contain several components, each of which will address different
methods for communication. Each component will provide a different platform for
communication and we can differ each user by the component that he/she used. For this
reason, NewsAgent users can be named as NNTP user, RSS user, Web user, Mail user

and administrator. Here are some general features that will be in NewsAgent:

%. Administrators will be people who are responsible from the management of
newsgroups, users and usergroups. Creating, removing new newsgroups or handling of
undesirable articles in any of the newsgroups will be in the scope of his/her
responsibilities. Moreover, they also deal with user management. When a candidate
user requests to be a user of our system, administrators will be responsible to accept or
reject their request and adding, deleting user and modifying user rights will also be

responsibilities of administrators.

. Web users will be able to access newsgroups and articles through a graphical user
interface. Web user will login to the system and after this authentication they will be
able to realize all article-based and newsgroup-based operations according to their
access level. An unauthenticated web user will be able to realize only part of these
operations since their access levels will cover a small set of these operations. Web
component will also provide management facilities for each user such as update user
info, change login info etc. and a user-friendly interface will provide user to reach

data, quickly.

. NNTP users will be able to access newsgroups through tin or NNTP clients, like
Mozilla, Thunderbird or Microsoft Outlook Express. They will also be separated as
authenticated and unauthenticated NNTP users. Authenticated NNTP users will be
able to realize all article-based and newsgroup-based operations according to their

access level. Unauthenticated NNTP users will be able to realize only part of these

&,

Q.

operations.

RSS users will be able to receive feeds from newsgroups according to their wishes.
We will create separate feeds for every newsgroup and whenever, a new article is
posted we will add this article as a new item to our feed tree of the related newsgroup
and we will serialize it. We will also delete the old items in the feed and RSS users

will be able to access new data via their RSS readers.

We will present a mailing option for our users and users will be able to set / reset their
mailing option and as a result e-mails will be sent to these users if they want to receive
post in a newsgroup via e-mail. Mail users will be able to receive mails from different
newsgroups according to their wishes. Whenever a new article is posted, e-mails
related to that article will be sent to the users who request to receive e-mail from that
newsgroup. Moreover, mail users will be able to send posts to newsgroups as a new
thread or as a follow-up. When the user sends mail to the system we will check the
user is registered and the e-mails from registered users will be insert as articles into

newsgroups.

NewsAgent will contain several user groups and each user group will have different
access rights. Authentication will specify access rights of each user and user will be
able to access different newsgroups according to their rights and newsgroups that they
are subscribed. In addition to user groups, also there will be a general access right
which will not need authentication and user will be able to access some subset of

newsgroups which is specified by the system administrator.

2 NEWSAGENT MODULES

2.1 Web Module

In our web interface, we will display some newsgroups which can be accessed by
authenticated and unauthenticated users. Unauthenticated users will only request to read
the articles in these groups. If the user is unregistered, a sign up will be requested to get

authenticated. If the user is registered, the following functionalities will be provided.

e The user logins to the system by entering username and password and after
authentication check, the user group of the user is specified and the user will have
the rights according to the user group. Each user group will have different rights
and restrictions.

e Users can sign up only through web module and a randomly generated password
is sent to the user via e-mail for verification of the candidate user. After the
verification, user can start to reach articles on the news server by using his/her
username & password.

e Update user info and account info functionalities will be supported and the user
will be able to change this information.

e Read, post, update, cancel article functionalities will be provided and the user
will have the right to update and cancel only the articles that he/she has posted.

e Mail receiving options will also be adjusted in the web module and a user may
request to receive e-mail for the articles of the adjusted newsgroups.

e Listing the newsgroups and sorting the newsgroups and articles according to the

specified criteria such as according to names, dates of the articles etc.

2.2 NNTP Module

Similar to the Web module, users are classified as authorized and unauthorized users.

Unauthorized users can only reach only some subset of newsgroups, which are specified

by system administrator. In fact, that is reasonable, since user group of unauthorized
users has access level to only these newsgroups. If user is registered, the following

functionalities will be provided to the user:

e The user login to the system by entering his/her username and password.
Username and password are controlled for validation from the database. If
username-password combination is not valid, display feedback is shown to the
user which specifies incorrect username or password and user cannot enter the
system. If this is not the case, user can enter the system and an access level is
assigned to the user corresponding to the user group.

e User can update his/her account information according to his wishes. Since userid
information is hidden from the user, same userid will again specify the user.

e Read, post, update, cancel article functionalities will be provided and the user will
have the right to update and cancel only the articles that he/she has posted.

e Mail receiving options will be adjusted in the NNTP Module, setting this option
on/off is the users’ choice.

e Listing the newsgroups and sorting the newsgroups and articles according to the

specified criteria such as according to names, dates of the articles etc.

2.3 Mail Module

e When our system receives an e-mail, first of all the system controls whether the
sender is an authenticated mail client or not. If the sender is authenticated then the
e-mail is converted to the article format and inserted to the database. The article
will be added to a newsgroup which is specified in the address field of the mail
content.

e User can reach articles in a newsgroup via e-mail depending on whether he/she
set his mailing options on. Of course, user will be able to receive mail from only

newsgroups which he/she can subscribe corresponding to his/her user group.

2.4 RSS/Atom Module

e If user want to follow a newsgroup periodically, user can subscribe to the RSS
feed of this newsgroup and by using an RSS reader, he/she can reach articles that

are newly posted to the newsgroup.

2.5 Authentication Module

e As mentioned in previous modules, each user will be in a user-group which
specifies the access level of the user. During authentication username will be
checked for specifying whether username is in database or not.

e Username and password will be checked for correspondence between them.

e For security reasons, password will be held in a MD5 (Message-Digest algorithm
5) [references: http://en.wikipedia.org/wiki/MD5] format. This hashing technique
will prevent anyone to access passwords of the users, directly.

e User groups will be assigned for the user after his/her authentication. Since user
group for each user is stored in the database which is assigned by system
administrator, assignment of user groups is not a big deal.

e A user who is not authorized to the system will be able to access only some subset

of newsgroups and read only articles in these newsgroups.

10

3 USE CASES
3.1 USE CASE DIAGRAMS

3.1.1 Use Case Diagram for Administrator

Yalidate
Tecineludes» - s bodin Data

Add
<<extend-=>
L ey Sgraup
-
—
-
—
Mesvsgroups 4
-
-
- S
— Remaowe

<<extend=> "\ Newwsoroup

Cortrol & Manage
Administrator LB

<<extend=>_ - Add Uzer
— —
.~
— <<extend=>> —{ Remove User
Uzers ;
=

-
-
—

ccentend>> — ¢ Modify User
Right=

3.1.2 Use Case Diagram for Candidate User

Reguest Sign-Up > _ Submit
)\ From Wb <<include>> =zer Info

Candidate User

11

3.1.3 Use Case Diagram for Web End-User

Change
Login Data

List

Mewezgroups S T ladin e - — - - - - o ‘-.-’allldate
crincludess Login Data
Subscribes
nzubscribe
to Mewsgroups <<extend:> Open Mewy
I Thread
Sort Article
Mewsgraups T
<<extend=="
Web End-User

Cancel

R Message Cvener
Adicle) <<include=>

“erification
Fead
Aricle

SetFezet e-mail
Receiving Option

Upidate
Uzer Info

3.1.4 Use Case Diagram for NNTP End-User

List
Mezgroups

YWalidate
Login Data

Open Mew
Thread

Subzscribes
Unzubscribe
o Mew sgroups

; -:-:e::tend:f_
— - -
Post ™

Aricle

<<extends»>
HHTP End-User

Read
Article S

Article ! <cincludes>

Message Cwner
“erification

12

3.1.5 Use Case Diagram for RSS/Atom End-User

Subscribe to
Mewes Server

Subscribes
Unsubscribe
to Mewsgroups,

RSS/Atom End-User
Read Aticle

3.1.6 Use Case Diagram for Mail-User

Send meszage to
the Mews Server
via SMTP

Receive e-mail from
the Mewws Server

Mail-User

3.2 USE CASE SCENARIOS

Administrator:

» Login: An administrator has to login to the system in order to realize
administrative roles. There will be a web user interface for administrative roles.
After validation of login information, the administrator will be able to manage
newsgroups, users and news.

» Manage Newsgroups: Administrator may add new newsgroups and remove
existing newsgroups in the content of the managing newsgroups scenario.

» Manage Users: Administrator may add and remove users and modify the user

rights. Administrator will control users and will be able to restrict the user rights.

13

There will be specified user roles and rights, however, new rights can be granted
to the users and existing rights may be withdrawn.

» Control & Manage News: An administrator will have the right of controlling and
managing the articles. Articles which do not suit the content of the newsgroup
may be cancelled. As a result of such a control on news, user roles and rights

granted to the users defined more precisely.

Candidate User:

> Request Sign-up: A candidate user is a person who demands to sign up to the
system via web interface and as a result of a sign-up request, the candidate user
has to submit a user information form and if the administrators accept the request,

the candidate user turns out to be a real system user.

Web End-User:

The scenarios which are valid for NNTP End-users are also valid for Web End-users.
Moreover, Web End-users have extra usage scenarios. The followings are the extra usage
scenarios for Web End-users.
> Set & Reset Mail Receiving Options: The user will be able to request to receive
e-mail for the articles posted. The user may want to receive e-mail for specified
newsgroups or want to receive e-mail for all newsgroups. Also the user may want
to cancel the mail receiving option and then no e-mails will be sent to the user
from that newsgroup.
» Update User Info: The user will be able to update user information such as
his/her personal information registered when signing up, e-mail address etc.
» Change Login Data: The user may change login information. Generally user id
of a user is not allowed to be changed for most of the systems however the users

may need to change their passwords.

14

NNTP End-User:

» Login: The user will login to the system in order to realize user roles. After
validation of user login information, the wuser will be able to list,
subscribe/unsubscribe, sort newsgroups and post, read, cancel and sort articles.

> List Newsgroups: The user will be able to list the newsgroups. In the concept of
listing newsgroups scenario, a user may list all newsgroups or the newsgroups
that he/she has been subscribed.

» Subscribe / Unsubscribe to Newsgroups: After listing the newsgroups, the user
will be able to subscribe and unsubscribe to the newsgroups.

> Post Article: The user posts articles. In the concept of posting articles, the user
may open a new thread or follow up to an existing article.

» Cancel Article: The user may cancel the articles that he/she has posted.

> Read Article: The user reads articles.

RSS/Atom End-User:

» Subscribe to News Server: RSS/Atom end-users will subscribe to the news server
in order to receive feeds from the server.

» Subscribe / Unsubscribe to Newsgroups: RSS/Atom end-users will be able to
subscribe and unsubscribe to specific newsgroups. Each newsgroup will have its
own feed so that the user receives only the news from subscribed newsgroups.

» Read Articles: As all users do, RSS users will read the news.
Mail User
When a user sets receiving mail option from web, that user becomes also a mail user.
> Send Message to the News Server: Mail users send messages to the server

through SMTP protocol. This message appears in the same way as other messages

do in the News Server.

15

> Receive e-mail from the News Server: When a new message is posted, mail users

receive that message as e-mail from the newsgroups if they are subscribed to that

group.

4 MODELLING
4.1 DATA MODELLING

In our system, we will store our data in 2 different databases. The main database will be
used to store main data such as articles, users, newsgroups, etc. Other database will be
used as an archive to store older articles and deleted newsgroups. These older articles will
not be stored in main database anymore. If any client requests an old article which is
already moved to the archive database by NewsAgent, system finds the article from the

archive database either by the message-id or server specific article number.

16

ER Diagrams for Main Database

4.1.1 Entity-Relationship Diagrams

distribution

’

posting_versi
on

Artic

reply_to

les

\

N

from_uid

date

Vi

Users

@eg

picture

1

3

access_level

group_ul User_groups

0

creation_datetime

b

Newsgroups

0}

Ng articles

[

Ng mails

18

wanits 1l

Subscription

Login_log

Action_types

@ Configuration
_log

0

19

ER Diagrams for Archive Database

distribution

postmg_versi

reply_to

s

o1l

is_deleted @
.\M Newsgroups

from_uid

Articles

s

date

0%

b

]

deletion_datetime

j

message _id

Relations
Users User_sroups
Users Newsgroups
1 Taa 4
Articles oD o) Users
Newsgroups Created by 1lsers

21

control ; String

questionAns ; String

. | . -
Newsgroups am n_ng om Articles
Entity Sets
Articles Users User_groups Ng_mails Action_types
message id* - String user jd* : Biglnt group_id* :Integer | | mail address* : String action_no : Tnfeger
icle no : Bi password® : String group name* ; String il type : Infeger
subject® : String name™* ; Stri access level® : Integer : action name : String
cmjftent i Text surname * g&uﬁag - - Ngsieoiow!
date® : Date username ™ : String New sarou] g wd* : Integer S
from_uid* ; Bi date_of birth : Date : — access level* ; Infeger 5 o ke
i :Pight of e 3 g e
from_mail* - String birth_place : String DLEL-* tisget user_id* : Biglnt
reply to : String phone* : String s *.Stnng Ng_articks date_time : Date
followup to : String c-mail* : String created_by B’gljft — - action_type : Infeger
relay version* - String signup _date* : date Ereatlo"[—:?mm'e ' M* Bignt id* ; String
posting version® ; String | | lastLoginDate* : date dewlpm'me_mmg message_id* : String
lines* : Integer lastLogin[P* ; String '
path* ; String removed date < Date % o Login ko
expires : Date group id* ; Infeger s . *_k!f
references : String picture : BLOB user_id* : Biolnt user_id* : Biglnt
distribution - String secretQuestion : String ng_id* Integer login_date® : Date
wants_mail* : Boolean login_IP* : String

22

Articles

message_id* : String
subject® : String
content : Text
date® : Date
from wid* : Biglnt
trom_mail* : String
reply to : String
followup to : String
relav version® : String
posting version® : String
lines* : Integer
path® : String
expires : Date

ng 1d* : Integer
ng name* ; String
created by* - Bagnt
15_deleted* : Boolean
creation_ datetime™ |
Date
deletion_datetmne
Diate
description : String

In ng

messags_id* : String
ng_il* : Integer

references : String
distribution : String
control ; String

article no* : Integer

4.1.2 Data Descriptions

The data description function is to deal with the structure of the data. We have taken each
entity and relation separately and given each attribute in each entity or relation a type so

the data is fully structured.

Note:

+« Data with underlines are primary keys;
+ Data with star have to be entered absolutely (NOT NULL);

Data Descriptions for Main Database

Avrticles

Data Type & Size Format

article_no* BIGSERIAL Number (AUTOINC)
message id* VARCHAR - 40 Text (UNIQUE)

23

subject*
content

date*

from uid*
from mail*
reply_to
followup to
relay version*
posting_version*
lines*

path*

expires
references
distribution

control

Users

Data
user_id*
password*
name*
username*
date of birth
birth place
phone*
e-mail*
signup date*
removed_date
group_id*

picture

User groups

Data

VARCHAR - 60
TEXT
DATETIME
BIGINT
VARCHAR - 40
VARCHAR - 40
VARCHAR - 40
VARCHAR - 60
VARCHAR - 60
INTEGER
VARCHAR - 60
DATETIME
VARCHAR - 60
VARCHAR - 60
VARCHAR - 60

Type & Size
BIGSERIAL
VARCHAR - 20
VARCHAR - 40
VARCHAR - 40
DATE
VARCHAR - 20
VARCHAR - 40
VARCHAR - 40
DATETIME
DATETIME
INTEGER
BLOB

Type & Size

Text

Text
Date/time
Number
Text

Text

Text

Text

Text
Number
Text
Date/time
Text

Text

Text

Format

Number (AUTOINC)
Text is hidden, ********
Text

Text

Date

Text

Text

Text

Date/time

Date/time

Number

Binary

Format

24

group_id*
group_name*

access_level*

Newsgroups

Data

ng_id*

ng name*

created by*
creation_datetime™

description

Ng_articles
Data

article no*

message id*

Ng mails

Data
mail address*

Ng access levels

Data

ng_id*
access_level*

Subscription

Data

user id*

ng_id*

INTEGER
VARCHAR - 60
INTEGER

Type & Size
INTEGER
VARCHAR - 60
BIGINT
DATETIME
VARCHAR - 60

Type & Size
BIGINT
VARCHAR - 40

Type & Size
VARCHAR - 40

Type & Size
BIGINT
INT

Type & Size
BIGINT
INTEGER

Number
Text
Number

Format
Number
Text
Number
Date/time
Text

Format
Number
Text

Format
Text

Format
Number
Number

Format
Number
Number

25

wants_mail*

Login Log

Data
user_id*

login_datetime*

login_IP*

Action_Types

Data
action_no*
id_type*
action_name*

Configuration Log

Data
user_id*
log_datetime*
action_no*
id*

BOOL

Type & Size
BIGINT
DATETIME
INET

Type & Size

INT

TINYINT
VARCHAR - 100

Type & Size
BIGINT
DATETIME
INT
BIGINT

Data Descriptions for Archive Database

Articles

Data

article no*
message 1d*
subject™®
content
date*

from_uid*

Type & Size
BIGSERIAL
VARCHAR - 40
VARCHAR - 60
TEXT
DATETIME
BIGINT

Yes/no

Format
Number
Date/time

IP Specific Text

Format

Number (AUTOINC)
Number

Text

Format
Number
Date/time
Number
Number

Format

Number (AUTOINC)
Text (UNIQUE)
Text

Text

Date/time

Number

26

from mail* VARCHAR - 40 Text

reply to VARCHAR - 40 Text
followup to VARCHAR - 40 Text
relay version* VARCHAR - 60 Text
posting_version* VARCHAR - 60 Text
lines* INTEGER Number
path* VARCHAR - 60 Text
expires DATETIME Date/time
references VARCHAR - 60 Text
distribution VARCHAR - 60 Text
Newsgroups

Data Type & Size Format
ng_id* INTEGER Number
ng name* VARCHAR - 60 Text
created by* BIGINT Number
is_deleted* BOOLEAN Yes/no
creation_datetime* DATETIME Date/time
deletion_datetime DATETIME Date/time
description VARCHAR - 60 Text

In ng

Data Type & Size Format
message _id* VARCHAR - 40 Text
ng_id* INTEGER Number
article no* BIGINT Number

4.1.3 Entity Descriptions

Entity & Relation Descriptions for Main Database
Articles
This entity contains all necessary information about articles which are posted to the news

server. No matter to which group it is posted, all articles are stored in this table with all

27

required information. Some attributes are used for holding standard data for USENET
messages and some attributes are assigned by us locally for managing articles easily.

In USENET message format, [6] there are some required headers and some optional
headers. We hold these required headers and some of the optional headers in our
database, in Articles entity, in order to obey universal USENET message standards.

Below, the table’s attributes are explained.

article no*: This number is the identifier of the articles inside NewsAgent. System
assigns a unique number each article arrives to the server. Although message-id of the
article uniquely identifies each article, system assigns an integer valued identifier to each
article to manage them more easily.

message_id*: Required ‘Message-ID" standard header is held in string message_id. This
attribute uniquely defines a message. The same message ID may cannot be assigned to
another article because this id is created by the clients according to their systems and
merging this data with some information of the server.

subject*: Required "Subject’ standard header is held in string subject. It is assigned by
sender and briefly defines what the article is about.

content: This field is held in text format and stores the content of the article.

date*: Required "Date’ standard header is held in date in date/time format. It is the time
that the article is posted to the network.

from_uid*: This is a local assignment that is required to know which user has posted the
article. It is a foreign key for this entity referencing user_id of Users entity.

from_mail*: Required "From® standard header is held in string from_mail. It is the mail
address of the sender of that article. This is a default mail address and foreign key which
references the attribute e-mail of Users entity.

reply_to: Optional ‘Reply-To" standard header is held in string reply_to. This string holds
the optional mail address of the sender if he/she wants to get mail for that article to the
specified address instead of from_mail.

followup_to: Optional ‘Followup-To' standard header is held in string followup_to. If

this is not empty, all follow-ups to the article will be posted to the newsgroups specified

28

in this field. If it is empty, follow-ups will be posted to the newsgroup(s) that the message
was originally posted.

relay _version*: Required ‘Relay-Version' standard header is held in string
relay_version. This header shows the version of the program that is responsible for the
transmission of the article.

posting_version*: Required ‘Posting-Version' standard header is held in string
posting_version. This header identifies the software that is responsible for passing
this message into the network.

lines*: This header is also required and specifies how many lines the article has. It is held
in integer format.

path*: Path is a required header and shows the way that the article followed until
reaching the system. Path is held in string format and when a system forwards this article,
it concatenates its name to the path.

expires: This field is in date/time format and optional. If it exists, the article expires in
specified date and time.

references: This field is optional and held in string format consisting of article ID"s
which prompt the submission of this article. For instance, in a follow-up article, the
parent article exists in this field.

distribution: This field is held in string format and lists the newsgroups that the article

should be sent. This field alters the original newsgroup distribution.

Users

This entity contains all required information about the users which can be authorized or
unauthorized. Administrators are also users.

user id*: This number specifies each user uniquely; hence user_id is the primary key of
the Users entity.

name*: This string field holds the name of the user.

username*: This string field holds the username of the user.

password*: This string field is the matched password for the username of the user .

date_of_birth: This date typed attribute holds the birth date of the user.

29

birth_place: This string typed attribute holds the birth place of the user.

phone*: This string field holds the cell phone number of the customer.

e-mail*: This text field holds the mail address of the customer.

sighup_date*: This field holds the date and time that the user has signed up. This field is
of type date/time.

removed_date: This field is usually empty but if a user is removed from the database, this
field holds the date and time that the user is removed from the system.

group_id*: Group id specifies which user group the user belongs to. This is a foreign key
referencing group_id attribute of User_groups entity.

picture: Users can upload their pictures to the system. This picture is held in picture field
in BLOB format.

User_groups

This entity holds information about user groups. Users are assigned to user groups
according to their access rights.

group id*: This number specifies each user group uniquely; hence group_id is the
primary key of the User_groups entity.

group_name*: This string field holds the name of the usergroup.

access_level*: This integer field holds the access level of the user. For instance, if it is 1,

it means full access.

Newsgroups

This entity holds information about newsgroups. When a newsgroup is added, listed
information about that group is added to the table.

ng_id*: This number specifies each newsgroup uniquely; hence ng_id is the primary key
of the Newsgroups entity.

ng_name*: This string field holds the name of the newsgroup.

created_by*: This big integer typed field holds information about who created this
newsgroup. This is a foreign key of this entity referencing user_id attribute of Users

entity.

30

creation_datetime*: This field holds the date and time that the newsgroup is created.
This field is of type date/time.

description: This string field holds a brief description about what the newsgroup is about.

Ng_articles

Ng articles is a general name for lots of possible tables. When a new newsgroup is
created, an article table is created for that newsgroup with a specifying name. For
example, if a group named "‘Music" is created, a table named "Music_articles’ is also
created. This table does not hold all information about the articles belonging to that table.
It only holds little information about articles posted to that group for referencing the
articles from main Articles table. This way is chosen in order to prevent the database
from multiple storage of same article when it is posted to different groups at the same
time.

article no*: This number specifies each article in the server uniquely; hence article no is
the primary key of the Ng_articles entity. This is a foreign key referencing to the Articles
table.

message_id*: This field is also held with article number because news readers may want

request any article by means of the universal message-ids.

Ng mails

Ng mails is also a general name for lots of possible tables. When a new newsgroup is
created, a mails table is created for that newsgroup with a specifying name. For example,
if a group named "Cinema’ is created, a table named "Cinema mails’ is also created. This
entity is formed in order to store mail addresses of people who subscribed to receive the
articles that are posted to the specified newsgroup as e-mail.

mail_address*: This string field holds the mail addresses of the users who want to

receive e-mails from the specified newsgroup.

Ng access levels

Data Type & Size Format

31

ng_id* BIGINT Number
access_level* INT Number

This table specifies access levels of each newsgroup to determine the user groups which

will be able to access to which newsgroup in the news server.

ng id*: This field is the id specifies the newsgroups uniquely. This is a foreign key for

this relation referencing ng_id attribute of Newsgroups entity.

access_level*: This attribute stores an integer which specifies the access level of

newsgroups.

» ng id, itself, the primary key of this table, since each newsgroup will be stored

once in this table.

Subscription

This table specifies a relation among users and newsgroups. Users can be subscribed to
newsgroups. Required information about this subscription is held in this table.
user_id*: This field is the id of the user who subscribed to the newsgroup. This is a
foreign key for this relation referencing user_id attribute of Users entity. This field is a
subset of primary key.
ng id*: This field is the id of the newsgroup which is subscribed by the user. This is a
foreign key for this relation referencing ng_id attribute of Newsgroups entity. This field is
also a subset of primary key.

» ng_id and user_id are primary key of the relation together.
wants_mail*: This Boolean type is hold to know whether the user wants e-mail from this

newsgroup or not.

Login_Log

This table stores information about each log in of users. When for each log in to the

system, a row is inserted to this table which includes user id of user, date and time of the

32

login and ip of the computer that user login to the system. Storing this information is
significant for a news server, like NewsAgent, since security is a key point. Also,
specifying the computer that user logged in to the system in his previous login is a smart

feature.

user_id*: This number specifies each user uniquely. This is a foreign key referencing to
the Users table.

login_datetime*: This timestamp attribute stores the date and time of the login.

login _IP*: This attribute stores the ip address of the computer that user logged in to the

system.

» User id and login_datetime together forms the primary key of this table, since we

consider that any user can login to the system once at any specified time.

Action_Types

This table, in fact, is stored for specifying the configuration actions of users which are
stored in Config_log table. In fact, this table is mostly a static table, since there will be no
major change on this table when all action types have already been specified. Only a
small number of insertions, deletions and updates may be applied on this table when an

action type will be inserted, deleted or updated, respectively.

action _no*: This number specifies each action type uniquely.
id type*: This attribute specifies one of article no, user id, ng id. This id is the
specification for on which type of data, the configuration can be done.

action name*: action name is just an attribute to specify the name of the action_type.

For instance, update of article may be a possible name for an action name.

» Action_no is the primary key of this table. It will be auto incremented when a

action is inserted to this table.

Configuration Log

33

This table stores all configurations of users on database. When an insertion, deletion or
update is done, a row is inserted to the configuration log table. Like login log table, this
information is significant for security reasons. Storing configuration actions data in the
database provide us to control the configurations done on database by each user and when

this configuration is done.

user id*: This attribute specifies the user who does the configuration. This user id is a

foreign key to the Users table.

log datetime*: This timestamp attribute stores the date and time of the configuration.

action no*: This integer stores the information of which configuration is done by the
user specified by user id attribute. Since action types table stores all actions can be

applied by users, this attribute is a foreign key to action_types table.

id*: id attribute stores the id of the message, newsgroup or user on which configuration is
done. Since action no table is storing whether the configuration is applied on a message,
a newsgroup or a user, it is easy to determine the id is related with whether a message, a
newsgroup or a user. By using this id and other attributes of this table, a config_log tuple

can easily be created.

» User id and login datetime together forms the primary key of this table, since we
consider that any user can make a configuration on the system once at any

specified time.

Entity Descriptions for Archive Database
Articles
This entity is the same as Articles entity in main database. Definitions of attributes are as

listed there.

34

Newsgroups
This entity is the same as Articles entity in main database except for the is_deleted and

deletion_datetime attributes of this newsgroups entity. is_deleted boolean attribute
specifies whether that newsgroup is deleted or not, since a deleted newsgroup can exist in
archive database but not main database. deletion_datetime attribute specifies the deletion
time of the newsgroup if it is deleted. Definitions of other attributes are as listed in

definition of main database entity.

In_ng

This table specifies a relation among articles and newsgroups in archive database.
Articles belong to newsgroups. We needed this relation only for this database, since in
archive database; we do not hold different tables for different newsgroups that list the
articles posted to that newsgroup.

article no*: This number specifies each article in the server uniquely; hence article no is
the primary key of the Ng_articles entity. This is a foreign key referencing to the Articles
table.

message_id*: This field is also held with article number because news readers may want
request any article by means of the universal message-ids.

ng id*: This field is a foreign key for this relation referencing ng_id of Newsgroups
entity. It defines which newsgroup the message belongs to.

» ng id and message id are primary key of the relation together.

4.1.4 Creating NewsAgent Database

createDB.sql

\i Users.sql

\1 Articles.sql

\i Newsgroups.sql

\i User_groups.sql

\i Ng_articles.sql

\i Ng_mails.sql

\i Ng_access_levels.sql

35

\i Subscription.sql

\i Action_types.sql

\i Login_log.sql

\i Config log.sql

\i Archive articles.sql

\i Archive newsgroups.sql
\i Archive in ng.sql

deleteDB.sql

DROP TABLE Archive in ng;
DROP TABLE Archive newsgroups;
DROP TABLE Archive_articles;
DROP TABLE Config log;
DROP TABLE Login_log;

DROP TABLE Action_types;
DROP TABLE Subscription;
DROP TABLE Ng_access_levels;
DROP TABLE Ng_mails;

DROP TABLE Ng_articles;
DROP TABLE User_groups;
DROP TABLE Newsgroups;
DROP TABLE Articles;

DROP TABLE Users;

Login_log.sql
CREATE TABLE Login log (

user_id BIGINT,
login_datetime TIMESTAMP,
login_ip INET,

PRIMARY KEY (user id, login datetime),
FOREIGN KEY (user_id) REFERENCES Users (user_id)

);

Action_types.sql

CREATE TABLE Action_types (
action_no SERIAL,
id_type SMALLINT,

action name TEXT,

PRIMARY KEY (action no)

36

);
Configuration_log.sql
CREATE TABLE Configuration_log (

user_id BIGINT,
log_datetime TIMESTAMP,
action_no INTEGER,

id VARCHAR(40),

PRIMARY KEY (user id, log datetime),

FOREIGN KEY (user_id) REFERENCES Users (user _id),
FOREIGN KEY (action no) REFERENCES Action_types (action_no)

Ng_access_levels.sql
CREATE TABLE Ng access_levels (

ng_id BIGINT,
access_level INTEGER NOT NULL,

PRIMARY KEY (ng_id, access_level),
FOREIGN KEY (ng_id) REFERENCES Newsgroups (ng_id)

)

Users.sql

CREATE TABLE Users (
user id BIGSERIAL,
username VARCHAR(40) NOT NULL,
password VARCHAR(20) NOT NULL,
name VARCHAR(40) NOT NULL,
surname VARCHAR(40) NOT NULL,
date_of birth DATE,
birth_place VARCHAR(20),
phone VARCHAR(40) NOT NULL,
e _mail VARCHAR(40) NOT NULL,
signup_date TIMESTAMP NOT NULL,
removed date TIMESTAMP,
group id INTEGER NOT NULL,
picture BYTEA,

last login date time TIMESTAMP,

)

last login IP INET,
secret_question TEXT,
secret_question_answer TEXT,

UNIQUE (e_mail),
UNIQUE (username),
PRIMARY KEY (user_id)

Archive_newsgroup.sgl

CREATE TABLE Archive newsgroups (

)

ng id BIGSERIAL,
ng name VARCHAR(60) NOT NULL,
created by BIGINT NOT NULL,

creation_datetime TIMESTAMP NOT NULL,
description VARCHAR(60),

PRIMARY KEY (ng_id)

Archive_in_ng.sql

CREATE TABLE Archive in ng (

)

message id VARCHAR(40),
ng id BIGINT,
article no BIGINT NOT NULL,

PRIMARY KEY (message id, ng_id)

Archive_articles.sql

CREATE TABLE Archive_articles (

message id VARCHAR(40),

subject VARCHAR(60) NOT NULL,
content TEXT,

dateTime TIMESTAMP NOT NULL,
from_uid BIGINT NOT NULL,
from_mail VARCHAR(40) NOT NULL,
reply to VARCHAR(40),

followup to VARCHAR(40),

relay version VARCHAR(60) NOT NULL,

38

posting version VARCHAR(60) NOT NULL,

lines INTEGER NOT NULL,

path VARCHAR(60) NOT NULL,
expires TIMESTAMP,

reference VARCHAR(60),

distribution VARCHAR(60),

control VARCHAR(60),

PRIMARY KEY (message_id),
FOREIGN KEY (from_uid) REFERENCES Users (user_id)

);
User_groups.sql

CREATE TABLE User_groups (

group id BIGSERIAL,
group name VARCHAR(60) NOT NULL,
access_level INTEGER NOT NULL,

PRIMARY KEY (group id)
)

Subscription.sql
CREATE TABLE Subscription (
user_id BIGINT,
ng id BIGINT,
wants mail BOOLEAN NOT NULL,
PRIMARY KEY (user id, ng_id),

FOREIGN KEY (user_id) REFERENCES Users (user _id),
FOREIGN KEY (ng_id) REFERENCES Newsgroups (ng_id)

Ng_mails.sql
CREATE TABLE Ng_mails (
mail address VARCHAR(40),

PRIMARY KEY (mail address),
FOREIGN KEY (mail address) REFERENCES Users (e_mail)

)

39

Ng_articles.sql
CREATE TABLE Ng _articles (

article no BIGSERIAL,
message id VARCHAR(40) NOT NULL,

UNIQUE (message id),
PRIMARY KEY (article no),
FOREIGN KEY (message id) REFERENCES Articles (message id)

);
Articles.sql

CREATE TABLE Atrticles (

message id VARCHAR(40),

subject VARCHAR(60) NOT NULL,
content TEXT,

dateTime TIMESTAMP NOT NULL,
from_uid BIGINT NOT NULL,
from_mail VARCHAR(40) NOT NULL,
reply to VARCHAR(40),

followup_to VARCHAR(40),

relay version VARCHAR(60) NOT NULL,
posting version VARCHAR(60) NOT NULL,

lines INTEGER NOT NULL,

path VARCHAR(60) NOT NULL,
expires TIMESTAMP,

reference VARCHAR(60),

distribution VARCHAR(60),

control VARCHAR(60),

PRIMARY KEY (message_id),
FOREIGN KEY (from_uid) REFERENCES Users (user_id)

);
Newsgroups.sql

CREATE TABLE Newsgroups (

ng id BIGSERIAL,
ng name VARCHAR(60) NOT NULL,
created by BIGINT NOT NULL,

creation_datetime TIMESTAMP NOT NULL,

40

description VARCHAR(60),

PRIMARY KEY (ng_id),
FOREIGN KEY (created by) REFERENCES Users (user_id)

)
4.2 FUNCTIONAL MODELLING

4.2.1 Data Flow Diagrams
4211 LEVEL 0DATA FLOW DIAGRAM

MMNTP Satisfied
Clhent \ / NNTF-user
Z

I)
) & F
e = &
2% A
ES5/Atom o y T
§ kg % % - Effectrve
Client -_""‘mj Y % f e =" Feeding
L I ;)
Rty % . Jﬁ"ff . i [\,kc\
oft % '.;L‘T;"

iy

f _ Web-user's ST
Web-user —"Commands & [ya. atisTiec
ala :
Web-user
ek
\I“ﬁl.u;ll-*‘* g_gax\.}
g AT =
hiail-user |—— L-mﬂ'n“:‘ Satistied
b lail-user
& ,
- L g
o QF 2 0 "}-;9
&% oD = b
4 B 2ER S8 'S % Effectrve
¥ 855 Eip T~
Admm £0E = &5 NewsServer
=538 82 5 hanagement
_— == o BD
& EAR =
o rg ,E, E % =
- "= S
5 -

//
‘\

News Agent
Database

41

4212 LEVEL 1DATA FLOW DIAGRAM

Receive majl
Request

RSS Client

Feed und
fatus [nfon
pradt

5

4

lggnh'aﬁ

c
%
Client I 0, ¥,
G”"m.:u,dk ey %,’9:‘}%
i
Call
. Related
Web - Web-clien Mapped Web Service
Client Commands & Py gv’cb Usier Request
/ Oimang
(v 3
5‘{:\3 &,0’3"‘" N
SMTP oW QF:@
Client \“ﬁ‘Q
SR

Managemert

Effective News.
Server
Management

42

4213 LEVEL 2 DATA FLOW DIAGRAMS

/Eammm:ds&[)al

NNTP

Client

NNTTP Client

Unauthorized NNTP
User Command

Satisfied NNTP
Client

43

Web Client

/C ommands& Dat

Weo Unauthorized Wehb
Cﬁéﬂt User Command
e
252
bﬁb Qﬁ? 2w
69 '\I} P T
| ¥ o g8
' 57 r
k 57
o =
s =4
¢/
71 (43
1N 4""99
G % |
o eh SF“:;:‘
R Pt T e MIAF..--""'"_F.-C'ﬂ“ R‘:q
l Web
0gin Inf .
\ Sbendbﬂc
fatus fg; Satisfied Web
[ﬂﬂh]‘ - e Iﬂgiﬂl;ﬂg an 0} Cr We
" Re Client
e Tested g,

44

New Article

RSS/Alom
Client
(Reader)

///_ R \

Feed Tree

45

SMTP
Client

46

Web Service
“ull Request

S

(1

L

ALl

a?

. Mews Web
Service Command

Service Request

e
oup 9P »>
Ncwsg“ﬁ(}

Update

{ewsgroty

Ri st
eques Newsgroups
ratns Info
Retrieve
W sErow
Request N -

fatus b P

News update___———p=
Intfo
ate
Handle upda
WS Wweb
Gervice Recuest

fi;rpdafe
CHy
ﬂ'c!,ﬂ;&,s“ \
A N
‘f?o? 'Lfﬂus .ﬁ;f—
o Ve, T ”
y, Sy -'f»"*’b
q“ﬁbﬂ‘é [
&%“ —r

R rstl_[e
R“‘?:es;l\
News
tatus Tnfor /
Update
quslf;(“““-—-* —

Sratus Info

Retrieve
User —-—-—-—_,_,__‘
Reguest

Siatus In f(\/

47

4.2.2 Data Dictionary

Name: NNTP Client Commands&Data

Aliases: NNTP Requests
Where used/how used: NNTP Client (Output)

Interact with the NNTP Client 1.1 (Input)

Description:

NNTP Client sends requests as in format stated in RFC-977. It also sends the required
article information like server specific article number or universal message id.

Name: NNTP User Authorization Request
Aliases: NNTP Authentication
Where used/how used: Interact with the NNTP Client 1.1 (Output)

NNTP User Authorization 1.2 (Input)

Description:

If the user wants to access to a field which is not accessible by unauthorized users, system
wants the user to send his/her crypted username and password information. Afterwards
client sends the authentication request to the system.

Name: User Info
Aliases: Username & Password
Where used/how used: NNTP User Authorization 1.2 (Output)

Users (Database) (Input)

Description:

To authenticate the user who applied through authentication request, user’s username and
hashed password is sent to the database. The passwords’ encrypted forms are matched to
send back validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

NNTP User Authorization 1.2 (Input)

Description:

If the password which the user entered matches with the one in the system database, a
signal indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: NNTP User Authorization 1.2 (Output)

LoginLog (Database) (Input)

48

Description:

To assure security criteria of NewsAgent, every login action is logged in the system.
User’s identifier, login date and time, the machine which the user connected to the system
and a descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

NNTP User Authorization 1.2 (Input)

Description:

This data is the result for acknowledgement indicating that the log information is
successfully inserted into the database.

Name: Authorized NNTP Commands
Aliases: Authenticated NNTP Requests
Where used/how used: NNTP User Authorization 1.2 (Output)

Map the NNTP Command 2.1 (Input)

Description:

Authenticated NNTP Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized NNTP User Commands
Aliases: Unauthenticated NNTP Commands
Where used/how used: Interact with the NNTP Client 1.1 (Output)

Map the NNTP Command 2.1 (Input)

Description:

NewsAgent will be flexible to allow to edit the security preferences. If it is wanted, users
may be allowed to access the specified resources, articles from the database through the
web services.

Name: Mapped NNTP Command
Aliases: None
Where used/how used: Map the NNTP Command 2.1 (Output)

Handle NNTP Commands 5.1 (Input)

Description:

The NNTP commands taken through the port are parsed and mapped to the convenient
functions of the system. This data is the corresponding function calls of NNTP standard
commands.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle NNTP Commands 5.1 (Output)

Process Related Web Service 6.1 (Input)

49

Description:

This information is used to find the related web service. Actually, this link is used to obey
the conventions. UDDI is not used in NewsAgent because we already know which web
service does what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)

Description:

This data is the SOAP message which is required to invoke web services and carry
information between the services and the invokers. The parameters, returning values
including primitive types and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied NNTP Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Web Client Commands & Data
Aliases: Web Client’s Requests
Where used/how used: Web Client (Output)

Interact with Web Client 1.3 (Input)

Description:

Web Client sends his/her requests to the system through NewsAgent web module.

Name: Web User Authorization Request
Aliases: Web User Authentication
Where used/how used: Interact with the Web Client 1.3 (Output)

Web User Authorization 1.4 (Input)

Description:

If the user wants to access to a field which is not accessible by unauthorized users, system
wants the user to send his/her crypted username and password information. Afterwards
client sends the authentication request to the system.

Name: User Info
Aliases: Username & Password
Where used/how used: Web User Authorization 1.4 (Output)

Users (Database) (Input)

50

Description:

To authenticate the user who applied through authentication request, user’s username and
hashed password is sent to the database. The passwords’ encrypted forms are matched to
send back validity information.

Name: Validity Message & User Group
Aliases: None
Where used/how used: Users (Database) (Output)

Web User Authorization 1.4 (Input)

Description:

If the password which the user entered matches with the one in the system database, a
signal indicating that “the user can go ahead” and his/her user group is returned.

Name: Login Info
Aliases: None
Where used/how used: Web User Authorization 1.4 (Output)

LoginLog (Database) (Input)

Description:

To assure security criteria of NewsAgent, every login action is logged in the system.
User’s identifier, login date and time, the machine which the user connected to the system
and a descriptive text is stored into the database.

Name: Status Info
Aliases: None
Where used/how used: LoginLog (Database) (Output)

Web User Authorization 1.4 (Input)

Description:

This data is the result for acknowledgement indicating that the log information is
successfully inserted into the database.

Name: Authorized Web Commands
Aliases: Authenticated Web Requests
Where used/how used: Web User Authorization 1.4 (Output)

Map the Web Command 3.1 (Input)

Description:

Authenticated Web Commands include all post, read, update etc. The commands that an
authenticated user may send.

Name: Unauthorized Web User Commands
Aliases: Unauthenticated Web Commands
Where used/how used: Interact with the Web Client 1.3 (Output)

Map the Web Command 3.1 (Input)

51

Description:

NewsAgent will be flexible to allow to edit the security preferences. If it is wanted, users
may be allowed to access the specified resources, articles from the database through the
web services.

Name: Mapped Web Command
Aliases: None
Where used/how used: Map the Web Command 3.1 (Output)

Handle Web Client Commands 5.2 (Input)

Description:

The Web commands taken through the port are parsed and mapped to the convenient
functions of the system.

Name: Find Related Web Service Request
Aliases: Look-up for Web Service
Where used/how used: Handle Web Commands 5.2 (Output)

Process Related Web Service 6.2 (Input)

Description:

This information is used to find the related web service. Actually, this link is used to obey
the conventions. UDDI is not used in NewsAgent because we already know which web
service does what and their endpoints.

Name: Web Service Call Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Process Related Web Service 6.1 (Output)

Web Service (Input)

Description:

This data is the SOAP message which is required to invoke web services and carry
information between the services and the invokers. The parameters, returning values
including primitive types and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied Web Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: New Article Request

Aliases: None

Where used/how used: RSS/ Atom Client — Reader, Aggregator (Output)
Feed Tree (Input)

52

Description:

RSS/Atom readers needs the endpoint of the feed to subscribe. When they connect to the
feed, they can subscribe them easily out of the responsibility of NewsAgent.

Name: Feed Update Info
Aliases: None
Where used/how used: Update Feeds 11.1 (Output)

Create New Feed Node 11.2 (Input)

Description:

When an article is posted to the system, after insertion to the database a feed entry is
prepared automatically to add to the feed. This procedure is also followed when any
deletion or update operation.

Name: Feed Node
Aliases: Feed Entry
Where used/how used: Create New Feed Node 11.2 (Output)

Insert Feed Node to Feed Tree 11.3 (Input)

Description:

This is the newly created or edited feed entry which will be added to the feed tree of the
corresponding news group.

Name: Feed Node Info

Aliases: None

Where used/how used: Insert Feed Node to Feed Tree 11.3 (Output)
Feed Tree (Input)

Description:

After required operations are done on the created or edited Feed Node it is transferred to
the tree and added to the tree as a new node.

Name: Status Info
Aliases: None
Where used/how used: Feed Tree (Output)

Insert Feed Node to Feed Tree 11.3 (Input)

Description:

The result of the add operation of the new node to the tree is returned to inform the
system about the success or failure of node operation on the tree.

Name: SMTP Command & Data
Aliases: None
Where used/how used: SMTP Client (Output)

Interact with User 1.5 — Port Listener (Input)

53

Description:

Mail Client sends his/her requests to the system through NewsAgent mail module.
Actually this an electronic mail which has the address of a newsgroup in the system.

Name: SMTP-User Authorization Request
Aliases: SMTP-User E-Mail Address
Where used/how used: Interact with User — Port Listener 1.5 (Output)

SMTP-User Authorization 1.6 (Input)
Description:

If the user attempts to send e-mail to a non-public newsgroup, his/her e-mail address is
checked if it is already subscribed to that newsgroup’s email subscription table. This data
is the mail address of the user which is parsed out from the e-mail.

Name: Authorized SMTP Commands
Aliases: Authenticated SMTP Requests
Where used/how used: SMTP-User Authorization 1.6 (Output)

Process Main Command 7.1 (Input)

Description:

If the user is authorized to send mail to the specified newsgroup it is carried as an
authenticated command.

Name: Unauthorized SMTP Commands
Aliases: Unauthenticated SMTP Requests
Where used/how used: Interact with User — Port Listener 1.5 (Output)

Process Main Command 7.1 (Input)
Description:

If the user is not authorized to send mail to the specified newsgroup it is carried as an
unauthenticated command. And it is rejected.

Name: Mail Info
Aliases: Node
Where used/how used: Process Main Command 7.1 (Output)

Map Mail to Article 7.2 (Input)
Description:

If the mail is decided to be posted to the server, it should be converted to the convenient
data type. This information is processed and mapped to an article data.

Name: Insert Article to Newsgroup Web Service Request
Aliases: Invoking the Corresponding Web Service Data
Where used/how used: Map Mail to Article 7.2 (Output)

Web Service (Input)

54

Description:

This data is the SOAP message which is required to invoke web services and carry
information between the services and the invokers. The parameters, returning values
including primitive types and built-in simple types are carried through SOAP messages.

Name: Send Back Status Info and Requested Info
Aliases: None
Where used/how used: Web Service (Output)

Satisfied SMTP Client (Input)

Description:

This is the data returned from the invoked web services. This is also a SOAP message as
explained above.

Name: Newsgroup Update Info
Aliases: None
Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)

Satisfied SMTP Client 8.1 (Input)

Description:

If any change occurs in the database related to the newsgroups this information is also
transferred to the mail module to publish this event to the subscribers of the newsgroup.
Or if a new newsgroup is created, this event is published to all users of the system to
make them aware of the newly created newsgroup.

Name: News Update Info
Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

Satisfied SMTP Client 8.1 (Input)

Description:

If any change occurs in the database related to the articles this information is also
transferred to the mail module to publish this event to the subscribers of the newsgroup
which the article belongs to. Or if a new article is posted, it is mailed to the subscribers of
the corresponding newsgroup.

Name: Mail Sender Object
Aliases: None
Where used/how used: Satisfied SMTP Client 8.1 (Output)

Send Mail to Clients 8.2 (Input)

Description:

This the mail object which is formed from the article object. This data will be directly
converted to the electronic mail to be sent to the mail client.

Name: Mail
Aliases: None
Where used/how used: Send Mail to Clients 8.2 (Output)

55

SMTP Client (Input)
Description:

The electronic mail which is sent to the mail client.

Name: Web Service Call Request
Aliases: None
Where used/how used: Map Commands to Web Service Commands (Output)

Process Command 5.1 (Input)
Description:

The data in Web Service Call Request is a mapped command which specify the web
service call that should be processed. All Web service calls are made through this data.
Data specified in Web Service Call Request are in fact an interface for a database access.

Name: Newsgroup Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle Newsgroup Web Service 6.3 (Input)
Description:

Newsgroup Web Service Command specifies Newsgroups table will be accessed in the
database. Newsgroup Web Service Handler will manage this data to determine the effect
of it on the database, whether it is retrieval or update command.

Name: Handle Update Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)

Call Related Update Newsgroup Web Service 9.1 (Input)

Description:

This data is an update command web service for newsgroups. Since update on
newsgroups or creation of a new newsgroup will cause updates on the database, namely
on Newsgroups table, all update command on a newsgroup will flow through this data.
We have considered the creation of a new newsgroup also as an update, since there will
be a change on Newsgroups table.

Name: Handle Retrieve Newsgroup Web Service Request
Aliases: None
Where used/how used: Handle Newsgroup Web Service 6.3 (Output)
Call Related Retrieve Newsgroup Web Service 10.1 (Input)

56

Description:

This data is a retrieve command web service for newsgroups. Retrieval is any access to the
database that does not cause any change on database. For this data, it is only retrievals
from Newsgroups table in the database. This data should be processed so that which data
about any newsgroup will be retrieved. This is done in Call Related Retrieve Newsgroup
Web Service process.

Name: News Web Service Command
Aliases: None
Where used/how used: Process Commands 5.1 (Output)

Handle News Web Service 6.4 (Input)
Description:

News Web Service Command specifies Articles table will be accessed in the database.
News Web Service Handler will manage this data to determine the effect of it on the
database whether, it is retrieval or update command.

Name: Handle Update News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)
Call Related Update News Web Service 10.2 (Input)

Description:

This data is an update command web service for articles. Since update on an already
posted article or posting a new article will cause updates on the database, namely on
Articles table, all update command on Articles table will flow through this data. We have
considered posting a new article is also as an update, since there will be a change on
Articles table.

Name: Handle Retrieve News Web Service Request
Aliases: None
Where used/how used: Handle News Web Service 6.4 (Output)

Call Related Retrieve News Web Service 9.2 (Input)

Description:

This data is a retrieve command web service for articles. Retrieval is any access to the
database that does not cause any change on database. For this data, it is only retrievals
from Articles table in the database. This data should be processed so that which data about
any article will be retrieved. This is done in Call Related Retrieve News Web Service
process.

57

Name: User Web Service Command

Aliases: None

Where used/how used: Process Commands 5.1 (Output)
Handle User Web Service 6.5 (Input)

Description:

User Web Service Command specifies Users table will be accessed in the database. User
Web Service Handler will manage this data to determine the effect of it on the database
whether, it is retrieval or update command.

Name: Handle Update User Web Service Request
Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Update User Web Service 10.3 (Input)

Description:

This data is an update command web service for users. An update on Users table will flow
through this data. Although mostly account information of any user may be changed by
admin of NewsAgent, users themselves can, of course, change their account information.
All these changes on Users table is named as an update in web service of NewsAgent.

Name: Handle Retrieve User Web Service Request

Aliases: None
Where used/how used: Handle User Web Service 6.5 (Output)

Call Related Retrieve User Web Service 9.3 (Input)

Description:

This data is a retrieve command web service for users. Retrieval is any access to the
database that does not cause any change on database. For this data, it is only retrievals
from Users table in the database. This data should be processed so that which data about
any article will be retrieved. This is done in Call Related Retrieve User Web Service
process. Mostly retrieving any user account information will be accessed by admin of
NewsAgent.

Name: Newsgroup Update Info
Aliases: None
Where used/how used: Call Related Update Newsgroup Web Service 9.1 (Output)

Create Mail Sender Object 8.2 (Input)

Description:

This data specifies all changes on Newsgroups table on the database. Any update
information for Newsgroups table will flow through this data. Newsgroup name update is
an instance of such data. This data specifically used for sending mails to all users who
request mails from news server or only users who request mail from this newsgroup. For

58

instance, when a new newsgroup is created, it is reasonable to send mail to all mail users
of NewsAgent, however when a name update of a newsgroup is applied, it is reasonable
to send mails only to mail users who request mail only from the updated newsgroup.

Name: News Update Info

Aliases: None
Where used/how used: Call Related Update News Web Service 10.2 (Output)

Create Mail Sender Object 8.2 (Input)

Description:

This data specifies all changes on Articles table on the database. Any update information
for Articles table will flow through this data. Article name update is an instance of such
data. This data specifically used for sending mails to all users who request mails from
news server or only users who request mail from the newsgroup that the article belongs
to.

Name: Update User Request
Aliases: None
Where used/how used: Call Related Update User Web Service 10.3 (Output)

Users (Input)

Description:

This data specifies all changes on Users table on the database. Any update information for
Users table will flow through this data. User name update by an admin is an instance of
such data.

Name: Retrieve Newsgroup Request

Aliases: None

Where used/how used: Call Related Retrieve Newsgroup Web Service 10.1
(Output)
Newsgroups (Input)

Description:

This data specifies all retrieves from Newsgroups table on the database. Any retrieval
information from Newsgroups table will flow through this data. Newsgroup name
retrieval by a user is an instance of such data.

Name: Retrieve News Request

Aliases: None
Where used/how used: Call Related Retrieve News Web Service 9.2 (Output)

News (Input)

59

Description:

This data specifies all retrieves from Articles table on the database. Any retrieval
information from Articles table will flow through this data. Article header retrieval by a
user is an instance of such data.

Name: Retrieve User Request
Aliases: None
Where used/how used: Call Related Retrieve User Web Service 9.3 (Output)

Users (Input)

Description:

This data specifies all retrieves from Users table on the database. Any retrieval
information from Users table will flow through this data. User name retrieval by another
user is an instance of such data.

Name: Status Info
Aliases: None
Where used/how used: Database (Output)

Update/Retrieval Web Service (Input)

Description:

This data specifies whether the update/retrieval is completed successfully or not. In fact,
this data is used for controllable database applications.

60

5 CLASS DIAGRAMS

5.1 Article Management Module

calls

Article

D el i -inessags 1l bagu
: -subject: strng
+generateMaill) -content string
+imnail Bendan _date date
~froan_ el bgrind
-fronn il st
MewsWebService -replyTo: strmg
Createsiuses -followipTo: smg
+postArticlal) : ' -relay Vearsion afng
+getHeaders() -postig Verson: stig
+getBodvi) -lines: integer
+get Anticler) -anpives: date
+getgArticlesl) -references; string
+getPravicus Article() —Histntartion. stong
+getMext Articlz() ~copitrol strng
+HigArticlesAfteiata()
+get-atmbute namea={}
“+ast<atmbate name =)
:’E calls
FeedGenerator
-feadTrees: FeadTree[] NewsDatabaseAccess
-hostname: sting
+¥eTFee4ﬂ"r¢¢.~1;u -prontoe e
+actFeedTiees() w-UsemAme: stong
+addiewFezd(} -password: string
*deleteFeed() +oonnzct()
+updateFaed{} et ALy
?ﬁgﬁlj HetreveHeadses()
£ +etneveBody()
+eonvertToFeadMNodel) e -'u1i1;|e
+addbodeToFzed() +retrie1.'n3:[~] -".Ills:Jle-al;b
+dzleteM odeFromFead() I S PEe-v -'miclleﬁ
HpethlostUpclatedFeadl) s patrivel] ¢‘~:l- Aticle0)
:g:tg:ﬁ;ﬂ:ﬂ';‘;?ﬁ Hetneve ArticlesBeforeDate()
+wnite AlIToFil=() g +retneve Articles AfterCrated)
ArchiveMManager
-arcluvePenod: integer
-SlFe u'l'h&gr}l
ezt ArcluvePenod)
+aatArchivePenod)
+HgatSizeal)
+aetSize)
et ArticlesO
+HarcloveOld Articlzs()
+HeetExczedingMNel()
+archiveExceadinghgl)

61

NewsWebService class is a web service that maintains all methods required for news
management. When it receives post article command, it calls MailHandler class and
FeedGenerator class.

MailHandler class sends e-mail to the users who are subscribed to the newsgroups
those include that article. It is described in Mailing Module in detail.

FeedGenerator class is called in order to append new article into feed. It is described
in Feed Generator module in detail.

Article class is created after a post article command. Created article instance is
returned to NewsWebService class and NewsDatabaseAccess is called in order to
insert that article to the database.

NewsDatabaseAccess class establishes connection with the database and creates
queries in order to retrieve data from database or insert data into database. Its methods
use these queries and do all the work related with articles.

ArchiveManager class works on its own an checks whether any newsgroup exceeds
the size limit or any articles exceeds time limit. Archiving is done according to these

parameters, the user selects which criteria to be used for archiving.

62

5.2 User Management Module

UserAdministration
UserManagemenf\VebService
+addUser()
_ +deletelser()
+Hoging) calls +modifyUserRights()
+getUserInfol) +HhistUsers()
+updatellzerinfol) +HisiUserGroups()
+changePassword() +addUserGroupd)
FacdUser() _ +deleteUserGroup() %
+deleteUser() [. +getlUSerInfol)
+ modifylserRightsi) Sy
+histUserGroups() H‘“‘H
+HistUsers() T n
+FaddUserGronpd) ~.. Login .
+deletellserGiroup() TAFUSSmAInE. Strng calls
+subscriptions) -password: string UserDatabaseAccess
+getUsemame() -hostname: string
+aetlsermame(} -portho: integer
+etPassword() isermalne: sting
+sendLogininfo() password; string
User +eonnect()
- T) +checkLogminfol)
-E;lﬂﬁ?ﬁ:ng alls +retnevellserlnfo)
creates/uses |-password: stiing et
- sting +111{dateFasb1aEror§IQ
-slImame; string rHnseriNewUsen)

-dateOfBnth: date +deleteUsar()

-birthPlage: string +updateUserRights()
-plione: string create() +HetnevellserGronps()
-c-mail: string ' HetrieveUsers()
-signupDate: date +insertewlUserGroup()
-lastLoginDate: date +deletelserGroupd)
-lastLoginIP: string +insertSubscnption()

-removedDate: date
-groupld: integer
-pichure: BLOB
-secreti juestion: string
-[uestionAnswer stnng
+get<attnbute name={)
Hset<attnbite naine=()
+updateUserInfol}
+changePassword()
+getUserinfol)
subscription}

» UserManagementWebService class is a web service that maintains all methods
required for user management. It calls UserAdministration, User and Login classes.

» UserAdministration class handles the administrative operations on users. When a
user wants to add, delete, modify users and usergroups, the related methods are called
and the modifications are reflected to the database. It calls UserDatabaseAccess class.

» Login class handles the login operation. It gets username and password and send login
info to database in order to be checked. It calls UserDatabase Access class.

» User class handles the user related operations of the user management such as update

user info, change login info, display user info etc. It calls UserDatabase Access class.

63

» UserDatabaseAccess class establishes connection with the database and creates
queries in order to retrieve data from database or insert, delete and modify data into

database. Its methods use these queries and do all the work related with users.

5.3 Newsgroup Management Module

T
NehManmagemenfWebService S bigmtl =
calls Alsemalne: stnng
FaddMewsgroup) ~prasaword string
HdeleteMNewsgton) i sting
+modifyNewsGroup) -surmame; string
HistMewsgronps() -dateOfBirth: date
+ngsCreated AfterDate() -birthPlace: siring
-plioe sting
-e-nal; string
! -signupDate: date
AastLoginDate: date
e :ﬁgf‘r’;ﬂms -Iﬂsth}gﬂ P string
-ostnanme: stng -removedDate: date
-portNo: integer Saibseriniion -growpled: infeger
-usemanme: strng -nglly mnfeged -pictre: BLOB
-password: sting -userID: bigint -secretuestion: string
+set<attibutename=() calls [rset=attnbutename=() credtes |-questionAnswer string
+get<attribntenamea=) i “+get=attnbutename () +get<attnbute names=()
+eonnsci() *subsenibel} +set<attnbute name>()
+msertMewsgronp() +unsubsenibe) +updateUserInfof}
+ieleteNewsgroup +setMalOption() +changePassword()
+modifyNewsgroup() ‘resetMailOption() +getUserInfo)
+retrieveNewsgroups() +$1113;H;|][1ﬂ0l11;}

+retrieveNgAfterDate()

» NgManagementWebService class is a web service that maintains all methods
required for newsgroup management. When system administrators request to list, add,
delete and modify a newsgroups, its methods addNewsgroup(), deleteNewsgroup(),
modifyNewsgroup() are invoked and the modifications are reflected to the database.

» NgDatabaseAccess class establishes connection with the database and creates queries
in order to retrieve data from database or insert, delete and modify data into database.
Its methods use these queries and do all the work related with newsgroups.

» Subscription class handles the user’s subscription and mailing option change. When a
user wants to subscribe to a newsgroup or unsubscribe from an existing one or request
to receive email related to the new posts to the newsgroup or request to cancel the mail
receiving option set before, the methods of the Subscription class are activated and

NgDatabaseAccess class is called in order to reflect the modifications to the database.

64

5.4 Web Module

WebModule <alls " | UserManagementForm AdministrativeLog |
-1 t: Hitpsarvlzt -naerID Dagand
i ke pnede Naes -dateTune: date
-response: HitpSavlet +changePassword() i
ser Tseg +EL‘|itSl1l1tiCI'i]_:Ili'L‘ll'lR-5L]_4.] E-'U- Iy
HratRegquest() el it ey Tt Iif“ ,W.E:IDL:
+setRequest() i
e LI L UserInfoForm +gefDateTume()
eeiiasponse | SlsSmamne strmg +setDateTimel)
‘|'S'EIRES|J-:_‘|IL'EE” -password: string : i Mo ’
i) R T e
LR = Tas 5 s
ot :;ZE‘::E:E?:?; = +aendlpdatesi) bl :{‘%ﬂ‘]
+doPost() AL . &
+ogmForm() o SubscriptionForm "
+ajectForm} -l -nglDis: integer [| g 2
HnewlserFommm =suibscribediglDs: integer [] * &
+acceptFoumi) -subseribedbdalNeglDr mt []
+userhanagementForm{} et AvailableNewsGroups()
E'::i:m‘:sm'MF“"m HistNgSubscuptionCheckBoxes) Admlyiraiiveorn
Ll HandleNewsGroups HistMailSubsCheckBoxes()
+handlzMgSnbscnphionReqgi) Hmanagellsersd)
T PERTET HiandlebMalSubsFeagi HinanageNewsgon s}
+HistMewsGronps!) +selfManagement()
calls »tabscnptionFomn () chll: 3
+get Articles()
calls g
r
MewUserForm I
3 NeManagementForm
+aignlipd UserManagementF orm ifor adming
Fohack Avalabaityi) (for admin}
HacddUse) PO S
- retiieveMN ewsgronpsr)
+aﬂ%ai;dch?aﬂ ; MaitAddressConfirmation Hetevel Tsersi) +retiisveN ewsgmonpi)
Gk, ST +retnevel zarInfol) +raddMewsgronpi)
calls oeierate Lk) HupdatelIserIngol) +ileleteNewsgronp(h
FtsendConhail) +addMewllsar +arcluveM g Articles()
+accepiContirmationlinty) Hilzletel Taen) FupadateArhiclzs(
+setllserAccessRaghti) el lserPreferancesi) Felalete Arficla)

aetlUserGronplDi

65

Web module classes are implemented in order to accomplish communication with the server
via web. The main WebModule class includes user, request and response attributes. The user
is an instance of User class, request is an HttpServletRequest and response is an
HttpServlerResponse. According to the request, this class calls ControlLogin class,
UserManagementForm class, HandleNewsGroups class, NewUserForm class or
AdministrativeForm class.

» ControlLogin class checks the login data (username and password) of the user from
database through UserManagementWebService.

» HandleNewsGroups class handles requests related with newsgroups such as
newsgroup listing, subscription and getting newsgroup articles. Listing and retrieving
articles are handled by NgManagementWebService and subscription method calls
SubscriptionForm. This class lists newsgroups than can be subscribed by that user,
shows checkboxes stating whether subscribed or not, whether the user wants e-mail or
not. If a user requests to subscribe, unsubscribe or set/reset mailing option, it handles
these requests.

» UserManagementForm class includes methods that are related with the user’s own
modifications on his/her info. Change password is accomplished by
UserManagementWebService, editing subscription info calls SubscriptionForm and
editing user info uses UserInfoForm.

» UserInfoForm class displays user info, retrieves user’s info after modifications and
sends these info todatabase via UserManagementWebService.

» NewUserForm class is called when a new user wants to be added. It checks
availability of the user to be added (e.g. e-mail conflict with another user or wrong e-
mail), if it is available, user is added to the database and MailConfirmation is called.

» MailConfirmation class generates links and sends this link to the user via e-mail for
confirmation. When user clicks the link from that e-mail, he/she will be authenticated
and user rights, user group for that user will be set.

» AdministrativeForm class includes administrative actions which can be
accomplished by admin type users. When an administrator modifies users, newsgroups
or articles, that means UserManagementForm or NgManagementForm classes are
called, actions realized by administrator are hold in an instance of the class

AdministrativeLog class.

» UserManagementForm class includes methods related with the modifications on the
users made by administrator. These modifications are retrieving users, retrieving and
updating user info, adding and deleting users and editing user’s preferences.

» NgManagementForm class includes methods related with the modifications on the
newsgroups made by administrator. These modifications are retrieving newsgroup
names, retrieving a specified newsgroup, adding and deleting newsgroups, archiving
and articles. When administrator creates a newsgroup, he/she sends e-mail to all users
and when a newsgroup is deleted, an e-mail is sent to the users who are subscribed to

that newsgroup. Retrieving and updating user info methods use UserInfoForm class.

5.5 NNTP Commands Module

PortListener " SessionHandler
(threaid) ConnectionHamdler ——— :
P (thread) -3E3310015 Sr:sslnm[]

-clefanliPort uteger creates -socket: Socket calls :ﬁ“iﬁ;iﬁlﬁlﬂ
-szcurePort: integer F+isUserSessionExist() " rupdateSession()
-porthode: string +checkLoging) +1§-& {Session()
vAEtBrtinl) SEtrat s o) +searchSession()
+getPortNal) . +rejectConnection) +sessionExists()
+HaetDetanltPort()
+getDefanltPort() 3 o
+aetSecurePort() ?1 g
+eetSecmaPort() . 2
+setPorthods() E
+petPortModsa) ' -
+setToDefmlt() NNTFhandier s
+setToSectral) -NNTPmessage: siring Seasion
+changePort() +eallCommandHandlerFactory() E}ﬂa:ﬁﬂm
HistenPort et time
0 g -startDateTome: datetoms
= -[Paddress: stnng
~defanlt TimeOut tine
! +eetUsen()
CommandHandlerF actory gﬁﬁ:ﬁi\éﬂu 0
PortWriter AR . +setTimeOut()
(thread) Hstatic)jgetCommand Handler() +getStartDate()
-portio; integer t;iﬁ’lggfﬁmm
et = +setlPaddress()
ﬂllt?:-ﬂge L “ +get[}elial1ltTi.1.1.1aout(j
+wnteTaPu:|:|‘tll'} 1 +setDefanlfTimeont])
=<jnterfaces= +HresetTimeOnt()
creates CommandHandler +Hhll()
handleCommand])
FaendResuli])

67

» PortListener class is a thread and listens the specified port continuously. When a new
message arrives, an instance of ConnectionHandler class is created. The information
about sender of the message also arrives when message is sent. With this information,
user’s session info is checked by calling SessionHandler class. If user’s session exists,
it is updated. If not, a new session is created after username and password check.

» SessionHandler class calls session related methods. If a new session is created,
Session class is instantiated and returned to SessionHandler and added to the sessions
array.

» NNTPhandler class is created by ConnectionHandler. ConnectionHandler passes the
message it received from the socket to NNTPhandler. NNTPhandler -calls
CommandHandlerFactory which has a hashtable including available NNTP
commands. According to the command, it calls related implementing class of interface
CommandHandler. CommandHandler creates PortWriter after handling the
command.

» PortWriter class receives the result of the command and writes it back to the port.

68

=<implementation class>>
GetArticle

=<implementation class==
Head

==implementation class==
Bodly

=<implementation class==
St

=<implementation class==
Group

=<implementation clags==
Help

=zinterface==
=<fmplementation clags=> | o CommandHandler

Ihave HhandleC ommandi)
: +aendfesult)

=<jmplementation class=>
Last

<<jmplementation class==
List

<<implementation class==
Newsgroups

<<implementation class==
MewMNews

<<implementation class==
MNext

<<jmplementation class==
Post

<< jmplementation class==
Quit

=<implementation class==
Slave

NNTP extension commands are not considered for initial design of NewsAgent, but the
interface modularity of interface CommandHandler is very extensible to add new

commands for command handling operations.

69

5.6 Mailing Module

Sending Mail

MailHandler MailSender
-user: [ser
+generateMail() calls) -[Paddress §m’ng
L mailSender() addiess; sting
e-mall: strng
+getUser()
+aetlzer)
et B
+setl P}
+getAddress()
+aetAddresal)
+oethiall)
+aethail()
+aendMail)
Receiving Mail
Article
(Thread) SmiphlailReceiver -message 1id- bigint
SmtpPortListener -seawler: User _subject: ;trmg
oriNo: integer -stilject: sriig :
:ﬁcfaullPon' mheger =gl ieger -Cd?lgﬂ ;;t:umg
+getPortNol) = (-cate Time: date e
e prtiog) et . ﬁ'omﬁ-iajl: SE-']I
+optTrefanltPort() +sel Sender() - Sring
+eetDefanliPort() +oetSulyect () -reply To: strng
+HisterPort() st Subject{) -followupTo: sting
-relay Version: string
o -postingVersion: string
g calls -lines: nteger
& ~expites; date
- -references, sting
Lredles =-distnbution: string
] -control: string
{Thread)

SmipConnection Handler Hget<atimbae name={)
-socket: Socket S +aet<attrnbite naime={)
-user; User
-header: string
-content: sring
Higleer Authenticated
+accepthail
+rejectidanll)

Since NewsAgent maintains the functionality to send e-mail to the users and receive e-mail
from users, mailing module is examinde in 2 subparts. First part is mail sending; that means
sending mail to the users who wanted to receive mail from the newsgroups that he/she is
subscribed to. Second part is mail receiving; that means receiving the e-mails from users and
inserting them into database as if they were posted from web or NNTP.

For the First part:

70

» MailHandler class is called when a new article is posted, inserted into database and a

message is returned as it is inserted into database. It generates e-mail using the header,

sender and body of article it received and creates an instance of MailSender.

> MailSender class maintains the information about the user and sends e-mail to the

user via smtp.

For the Second Part:

» SmtpPortListener class is a thread. It listens the specified port and creates an

instance of SmtpConnectionHandler when a message is received from that port.

» SmtpConnectionHandler class checks whether the user who sends the e-mail is

authenticated or not. According to the result of this check, it accepts or rejects the

user. After acception, it calls SmtpMailReceiver.

» SmtpMailReceiver class creates an instance of article class and creation of this article

calls the related web service and then the article is inserted into database.

5.7 RSS Module

FeedTree

-ng 1d: bagint

-title: sting

-k string

-descnption: string

FeedNode -pubDate: date FeedGenerator

e e -language: sting e
_:11: & :'Eié -lastBuddDate: date -feedTiees: FesdTres| |
-descnption: string Sisos; BTG - -
-pubDate: date -generator: sting +getFeedrees()
Pu}:l' TL_JR_I -managing Editor: string +aetFeedTrees()
B -webhaster: string +addMewFeed()

- Size +eleteFeed()
+aefTitle() -cimientsize e [rupdateFesd()
+getTitle() root- FeedMods Mo Lo +s£;:'-:l1Feedﬂ
:siltt:ﬂﬂ?j -depth- integer +getFeed() i
+E¢ID¢‘S¢II|J'TIOI1U _Wlm?": Mg :‘ﬂ;;ﬂ?ﬁ?‘h{'{m(’
b 5 -l S i =]) o =TT
+getDescnption() * +deleleNodeF1‘ol111i:eedL}
:ﬂ&:ﬂﬁt@% +gzt=attribute nama>(} +_gEﬂ';-iostU]_JdﬂtEdFEE'E|.l;__|'
+Eel{_1“‘1|jd11j +set<attribute name=>() +g¢'rMosIﬂP-:r1mIﬂ1'.F¢-:du
Hsiany’ +addNode() +getLeastPopularFeed()

TUHCH, +removeNods() +write AllToFila()

+azarchModa()

+nodeExists])

+updateModea()

+renaliza)

FeenerateFromFila)

Users will be able to reach hot news from NewsAgent using their RSS readers. For this
reason, we create an RSS feed including recently posted news. This module deals with RSS

related jobs.

71

» FeedGenerator class is called when a new article is posted and inserted into the
database. As shown in article management module, article management web service
calls this class. FeedGenerator class has an array of feed trees which are instances of
FeedTree class. Each newsgroup has its own feed tree, since a user may subscribe to
any of them individually. For example, if the web service for inserting an article is
invoked, it generates a request to the FeedGenerator after confirming the insertion of
the article to the database. This request is to add a new entry for the specified
newsgroup tree associated with the newly added article. FeedTree finds the
corresponding feed tree and calls the method to add the article to the tree. Update and
delete operations follows the same steps as in adding a new article.

> FeedTree class is a tree of feed nodes. It is a logical representation of the xml
document. The listed methods above maintains the tree. Each tree has a maximum
size. When the tree exceeds this size, the oldest entry of the tree is deleted to maintain
the size. After each change operation to the tree, it serializes the tree to the file path
specified by “url” attribute of the class. Now, any feed aggregators realize the changes
when it checks out the feed for new news.

» FeedNode is a logical representation of the xml of a single article. It is appended to

the related feed tree when a new post is inserted into database.

72

5.8 Log Module

LogManagementWebService

+addLoginlog()
+eleleteLoginlogl)
+nvoc ity Loganlog b
+getLogmnlog()
+addConfigurationlog()
+deleteConfgurationlog()
+iodify Confignmationiog)
+getConfigieationlog

S

LogDatabaseAccess

+oomnect()
HnsertLognlog

Hdelate Logmnlog)
HugedateLogindog)
+refrizve Logindog()
+insertConfigurationlog()
HdeleteConfignmationlog()
+HipdateConfigurationlog()
+retrisveConfizurationlog)

» LogManagementWebService class is a web service that maintains required methods
for login log and configuration log operations. This class calls LogDatabaseAccess
class to reflect the modifications into the database.

» LogDatabaseAccess class establishes connection with the database and creates queries
in order to retrieve data from database or insert and modify data into database. Its

methods use these queries and do all the work related with logs.

6 SEQUENCE DIAGRAMS

6.1 Login and Authentication

73

cUser | |ﬂMMW| U eetvatagerentiW's - UsetDatahased coess | - Session | | LogWis | TogDatabhase becess
| [|

[
[
ol Js memF(.l L

I
I | I |
L | ! | | |
I —
I I |
getPasswor() B | |
- I
checkdogt) || sendlogiafor) checkLoginkifod) | !
- . _ I
I
g, JuEryEESILE :
[success) IR
[InginFailed] — createsession) -
- displayEron) [success) L | |irsertloginb
- || addlogirlog’) N

6.2 Signup

- NewlserForm or MailCanfiguration

H i
Cambidate ser i i
| | :
i 1 4
1 i 1
: i :
2 2 ! i
signupl) gy - :
—- 1
petllserlntol) : irsert™New U sen)
guervResull
[yueryResult = sucpess] ol
| sendC onthail) alceptConfLinkl)
[Conf' == supcess)
L undatel Jserindiz)
[Cont= failure]

deleteUser(}

6.3 User Management

‘;amnuusll:am;ﬂlimn AherhpagementFonn | | Userhfanagement™s | | UherAdmuonstration | | UserDatabasescoess LoghVs LoglatabaseA ceess

managel Trers)]
- AgldUzerBeqi) L

- addUser())
Deletel TzerReqi) > addlUzer(} - inerfNewTTzeni)

E deletelTzex() -
Updatel lzerReq() a deletelJaer() deletel Tser)

apdatellzen} | -
- updatel lzer() .
uprlatel Tzerlutid)

quervEesalt

diﬂ}h‘:h[&qgﬂgﬁ'] PP

[quervEesnlt =—=ncces:z)
o addConfignrationlog]

insenConfiglog

Tzen A dimin

6.4 Usergroup Management

AdministrativeFonm | | UsetvbragermentFonm | | UsedvaracernentWs | | LT serd divied stration Uselatahased copss Logha LogDatabazed copas
‘ | | | | ! !
! | | | | | |
ma.na\beUsmeupq‘l;—l an I | I I |
AAdTUCGReg() i | | |
> addUserSroga) —
ekt 11 Reg () * | addUserGoup() insextblewlIsex) ' |
- —= deleteTaerCriop) = I |
Ibdifyllserfight > | deletelserCroup)
Regi) - _ _ - dekte Useromg) | |
rodifffJsedights() e
- rodifylJeerFights() e Teeh I |
LEtlICReg) > npatetlseCg) | |
LitUserTrompe]) ListlserChoup() ievveJaerCope() | |
— I |
_________________ omenfesdt '
< displaydvEssage) L -

[peryResul ==success]
addConfgmmatiorlog()

77

6.5 Newsgroup Management

User(& derir) - v strativeFomm | | MG aragementForn | | NahatagementWehService | | | MalatabaseAccess
I I | | I
| | | | |
| _memgeNG), i i 1
add g equesty
addews aroup -
del eteMNoR equest(y insertNewsgroupy
deleteMewsgroup)
trnodi FgReoquest) deleteMewsgouy
rrodi ftlewsgroup)
trodifyNewsgouply |
%’ splayhvlessage()

[quetyF.esul = success]
addConfigurationlogh

78

6.6 Admin Log Control

Tser(Adumind

getConfigrationlog)

deleteConfigwationlog(y

modify Configurationlog()

getLogmlog(} .
deleteLoginlog(} .
modifyLoginlog) .
N display(}

Log'Ws

retriev eConfigmrationlog

delete”ontimuationlogl)

updateConfiguationlog()

deleteLogimlogl)

update Logmlog|)

79

6.7 Subscription

Weer HandleMeweGroups | | BubsciptionFonn | | Subsenption| [NGDatabased coess L Swﬂr;wmnmw UsetDatabaszes coess
| | ! I T |
! | | ! | | |
— | | ! | | |
listMeaaGrops] —
hardleNewsGroygpef) | ! ! |
subsciibe) I I |
.)
repestEraly walidate N I |
I I
| aldatiorFesult |
LI " reject) -
- S 4 i las oo I’E.'S_'I.I]i U‘_IESU]_.t
[esult= =surccess) [esul= =faihe]
displayS wocesshzzagel) direc tSubsFoma)

80

6.8 Update User Info

Lser LeerFonmn UserlnfoFomm| | UsevanagementtWs eerDB Access
I | |

I | | |
editUsernfb() L | |
retieve Userdndb) |] |

chargePassword() sty L ogitino() updateUzed nfol) - 0

chanzePasswomd)
updateUser)
. qeryilesdt
- display Tpdatest) L

81

6.9 Web User Operations

TlsenWeh MWehhviodule ccontrollagin | | U sefviars gementiWs Login Lserlatatase coess
|
I | f
[l | | | |
. | ! | |
1 e . L
getllserrarme) | |
getPasswod() _ -
= chectlogit) | | sendLoginInfo)
c clﬂklag;m]ni:‘_(;]
e L] guenResut T L
Userfonn mﬁ Hews Wi MewsDB A ceess
| [| [
[uervFesult = succeess) [| |
articleOperations)) — . '
Shr] 1
atiric k() .
- postotck() : L
readﬂxh;:le(} gﬂtﬁlﬁﬂl&l:l ':_ s h'::':
i g e
- — displayivkssage() I S

L gerfesdt —

For unauthenticated web users, the user does not login to the system and can request only a small set of article operations.

6.10 Authenticated NNTP User Operations

- Segd onHandler

[
HHTE_Cliert I |
I I
I
| I :
M LetenPortl) [islkerSession
Exrsh:]l |:|
s&ssmnR.esult
____________ CormrandHand er -
= | [PafWnater| | ICommendHander
— Faclory
[zeasiorFesult exists] |
gett N TPIVIEs sage!) Hask) getStatus
I‘I.I'Iess%eﬂ
handkC omrrand()
wiiteto Por()
Cormecti onHand er :USEI’I"JIEIIEHPTTIF'T'ITW seDB Access
[FessionFesult not exists) I I T
checld ogin(y _
[checkLogmirfor _|_| refisvellseinfi()
reault
< e e st ...,
esult == irtvall] | pogut ==valid]
__EJE'“J::' createlens egsioni |

83

6.11 Unauthenticated NNTP User Operations

Hah)

gets tats L

Ikasagel)

tand e Corarand)

:PustNews| | HewsWE

IHewrsDBA coess

¥

writetoPor)
-

84

6.12 Feed Generation

‘NewsDBAccess | |FeedGerarator FeedTres FeedHade

|
|
postaaticlel} ireertiticls() .

I

I

I

= I

I

gueryReslt !

[;uer_:,rﬂﬁsu]i == gccess] :

[uerfesult == falnt] |
- c1o) [uerHeatt = suwoess] I

rerateFeed()
o et

woooono..... dEphyMessaged)

6.13 Sending E-mails

postAticlel}

EITON)

[peryFesult == failmg

|
|
irserthaticlel) |

¥

—

ueriealt
[que:tj.rREsu]I == gL Cess]

[ueryResut = success]

rerateFeed)
: :I gereratelvhil)

oo Uspledvkessgel —

TJserDB A coess

86

6.14 Receiving E-mails

: SMTPCommection | |Userddminismtion]| EMTPNVBIIRECEIVE | {15erDP A coess
et DBA coess r pheti=id s al o Pl ot
| H;aﬂ!dﬂ' W T — I
Mail Cliert
- | | | [| |
| I I | | | |
J_listenP.;.rLO | isUser s | | ! |
= Authenticated]) . | | | |
chocFreily) | | retrieveFmail(), L |
|
|
|
AutherticationBesult
R e P P e
[utherte dedResult == tre] —
genertebrtic b)) - nsertirtick()
[theticatedResult == fake]
rejec thvEL)
P -
e e il e gy T

87

7 TESTING PLAN AND PROCEDURES
7.1 Testing Plan

Our aim is to find errors and make a good test that has a high probability of finding an error.
We also want to make sure that there are no defects in the product.

After we have generated the source code, we are going to test our program to identify the
errors and remove them before delivery to the customer. Our goal is to correct as many errors
as possible early in our software development cycle. In order to acquire this we have to design

a series of test cases that have a high likelihood of finding errors.

7.2 Testing Strategy

Since NewsAgent has different layers and modules, testing strategy will differ for each
subpart of the product. We present a testing schema below, which will briefly explain our
testing strategy.

In general, we will follow a bottom-up strategy for testing. Therefore, we will start from
database layer as shown in the schema. For this layer, we will apply unit tests in order to
check performance and correctness of our database queries. We will test our retrievals,
insertions and modifications. Testing of this part is very important since each web service and
its methods use the data returned from database layer and insert data into database through
this layer. Any mistaken coding error in this layer can cause many problems in above layers.
After testing database layer, we will pass to web services layer. Any operation in NewsAgent
will be handled by web services. So testing this part is another important issue in testing the
product. For testing our web services, we will deploy each of them separately and invoke
related methods. We will check whether each web service works correctly.

Then we will test our modules; NNTP Module, Mail Module, RSS Module and Web Module.
While testing these modules, we will follow a different strategy which is top-down testing

strategy.

MNMNTP
Module

Top-down
Testing
Strateqy

____...--""'\hhh—__
—_—
Mail RSS WEB
Module Module Module

Web Services Layer

VAN

h'’4

Database Layer

Bottom-Up
Testing

DATABASE

Strateqy

Testing Strategy of NewsAgent

&9

7.3 Testing Procedure

7.3.1 Unit Testing

In the unit test case we will be testing the separate modules of the software. White box
testing will be used where each module or component of the software is tested individually.

By this type of testing we have advantages as mentioned below.

1) As the knowledge of internal coding structure is prerequisite, it becomes very easy to find
out which type of input/data can help in testing the application effectively.
ii) The other advantage of white box testing is that it helps in optimizing the code

1i1) It helps in removing the extra lines of code, which can bring in hidden defects.

We will be carrying out unit testing in order to check if the particular module or unit of code
is working fine. The Unit Testing comes at the very basic level as it is carried out as and when

the unit of the code is developed or a particular functionality is built.

We will be looking for entry and exit conditions of the data. We will make sure that all the
components work without any troubles. The test primarily is carried out by the programmer
who designed and implemented the module. Lead tester will than carry out test on the

modules to finalize the testing.

7.3.2 Integration Testing

In this testing period we will be looking for any signs of the collision between our software
components and those of the clients. We want to make sure there is no confusion among the
application on the network when they are running simultaneously.

As we know, integration testing is testing of combined parts of an application to determine if
they function together correctly. The 'parts' can be code modules, individual applications,
client and server applications on a network, etc. And this type of testing is especially relevant
to client/server and distributed systems. We will be carefully looking for any sort of collision

between several different applications.

7.3.3 Security Testing

90

Testing the security of a news server is really a key point and also testing is an inevitable
feature of NewsAgent. Since NewsAgent may be used in workplaces or foundations where
security of data is the most important issue, security should be handled carefully. NewsAgent
will use SSL for handling security issues. SSL provides data encryption which will be used in
transmission of passwords. Also, newsgroups and articles should not be accessed by users
who have not right to access them. Security testing will be done by controlling the flow of

data in different modules of NewsAgent and will be useful for finding out any security holes.

8 SYNTAX SPECIFICATION

Coding standards occupy large amounts for big projects which have multiple developers and
coders. These standards are so important that some big companies, military services and
governmental services only rely on the products which have been produced through a very
strictly specified line. This line is determined by the rules. Every developer included in the
project must obey these rules.

Not being a big company, even not a company, we can also benefit some rules to simplify the
understandability and readability of the codes. As a team we will develop the system together,
but most of the time we will work on the code at different time slots. So, with the help of the
CVS and a predefined specification rules will prevent us the get in conflicts and doing wrong

things.

We have agreed on some coding conventions to benefit the syntax specification.

8.1 Naming the Classes and Files

All classes will have names beginning with a capital letter. The classes with more than one
word will have a capital letter at the beginning of each word. For instance,

“ConnectionHandler” is a suitable class name in NewsAgent.
For the files of the Java classes, Java has a restriction that the file name must be same as the

class name inside. Every file can only include one class. But that class can contain multiple

classes.

91

8.2 Naming Functions

Function names start with lower-case letters and continue until a new word starts. New word
stars with capital letter and continues with lower-case letters. For example

"checkLoginInfo()" is a suitable function name in NewsAgent.

8.3 Naming Variables

Variable names start with a letter indicating the scope of that variable.
e "m" -->attribute of a class. Indicating that member variable of a class.
e "v" --> parameter of a function. Indicating that scope of the variable is the function
that it is passed.

e "|"-->local variable. Indicating that the variable is defined locally.

After the initial letter, variable name continues with a letter sequence indicating the type of it.
e '"int" --> indicating that the variable is an integer variable.
e "float" --> indicating that the variable is a float variable.
e "double" --> indicating that the variable is a double variable.
e 'str" --> indicating that the variable is a string variable.

e '"obj" -->indicating that the variable is an object.

After these conventions are applied, the usual naming conventions mentioned above are
applied to the variables. Suitable variable examples are as follows;

e "mstrUsername"

e "mintPortNo"

e "mobjConnectionHandler"

8.4 Comment Conventions

Commenting is also a critical issue to increase the understandability of the code. Since each
java class is defined in separate files we have decided to have detailed information at the

beginning of each file as described follows:

92

/***

/* File name:

/* Created by:

/* Created at: (Date:DD.MM.YY — Time: HH:MM:SS)
/* Modified by:

/* Modified at: (Date:DD.MM.YY — Time: HH:MM:SS)

/* Description:

**/

9 GANTT CHART

Gantt chart of NewsAgent is presented in APPENDIX.

10 CONCLUSION

In the content of this report, design of NewsAgent is specified in a detailed manner. Each part
is described using different diagrams and discussions on them. These diagrams and
discussions on different aspects of NewsAgent provide it to be handled by using different
techniques which will be useful for observing different modules of NewsAgent from different

point of views.

To sum up all design issues in this report precisely, it will be useful to have some discussion
apart from diagrams presented before. For this reason, in this part, it will be reasonable to

discuss each module from a generic point of view.

Web Service:

Web service is the core of NewsAgent, since all database accesses will be controlled by it.
Web service methods are consistent with NNTP commands specified by RFC 977 standards
and each command in this standard will be mapped to a web service method using a handler
which is used to specify the meaning of NNTP command. Meaning of each NNTP command
is determined by using a hash table which will also preserve time to find which web service

method to be called. In the hash table, each NNTP command will be mapped to a Web service

93

method, so after that point control of the application will be passed to web service of

NewsAgent.

RSS/Atom:

RSS/Atom module will provide users to access articles without reading accessing newsgroups
manually. By using an RSS reader, user will be able to access feeds of NewsAgent, to use
RSS module of NewsAgent, user should subscribe to feeds of newsgroups that he/she wants
to access. A feed tree will be used to handle RSS module. For instance, after an article is
inserted into the database, feed of the newsgroup that the article is posted and feed tree will be
updated, accordingly. After that time, RSS reader used by user will be able to access the
updated feed. Of course, users will be able to access of the feeds of newsgroups

corresponding to his/her access level.

SMTP:

SMTP module will provide users to receive mails from news server and send mails to
newsgroups in a specified format. By using this functionality, users will be able to receive
articles via e-mail by not being forced to log in to the system, then listing newsgroups and
articles. SMTP server in NewsAgent will also provide NewsAgent to receive mails from
clients and users will be able to post article to newsgroups via e-mail. Of course, users will
again be able to post and receive articles from/to newsgroups corresponding to his/her access

level.

SSL: By using SSL features, NewsAgent will be a secure newsgroup environment and users
will access newsgroups without considering any insecure applications. Authentication and
SSL encryption will provide secure applications when user passwords and authentication is
taken into account. Also newsgroups, articles and user information will not be accessible by

any unauthorized user or a user who should not be able to access.

In conclusion, providing such conveniences to users will be so beneficial that users will be

able to post articles to newsgroups by using different features of NewsAgent. By this way,

94

even who will not directly connect to news server, will be able to post and read articles. In

addition to these, security will be one of the key points that NewsAgent will provide users.

11 REFERENCES

1. http://www.tcpipguide.com
2. http://en.wikipedia.org/wiki/MD35
3. http://www.ietf.org/rfc/rfc0850.txt

4. www.ietf.org/rfc/rfc977.txt

12 APPENDIX

Task Name Duration | 5&p 06 23 5ep G 02 Cct 06 09 Oct ‘06 16 Cct 06 230ct 06 30 Coct '06

TIWITIF[S[SIMITWITIFIS S M TIWTIF S MITWITIF[S[sM[TWITIF[S]SMITWITIFISISMITWTIFIS]:

1| TeamConstruction | 3days

2| Team Organization 2dlays
3| Project Definition 14 days
4 | Understanding the Project | 3 days
5| Prablem Defintion 3 days
B | Project Scope 2 thays
7| Proposal Report Prep. B days
8 Milestone 0 dhays
8| Requirement Analysis 27 days
10| Market Research i days
M Mesting with Customers | 4 days
12 Literature Survey T days

13 Concluding System Red. | 3dave
14 Data Modeling 3 days
13| Use Case Modeling 3 days
16 Func. & Behay. Modeling | 4 days

95

Task Mame Duration |50 Oct 06 06 Mov '06 13 Nov '06 20 Mov '06 27 Nov '06 04 Dec '06
MITWT[FIS[SMITIW[TIF]S[SM[TW[TIF]s[SM[Tw[T[F[S[S|M[Tw[T]F[5]S

16 | Func. & Behav. Modeling | 4 days
17| Miestone 0 days
18 | Initial Design 22 days

19| Reourement Analysis Rev. 1 day
20 Collecting Info on Develop. | 2 days
21 Data Design 3 days
22 Inttial GUI Design 5 days
23| System Modules Design | 5 days
24| Componert Level Design | 6 days
23 Migstone 0 days
26 Detailed Design 48 days
21| Intisled Design Report Rey| 2 days
28 | Final Devel Design Rev. | 2 days
23 Detailed Data Design 7 days
30 Detailed GUI Design 9 days

Tazk Name Duration 11 Dec 06 18 Dec '06 25 Dec ‘06 01 Jan ‘07 08 Jan '07 15 Jan '07 22 Jan 07
1] T|W|T|F|S|S ru1|T|W|T|F|S|S M|T|W|T|F|S|S M|T|W|T|F|S|S ru1|T|W|T|F|S|S ru1|T|W|T

30| Detailed GUI Design § days|
3| Detaled Sys Module Dsgn 11 days
32 Detalled Comp. Lyl Dzon. 16 davs
33 Miestone 0 davys
34| Prototype Demo 54 days| !
33| Prototype Desion 18 days
36| Prototype Coding 24 days
A7 Demo Preparation 2days
35| Miestone 0 days

96

