

AJAX DEVELOPMENT ENVIRONMENT

FINAL DESIGN REPORT

FINAL DESIGN REPORT Date: 18.01.2006

 1

1. INTRODUCTION .. 3

1.1. Purpose of This Document... 3

1.2. Problem Redefinition ... 3

1.3 Project Scope and Goals ... 4

1.4 Desıgn Goals and Objectıves .. 4

1.4.1 Modularity.. 4

1.4.2 Usability & Portability... 5

1.4.3 Reliability... 5

1.5 Design Constraints .. 5

1.5.1 Time ... 5

1.5.2 Performance ... 5

2. DATA FLOW DIAGRAMS... 6

2.1 DFD LEVEL0... 6

2.2 DFD LEVEL1... 7

3. SYSTEM ARCHITECTURE, MODULES AND FILE FORMATS........................... 11

3.1 SYSTEM ARCHITECTURE ... 11

3.2 MODULES ... 13

3.2.1 EDITOR MODULE... 13

3.2.1.1 CLASS DIAGRAM.. 13

3.2.1.2 SEQUENCE DIAGRAM.. 23

3.2.1.3 USE CASE DIAGRAM.. 25

3.2.1.4 USAGE SCENARIOS.. 26

3.2.2 DEBUGGER MODULE.. 26

3.2.2.1 CLASS DIAGRAM.. 26

3.2.2.2 SEQUENCE DIAGRAM.. 31

3.2.2.3 USE CASE DIAGRAM.. 32

3.2.2.4 USAGE SCENARIO .. 33

3.2.3 EXPLORER MODULE... 33

3.2.3.1 CLASS DIAGRAM.. 33

3.2.3.2 SEQUENCE DIAGRAM.. 36

3.2.3.3 USE CASE DIAGRAMS ... 38

3.2.3.4 USAGE SCENARIOS.. 39

3.2.4 TOOLBOX MODULE .. 40

3.2.4.1 CLASS DIAGRAM.. 40

3.2.4.2 SEQUENCE DIAGRAM.. 50

3.2.4.3 USE CASE DIAGRAM.. 51

3.2.4.4 USAGE SCENARIO .. 52

3.2.5 AJAX ACTION MODULE ... 52

3.2.5.1 CLASS DIAGRAM.. 52

3.2.5.2 SEQUENCE DIAGRAM.. 54

3.2.5.3 USE CASE DIAGRAM.. 55

3.2.5.4 USAGE SCENARIO .. 56

3.2.6 DATABASE MODULE .. 56

3.2.6.1 CLASS DIAGRAM.. 56

3.2.6.2 SEQUENCE DIAGRAM.. 59

3.2.6.3 USE CASE DIAGRAM.. 60

FINAL DESIGN REPORT Date: 18.01.2006

 2

3.2.6.4 USAGE SCENARIO .. 61

3.2.7 FTP MODULE... 61

3.2.7.1 FTP CLASS DIAGRAM .. 63

3.2.7.2 FTP SEQUENCE DIAGRAM.. 68

3.2.7.3 FTP USE CASE DIAGRAM.. 70

3.2.7.4 FTP USAGE SCENARIOS .. 71

3.2.8 CVS MODULE.. 71

3.2.8.1 CVS CLASS DIAGRAM ... 73

3.2.8.2 CVS SEQUENCE DIAGRAM... 77

3.2.8.3 CVS USE CASE DIAGRAM... 79

3.2.8.4 CVS USAGE SCENARIOS ... 80

3.3 FILE FORMATS .. 81

3.3.1 PROJECT FILE FORMAT.. 81

3.3.2 ACTIVE PROJECTS FILE FORMAT.. 82

3.3.3 PREFERENCES FILE FORMAT ... 82

4. GUI (GRAPHICAL USER INTERFACE)... 83

4.1 MENU BAR.. 84

4.1.1 FILE MENU .. 84

4.1.2 EDIT MENU.. 85

4.1.3 VIEW MENU .. 85

4.1.4 DATABASE MENU ... 86

4.1.5 FTP MENU.. 86

4.1.6 CVS MENU... 86

4.1.7 PANEL MENU.. 87

4.1.8 PLUGINS MENU.. 87

4.1.9 HELP MENU... 88

4.2 TOOLBAR.. 88

4.3 PANELS AND MODULES ... 89

5. IMPLEMENTATION PLAN ... 90

FINAL DESIGN REPORT Date: 18.01.2006

 3

1. INTRODUCTION

1.1. Purpose of This Document

This document is prepared to demonstrate the initial design of our product

“kajax”. Our main purpose, while preparing this document, was to show our design

process and what kind of solutions we developed and our point of view to the Ajax IDE

Project. We explained our design process via various diagrams to clarify every single

detail of the reader’s mind. These diagrams include Data Flow Diagrams, Sequence

Diagrams, Use Case Diagrams and Class Diagrams.

Actually since this is the initial design report of the product, we cannot say the

report is covering every aspect of the design. There are probably some incomplete parts

about the design process at the report. However, Karınca team will work extremely

concentrated and hard to form a whole design report.

1.2. Problem Redefinition

 For the last few years Internet and Web-Applications have undergone a very sharp

shift. What caused this situation is emerging the new Ajax technology. Ajax promised

bandwidth utilization, speed and high interactivity which is the indispensable feature of

the desktop applications.

 AJAX refers to a set of techniques centered on background browser to server

communication. Instead of always submitting a full page of data to the server and

receiving a full page back, by using AJAX techniques, an application can send an

individual field value and receive information to update a portion of the page. The result

is that, with AJAX, web applications can be much more responsive and intuitive.

 Since AJAX is a new technology, new development environments should be

implemented to support this technology. As a result of our researches, the number of

development environment is not enough and most of available ones are integrated to the

general development environment such as Eclipse, Net Beans etc. In other words they are

not a stand alone product for the web developers. To meet the needs, we have decided to

develop an AJAX IDE (Integrated Development Environment) named as kajax.

FINAL DESIGN REPORT Date: 18.01.2006

 4

 1.3 Project Scope and Goals

 Our product kajax is simply an Integrated Development Environment for Ajax.

kajax is designed for developers to develop web applications faster and easier with in a

user friendly environment with the following goals:

• To develop an independent desktop application/IDE with a setup, supporting

operating systems Windows and Linux.

• To develop a modular product using a component based approach.

• To provide a Database Module with database connection, sql query, viewing

tables features.

• To supply an Editor Module with HTML, CSS, XML and JavaScript text editors.

• To provide a Debugger Module with a JavaScript Debugger.

• To supply Remote Connection Module with FTP.

• To provide Panel Module with File Explorer, Solution Explorer, Toolbox,

Properties and Ajax Action panels.

• To supply Versioning Manager Module with CVS.

1.4 Desıgn Goals and Objectıves

1.4.1 Modularity

We have introduced a modular approach to the project, so we resolved kajax into

modules. At the result of this approach, the design emerged in a very modular way. We

think that this modularity will be useful during coding phase. The modularity feature of

our design also helped us during making the design by providing us to grasp all the

aspects of the project in a complete way. This feature will especially help us during the

coding phase through implementing the features of our modules in a detailed and

compact way. High modularity of our project design also showed us the possible

difficulties that we will face and made us to concentrate on those parts. We think that this

feature will be also very useful during the integration process.

FINAL DESIGN REPORT Date: 18.01.2006

 5

1.4.2 Usability & Portability

In our project design one of the most important issues that we gave importance is

usability. We tried to design all the modules in a manner that the project will be

implemented easily and at the result of implementation, we aim to produce software

which will be used by developers easily. The design is aimed to be made in a good way

that users will not confront with any complexity while using the system. Mnemonics are

an important subject in the sense of usability. So we designed things as people

accustomed to. Besides these portability is an important issue. Today most developers use

different platforms such as Linux, Windows, etc. So we considered this situation as a

crucial one and selected Java as the implementation language.

1.4.3 Reliability

 We are planning to program our product reliable so that any minor program will

not stop the program or corrupt the program. For that aim our testers will make white or

black box tests to minimize the bugs of our program. So that our program will be as bug

free as possible. All modules should work asynchronously so that any delay of one of our

modules should not block others work flow.

1.5 Design Constraints

Our main design constraints are as follows.

1.5.1 Time

Our fixed schedule is determined by our course syllabus. We have approximately

six months remaining to finish the project completely. The design should be finished in

one month. During the design we will also work on the prototype and it will be finished

in one and a half months from the delivery of initial design report.

1.5.2 Performance

 The performance of our program is very important. A slow development

environment will not satisfy the needs of the user. Since we are using Java technologies

in our program, we have to be more careful about the performance issue. The system

FINAL DESIGN REPORT Date: 18.01.2006

 6

resource usage will be minimized to increase the performance on slower computers. The

user should run other applications while using our program.

2. DATA FLOW DIAGRAMS

2.1 DFD LEVEL0

FINAL DESIGN REPORT Date: 18.01.2006

 7

2.2 DFD LEVEL1

FINAL DESIGN REPORT Date: 18.01.2006

 8

FINAL DESIGN REPORT Date: 18.01.2006

 9

2.3 DATA DICTIONARY

 Name: Interface Commands & Input Data

Where & How

it is used:

 DFD Level0

DFD Level1(input given by user)

Description: “users interaction commands”

 Name: Input Files

Where & How

it is used:

 DFD Level 0, DFD Level1.FTP(input),

Solution Explorer(input files to be loaded by user)

Description: “project files”

 Name: Query Data

Where & How

it is used:

DFD Level0

DFD Level1.Database Module(output info)

Description: “results returned after query statements”

 Name: Output File

Where & How

it is used:

DFD Level0

DFD Level1. File System & FTP(output file for saving)

Description: “user files to be saved in local or network file system”

 Name: Output Data & Web Application

FINAL DESIGN REPORT Date: 18.01.2006

 10

Where & How

it is used:

 DFD Level0

DFD Level1.Debugger(output to user)

Description: “debug results and viewing data”

 Name: Write Data

Where & How

it is used:

 DFD Level0

DFD Level1.Database Module(input data)

Description: “update or insert statements that are queried on DB.”

 Name: Send Files

Where & How

it is used:

 DFD Level1. FTP(output-input), File Explorer(output) ,

Editor(input-output), Debugger Modules(input)

Description: “writes file data or loads them in editor or debugger”

 Name: Display Data

Where & How

it is used:

 DFD Level1.Database Module(output)

Description: “outputs, results to the queries”

 Name: Display Errors

Where & How DFD Level1. Debugger Module(output)

FINAL DESIGN REPORT Date: 18.01.2006

 11

it is used:

Description: “debugging info and messages to the user”

 Name: Display Design View

Where & How

it is used:

 DFD Level1. Editor(output)

Description: “output to design mode”

 Name: Add Component Code

Where & How

it is used:

 DFD Level1. Toolbox(output), Editor(input)

Description: “components that are provided by the ide”

3. SYSTEM ARCHITECTURE, MODULES AND FILE

FORMATS

3.1 SYSTEM ARCHITECTURE

 Every system has to have architecture. As we have mentioned in our Analyses

Report in words our program kajax has component based architecture. The following

diagram shows major modules of the kajax with structure and interactions between them.

FINAL DESIGN REPORT Date: 18.01.2006

 12

An overview of these components is below:

Database Module provides database connections, executing SQL statements and

viewing database tables.

Editor Module provides HTML, CSS, XML and JavaScript text editors to the kajax

user.

Debugger Module is a JavaScript debugger.

FTP Module is used for receiving and putting files from/to a remote FTP Server. This

module acts as a FTP Client.

CVS Module is used to connect a remote CVS server. This Module acts as a CVS Client.

Panel Module provides File Explorer, Project Explorer, Toolbox, Properties and the

AJAX ACTIONS panels. Ajax actions panel is one of the most important feature of the

kajax.

FINAL DESIGN REPORT Date: 18.01.2006

 13

3.2 MODULES

3.2.1 EDITOR MODULE

 Text editors are the core components of any integrated development environment.

It keeps developer from redundant actions by automating lots of things like indentation,

code completion, etc. And also helps the programmer to catch simple errors. kajax

provides a functional text editor module. Since it is an Ajax IDE it has four specialized

editors: Html, JavaScript, Xml and Css editors. All of them support basic functionalities

such as pair matching, indenting, highlighting, etc. Besides this colorization, tag

completion assistance, validation check are provided. User can bookmark lines and put

break points for the debug phase. Also show/hide line numbers, bookmarks and break

points.

 Our editor module mainly works as follows: Editor Controller is the top controller

class. It will have just one instance at the start of the program. It manages new

documents, new tabs – new editors. When user wants to open a file or create a new one,

editor controller opens a new tab and creates an instance of generic editor. Then generic

editor tries to open that file or create new one. According to the type of the file generic

editor is transformed to the appropriate editor.

3.2.1.1 CLASS DIAGRAM

 • Base editor class is generic editor. It has common functionalities between the

specialized ones. It is formed by various managers, so it has a multi-component structure:

FINAL DESIGN REPORT Date: 18.01.2006

 14

FINAL DESIGN REPORT Date: 18.01.2006

 15

UImanager:

Method Name Type Arguments Description of Method

showLineNumbers() Public:void Void Shows line numbers

graphically

showBookmarks() Public:void Void Shows bookmarks

graphically near the lines

hideLineNumbers() Public:void Void Hides line numbers

graphically

hideBookmarks() Public:void Void Hides bookmarks graphically

Pairmanager:

Method Name Type Arguments Description of Method

matchBrace Public:int Pos:int Highlights the matching

braces

matchQuote Public:int Pos:int Highlights the matching

braces

setFile() Public:void File:StringBuffer Sets the editors content to the

buffer

setCaret() Public:void Pos:int Sets current caret position to

this classes caretOffset

member

File manager:

Method Name Type Arguments Description of Method

openFile() Public:bool File:string Opens the file specified by

the argument

closeFile() Public:bool Void Closes current file

saveFile() Public:bool Void Saves current file, flushes it

to the memory

FINAL DESIGN REPORT Date: 18.01.2006

 16

saveFileAs() Public:bool Filename:string Saves current file with the

given name

Event manager:

Method Name Type Arguments Description of Method

addEvent() Public:void event:Event Attaches event to the

eventList, these will be static

events.

removeEvent() Public:void eventId:int Removes the specified event

from the eventList.

performEvent() Public:void event:Event Performs the specified event

History manager:

Method Name Type Arguments Description of Method

Undo() Public:void Void Roll backs the last change in

the code

Redo() Public:void Void Redoes the last roll backed

action in the code

isModified() Public:bool Void Returns whether there

happened any change in the

code

Breakpoint manager:

Method Name Type Arguments Description of Method

addBreakpoint() Public:void Pos:int Adds breakpoint to the

specified position

removeBreakpoint() Public:void Id:int Removes specified

breakpoint

getBreakpoints() Public:BreakpointList Void Returns the list of

FINAL DESIGN REPORT Date: 18.01.2006

 17

breakpoints(i.e. for

debugger)

Bookmark manager:

Method Name Type Arguments Description of Method

addBookmark() Public:void Pos:int Adds bookmark to the

specified position

removeBookmark() Public:void Id:int Removes the specified

bookmark from the

bookmarkList

gotoBookmark() Public:int Id:int Sets caret to the specified

bookmark position

Selection manager:

Method Name Type Arguments Description of

Method

Cut() Public:void Void Cuts the selected

code

Copy() Public:void Void Copies the selected

code

Paste() Public:void Void Pastes the selection

to the current caret

position

Delete() Public:void Void Deletes the

selection or current

character

formatFont() Public:void Color:color,size:int,face:string Sets the format of

the font, it applies

to all the text in the

FINAL DESIGN REPORT Date: 18.01.2006

 18

editor

Indent() Public:void Length:int Indents all the

selection by the

specified units

Unindent() Public:void Length:int Unindents all the

selection by the

specified units

isModified() Public:bool Void Returns whether

there has been any

modification at a

time

setSelStart() Public:void Pos:int Sets selection start

position

setSelEnd() Public:void Pos:int Sets selection end

position

getSelStart() Public:int Void Returns selection

start position

getSelEnd() Public:int Void Returns selection

end position

Navigation manager:

Method Name Type Arguments Description of

Method

Find() Public:int Str:string Finds the given

string next by

next; it selects

the found string

Replace() Public:void Strold:string,strnew:string Replaces the

given string with

the new one, one

FINAL DESIGN REPORT Date: 18.01.2006

 19

by one or all at a

time

gotoLine() Public:void Pos:int Sets caret

position to the

given line

setFile() Public:void File:stringBuffer Sets the editors

content to the

buffer

getFile() Public:stringBuffer Void Returns the

buffer reference

setCaretPosition() Public:void Pos:int Sets caret

position

getCaretOffset() Public:int Void Returns caret

position

Indent() Public:void Length:int Indents current

character by

specified units

Unindent() Public:void Length:int Unindents

current character

by specified

units

 • The derivation classes of generic editor class. We have four different derivations

since we have four different editors, html, javascript, xml and css:

FINAL DESIGN REPORT Date: 18.01.2006

 20

Generic editor:

Method Name Type Arguments Description of Method

GenericEditor() Constructor Void Constructs a new generic editor

which may be converted to a

specific one sooner. When a

new object is created, its

member managers are also

initialized

getUserPreferences() Public:void Void Reads the preferences of the

FINAL DESIGN REPORT Date: 18.01.2006

 21

user from the file storage, then

sets them accordingly

Html editor:

Method Name Type Arguments Description of Method

validateHtml() Public:void Void This is the html validator. It

checks the html code for any

mistakes. It runs in a thread.

completeTag() Public:void Str:string Completes the given tag

accordingly, ex: for a string

like “<head>” it completes it

with “</head>”

colorizeHtml() Public:void File:StringBuffer Sets different colors to the

tags, strings, plain text, etc.

according to the predefined

schema

Comment() Public:void posStart:int,posEnd

int

Comments the selected html

code

Uncomment() Public:void posStart:int,posEnd

int

Uncomments the selected

html code

Javascript editor:

Method Name Type Arguments Description of Method

validateJS() Public:void Void This is the javascript

validator. It checks the

javascript code for any

syntactic mistakes. It runs in

a thread.

colorizeJS() Public:void File:StringBuffer Sets different colors to the

FINAL DESIGN REPORT Date: 18.01.2006

 22

keywords, strings, plain text,

etc. according to the

predefined schema

Comment() Public:void posStart:int,posEnd

int

Comments the selected

javascript code

Uncomment() Public:void posStart:int,posEnd

int

Uncomments the selected

javascript code

Xml editor:

Method Name Type Arguments Description of Method

validateXml() Public:void Void This is the xml validator. It

checks the xml code for any

mistakes. It runs in a thread.

colorizeXml() Public:void File:StringBuffer Sets different colors to the

tags, strings, plain text, etc.

according to the predefined

schema

Css editor:

Method Name Type Arguments Description of Method

colorizeCss() Public:void File:StringBuffer Sets different colors to the

properties of elements,

strings, plain text, etc.

according to the predefined

schema

completeProperty() Public:void Str:string Presents the user probable

element offerings and then

completes the property

according to the command of

user

FINAL DESIGN REPORT Date: 18.01.2006

 23

• Main controller class of the editors which is created once on the start of the

program. It handles opening new tabs, closing existing ones and switching between them:

Editor Controller:

Method Name Type Arguments Description of Method

EditorController Constructor Void Constructs an EditorController

object

newEditor() Public:void Type:String Creates a new editor object

according to the given type

information

changeEditor() Public:void Pos:int This method is used to change

the current editor tab

closeEditor() Public:void Pos:int Closes the specified editor tab

3.2.1.2 SEQUENCE DIAGRAM

 Below is the sequence diagram of the editor module which depicts generic editor.

Some of the sequence parts are not showed since they are straightforward and similar to

others.

FINAL DESIGN REPORT Date: 18.01.2006

 24

 Below is the sequence diagram that belongs to derived html editor. Again some of

the parts and other derivations are not showed since they are similar each other.

FINAL DESIGN REPORT Date: 18.01.2006

 25

3.2.1.3 USE CASE DIAGRAM

FINAL DESIGN REPORT Date: 18.01.2006

 26

3.2.1.4 USAGE SCENARIOS

Scenario 1:

 To (un)comment a block of code or selection user first determines the block either

by mouse controls or by keyboard. Then by using menu or shortcuts he performs the

(un)comment operation. By the same way user can set the indentation.

Scenario 2:

 To add a bookmark first the line is chosen. Then addBookmark command is given

to the BookmarkManager. After a while, if the user wants to go to a location (bookmark)

available bookmarks are shown in a frame and gotoBookmark command is passed to the

BookmarkManager. From the same frame available bookmarks can be removed.

Scenario 3:

 To find a string, from an input dialog the string is entered. Then if the string is

found it is selected in the interface else a warning is displayed. By the same way any

string can be replaced with a specified one.

3.2.2 DEBUGGER MODULE

3.2.2.1 CLASS DIAGRAM

Debugger module is used for debugging the Javascript codes having some

additional functionalities such as watch variables, step into/out/over, set breakpoints. It is

mainly composed of 4 classes Breakpoint which enables operations in the code, Watch

Variables enables choosing and following the values of variables and error class holds the

error types and messages for the given code to the debugger. Main Debugger class uses

this classes holding a vector data structure for each class which is peculiar to the code

debugged on that time.

FINAL DESIGN REPORT Date: 18.01.2006

 27

Here is the definition of Debugger:

BreakPoint Class:

Method Name Type Arguments Description of Method

BreakPoint(int,int) Constructor void Constructs a BreakPoint object

with the given line number by

the user and assigned id by our

system.

setLineNumber(int) Public:void ln:string Sets a line number in the

determined line

FINAL DESIGN REPORT Date: 18.01.2006

 28

getLineNumber() Public:int void Gets the line number of the

breakpoint object

getId() Public:int void Gets the id number of the

breakpoint object

WatchVariable Class:

Method Name Type Arguments Description of

Method

WatchVariable(string,string,int,string) Constructor Nm:string,

value:

string, id:int,

type:string

Constructs a

WatchVariable

object with the

given variable

name, variable

value, id and

variable type

parameters.

getValue() Public:string void Gets the value of

this variable in the

program

getType() Public:string void Gets the type of

this variable in the

program

getId() Public:int void Gets the id of the

variable assigned

by our system

getName() Public:string void Gets the name of

this variable

Error Class:

Method Name Type Arguments Description of Method

FINAL DESIGN REPORT Date: 18.01.2006

 29

Error(int,string) Constructor void Constructs a Error object with

the given string and assigned

id by our system.

getErrorMessage() Public:string void Gets the line number of the

breakpoint object

getId() Public:int void Gets the id number of the

breakpoint object

Debugger Class:

Method Name Type Arguments Description of

Method

Debugger() Constructor void Constructs a

Debugger

object

StepInto(int) Public:void ln:int Debugger

starts to listen

user

commands in

step into

model using

the given line

number

Stepover(int) Public:void ln:int Debugger

starts to listen

user

commands in

step over

using the

given line

number

FINAL DESIGN REPORT Date: 18.01.2006

 30

StepOut(int) Public:void ln:int Debugger

starts to listen

user

commands in

step out model

Using the

given line

number

Execute() Public:void Void Starts to debug

the Javascript

code line by

line

AddBreakPoint(int) Public:void ln:int Adds a

breakpoint to

the given line

RemoveBreakPoint(int) Public:void ln:int Removes the

breakpoint at

the given line

RemoveWatchVariable(string,string,string) Public:void nm:string,

value:

string,

type:string

Removes the

variable from

the vector

structure

AddWatchVariable(string,string,string) Public:void nm:string,

value:

string,

type:string

Adds a

variable to

with the given

properties in

the program

FINAL DESIGN REPORT Date: 18.01.2006

 31

3.2.2.2 SEQUENCE DIAGRAM

 Basic functionalities of the debugger module in a sequence are seen above. Firstly

the user interacts with the GUI, calls the debugger module and now come to the stage of

using the facilities of the debugger module. Then user selects one of the properties and

the result of execution is displayed in the Debugger panel of the IDE. If the user selects

adding/removing breakpoints simultaneously added/removed breakpoints are displayed in

the editor by the editor module of our program.

FINAL DESIGN REPORT Date: 18.01.2006

 32

3.2.2.3 USE CASE DIAGRAM

Flow of Events Debugging Use Case

Objective : To enable the user to debug his file.

Precondition : A selected Javascript file or project should be ready

Main Flow

1. The user interacts with the debugger interface

2. The user selects one of the breakpoint operations BreakPoint, Execute or Step

Functions, Variable

3. The user can add new breakpoints or remove breakpoints when selecting

breakpoint operation

FINAL DESIGN REPORT Date: 18.01.2006

 33

4. The user can add new variables or remove variables when selecting variable

operation

5. User can execute the debugger or stop the debugging.

6. User can apply step into, step over or step out functions to forward line by line

Post-condition The user has done the debugging phase of the code.

3.2.2.4 USAGE SCENARIO

When the user presses the debug button, active project in the solution explorer is started

to be debugged. If the debug process is unsuccessful corresponding errors are seen in the

debug window. At this stage user can use step into functions, watch variables and

breakpoints properties. If the user chooses the breakpoint property he puts a breakpoint to

a specific line in the editor. So the debugger stops at this stage and user can find errors

more easily by putting several breakpoints to the editor.

3.2.3 EXPLORER MODULE

3.2.3.1 CLASS DIAGRAM

Our IDE has two Explorer to help the user to bring the files to the editor which

they will work on and show the user Project which he works on. To provide these

functionalities we have File Explorer and solution Explorer in our program. Below is the

class diagram of these explorers. They have very similar functionalities and structure as

you can see in the figure. Different from the solution explorer, file explorer imports a ftp

object to access the remote files and help the user bring them the environment.

FINAL DESIGN REPORT Date: 18.01.2006

 34

File Explorer Class

Method Name Type Arguments Description of Method

FileExplorer() Constructor void Constructs an FileExplorer

object

setRoot(string) Public:void Dir:string Sets a given string as root

directory

getRoot() Public:string void Gets the root directory of the

current object

listAllElements() Public:List void Lists all the elements under the

root directory

createFile(string) Public: List Dir:string Creates a file under the given

FINAL DESIGN REPORT Date: 18.01.2006

 35

directory and lists the updated

version

createDir(string) Public: List Dir:string Creates a directory under the

given directory and lists the

updated version

GetWithFtp(string) Public:List Dir:string Retrieves the file via FTP using

the address given as a string

Solution Explorer Class

This Explorer is used to show all files and directories which belong to a Project

in the Solution Explorer module.

Method Name Type Arguments Description of Method

SolutionExplorer() Constructor void Constructs an SolutionExplorer

object

setRoot(string) Public:void Dir:string Sets a given string as root

directory

getRoot() Public:string void Gets the root directory of the

current object

listAllElements() Public:List void Lists all the elements under the

root directory

createFile(string) Public: List Dir:string Creates a file under the given

directory and lists the updated

version

createDir(string) Public: List Dir:string Creates a directory under the

given directory and lists the

updated version

FINAL DESIGN REPORT Date: 18.01.2006

 36

3.2.3.2 SEQUENCE DIAGRAM

 Solution Explorer

 User goes to a destination directory and then use the functionalities of solution

explorer such as create directory, create file. Then user can display the file in the editor.

FINAL DESIGN REPORT Date: 18.01.2006

 37

File Explorer

 User goes to a destination directory and then use the functionalities of file explorer

such as create directory, create file or get with ftp. Then user can display the file in the

editor.

FINAL DESIGN REPORT Date: 18.01.2006

 38

3.2.3.3 USE CASE DIAGRAMS

 File Explorer

Flow of Events: Browsing a file use case

Objective : To enable the user bringing the file to the development environment.

Precondition : No precondition

Main Flow

1. The user interacts with the File Explorer interface

2. The user selects Displaying, creating directories and other file operations.

3. The user can create new file or get the new files using FTP.

Post-condition The user has come to the stage of bringing a file to the editor.

FINAL DESIGN REPORT Date: 18.01.2006

 39

Solution Explorer

Flow of Events: Browsing a Project file use case

Objective : To enable the user bringing the project file to the development environment.

Precondition : No precondition

Main Flow

1. The user interacts with the Solution Explorer interface

2. The user selects Displaying, creating directories and other file operations.

Post-condition The user has come to the stage of bringing a project file to the editor.

3.2.3.4 USAGE SCENARIOS

When user opens the file explorer module he will face with the Desktop, C,D and

other directories if available of his system. Then he will look for his file or by right

clicking the current directory, he will be able to face with a menu containing create file

and create directory options. When he selects one of these options, a file/directory

creation come. User determines the name and type of file and presses OK button this file

is created under the clicked directory and can be seen in the file explorer tree.

FINAL DESIGN REPORT Date: 18.01.2006

 40

3.2.4 TOOLBOX MODULE

3.2.4.1 CLASS DIAGRAM

This module of our Project is used to make easy the GUI design of the user

providing him a drag&drop functionality. User will be able to pick a GUI element from

the Toolbox panel, drag and drop it to the design view form. After this he/she will be able

to edit the properties(component type, component name, component position etc.) of this

GUI element and add/remove events to this element. So we will provide a GUI library

composing several kinds of elements which are heavily used today’s web applications.

Every component in our Project will have two panels Properties Editor and Event Editor.

Let’s see which elements a component is composed seeing the class diagram.

FINAL DESIGN REPORT Date: 18.01.2006

 41

FINAL DESIGN REPORT Date: 18.01.2006

 42

CompFont Class

Method Name Type Arguments Description of Method

CompFont() Constructor void Constructs the font of

characters initializing them

with the default values given by

our program

setFont(string) Public:void font: string Sets the font type of component

with the given type in the string

argument

getFont() Public:string Void Gets the font type of

component

setSize(int) Public:void Int : size Sets the font size of component

with the given size in the

integer

getSize() size: int Void Gets the font size of component

setColor(Color) Public:void col:Color Sets the font color of

component with the given color

in the color object

getColor() Public:Color Void Gets the font color of

component

FINAL DESIGN REPORT Date: 18.01.2006

 43

CompPosition

Method Name Type Arguments Description of Method

CompPosition() Constructor float: x, float: y Constructs a component in the

design view with the given

coordinates

setX(float) Public:void float: x Sets the new x coordinate of

the component with the given

value in the float argument

getX() Public:string Void Gets the x coordinate of

component

setY(float) Public:void float : y Sets the new y coordinate of

the component with the given

value in the float argument

getY() Public: float Void Gets the y coordinate of

component

setW(float) Public:void float: w Sets the width of component

with the given value in the float

argument

getW() Public:float Void Gets the width of component

setH(float) Public:void float:h Sets the height of component

with the given value in the float

argument

getH() Public:float Void Gets the height of component

setL(float) Public:void Float:l Sets the left margin of

component with the given

value in the float argument

getL() Public:float Void Gets the left margin of

component

setR(float) Public:void Float:r Sets the right margin of

component with the given

FINAL DESIGN REPORT Date: 18.01.2006

 44

value in the float argument

getR() Public: float Void Gets the right margin of

component

CompPro Class

Method Name Type Arguments Description of Method

CompPro(string, int

,string)

Constructor String : ctype,

id: int, string:

name

Constructs the component

taking its type from the first

argument of constructor,

second argument is an

identifier assigned by our

system to identify the

components and third argument

is name of the component

getId() Public:int Void Gets the id of component

getCompType() Public:string Void Gets the type of component

setName(string) Public:void name:string Sets the name of component

with the given string

getName() name: string Void Gets the name of component

PropertiesEditor Class

Method Name Type Arguments Description of Method

PropertiesEditor(string,

string)

Constructor ctype: string,

name:string

Construct the properties

editor

taking the type and and name

drawComp() Public:void Void Draws the component in the

design form

moveComp() Public:void Void Moves the component to the

selected position which is

retrieved from GUI

FINAL DESIGN REPORT Date: 18.01.2006

 45

editComp() Public:void Void Edits the component with the

adjusted properties retrieving

them from GUI

genCode() Public:void Void Generates the code of

component with selected

properties

As you can see in the class diagram figure, Properties Editor Class has some

objects such as button, checkbox, menu etc. These are some component types which are

some of the supported by our IDE. Since each of these elements have different kinds of

properties peculiar to itself only, we have needed to define classes which are assigned for

each component to put the attributes of that component. Below we put two prototype

classes CompCheckBox and CompTree which maintains the properties of these

components. Since we have 28 types of components having a different class, we did not

put the all the classes of these components.

FINAL DESIGN REPORT Date: 18.01.2006

 46

Each attribute of the classes above determines the value of each component that

are seen on the GUI and can be changed by the user. All of the components below have

such properties.

• Block Tools: Block, Image, Label, Text

• Containers: Dialog, Layout, Splitter, Stack, Tab, Tabbed Pane

• Form Element: Button, Checkbox, Date Picker, Radio Button, Select,

Combo, Text Area, Text Box, Time Picker

• Matrix: Grid, List, Multi Select, Tree

• Menus and Toolbars: Menu, Menu Bar, Task bar, Tool bar, Tool bar

Button

EventEditor Class

Since all of the components are event driven, each component`s event property

should be determined by the user using the GUI of our program. So we should provide

events that a component can support. When we examine the components, we again see

that most of the components have different event actions so we again should derive event

class of each component. Event classes of some most needed components are below,

again we have lots of components having different events, we only put these prototypes.

FINAL DESIGN REPORT Date: 18.01.2006

 47

EventRadioButton Class

This class has the events of radiobutton when the user wants to add an event to the

radiobutton, it adjusts this via the GUI and this class forms the environment to fire the

event. It has the attributes which provides the event actions supported by the radiobutton.

Select attribute is fired when the user clicks radiobutton and necessary functions are for

the setting and getting this property. Destroy attribute is used when the user disables the

component so all the events are closed.

FINAL DESIGN REPORT Date: 18.01.2006

 48

EventCheckBox Class

Toggle property is fired when the checkbox state has changed and necessary set

and get functions. Destroy attribute is used when the user disables the component so all

the events are closed.

EventTree Class

Execute button is used when the user clicks a node of the tree. Selection is fired

after the selection has changed. Toggle is fired when the node in the tree is toggled.

Destroy attribute is used when the user disables the component so all the events are

closed.

EventTextBox

Execute button is used when the user clicks the textbox. Keydown is fired when

the user presses the down and keyup button is fired when the user presses the up button.

Destroy button is used when the user disables the component so all the events are closed.

ComponentTable Class

This class is used for the generation of all components in the design form all the

operations are done via this class.

FINAL DESIGN REPORT Date: 18.01.2006

 49

Method Name Type Arguments Description of Method

ComponentTable(string,string) Constructor void Constructs a component

table for a form in a

project

addComponent() Public:void void Adds a component to

the table

removeComponent() Public:void void Removes the

component

addEvent() Public:void void Adds an event to a

component

removeEvent() Public:void Void Removes the event

drawAllComponents() Public:void void All the components

added till that phase are

drawn

genCode() Public:void Void All the code generation

for each component is

done

editComponent() Public:Void Void Edits the component

As you see in the diagram above, all the elements which are created until that time

by the user held in the data structure vector of Java class with their properties editor and

event editor class. All the necessary operations are done via the methods in this class.

FINAL DESIGN REPORT Date: 18.01.2006

 50

3.2.4.2 SEQUENCE DIAGRAM

 User interacts with the GUI of our IDE and selects one of the components and

adds it to the component table then component table automatically enables the event and

properties editor for that component. Code generation is done in the code part of the

editor and editor module displays it. The other operations such as remove component

works in similar manner.

FINAL DESIGN REPORT Date: 18.01.2006

 51

3.2.4.3 USE CASE DIAGRAM

Flow of Events: GUI Design with Toolbox Use Case

Objective : To enable the user making GUIs easier.

Precondition : No precondition

Main Flow

1. The user drags and drops a component to the design view of the editor.

2. The user has 4 choices: Component Operations, Event Operations, Displaying

Component or Code Generation

3. The user can add, remove and edit components if he choices component

operations.

4. The user can add, remove events if he choices event operations.

Post-condition The user has done GUI design of the project.

FINAL DESIGN REPORT Date: 18.01.2006

 52

3.2.4.4 USAGE SCENARIO

When user wants to do the GUI design of his project, he selects a component from

the component table drags and drops that component to the form of our system.

Simultaneously, properties editor and events editor panels are enabled in the GUI. Now,

user can play with the properties of each component that he dragged and dropped on the

from. As soon as the properties of the components are changed, code of these

components are automatically changed.

3.2.5 AJAX ACTION MODULE

3.2.5.1 CLASS DIAGRAM

This module enables the user to add new AJAX Action Templates and displaying

these templates from the GUI to the user. When the user forms an AJAX action template,

he/she can see all the templates that he or she did before and them select one of them and

code generation is done in the editor.

As you can see below Ajax Action module of our component is composed of two

classes. AjaxActionTemplate class is used to form an AJAX Action Template by the user

according to the preferences of him and select one of the templates which are stored in

AJAX Action class via the GUI and corresponding code of that template is generated.

FINAL DESIGN REPORT Date: 18.01.2006

 53

AjaxActionTemplate:

Method Name Type Arguments Description of Method

AjaxActionTemplate(

int,int,string)

Constructor Actionid:int,

actionname:int,

ajaxcode: string

Constructs an ajax action

template

getActionName() Public:string Void Returns the name of the

action

getActionId() Public:int void Returns the id of action

getAjaxCodeAddress() Public:string void Returns the path of the

ajax action

setAjaxCodeAddress(

)

Public:void String: address New ajax action is saved

another place

setAjaxActionName(string

)

Public:void String:

newname

New name is given to the

ajax action

genCode() Public:void Void code generation for the

ajax action

AjaxAction:

Method Name Type Arguments Description of

Method

AjaxAction() Constructor void Constructs an ajax

action

AddAjaxAction(

int,string,string)

Public:void Actionid:int,

actionname:string,

ajaxcode:string

Adds an ajax action to

data structure using

AjaxActionTemplate

class

RemoveAjaxAction(int) Public:void void Removes the ajax

action from the data

structure

EditAjaxCodeAddress(Public:void String:adress New ajax action is

FINAL DESIGN REPORT Date: 18.01.2006

 54

) saved another place

EditAjaxActionName(string

)

Public:void String: newname New name is given to

the ajax action

genCode() Public:void Void code generation for the

ajax action

3.2.5.2 SEQUENCE DIAGRAM

 User interacts with the Ajax Action panel part of our GUI and sees the choices of

adding a new Ajax action or displaying available actions. When a new Ajax action is

defined construction AjaxActionTemplate class called. However when the user selects

FINAL DESIGN REPORT Date: 18.01.2006

 55

displaying an Ajax Action, corresponding Ajax Action code is generated and it is

displayed in the editor by the editor module.

3.2.5.3 USE CASE DIAGRAM

Flow of Events: Joining Ajax Actions to the source code

Objective : To enable the user adding Ajax Action to the project.

Precondition : No precondition

Main Flow

1. The user interacts with the Ajax Action GUI

2. The user has 2 choices: Selecting an available Ajax Action or Operating on an Ajax

action

3. The user can add, remove and edit Ajax Actions if he choices AjaxAction operations.

4. The user can give an AjaxAction new name and change the path of it.

Post-condition Ajax Actions are added to the project.

FINAL DESIGN REPORT Date: 18.01.2006

 56

3.2.5.4 USAGE SCENARIO

When user wants to add a AJAX action to his program, he chooses AJAX Action

Panel from the GUI and selects adding a new option to the program or wants to use his

old actions. If he chooses his old actions, corresponding AJAX code is generated in the

editor of our program.

3.2.6 DATABASE MODULE

 User can connect database using connection wizard of our database module.

Connection wizard asks user some information about database, like database name, place,

user name and password to access database. After connection user can see the tables in

database and relationships of those tables. Our database module lets user to query the

database and the results can be used easily in project.

3.2.6.1 CLASS DIAGRAM

FINAL DESIGN REPORT Date: 18.01.2006

 57

Here is the definition of Database:

Database Class:

Method Name Type Arguments Description of Method

getTable(int) Public:void i:int Gets the table with the given

index i.

getRelations() Public:void void Gets the relations in the

database.

FINAL DESIGN REPORT Date: 18.01.2006

 58

DatabaseConnection Class:

Method Name Type Arguments Description of Method

open() Public:void void Opens the connection to the

database server.

close() Public:void void Closes the connection after

database operations have

finished.

openDatabase() Public:void void Opens the database in the

server.

Table Class:

Method Name Type Arguments Description of Method

getColumn(int) Public:void i:int Gets the column with the given

index i.

getColumns() Public:void void Gets all the columns in that

table.

Column Class:

Method Name Type Arguments Description of Method

getColumnName() Public:void void Gets the name of the column.

Relation Class:

Method Name Type Arguments Description of Method

getRelations() Public:void void Gets the relations in the

database.

FINAL DESIGN REPORT Date: 18.01.2006

 59

3.2.6.2 SEQUENCE DIAGRAM

The operations of database module can be seen above in a sequence. Firstly, user opens a

database connection from the server using the connection wizard. Then, opens the

database and can do the required operations such as retrieving data, viewing relations.

After these operations user closes the connection.

FINAL DESIGN REPORT Date: 18.01.2006

 60

3.2.6.3 USE CASE DIAGRAM

Flow of Database Use Case
Objective : To allow the user do database operations.
Precondition : An open project and a database server.
Main Flow

1. The user connects the database server using database connection wizard.
2. The user can see the tables in the connected database.
3. The user can see the table columns in the connected database.
4. The user can see the relations in the connected database.
5. The user closes the database connection.

Post-condition The user has done the database operations of the project.

FINAL DESIGN REPORT Date: 18.01.2006

 61

3.2.6.4 USAGE SCENARIO

User can connect database, retrieve data from database and see the relations via

the database module of kajax. Usage scenarios of these operations are below.

Usage Scenario 1 (Connect to Database):

-- In the main GUI user selects the “Connection Wizard” under the menu bar->Database.

-- In the Connection wizard user enters “Host Address”, “username”, ”password” and

clicks “Next->” button.

-- If the connection successfully established user can see the databases and manage them.

-- Else “Connection Failure Message” message will be displayed.

Usage Scenario 2 (Retrieve Data from Database):

-- After successful connection to the database user can see the tables in that database.

-- After clicking the desired table user can see the “columns” of that table.

-- User can write the “SQL statement” from “SQL View” of database module.

-- After writing SQL statement user clicks the “Execute” button located in the bottom

right corner of the screen.

-- If the statement syntactically correct query result will be displayed.

-- Else error message will be displayed.

3.2.7 FTP MODULE

 Ftp Module of the kajax provides the user to use the ftp functionality. In brief,

FTP (File Transfer Protocol) is a well-documented Internet protocol. It is used for

transferring files across networks using TCP (Transmission Control Protocol).

 A client program and server program are required for it. FTP Client can retrieve

files from the server or can upload files to server. kajax’s ftp module will act as FTP

Client. Ftp module will initiate commands to open a TCP control connection to the server

which is used for sending commands and to read servers replies. That control connection

is used for the whole session and ends with the kajax’s quit command. kajax uses

transient TCP connections when a file is to be transferred. After file is transferred, the

data connection is closed but the control connection is available. kajax’s Ftp module

FINAL DESIGN REPORT Date: 18.01.2006

 62

works in active mode so that server has to actively connect to kajax. The address and the

port number to be listened are specified. Our Ftp Module supports as transfer mode both

ASCII and binary modes. kajax will used universally decided command standards for its

command messages. Most servers require authentication. If authentication is required,

server will request this by code upon initial TCP communication. At this point,

connection between the Transport layers is successful, and now the Application layers are

performing the authentication. Servers can accept anonymous connections, or refuse them

all together. These authentication discussions will be important in out FTP Client.

FINAL DESIGN REPORT Date: 18.01.2006

 63

3.2.7.1 FTP CLASS DIAGRAM

kajax’s FTP Client consist of 4 Classes as shown above. FTP main class uses

CONTROL which also has a connection with SERVER class and TRANSFER classes for

FINAL DESIGN REPORT Date: 18.01.2006

 64

its functionalities. To state the concept of a single command connection and multiple

data connections, CONTROL class will be implemented which will be responsible for

whole connections to a server. It produces transfer and authentication threads as triggered

by its methods. It controls all of the underlying commands, and does not require any

knowledge of FTP for the person calling it. FTP class has states associated with it. As the

state changes, it updates registered observers with the new so that overall usability of

kajax’s FTP Client increases.

 Some of the important functions e are explained below and class definitions.

The login () is used for logging into a remote FTP account with using a user name

and password. user() and password() methods does the same thing. Since a server can

require no password, these methods are given separately. Current Ftp is terminated by

quit() method.

kajax provides a number of methods for remote directory management. Current

directory is obtained by pwd() command. chdir() changes the remote directory to the

determined one. User creates a new directory by mkdir() and rmdir() is used for deleting

a directory. rename() method is used for renaming the files and directories. Files can be

deleted by delete() command. The list of the files are retrieved by dir() method as an

array of string.

kajax uses put() and get() to put files into remote server and getting them.

Transfer commands can be cancelled by the canceltransfer() method.

Since kajax’s Ftp Module works in active mode setremotehost() and

setremoteport() methods are used for specifying remote host and port of the FTP server.

Here is the definition of FTP:

FINAL DESIGN REPORT Date: 18.01.2006

 65

FTP Class:

Method Name Type Arguments Description of Method

FTP(SERVER) Constructor void Constructs a FTP object

with initializing a SERVER

object and isconnected

boolean.

quit() Public:void void Quits the kajax’s FTP

Client

connect() Public:void void Triggers Control Class for

establishing a new

connection

execute(String) Public:string string Triggers Control Class for

executing a control

operation which returns a

result

extractCode(String) Public:short string A helper function for

extracting codes from a

given string which returns a

short integer.

outgoing(String,Boolean) Public:void String, boolean A helper function for

transferring operations.

statel(short) Public:bool state A function for querying the

state of the FTP Client.

status(Status) Public:void void Determines the status of the

FTP Client.

wait(Int) Public:void id Wait is used for thread

mechanism of the FTP

client.

FINAL DESIGN REPORT Date: 18.01.2006

 66

CONTROL Class:

Method Name Type Arguments Description of Method

CONTROL(SERVER) Constructor server Constructs a Control

object for controlling

operations

connect() Public:void void Triggers Server

connections

disconnect() Public:void void Triggers Server

disconnections

cwd(String) Public:void string Gets the path of the

current working directory

toggleDebug() Public:void void Used for debugging

operations of the FTP

Client control commands

put(String,String) Public:void localpath,remotefile Puts the file to the remote

server

get(String,String) Public:void localpath,remotefile Gets the file from remote

server to the local file

explorer

cancelfiletransfer() Public:void void Cancels the current file

transaction.

setremotehost(String) Public:void remotehost Used for setting the

remote host

setremoteport(Short) Public:void port Used for setting the

remote port

login(String,String) Public:void Username,

password

Used for logging into a

remote server

user(String) Public:void username Used for logging a remote

server by using only

username

FINAL DESIGN REPORT Date: 18.01.2006

 67

password(String) Public:void Password Used for logging a remote

server by using only

password

chdir(String) Public:void dir Changes directory to the

given one

mkdir(String) Public:void dir Makes given directory in

the current path

rmdir(String) Public:void dir Removes the given

directory

rename(String,String) Public:void exname, newname Renames the given file

dir() Public:String void List the files at the given

path

pwd() Public:String void List the files at the

current working directory

delete(String) Public:void file Deletes the file with the

given name

size(String) Public:void file Returns the size of the file

with the given name

TRANSFER Class:

Method Name Type Arguments Description of Method

TRANSFER(FTP) Constructor ftp Constructs a TRANSFER

object with given FTP object

and initializing the boolean

isopened

read(OutputStream) Public:void outstream Reads the outputstream of a

remote server

write(InputStream) Public:void inputstream Writes the inputsream of a

remote server

close() Public:void void Closes the current file or

FINAL DESIGN REPORT Date: 18.01.2006

 68

stream

open() Public:void void Opens a file or stream for a

transfer

read() Public:String string Reads a file and return a string

of it

parsePassive(String) Public:Socket socket By parsing passive returns the

socket for the data connections

SERVER Class:

Method Name Type Arguments Description of Method

Server() Constructor void Constructs a Server object with

initializing username

,password, hostname, port,

path and time out

3.2.7.2 FTP SEQUENCE DIAGRAM

 In the following sequence diagram, we have shown login diagram, putting a file

diagram, getting a file diagram, invoking file or directory command diagram and log out

diagram in the same sequence diagram.

FINAL DESIGN REPORT Date: 18.01.2006

 69

FINAL DESIGN REPORT Date: 18.01.2006

 70

3.2.7.3 FTP USE CASE DIAGRAM

Flow of Events FTP Use Case
Objective: To allow the user to use FTP functionalities.
Precondition: A connection string has to be ready to connect a FTP server.
Main Flow
1. The user interacts with the FTP interface
2. .The user selects one of the Login FTP Server, Invoke Command and Quit
operations.
3. The user can enter username, enter password, enter hostname, and enter port
number to connect an FTP Server
4. The user can invoke File, Directory or Transfer commands.
5. User can delete file or rename a file as a result of File command.
6. User can get file or put file as a result of Transfer command.

FINAL DESIGN REPORT Date: 18.01.2006

 71

7. User can get current directory, change directory, make directory, remove
directory, delete directory or rename a directory as a result of a Directory command.
Post-condition The user has connected an FTP server and makes FTP operations.

3.2.7.4 FTP USAGE SCENARIOS

Scenario 1:

 To change a directory client sends “ > chdir dirname “ command. The server

sends “Command Successful “as a response. From this simple message we now that the

command is completed. However if we attempt to change directory to absent directory

with a command like “ > chdir absentdir” we will get from the server an error message

something like “The System can not find the directory ”. From the code of this response

message we understand that our operation is failed. And if unless the specified directory

is created, our command fails always.

Scenario 2:

 To transfer a text file, a “put” command is given to the server. For transferring

that file a data connection is to be setup. Since our Ftp Client supports active mode, we

have to use “setremoteport” and “setremotehost” commands to set up active mode. If this

is a correct settings the server will response with a message something like “Command is

successful”. From the code number of this code we understand that the data connection is

established. After setting up the data connection file can be transferred with “> put

acp.txt”. Again server response with “opening data connection”. The code number of this

command implies that it is successful. Client now has to be waiting for the server, until

server gives “transfer completed” command. After that command file transfer is

completed and the client can give any other commands.

3.2.8 CVS MODULE

 CVS (Concurrent Versions System) is a version control system. By CVS

developers can keep history of revisions, comment and keep track of changes. For team

members it is an indispensable tool. For that reason, we have decided to provide a CVS

Client for kajax.

 The main properties of the kajax’s CVS Client will be the followings:

FINAL DESIGN REPORT Date: 18.01.2006

 72

A connection with the CVS server will be established by using “server” way

which is a kind of connection ways. Our connection method will provide a mechanism

for receiving inputs/outputs for communicating with the server. For this aim, connection

method setups input and output streams. By the way security of the connection is

important. We will not provide any security over the password.

 Communication with the server will be established by Request and Response

methods, since each command requires several request of client and several response of

server.

 Command methods are provided which are necessary for accomplishing main

properties of a CVS command line client. The commands that are to be implemented are

followings:

 add, checkout, commit, update, tag, diff, log, remove, status.

As we have mentioned before, these commands will require several request from the

CVS server. These requests will be implemented.

 Request method use data and send it to the server using output stream. On the

other hand Response method read data from the CVS server. After reading the data, it

verifies what is expected by the server and depending on that decision performs related

functions. kajax’s CVS Client will support character data and bytes for file

transmissions.

 We will provide an Admin method for handling the information of the

administrative details.

 Since a CVS Client has to be informed by the changes. For this aim kajax’s CVS

Client provides FileAdded for showing that a file is added. FileInfo informs developer

that a structure containing some data has been completed. If a file has been removed

FileRemoved method is invoked. FileUpdated method indicates that an existing file has

been updated. TakeMessage method is used when a message from CVS server comes.

 Builder method is used for parsing the output of the commands which returns a lot

of structured data.

 Actually a complete CVS Client is a more complicated one. But our kajax’s CVS

Client module will provide only basic properties of a CVS Client.

FINAL DESIGN REPORT Date: 18.01.2006

 73

3.2.8.1 CVS CLASS DIAGRAM

Here is the definition of CVS Class Diagram:

CVS Class:

Method Name Type Arguments Description of Method

CVS(SERVER) Constructor server Constructs a CVS object with

initializing a SERVER object

and isconnected �oolean.

FINAL DESIGN REPORT Date: 18.01.2006

 74

Builder(String,String) Public:void commandname,

file

Triggers CONTROL or

TRANSFER methods

quit() Public:void void Quits kajax’s CVS Client

CONTROL Class:

Method Name Type Arguments Description of Method

CONTROL(SERVER Constructor server Constructs a Control

object for controlling

operations

connectServer(String,String) Public:void CVSRoot,

Password

Connects to specified

remote CVS server

add(String) Public:void file Executes CVS’s add

operation

checkout() Public:void void Executes CVS’s checkout

operation

commit() Public:void void Executes CVS’s commit

operation

update() Public:void void Executes CVS’s update

operation

tag() Public:void void Executes CVS’s tag

operation

diff() Public:void void Executes CVS’s diff

operation

log() Public:void void Executes CVS’s log

operation

remove() Public:void void Executes CVS’s remove

operation

status() Public:void void Executes CVS’s status

operation

FINAL DESIGN REPORT Date: 18.01.2006

 75

TRANSFER Class:

Method Name Type Arguments Description of

Method

TRANSFER(FTP) Constructor ftp Constructs a

TRANSFER

object with

given FTP

object and

initializing the

boolean

isopened

Request(Char,String) Public:DataOutputStream op, oparg Requests

between Client

and Server

invoked by

commands

Response(Char,String) Public:DataInputStream op, oparg Responses

between Server

and Client

invoked by

commands

FileAdded(String,String) Public:void source, path Server is

informed by

addition of the

file

FileInfo(String,String) Public:void source, path Server is

informed by file

info

FileRemoved(String,String) Public:void source, path Server is

informed when

FINAL DESIGN REPORT Date: 18.01.2006

 76

a file is

removed

FileUpdated(String,String) Public:void source, path Server is

informed by

update of the

file

TakeMessage() Public:String string Invoked when a

message from a

server comes.

SERVER Class:

Method Name Type Arguments Description of Method

Server() Constructor void Constructs a Server object with

initializing username

,password, hostname, port,

path and time out

FINAL DESIGN REPORT Date: 18.01.2006

 77

3.2.8.2 CVS SEQUENCE DIAGRAM

FINAL DESIGN REPORT Date: 18.01.2006

 78

FINAL DESIGN REPORT Date: 18.01.2006

 79

3.2.8.3 CVS USE CASE DIAGRAM

Flow of Events CVS Use Case

Objective: To allow the user to use CVS functionalities.

Precondition: A connection string has to be ready to connect a CVS server.

FINAL DESIGN REPORT Date: 18.01.2006

 80

Main Flow

1. The user interacts with the CVS interface.

2. .The user selects one of the Login CVS Server, Invoke Command and Quit operations.

3. The user can enter username, enter password, enter port number, enter Repository Path

and enter Root Path to connect a CVS Server.

4. The user can invoke CVS Events and CVS Commands.

5. User can call FileAdded, FileInfo, FileRemoved, FileUpdated, TakeMessage as a result

of handling CVS Events which are called by Builder.

6. User can call status, remove, log, diff, tag, update, commit, checkout, add commands

as result of CVS Commands.

Post-condition The user has connected a CVS server and makes CVS operations.

3.2.8.4 CVS USAGE SCENARIOS

 Below are two usage scenarios for kajax’s :

Scenario 1:

 In that scenario user will connect to a CVS server. From the MainGUI of the

kajax, user clicks to the CVS menu. When user clicks to it a CVS Connection Wizard

pops up. Our CVS server only provides only “server” Access Method. User enters

UserName, HostName, PortNumber, Password and Repository Path. Or User enters CVS

Root and password. If the information entered by the user is a correct one CVS

connection is established. Otherwise, user enters a new connection setting or exits the

CVS connection wizard.

Scenario 2:

 In this scenario user will add a new file to add a new file to the CVS repository

and updates it. As in the usage scenario 1 user connect to CVS server. The user uses the

kajax’s CVS clients “add newfile.c” command which is under an Add Button. The CVS

Client sends the Request methods of the add command which is abstracted from the user.

Then CVS server returns Response methods related with the data. If the operation is

FINAL DESIGN REPORT Date: 18.01.2006

 81

successful, user has added a new file to the CVS repository. For updating this file user

saves it. When user updates the files, CVS Clients calls FileUpdated method to update the

file.

3.3 FILE FORMATS

We are using xml files to store information about projects. So, we will not deal

with any database server to keep persistent data. A project is a directory which has at

least a project file. In the project directory there will be also an active projects file. The

sources will not be categorized.

 For each project in kajax, we are storing the name, path, author, date and active

files within a project file. Its name will be same for any project and it will be

“project.xml”.

3.3.1 PROJECT FILE FORMAT

<?xml version="1.0" encoding="UTF-8"?>

<project>

 <name>"Project Name"</name>

 <author>"Project Author"</author>

 <path>"Project Path"</path>

 <date>"Project Date"</date>

 <active_files>

 <file>"File Name1"</file>

 <file>"File Name2"</file>

 <!-- other active files -->

 </active_files>

 <current_file>

 <file>"File Name"</file>

 </current_file>

</project>

FINAL DESIGN REPORT Date: 18.01.2006

 82

 We are also storing the active projects as “active_projects.xml”. It consists of the

paths of active projects. When a new session is opened, by parsing this file, the active

projects will be shown on the solution explorer panel.

3.3.2 ACTIVE PROJECTS FILE FORMAT

<?xml version="1.0" encoding="UTF-8"?>

<active_projects>

 <project>

 <path>"Path of project1"</path>

 <path>"Path of project2"</path>

 <!-- other active projects -->

 </project>

 <main_project>

 <path>"Path of project"</path>

 </main_project>

</active_projects>

 User can set his/her preferences in kajax and these preferences should be saved.

So we are saving them in an xml file named “preferences.xml”.

3.3.3 PREFERENCES FILE FORMAT

<?xml version="1.0" encoding="UTF-8"?>

<preferences>

 <author>

 <name>"Author Name"</name>

 </author>

 <workspace>

 <path>"Workspace Path"</path>

FINAL DESIGN REPORT Date: 18.01.2006

 83

 </workspace>

 <face>"Font-face"</face>

 <size>"Font-size"</size>

 <encoding>"UTF8"</encoding>

</preferences>

4. GUI (GRAPHICAL USER INTERFACE)

 The Prototype of kajax’s MAIN GUI will be look as below:

FINAL DESIGN REPORT Date: 18.01.2006

 84

 As seen from this screenshot, Panel, Editor and Debugger Modules are on the first

coming screen. User can minimize or close these panels. User can activate Database,

FTP, and CVS Modules from the Menu Bar.

4.1 MENU BAR

4.1.1 FILE MENU

 By this menu user can open new AJAX project by clicking to “New Project”.

“New File” opens a new HTML, CSS, JavaScript and Empty Document. User can open

an existing project by “Open Project”. User can open an existing file by “Open File”.

User can open recent project by using “Open Recent Projects”. User can save project by

“Save Project”. User can save file with “Save File” or alternatively save all by “Save

All”. User can set up page view by “Page Setup”. User can print the page by “Print”.

User exits the program with “Exit”.

FINAL DESIGN REPORT Date: 18.01.2006

 85

4.1.2 EDIT MENU

 Edit menu is used for Editor Module. User can “Undo” his actions. User “Redo”

his/her last undone actions. User cans “Select All” codes of the file. User can “Cut”,

“Copy”, “Paste” and “Delete” the code segments. User “Find” and “Replace” a word.

User can “Add Bookmark” or “Goto Bookmark” or “Goto Line” and “Set Encoding”.

4.1.3 VIEW MENU

Users can “Show Line Numbers”. User can use “Line Wrapping”. User can

arrange “Font Format”. User can “Increase” or “Decrease” or “Do not use” indentation.

User can “Comment” or “Uncomment”.

FINAL DESIGN REPORT Date: 18.01.2006

 86

4.1.4 DATABASE MENU

 User opens the “Connection Wizard”. User “Show Tables”, “Show Relationships”

and “Make Query”.

4.1.5 FTP MENU

 User opens “Connection Wizard”. Use “Configure” FTP connection or

“Synchronize” between two FTP Connection.

4.1.6 CVS MENU

 User can open “Connection Wizard” or “Configure” a CVS Server connection. If

there exits a connection user can “Upload Files” or “Download Files”

FINAL DESIGN REPORT Date: 18.01.2006

 87

4.1.7 PANEL MENU

 From the Panel Menu user can “Show” and “Configure” the “File Explorer

Panel”, “Solution Explorer Panel”, “Toolbox Panel”, “Properties Panel” and “AJAX

Action Panel’.

4.1.8 PLUGINS MENU

 User can select plugins and load them into the development environment. All

modules of kajax will be coded as plugin for this reason.

FINAL DESIGN REPORT Date: 18.01.2006

 88

4.1.9 HELP MENU

 User can use “AJAX References” which are mainly “kajax.com” and “ajax.org”.

User can view “Help Contents” or “Welcome Page” or “About”.

4.2 TOOLBAR

 Current Tool Bar functionalities are related with File Menu Bar. User can open

“New Project” or “New File”. User can “Save File”. User setup with “Page Setup” and

“Print” the selected files.

 Other Tool Bars will be implemented in the Final Design Report. Use will be able

to select the tools he/she wants to use.

FINAL DESIGN REPORT Date: 18.01.2006

 89

4.3 PANELS AND MODULES

 Up to now we have designed the toolbox, file explorer and editor module.The

screenshots of these are given below:

Toolbox File Explorer

Editor

FINAL DESIGN REPORT Date: 18.01.2006

 90

5. IMPLEMENTATION PLAN

