MIDDLE EAST TECHNICAL UNIVERSITY

e
%
%

DEPARTMENT OF COMPUTER ENGINEERING

SENIOR PROJECT
FALL 2006
DETAILED DESIGN REPORT

18.01.2007

SiHiRBAZ

K naDr®
YI\I ILIM

TABLE OF CONTENTS

1. INTRODUCTION...uuuuuuueeennueensneensnnesssencsssesssssessssssssssssssssassssseee &

1.1 Purpose of the DOCUMENLccuiiiiiiiciiieciie e e 4
1.2 N Te0] oL RO PRRRUTPPPRRPPR 4
1.3 PTOJECE OVEIVIEW ..ttt ettt e et e e et e e eta e e snseeessbeeesaneeeenseeenseas 6
L4 DeSIZN GOALS.....uiiiiieiiieiieiie ettt ettt et et sab e et e b e et enae e 7
1.4.1 R 1531153 1031 1SR 7
L.4.2 RODUSINESS: .utiiiiiiiieciieeieeee ettt ettt et ettt e et e et e et e e bt e e b e eseeenseenseannnas 7
1.43 2SI 103 101 PRSP 7
144 FUNCHONALIEY: ..eoiiiiiiieiii ettt ettt ettt eesbee et e e s e snnes 7
1.4.5 USADIIILY: ©oieiiieeiieee ettt et et e e e e e e e e nae e e nree e 7

2. CONSTRAINTS .cuuuuuaaueeeeiiccsissssnnnsssssssssccsssssssssssssssssssssssssssssssssans 8
2.1 Experience & Skills of Members COnsStraintscceeeeereeerieeriieenieenieeniesieeseeeee 8
2.2 TIME CONSLIAINES.eeeeiiieeiiieecieeeitee et et e et e e e tee et eeestaeeetaeeetaeesssaeessseeessseesnnseeens 8
2.3 FUunding COonStraints.cceeeiieriieiiieiie ettt ettt ettt et e et esaae e b e senes 8
2.4 ReSOUICe CONSIIAINESeeeeiiieeiieeeieeeeiieeeteeesteeeiaeeeeaeesaeeeeaeeessseeesseeennseeensseesnssens 9
2.5 PerfOrMANCE........ooiuiiiiieiieeie ettt ettt ettt st 9

4. SYSTEM MODULESuuureriiiccssssssssssssssssssssscssssssssssssans 9
4.1 TEXE EITOT .ttt et ettt ettt e et e st e e beeenaeeneen 9
4.2 WYSIWYG EITOT c.ueieiiiiiiiiieieeeee ettt 13
43 Database Editor.......cc.coiiiiiiiiiiieiee e e 15
4.4 Debugger & DOM INSPECLOTveieeuiiieiiieeiiieeiieetee et et eee e sree e e e ereeesaaee e 19

441 JavaScript DEbUZEETooiiiiieiieieeee e 19
4.4.2 DOM InsSpection TOOL.......ccuiieiiiiiiiiieeiieecee et 21
4.5 FTP ManQETeeeiiiiieeiiieee ettt sttt et e s e e 22
4.6 QA Y 2) SR 23
477 SYSTEM ARCHITECTUREoooiiiiiiiieeeeee ettt 24
4.7.1 LeVelO DEFDoiiiiiieieeeeee ettt ettt sttt 25
472 LeVell DFD ittt e 25
4.7.3 I D17 I B 1o [0) o F: 1) 2SR 26

5. SYSTEM DESIGN.....uuueeriiiicossssssssssssssssssssscsssssssssssssssssssss 30

5.1 Use Cases and Use Case SCENATIOScvveerureerieeeiiieeireeeeieeesreeesveeesseeesseessssesenns 30
5.1.1 TEXE EITOT ..o 30
512 WYISWYG EQItOT .eeoiieiiiiieieeeeeee ettt 32
5.1.3 Database Editor.......cccuiiiiiiiiiiieiieesee et e 34
514 DEDUZELT ..ottt et 35
5.1.5 CVS MANAGETveeiiiieeiiee ettt ettt e e te e et eesaeeesnaeeesnseeesnseeennseeennns 37
5.1.6 FTP ManageTcooouiiiiiiiiiiiicciieecetee et e 37

52 Dynamic View 0f the SyStem.......ccceeeiiiiiiiiieiiiciieeee e 38
5.2.1 TEXt EAITOT ..uiiiiie ettt ettt e s e e sebe e e eereeenree e e 38
522 WYSIWYG EQITOT ...ooiiiiiiiieieeesieeeeeee et 44
523 Database Editor.........cceoiiiiiiieciiee et 46

524 FTP MaNQEET ..c..vveeviiiiiiieeiie ettt ettt et sttt e et e e e e 50

5.2.5 CVS MANAEET ..ottt e et e e et e e e st ee e e sastaeesenntaeeeeenneeens 51
53 Static View Of the SYSteMcceiiiiiiiiiiieiececeee e 52
53.1 K0 A 27 11) SRR 52
532 WYSIWYG EQITOT c.eeoiiiiiiiiiieiiecteeeeee ettt 60
533 Database Editor, CVS Manager and FTP Manager..........cc.ccecovveveveencieeennnnennne. 65
5.3 4 DEDUZEZET ..ottt ettt ettt et e be ettt enne 72
5.3.5 CVS — FTP CONNECHIONS......eieeiiieeiiieeiieesiieesreeesireeeseeesereesseeesnaeeesnseeessseeennns 74
5.3.60 GUI ittt 77
54 ACHVILY DIQ@IAMIS...ccciiiiiiiieiiie ettt et e e e e e e e eaa e e e aee e baeennneeens 95
54.1 TEXE EIEOT ..ottt et ettt ettt e e e e e 95
542 WYSIWYG EQITOT ..ooiieiiiiieieee et 96
543 Database EdItor.......cc.coiiiiiiiiiiiiiieieciee ettt 97
544 CVS —m FTPu ettt et 98
0. GUI DESIGN.........uuvvnrnunnnniiiccccsss 100
6.1 OVEIVIEW OF GUIL.....oiiiiiiiciieeee et e e e 100
6.2 GUI REQUITEMENTSeouiiiiieiieeiieeiie ettt ettt ettt et e s e et saaeenaeesanes 101
6.3 Screenshots Of GUIL......coovviiiiiiiieee e e 107
6.3.1 “Code”, “Design” and “Browser” VIEWSceecueeruieeiieeniiesieeniieseeenieesneeenne 107
6.3.2 “Project” and “WoOrkSPace” VIEWS......ccueeerureerieeeriieeieieeerieeeeireesneeesveeennneeens 108
6.3.3 “DOM INSPECLOT™ VIBW....utieiiieniieiiieeiieniieeitesiee et esiteeteeseeesabeeseesaeenseesnseenne 108
6.3.4 PALEIEE™ VIBW .uvveeiiieeiiieeieieeesteeeiteeeieeeeteeessteeessaeesnbeessneesnsaeesnseeesnseesnnseaens 109
6.3.5 “Properties” and “EVents” VIEWSc.ccoveeiiirieiiiieniieeieeiee e 109
6.3.6 “DIEDUZEET” VIBW ...vvieeiiieeiiieeiieeerireeeieeesteeesaeeessseesssseessseessseeesseeesseesnssesans 110
6.3.7 “Menu Bar” & “Tool Bar”..........coocuiiiiiiiiiiieeeeee e 110
6.3.8 “Database CONNECLOT™cccuieriierieeiienieeieesiee et esieeeteesteesbeeseeeeeenseesneeenne 110
6.3.9 “Database EdItOr”cooiiiiiiiieeiiie ettt 111
6.3.10 Final view of GUIL.......ccciiiiiiiii s 112

7. OFF-THE-SHELF COMPONENTSuuueeeevuueecssvneeecsennnn 113

7.1 DIEDUZZET ..ottt ettt ettt ettt et et e beeennas 113
7.2 Embedded BrOWSET.........coiiiiiiiiiiiiiiiiieeecee et 114
8. SPECIFICATIONS ..ccuuuuuuvveovssssunviicssssssnssssssssssssssssssssssssssssssses 116
8.1 Syntax SPECITICATIONSc..eeruiieiieiiieeiiesiie ettt ettt et e e e e 116
8.2 Project Management SpecifiCationsccueercvreeriieeiieeeiieeeieeeee e eevee e 119
8.2.1 SiHIRBAZ Package StrUCTUTEcoueruiiiiiiinieeiereeieeiesetcte et 119
8.2.2 SiHiIRBAZ Project Workspace Structureccecueeveenieenieniennieeniceiceee, 121

9. TESTING ISSUEScuuuuuvvvvvvvuuuriicsssssnnricssssssssssssssssssssssssssses 122
9.1 Testing Plan and StrateZycoeevuerieniiiiiiinieieeeeeeeeee et 122
9.1.1 UNIE TESTINE c.vveeeiiiieeiieeeiie ettt eette et ee et e e ae e et e e eabeeesnbeeesnbeeesnseesnnseeenseas 123
9.1.2 Inte@ration TeStING......ccueeteriiriiriiiieiieteeteet ettt 123
0.1.3 ' Validation TeStINGccceeriieriieiiieiiesie et ete et e eeeereesereereesereereeesseenseenenas 124

10. CONCLUSION..124

1. INTRODUCTION

1.1 Purpose of the Document

This is the detailed design report for our project “SiHiRBAZ . The purpose of this document
is to express the final design decisions resulted from the detailed functional requirements and
show the way of the development of our project. Firstly, our scope is presented in a detailed
way and an overview of the project is added. Secondly, we have explained our design
constraints which are people, time, hardware and software requirements for developer side.
Then, modules of the system are declared separately with enhanced requirements. After that,
we have shown use case diagrams which are partially updated from the analysis report.
Besides, sequence, activity and class diagrams are provided for better decide on every
component of our modules. Next, we have demonstrated our GUI with all of its functionality
in the GUI Design part. Syntax and project management specification part is also added in
order to provide a consistency and integrity between modules while writing code. Finally we
have added a schedule part and a detailed GANTT chart to the report to show the progress of

our project.

1.2 Scope

SiHiRBAZ consists of mainly 6 components which are HTML Text editor, WYSIWYG
(What You See Is What You Get) Editor, parser and debugger, GUI Design and Database
process handler. Moreover we will provide a CVS and FTP support. Embedded browser will
also be supported to test developed application.

HTML Text Editor

An HTML editor is a software application for creating web pages. Although the HTML
markup of a web page can be written with any text editor, specialized HTML editors can offer
convenience and added functionality. For example, many HTML editors work not only with
HTML, but also with related technologies such as CSS, XML and JavaScript. In some cases
they also manage version control systems such as CVS or Subversion. We are writing a text

editor with extra functionality for manipulating and previewing of typical programming

languages used for web development. Standard features such as syntax highlighting and
automatic completion will be supported. HTML, XML and Java Script are supported by this

editor.

WYSIWYG (What You See Is What You Get) Editor

WYSIWYG HTML editors provide an editing interface which resembles how the page will be
displayed in a web browser. Most WYSIWYG editors also have a mode to edit HTML
directly as described above. Because using a WYSIWYG editor does not require any HTML
knowledge, they are easier for an average computer user to get started with.

The WYSIWYG view is achieved by embedding a layout engine based upon that used in a
web browser. The layout engine will have been considerably enhanced by the editor's
developers to allow for typing, pasting, deleting and moving the content. The goal is that, at
all times during editing, the rendered result should represent what will be seen later in a
typical web browser. Our WYSIWYG Editor will support standard HTML features such as
buttons, forms etc. that users will be able to drag and drop. In addition to this, some simple
AJAX components will be presented in labor of the user. These components are also available

with drag and drop option.

Parser and Debugger

The parser that we plan to write will support XML, HTML and DOM files. Debugger
supports only JavaScript because user will create AJAX components with JavaScript. Since it
is impossible to develop a debugger for this project due to time constraints, we are planning to

find, adapt and use an open source debugger component.

GUI Design

We designed a Graphical User Interface which is similar to the existing Development
Environments. “Tibco”, “Aptana” and “Eclipse” are being used as a layout of our design. We
are trying to develop a GUI design which shows our functionalities a user friendly and

costless way.

Database Process Handler

This component is planed to manage a database connection. User will use this functionality to
reach his/her database with a user friendly environment. Standard database functions like

connection, table operations and SQL query evaluation are provided with this component.

Embedded Browser Support

Embedded browser will be provided to user to test and see existing file. With the help of
design view, user is able to see the HTML view however, since AJAX components are not

static, this feature will provide the realistic preview of the application.

CVS Support — FTP Publishing

We will provide a CVS connector to the user and FTP connection support for publishing.

1.3 Project Overview

At the beginning, AJAX was a new technology for nearly all of us. Therefore, we have spent
a considerable time for research about this new technique. We tried to divide the project into
modules to perform a better research activity. As a result this challenging activity we have
specified the requirements which were expressed in analysis report. These were not so
detailed but enough to explain what we our product will be like. After releasing analysis
report, we have concentrated on deciding design issues. With the help of our requirements and
technical research we have done, following principals are decided:

e The most important part of the project is WYSIWYG editor. It should provide the
usability of creating and showing an AJAX application with user friendly way. We
will implement this module by hand with existing JAVA packages.

e Text editor is the second important part of the project. It should provide all the
standard features of a text editor. We are implementing this module by hand with

existing JAVA packages.

e User will be provided a JavaScript debugger, which is already mentioned. Because of
the time constraints and our preferential features (text and drag-and-drop editor), we
have found an open source debugger which can be adapted to our project.

¢ Since the database applications play a big role in AJAX actions, we have decided to

give importance to database connection tool.

1.4 Design Goals

1.4.1 Extensibility:

We will design our product considering that an improvement or plug in will be
supported later. So, we can provide an update mechanism to ensure that our product is
always up-to-date. Since AJAX is a developing technique, this feature will be really

important.

1.4.2 Robustness:

The product should be able to manage invalid user inputs or inconsistent conditions. It
provides error checking to ensure the right input format and returns errors and

warnings to the user.

1.4.3 Reliability:

The product should produce the expected output for a valid input at all times.

1.4.4 Functionality:

The system should function according to the requirements specified in Requirements

Analysis Report.

1.4.5 Usability:

The GUI should be user friendly. The goal is to provide the user an easy- to- use
interface. The design of the GUI is based on that of Java based applications. This

design is chosen due to the familiarity of most users with this kind of interface. It
consists of a menu bar, which is further decomposed into sub menus. Text boxes,
scrollbars and pop-up menus are used to enhance user/system interaction. The user is

placed in a familiar environment, which eases the general use of the application.

2. CONSTRAINTS

2.1 Experience & Skills of Members Constraints

As developers, our programming and design skills and experiences is also one of the
restrictions. Although we have made software projects before, it was simpler than our current
project and we do not have experience about creating development environments. Thus, this
restricts our opinions of what we are able to make. In addition, it is very difficult for us to
manage unexpected problems about this field but we may consult experienced people to get

help about solving problems.

2.2 Time Constraints

We have to finish our project by June and also we should provide a prototype at the end of
this semester. Therefore, especially for a software project, this is the most important
constraints. Being able to use our time efficiently is very important for us to follow our
program regularly. In case of schedule problem, to compensate lost time we should focus on
the project instead of other responsibilities and spend more time on it. As a result, although
we thought lots of features and special properties for development environment, for timing
reasons, we may not able to do some exciting features because we should provide expected

functionalities and basics firstly.

2.3 Funding Constraints

Since we will not need any additional hardware and software that have a cost for us to
implement our project, we do not have a cost for them. In addition our team members are
students and we will not pay anyone to during the project. Therefore, there is not any funding

constraint.

2.4 Resource Constraints

While we are doing our project we need different hardware and software resources. We
generally get easily these resources; as software requirements, we need web server, databases
servers and some of development tools. Many of these are freeware, and we can get others in
our department freely. We can also deal with hardware requirements for our project by the
help of our personal resources temporarily so we do not think that the resources will be a

problem for us to complete the project.

2.5 Performance

We are building our application for easy to understand and efficient to use. In addition there
will be excessive user interaction, so performance is a very important constraint for our team.

We consider the performance issue in during each steps of our project process.

3. SCHEDULE

GANTT chart can be found in Appendix.

4. SYSTEM MODULES

4.1 Text Editor

We are writing an HTML text editor with singleton design pattern for our development Kkit.
HTML editors are basic text editors with extra functionality for the manipulation and
previewing of code, typically of programming languages used for web development.
According to the research we have done, we have specified following functional requirements

for the text editor of our IDE:

e It will have the ability of reading and writing large files.
o Open/read/save/load/close/new file operations will be supported by GUI

module.

©)

Large file reading is available.

It will provide syntax highlighting for XML, HTML, JavaScript and CSS files.

o

Our system will read the syntax highlighting content when a new word is
written.

System will skip the commented areas.

When the user has written a separate word in an uncommented area, it will be
checked from the syntax highlighting content.

If it is matched, the related color will be applied.

This procedure will be supported for HTML, XML, JavaScript and CSS files.

Unlimited undo/redo will be provided.

o

Undo
= Save the modifications the user has done, in a stack.
= Delete the last modification that has been done and if it is undoable in
the editor.

= Put the deleted item into a stack.

= Read the last member on the stack.
= Apply that item in the editor if it is redouble.

= Remove it from the stack.

"Markers" for remembering positions in files to return to later will be supported.

(0]

o

o

Store the position of the cursor for every file.
Restore the position of the cursor in a file when the file is selected.

Kill the marker when the file is closed.

Any number of editor windows may be opened.

(@]

o

o

(@]

Open multiple files with a tab control in GUL

Allow user to change the file he/she is modifying with a keyboard shortcut or
tab select.

Assign a marker to the old file to remember the position.

Chose the marker of the new file and start from there.

We will provide an auto-completion that does the followings:

(©]

If you are typing the name of an object (e.g. "document"), when you type the

period (".") to call either a method or access a property for that object, it pops

10

(©]

up a small window displaying the available methods and properties for that
object. You can also type ‘ctrl + space’ to access this help at any time.
= This type of automatic completion will be provided for only user
defined classes.
= Specify the class of the object which is at the left of the point.
= Show all the attributes and classes of that class.
= Allow user to select an attribute or method from the list described
above, put the selected item to the right of the list.
= Place the cursor.
If you are calling a method on that object, when you type the first open
parenthesis ("({<["), our editor will automatically create the -closing
parenthesis ("]>})") for you, and it will pop up a small window with the
parameters that the method takes.
= When the user writes one of the ("({<[") put the suitable ("]>})") and

place the cursor between them.

e It will provide intelligent bracket matching, skips quoted literals and comments.

o

o

() ---- If the user has pressed to ‘%’ when he/she is on a ‘(’ or ©)’, the cursor
will automatically go to the matched parenthesis.

{} ---- If the user has pressed to ‘%’ when he/she is on a ‘{’ or ‘}’, the cursor
will automatically go to the matched parenthesis.

[]---- If the user has pressed to ‘%’ when he/she is on a ‘[” or ‘]’, the cursor
will automatically go to the matched parenthesis.

< e If the user has pressed to ‘%’ when he/she is on a ‘<‘ or *>’, the cursor
will automatically go to the matched parenthesis.

For all of parenthesis above, if there isn’t a matched parenthesis user will be
provided an error message and cursor will not move.

A stack control mechanism will be used.

e [t will provide automatic indentation.

o

o

If the user has written a ‘<’ and hasn’t closed it, put a ’tab’ space when the user
entered a new line.
If the user has written a “{‘and pressed ‘enter’, move the cursor to the next line

and one ‘tab’ space right.

11

If the user has written an ‘if” or ‘else’ clause, didn’t put a ‘{’and pressed
‘enter’, move the cursor next line and one ‘tab’ space right.

If the user has written a ‘for’ or ‘while’ clause, didn’t put a ‘{’and pressed
enter, move the cursor to the next line and one ‘tab’ space right.

If the user has written a >’ and had opened a ‘<’ before, put the >’ one tab
left.

If the user has written a “}’ and had opened a “{’ before, put the }’ one tab left.

e It will provide commands for commenting and commenting out code.

o

o

Enable user to select multiple rows.
Understand what language the selected code belongs to.
e Search JavaScript statements for testing whether it is pure HTML or
not.
e Search HTML statements for testing whether it is pure JavaScript or
not.
Comment the unselected code by putting the related comment item to it and
giving blue color to the code.
Comment out the selected commented code by removing the comment items
on it and giving black color to the code.
e Test whether there exists comment items at the beginning and end of

the selected rows.

e Search and replace supported.

o

o

o

Show a dialog box for search and replace to the user.

Search a word, letter, expression when user has pressed on search.

If the user didn’t enter an item (i.e. if it is blank) give a warning to the user and
don’t do a search.

If the wanted item is found, show it to the user in a highlighted way and move
the cursor to the end of this found result.

Replace the found letter, word, expression with the specified item if the user
presses replace button on the dialog box.

Search again if the user presses next or previous.

Backward and forward search is allowed.

Continuous search is allowed.

12

e There will be a relation with WYSIWYG editor to support code generation while user.
o Editor will take the design file and create html codes from it.
o When the user uses an AJAX item, there will be a separate system file that
notices this action.
o Editor will read this file and produce the related AJAX code.
o When the user is filling the forms of AJAX actions, files will be created.

o Editor will read those files and produce their codes.

e Automatic save is provided to prevent user from loosing data.
o Count the modifications the user has made to an already saved file.
o When this count is 3 save the current entry to the temporary file.

o When the system crashes, ask to modify changes when the user reopens the file.

4.2 WYSIWYG Editor

e Unlimited undo/redo will be provided.
o Undo
= Save the modifications the user has made.
= Delete the last modification that has been done in the editor.

= Put the deleted item into a stack.

= Read the last member on the stack.
= Apply the read item.

= Remove it from the stack.

e A Palette for displaying built-in Ajax actions and HTML elements which can be added
by dragging and dropping.
o For Palette, a window will be shown which consists of drag-able Ajax actions
buttons and HTML elements buttons.
o User can drag a button from palette.
o Drop it in to the Design View area.

o Call code generation.

13

o Open properties window if object is an HTML object.
o In the palette we will provide built-in Ajax Actions other than HTML objects
such as:

= AJAX Dynamic Table

= AJAX Photo Gallery

* Drag and drop

= Accordion

= Tabset

= Collapsible region

= Suggest text field

= Dialog box

= Rating widget

= Edit in place

e User will be able to insert text in Design view.
o Get the written text.

o Call code generation.

¢ An added table object can be selected. If it is selected:
o User can modify its size and size of its rows and columns.

o After a modification generate code is called.

e Create and modify added objects through properties window.
o All objects will be selectable.
o If an object is selected, relevant properties window will be shown with its
current properties.
o User can use properties window for modifications.

o After a modification call generate code
e Permits files or entire folders to be dragged directly into the editor

o If'the input is a folder, zip the input folder.

o GQGenerate code is called.

14

e Drag & drop of image files directly into the editor, as well as file browsing
o Check the image size and type.
o If there is any violation show user an error message.
o If input is suitable after dropping it show the properties window with
parameters related with the type of button.

o Call generate code

e [fthe dragged object is an Ajax action open event window
o According to the type of Ajax Action an Event Window will be opened.
o User will enter the required input for actions.

o Call generate code

e (Code generation will be done after using properties or event windows, dragging &
dropping an object from palette or dragging & dropping a file from outside.
o Appropriate code will be read from file or generated.
= Take id and type of button from GUI.
= Generate code.
= Send the cursor position to Text Editor to add codes the right position.
= Send the codes to Text Editor.
= Generate design view function is called to refresh the design view

according to the changes in code view.

4.3 Database Editor

The user will be able to connect to a database server if s/he has access rights on it.

e After connecting to a database a GUI window will be provided to user for database
operations.
o Show input dialog box.
= Ask user account name, password, location of database and type of
database (MySQL or Oracle)
= Get user account information.

= Try to connect to the database and get result from DBMS.

15

= Ifresult is true show user the database.
e Show user available and selectable schemas.
= Ifresult is false show an error message and request account information

again.

User will be able to execute queries on the database.

©)

©)

o

Show a query window with execute button to the user for entering queries.

Query window will be shown on top.

If execute button is pressed get the query.

Check the query if it is empty or not.

If query is empty show user a message to enter a query.

If query is not empty send it to DBMS and get the result.

If result is true show the result to user.

= If it is a SELECT, UPDATE or CREATE TABLE query show the

result otherwise show a message saying “query has been successfully
executed”.

= Ifresultis false show user the error message returned from DBMS.

The user interface will provide user the ability to execute queries (table, column or

row creation, modification, deletion) without the need to know the proper syntax by

just clicking on the appropriate action.

(@]

o

(@]

(@]

An attribute of a tuple will be selectable.
When an attribute is selected its background color will change and user will be
able to enter a new value for that attribute.
= If the new value is empty NULL will be used.
= After user enters a new value for an attribute, an UPDATE query will
be generated. Update query is generated when update row is clicked.
= Generated update query will be sent to DBMS and the DBMS will be
listened for a result.
= If result is true the new value of the tuple will be shown to user
otherwise the error returned from DBMS will be shown.
User can select a row. If user selects a row, its background color will change.
After selecting a row user can delete it by a delete icon.

= If'the delete icon is pressed, a delete query will be generated.

16

Generated query will be sent to DBMS and the result will be listened.
If result is true updated table will be shown to user otherwise the error

returned from DBMS will be shown.

o There will be a create table button.

o If the button is pressed a dialog box will be shown with ‘Create’ and ‘Cancel’

buttons.

User will be listened for name of table and columns of table and
properties of columns (primary key, foreign key, auto increment, data
type, NULL or NOT NULL and unique).

If “‘Cancel’ is pressed no change is done and the dialog box is closed.

If ‘Create’ is pressed name of table and names of columns will be
checked for emptiness.

If at least one of them is empty user will be prompted to enter a name
for it.

If none is empty a query will be generated.

Generated query will be sent to DBMS and DBMS will be listened for
a result.

If result is false error returned from DBMS will be shown.

If result is true newly created table will be shown.

o User can insert a new row with an icon.

After the icon is pressed, a dialog box will open asking user values for
NOT NULL attributes with ‘Insert’ and ‘Cancel’ buttons.

After ‘Cancel’ is pressed no change will be done and dialog box will
close.

After ‘Insert’ is pressed a query will be generated.

Generated query will be sent to DBMS and DBMS will be listened for
a result.

If result is false error returned from DBMS will be shown to user.

If result is true updated table be shown to user.

o User can change the columns of a table by selecting them.

When a column is selected, its background color will change.
User can drop a column by selecting the delete icon.

User can change the name of a column by entering it a new name.

17

User can insert a new column by clicking insert icon.

After an operation a query is generated.

Generated query will be sent to DBMS and DBMS will be listened for
a result.

If result is false error returned from DBMS will be shown to user.

If result is true updated table will be shown to user.

Schema selection will be provided.

o After user connects to a database, schemas in that database will be shown to

user.

o User can select a schema. Schemas will be shown as rollouts (can change).

All the tables of a selected schema will be shown.

o After a schema is selected its tables will be shown as selectable items.

User will be able to select a table to view or modify.

o After a table is selected its rows and columns will be shown.

o There will be icons for manipulating rows and columns. (Discussed above)

Detailed information of the selected table (columns, rows) will be shown.

o There will be an option to pass from these views to table view.

o In the detailed table view the columns of the table will be shown and all rows

of the table will be listed.

o User will be able to select to view detailed information about columns of a

table and modify it.

All columns’ attributes (primary key, foreign key, auto increment, data
type, NULL or NOT NULL and unique) will be shown.

NULL or NOT NULL, foreign key and unique attributes can be
changeable others not.

After an attribute is modified, a query is generated.

Generated query is sent to DBMS and DBMS is listened for a result.

If result is not true, error returned from DBMS is shown.

If result is true, updated table columns are shown.

18

o Data types of a table’s columns will be shown when selected.

o User will be able to manipulate rows.

e If the user tries to execute an illegal query or does not have the necessary privileges to
execute a query, an error message will be shown.
o If DBMS returns an error message, it will be shown to user and user will be
asked to try again.
e When the user makes a change on database, the result will be shown immediately.
e The user will be prompted if s/he looses his/her connection.
o If database connection is lost, a message will be shown to user saying

“Connection lost”.

e The connection information will be provided as an include file to the user.
o If entered account information is correct, an include file will be generated in
PHP format.
o User can select to include this file to his/her source code.
= [If user selects to include the file, necessary code statement will be

generated and sent to text editor.

4.4 Debugger & DOM Inspector

4.4.1 JavaScript Debugger

We will provide the following facilities for user in the JavaScript debugger in our

product to control the execution of scripts that users are debugging:

¢ Instant-on JavaScript debugger will be provided.
e Debug any web page containing JavaScript source or included JavaScript files,
or standalone JavaScript files.
o Debug button is pressed.
= [f web page contains javascript sources between

<script></script> tags

19

» Code block(s) is/are highlighted.
= If web page includes .js file
» js file is opened in new editor view tab.
= If the file has already .js file
» s file is opened in new editor view tab.
= User will able to stop debugging by pressing stop debugging

button.

e Pause, Resume, step in/over/out, break operations will be provided for
debugging.
o User will able to control debugging operations by buttons provided on
the toolbar.
o Currently executed code is highlighted on the editor view.
e Some views will be shown to user:
o Call Stack View
= Currently executed code/function will be showed with its name
and value.
o Watch View
= User enters variable name s/he wants to trace in to the variable
name field.
= Check whether the variable name is matched.
= [Ifit is matched.
» Current value of it is displayed in value field.
= Ifit is not matched.

» Error message is shown to the user.

e User will be able to set and clear JavaScript breakpoints in:
o JavaScript files

o HTML with embedded JavaScript and linked JavaScript files

e User will be able to set a breakpoint by:
o Simply single-clicking on the line number of the line at which s/he

wants to set a breakpoint.

20

o If the selected line contains executable code a red dot will appear next

to the line number and a breakpoint will be set at that location.

e User will be able to clear breakpoint by:
o Place the cursor on the line at which you want to clear a breakpoint
o Simply single-click on the red dot or the line number of the line at

which you want to clear a breakpoint.

4.4.2 DOM Inspection Tool

Its main purpose is to inspect the Document Object Model (DOM) tree of HTML and
XML-based documents by using dom parser. The initial HTML for an Ajax
Application is often minimal, and in any event likely to change over time due to DOM
Manipulation. All of this is very useful for checking assumptions and diagnosing
problems, since many Ajax bugs arise because the programmer misunderstood the

DOM state at a particular time.

e Showing the DOM-Tree with nodes.
o Get the file type of the current file in the editor view.
o Check whether the file extension is .html or .xml
o If the result is true
= Parse the file.
= Show the nodes on the tree view.

o Else do not show anything on the Dom inspection.

e Drill down the hierarchy, search for keywords.
o User will be collapse/expand tree view of a document.
o User enters the keyword s/he wants to search in the document
o Check whether the keyword is in document.
o Ifitis found
* The node is highlighted.
o Ifitis not found

= Error message is shown to the user.

21

e Current element highlighted in page.
o If user will press the node on the tree view of the document.
o Send a request to WYSIWYG.
o The html component which the selected node contained will be

highlighted.

e Node name, type and value are shown.
o If user will press the node on the tree view of the document.
o Name, type and value of this node on the tree view of the document
will
be showed in the name, type and value field of the DOM Inspector

module.

4.5 FTP Manager

e User will enter required connection information like host, user, password and clicks
"Connect" button.
o If connection cannot be acquired an error is shown to user.

o If connection can be acquired FTP Window is opened.

e User selects a file and clicks to "Get File".

o User retrieves a copy of the file at the FTP Server into a local workspace.

e User selects a file and clicks "Send File"

o After user clicks send file the file is sent to FTP server.
e User presses disconnect button.

o A close connection signal is sent to FTP server.

o User is prompted that s/he is disconnected.

22

4.6 CVS Manager

e User will enter required connection information like host, repository path, user,
password, connection type, and clicks "Finish" button.
o If connection cannot be acquired an error will be shown to user.
o If connection is acquired a CVS repository window, which includes list of files,
will be open for user to perform versioning actions like "CVS Check-out" and

"CVS Commit".

e User selects a file and clicks "CVS Commit".
o If request can be done user will be able to create a new revision of the file,
containing his/her changes, into the repository.

o Ifa file commit is not allowed by server, an error is shown to user.

e User selects a file and clicks to "CVS Check-out", s/he will be able to retrieve a copy
of the entire repository or a portion of the directory tree in the repository into a local
workspace.

o Selected file is requested from server.

o Iffile is not available an error is shown else user acquires the file.

e User can close connection by pressing a button.

o If user requests a connection close, a close signal is sent to server.

23

4.7 SYSTEM ARCHITECTURE

DATABASE EDITOR FTP CONNECTOR
ﬁWs @, FILE ﬁ

FIP SERVER

DBMS

(VS (:()NNEC'[‘(MCHBC“ our
GUI \ ﬁ

CODE » % CVS SERVER
®

2 %,

'l'IZX'l'_lil)l’l'()ll DESIGN EDITOR

24

4.7.1 Level0 DFD

User Commands

User -
SiHIRBAY
Response
4.7.2 Level1 DFD
DBMS

& /d 2

5 =

: : Browser
% % co?é\ rowsel
- b

CVS Server

FIP Server

25

4.7.3 Data Dictionary

name:

User commands

where used / how used:

GUI(1.0) input

description:

Every external input that user enters

name:

Displayed Response

where used / how used:

GUI(1.0) output

description:

Every output provided by system

name:

Database Information

where used / how used:

Database Editor (5.0) input

description:

Information Stored in user’s database

name:

Connection Information

where used / how used:

Database Editor (5.0) output

description:

Connection information and Queries entered by user

name:

Request

where used / how used:

Main Process (2.0) output

description:

Signal to publish application in browser

name:

Interpreter Results

where used / how used:

Main Process (2.0) intput

description:

Returned result from JavaScripts Errors

name:

Check-in Files

where used / how used:

Main Process (2.0) output

description:

Sending files to CVS server

26

name:

Import Files

where used / how used:

Main Process (2.0) input

description:

Receiving Files from CVS server

name:

User Files

where used / how used:

Main Process (2.0) input

description:

Sending files to FTP server

name:

Publishing Files

where used / how used:

Main Process (2.0) output

description:

Receiving files from FTP server

name:

Debug Operations

where used / how used:

Main Process (2.0) output
JavaScript Debugger (6.0) input

description:

Debugger related inputs

name:

Debug Result

where used / how used:

Main Process (2.0) input
JavaScript Debugger (6.0) output

description:

Outputs of debug operation

name:

Source Code

where used / how used:

WYSIWYG Editor (3.0) input
Text Editor (4.0) output
JavaScript Debugger (6.0) input

description:

Source Code of Application

27

name:

Cursor Position

where used / how used:

WYSIWYG Editor (3.0) output
Text Editor (4.0) input

description:

Inputs from design view to determine the position of cursor in code view

name:

Generated Code

where used / how used:

WYSIWYG Editor (3.0) output
Text Editor (4.0) input

description:

Inputs from design view to add generated codes to code view.

name:

User Request

where used / how used:

GUI(1.0) output
Main Process (2.0) input

description:

User inputs

name:

System Response

where used / how used:

GUI(1.0) input
Main Process (2.0) output

description:

System output

name:

Display Info

where used / how used:

WYSIWYG Editor (3.0) output
Main Process(2.0) input

description:

Design View output for display

name:

Visual Operations

where used / how used:

WYSIWYG Editor (3.0) output
Main Process(2.0) output

description:

User inputs related with WYSIWYG editor

28

name:

Output

where used / how used:

Main Process(2.0) input

Text Editor (4.0) output
description: Output from Text editor to display
name: Input

where used / how used:

Main Process(2.0) output
Text Editor (4.0) input

description:

User inputs related with Text editor

name:

Database Operations

where used / how used:

Database Editor (5.0) input

Main Process (2.0) output

description:

User requests on database

name:

Desired Information

where used / how used:

Database Editor (5.0) output

Main Process (2.0) input

description:

Information of user database for display

29

5. SYSTEM DESIGN

5.1 Use Cases and Use Case Scenarios

5.1.1 Text Editor

Undo/Redo Code

(from Text Editor Use Cases)

= L = &

.,

\ Remember Marker Position

R \\ {from Text Editor Use Cases)

|
X o

///”_7'(Out] Comment Code

{frem Text Editer Use Cases)

<lUser= - "
(from Giobal Ac\?cs'u Search & Replace Code

A\ {from Text Editor Use Cases)

\\
\ —
\ ~ <Text Editor
\ Bracket Matching ~ Module>

(from Global Actors)
\ {from Text Editor Use Cases) Vi

s

Lt <= —
\ <|nclude>f/
\\ T
\ -~ (
1 - = b
’ F
k 52 s
e __— — <<include>> Auto-Completion
= o (frem Text Editor Use Casa?e’}
Write Code e S /
~
{from Text Editor Use Cases) i ~— /
<<include>> //
et
T B

Auto-indentation

(from Text Editor Use Cases)

30

Undo/Redo Code: User will press undo or redo to disable or enable changes he/she
made on his/her file.

Comment/ Comment out code: User will select a part from the file and comment in
or out this part.

Search & Replace code: User will find an expression, word or sentence and replace it
with another.

Use keyboard shortcuts: User will use keyboard shortcuts to manage the tasks easily.
Select rectangle: User will select a part in a rectangle and change it according to
his/her needs.

Bracket Matching: When user comes to a bracket, cursor will automatically shoe the
match of that bracket.

Customize toolbar: User will customize the toolbar according to his/her needs.

Use palette: User will use the palette to add the source codes of the built-in
components.

Write Code: User will write source code.

Syntax Highlighting: When the user writes his/her code syntax highlighting will
automatically highlight the built-in functions or expressions of the related language.
Automatic Completion: When user is typing the name of an object (e.g. "document"),
when you type the period (".") to call either a method or access a property for that
object, it pops up a small window displaying the available methods and properties for
that object. User can also type ctrl + space to access this help at any time. When user
is calling a method on that object, when you type the first open parenthesis ("("), our
editor will automatically create the closing parenthesis (")") for him/her, and it will
pop up a small window with the parameters that the method takes.

Automatic Indentation: When the user is writing a code, automatic indentation will
indent his/her code according to the related programming language.

HTML code cleanup/formatting: After user writes the code, editor will check
HTML validity and clean the code to make a correct HTML file.

Link Checking: When the user has entered a link, editor will automatically highlight
it as a link.

HTML Validation: While user is writing the code, editor will check if he/she is
writing HTML code validly.

Code Generation: When the user uses the palette, editor will automatically generate

the related code of the component.

31

Provide Marker: When the user opens another file,
positions in files to return to later will be supported.

"markers" for remembering

5.1.2 WYISWYG Editor

rd =
I.
.

Undo/Redo
from WYSIWYGE Use Cases)

e WYSIWYGE
Module
==include=> __ . from WYSIWYGE Act.)
vl —_ Event Window
e (from WYSIWYGE Use Cases)
e Using Palette
i (from WY SIWYGE Use Casss)
— 35
; S L
={ -
ser P \\
ifrom Global i‘,\c'lﬁ:rs - = = \\
\ \ insert Text o $
".I (from WYSIWYGE Use Cases) \\
\ \<<eﬂerh?>
\ ;
.,H % N)
\ % \ ; ':-5 ==extend>z \
| \ - S L \‘\\
ko odify HTML table S \\
| \ ==zgxtend==— _ \\:‘\
\ \ MSIWYGE Use Cazes) = —
o\ e R
\ Y : Sraed =
'II A \;.;: ——— ——— —— - 5 —
\ . ==gxtend=> P
1 - o e .
".II Modify 'ohject via properiies window o P Code generation =Text Editor
_-""—- .
I". {fron‘\\'.""‘(Sl'."-"r‘GE Use Casss) L /(fmm WYSIWYGE Uze Caszes) . Module= .
I'.I \ il "”ﬂextend» / {from Global Actors)
\ k — -
I': - "\‘é-‘r 7
| I 4 P
\ S ’
1 /
insert CS5 s
(fr{:m’.l:.!‘."‘r's IWYGE Use Cases) /
\ y
I‘. s
N & B TR
- =<=inciude==
Drag & Drop File
{from W SIWYGE Use Cases)

Drag & Drop Image
(from WYSIVWYGE Use Cases)

32

Undo/Redo operation: User will press undo or redo to disable or enable changes s/he
made on his/her file.

Keyboard Shortcuts: User will use keyboard shortcuts to manage tasks easily.

Using Palette: User will use drag & drop option to add built-in component to his/her
design view.

Insert Text: User will enter text input to his/her design view.

Modifying Object: User will modify components that are previously added.
Customizing the properties of element on properties editor: User will arrange the
desired properties of elements.

File Operations from desktop: User will add images and files to his/her design view
with drag and drop directly from desktop.

Image Operations: User will add, delete, resize etc. images.

Code Generation: When the user use palette/insert text/modify objects/customize

properties of elements/make file operations /make image operations.

33

5.1.3 Database Editor

=P i > .
repare include file <Text Editor
{from Database Editor Use Cases) Module=
{from Global Actors)
|f.<ex:en d==
W

=Connect to datahase=>
= [from Databage Editor Use Cases)

Error message generation=

v

=GUI=

{from Global Actors)

=User=
Global n&\w—s.
\.

(fronrDatabase Editor Use Cases)

\ <3elect database schema=>
-"._ \ (from Database Editor Use Cases) ==gxtend==
b T~
\ i
A \

\\ \\ \\

\ N =Query validation checks= s
X) . (from Database Editor Use Casss)
\ . N A
A
R b ™~
\ N \ =<include== -
\ =<\iew, modify table= ,.---"""'7
{frorq Database Editor Use Cases) “‘9}{19“53’:}\ ‘ __‘___‘_.J--""
L S <DBMS>
\. i, \\ - 8
_ - ; {from Database Edior..)
\ b A s
\ e .
‘.\ ~ \\ =Execute query=

{from Database Editor Use Cases)

X, M
<=gxtend== \\ \ |
~ \\ \\ | ==jinclude==
S

e

<Enter Database Query= <<exte:r; o —— \\\\ |

{from Database Editor Use Cases)

=Cery genaration=

{from Dratabase Editor Use Cases) 1

Connect to Database: User will press connect button. Then user interface will bring
up connection dialog and waits for the user to enter connection info. After user enters
connection info, user interface will send it to DBMS. If the connection info is correct,
DBMS will return database info and user interface will show the result to user and also

will prepare an include file.

34

Select Database Schema: User will select to view a schema. User interface will
generate query and send it to DBMS. DBMS will execute the query and send the result
to UL UI will show the result to user. If the query is invalid, UI will show an error

message to user.

View, Modify Table: User will select an operation on a table. User interface will
generate query and send it to DBMS. DBMS will execute the query and send the result
to UL UI will show the result to user. If the query is invalid, UI will show an error

message to user.

Enter SQL Query: User will write a query. UI will send it to DBMS. DBMS will
execute the query and send the result to UIL. Ul will show the result to user. If the

query is invalid, UI will show an error message to user.

5.1.4 Debugger

=<includes> _— 7 -
o Step infoutiover \
= (fram Debugger Use Cases) 3
—— e
— e e —— iy
/7 S — —_— ""--.‘_\
- o T ;
L Operations =include=> "= - =y
e i - R
O - {from Debugger Use Cases) ™. e \\\ O
/K \ Pause/Resume T—
] ™ (from Debugger Use Cases) ,’ /\
<|Jsar> {{Include}}\\ -)__f__.--— s L
s ebugger Module
{fram Gicbal .-!.:11:}5\] \\\ e qg
N\ = e {from Debugger Actors)
\ - :
S J
X Break Point Operations ™
\-\ {from Debugger Use Cases) &“x_\
o
i
\ ~_
.
Ay - A =
; e e 7
\ =<include==_—~ e f/-- /A\
b o Call Stack View e .
Ny . <GUI=
3 T {from Diebugger Use Cas.es}/// o Global Astors)
A ==include== AT
T m—— ~
- —
Views -

-

(from Debugoger Use Cases)
Wariables View

{from Debugger Use Casasg)

35

Keyboard shortcuts: User will use the keyboard shortcuts to manage the debugger

operations which are: Pause/Resume, Step in/over/out.

Pause/Resume: User will press the Pause/Resume button. The debugging engine will
stop or continue to control the execution of scripts. Call stack view and variables view

are updated according to these operations.

Step in/over/out: User will press the Step in/over/out button. The debugging engine

will go in/over/out the execution step of the scripts its debugging.

Set/clear breakpoints: User will click the the line number at which he/she wants to
set/clear breakpoints on the editor window. Breakpoint set/clear at this line. The
debugging engine will stop/continue at breakpoints. Call stack view and variables
view are updated according to these operations and the user will see the values of the

variables at that breakpoints.

Call Stack view: When the debugger is stopped, the Call Stack view displays the list

of active functions.

Variables view: When the debugger is stopped, the variables view displays values for

the current function.

36

5.1.5 CVS Manager

Commit file
e {from V'S Manager Use Cases) —?:?,

— e E:
\-\q\-‘_"“'\---._________\qEL meseos SR —
= N— =CWVS_Server=

ks (from Giobal Aciors)

=lser=

(from Global Actors)

CheckOut file
from CWS Manager Use Cases)

Close connection
{from CW'S Manager Use Caszes)

5.1.6 FTP Manager

— Get File =

S (from FTF Manager Use Cases) e

FTP Server
(from Global Actors)

<User>

(from Global Actors)

Send File

from FTP Manager Lise Case!

Close Connection

(from FTP Manager Use Cases)

37

5.2 Dynamic View of the System

5.2.1 Text Editor

s =lszer= | :FileMlenu » hdainiind aw : TextEditarCore
 Filemenu M aindind ow TextEditorCore
c=llsers E—— - e

' openFilecfilel |

L| openFilefile) |
showfFile
setCurrentTab J
changeTnTE}Wiewi
setText
updateFileContent
cndei
P S)
changeTnbesignUiew
sefText
' updateFileContent '
design |...|
ERRRE R bbbty B e Sty

38

D dlzars : FileMenu : TextEditorCore
U . Filetdenu : TextEditorCore
E saveFiled) E E
saveFile) :
=
setFileContent{currentFile)
-
closeFiled) i
clogeFile
| -
saveFileContenticurrentFile)
clogeFilefcurrentFile)
: CodelWierm : TextEditorCore : SyntaxHighlight
CCodeview . TextEditorCore - SyntaxHighlight

highlightiword)

isinComment)

result

..;E’\ _____________________________

[result=true]updateFileContent

IR

setText)
=
[result=falze]iskewwarddward)
UpdateFileContent
color
"E:': """""""" ==I::':: """
P setTem()

39

T

chekHashTabled ward)

[fword is nota L
1 kesawiord then
default coloris
returned.

: Codefiem

: TextEditorCore

D AutoComplete

:AMLParserFordutoCompletion

C Codeliew

: TextEditorCore

checkWordfward)

CAutoComplete

cHMLParserForAutoCompletion

[nevvline]getindentCount

|
|

Pra—

S

indentMumber

{ ___________________________

insedTabs(indentMurmber)

=
'
'
'
'
'
'
]

gethethodsAndAttributes])

incrementOrDecrementindentCount()

Theward is checked

. |against some kevwords

and characters. If it
matches one, then indent
countis either
decremented or
incremented.

showhiemberListimemberList

findMethodsAndAttributes()

setText()

Ifuser selects a

mermhber.

40

memberList

.,;:H: _________________________

read<mMLFilel)

1

cEGUE : Edithlenu : TextEditarCore : CodelWiem

“GUI _ Edithenuy _ TextEditorCore
comrnent - Codeiew
LJ comment _
‘ getSelectedTexd()
l =
i text
! L CE LRt
i updateFileContent
sefText
i =
L commentOut
U commentout
;] getSelectedText(y
‘ ' -
i i tend
5 | R
updateFileContent
: sefText
i i o=

S

41

DAL= : hdainind o : SearchAndReplaceitfind o : TextEditarCore
=G| M aintfvindow : TextEditorCore
v searchandReplaced
create _SearchAndReplacetindow
search{searchyord) o
searchisearchword
: {) ot

[search=emptylshowErtor

[gearch=not empty]showHighlightedWord

replacefreplaceyyord)

¥

replacefreplacetord)

-

showFile

updateFileCantent

e—

cancel

42

|-
>
i
.
X

Sl

43

T lzar= T hdainind aw : Sourcebanipulation : TewtEditorCare
T - b ainhird o cSourcemanipulation . TextEditorCore
E unda E E E
|_| canlndog) i i
E result E
: B :
[result=true]undo)
E updateFileCantent ;
5 showFile
redo
LJ canRedod) E E
E rResult E
: T :
[result=true]redod)
E updateFilgContent
; showFile

5.2.2 WYSIWYG Editor

D Elser= SRS NG Edito g L DTS GEditar : TextEditorCore
<Usar WYY GEditorGLI WY SIAY GEditor TedEditorCore

generateCodelid, type)

dragAndDrapdbotton) 0

insenCode(pasition, code)

displayidisplayeditems, properties)

ayediterns, propertiesiind))]
--------------------------- [ajaxAction = true]showEventind ow

envie it d o

-G: __________________________

enterEventiinputs)

generateCodelinputs)

insentCodelposition, code)

generateDesignyviewsourceQoode)

display(events)
events

T Y

;

44

: <lser= ST EditorE L TSIt G Editor : TextEditorCore

- AWM GEditor - TextEditorCore
Czllgprs S GEditor G|
geTexitexd getirittenTextitest i i
inserntCodeipasition, code)
done
ECEESRS L
)) generateDesign\fiewisnurcebude}
displavediterns display{displayeditems) :|
RS S S S S S S S S)
D ellzar= MRS EditarE U1 MM ST G Editar : TextEditorCare
=Usars Aty SIMYGEditorc Ul S GEditar - TextEditorCore
selectOhject(ohject i i
getProperiesiobject
propertiesiindow
. | :
getChangesiohjech
generateCodedobject, changes)
modifyCodefposition, code)
done
.-E _______________________
nenerateDesignview(sourcgode)
digplayidizplayediterns) -1 '
displavedlterns :
S Pose eSO et |

e

45

s ellser= S e G Editorc U CreS It G Editor : TextEditorCore
. AN SIVNYGEditarE| AN SN GEditar - TextEditorCore
{5'Ma’g’;hh’d’fn?a;}ﬁhé]:ﬁié}'" ; ; ;
generateCodeffileType)
nkertCodeiposition, code)

displayvediterns

display{displayeditems)

nenerateDesigniiey

5.2.3 Database Editor

aurceCode)

1 2lzers | : DatabaseConnector : DratabazeCore : [ratabazeifind ow | :<DBEMSE
- DatabaseConnector . DatahazeCore i
c=lsers
M setConnectioninfol) < =DBMS=
cannectTaDBMED i]
connect
result
{:_ _______________________________________

P

[result = falze]showErrord

destroy

46

[Fesult = true]create

Dataha

sTaWindnw

createlncludeFiled

[

AN T : Databaseliind ow : MewT ablelindow DizenarateQueny : DatabaseCore :<DBME=

cDatabasebWindow . GenerateGuery . DatahaseCare - <DAMS:
c=llser= '
M createNewTahlE(Li
create, | - MewTableWWindow 5 ; 5
createTabletableinfo)
HenarateCraateT blé@uew{tahlelnm)
execute QUEn que ; ;
L? el uen) - i
executeiguerny)

result

"E: _____________

[result = falze]sHowErrorhessane

[result= true]shanilhle

destroy

X

47

: Zlsers : Dratabaselilfind ow : EditT ableilind ow :GenerateQuerny : DatabaseCore : <DBMS=

Ko

e - DatabaselWyindow GenerateQuery - DatabaseCore - <DBMS>
| editTable(table) _ ! : 5 :
create . EdifTabletind oo
alterTabletan elnfo) : : i
: generateAlterTableQuerytableinio) | i
i ue i :
! LSRR ! !
execUte QUERT query) L
0 g ST emecutelguend:
[result = false]sholwErromes sage
[result= true]showTable :
table ' E
e destroy
i

e —

48

: Zlsers : Dratabaseifindow : DatabaseCare . ResultSetinfo ;2D BEMS=
=Usgars - Databasebvindow DatabaseCaore : ResultSetinfo - «DEMS>
i applyChanges(rowlnfg)b-
makeOperation(rnwlg{oj
generateQuery(rowinfo)
ue
IS UL A :
execute(dueny) i
' result
[Er=mmmmmmmmmm e S eSS
[resuli=false]showError !
errarblessage
I RRR R R L L LR R R [result=true]selectTablelnfo
tahleinfn
L e S G
setResuHBet(talhelhfn}
genherateResultSetviendtablelno) D T
tablalnfo ; ;
N i e e
D lser= : Dratab aseWfind aw : DratabaseCore c=bBMS:
A cDatahaselindow cDatabazeCare =DBEMS=
' erecutellserQueryiguery)
B executeQuent querny i i
execute(guen)
result
[result=false]showErrar
errortessane 0
SRR LR [result=true]showResult
result
O CRGRCECECPERTRERES :

49

5.2.4 FTP Manager

‘GUIMenuBar - FipWindow :FTPConnector “ETP

- =User=
viewFipConnechion
—_—— open
5'5:5‘ 1
done

ftp\Window = |
e |

getConnectioninfo{connectinfo)

checkConectioninfolconneciinfo)

T
—

connect(connectinfo)

= cResult
[cResult = falsels howErrorMessa'ge
- — L SR [cResult = true]getFilzinfa,_
filzlnfo
showFiles(filzinfo) < — —
L~ filzlnfo
getifile) N
getFile(fil2)
requestFile(file)
requestedFile
showOperationDone() -
_ done h
sendifile)
sendFile(file)
requestCopyifile)
B cResult
= — — —
[cResult = falselshowErmor{cResult)
- cResult)
_[cResult = true]showFileCreatedMeassage()
B done)
< =
closeFtpConnection() -

closeConnection

- disconnect()

closeWindow() -
- X
. X

50

5.2.5 CVS Manager

i (:_'-}
CCVSWindow - CVSManager /\
—=User= - CVS Server

viewCVSConnection

= |

connectionWindow

getConnection[conneclnloL

= checHCDnnecﬁonlnfo(connectln.foj|

showCvsRepositoryConnectionWindow I |

setConnection{connectinfo)

. . . cResult
[cResult = fruelshowCvsRepositoryWindow ~—8f — — — — ——
L cvsRepositoryWindow -
- _ [cResult = false]showErroricResult)
. cResult -
- —— — — —
checkOut(file) = getFile(file)
P requestFile(file) N
. rResult
. [rResult = false]showError{rResult) = — — —
_ rResult =
i _[rResult = true]showFile{requestedFile)
; requestedFile -
e
commitifile)
- createFile(file)
- requestCreateFile(file)
[result = false]showE mor(result) P _result
result =
i ——— — —
[result = fruelshowFileCreatedMessage()
message)
-
closeConnection -
closeConnection N .
Fa closeConnection
. connectionClosed
showMessage(connectionClosed) =
connectionClosed)
1:.')— —_— — — —

closeWindow

51

5.3 Static View of the System

5.3.1 Text Editor

SourceManipulaton

TEERRIEMENtSt > 4 etDesignFile() i
UndoableEdit :cgreateHTMLCode{} fleName : String
et A X em() olumniumber : Integer
ﬁead.&..lAXCode{]_\ JineMumber : Integer
ScanUnd... %readUserFoms() indentCount : Integer
WcanRed.. WcreatelavaScriptCods) rl : String
Sundo()
:’g.““’f} T~ GgetFileName()
ie) SgetColumnMumber()
\ ’getLineNumber{j
1 getindentCount()
\ QgetUni()
\ ::etFilaName(}
KXMLPargerForauteCompletion \ ngﬁﬁl:ﬁ;n:‘::r?}ﬂ{}
QaetindentCouni()
GreadxMLFIE) i Ssetir()
SindMethodsAndAirioutes()
b8 \
1 \ 7
AutdComplete Y II o.n
IReader :)(MLF'arse},folAmc-Completion \'\\ II
jsReader : .Ja\.lchri;}tPaqlse! % |
- |
SmoveCursor()) \ {
YgethethodsAndAtinbutes() \ |
YyetBrackst]) | ‘\ ||
"insertBrackett} ."l |
/ \ 1 f
) \35\ \, I 1
TN TextEditorCors
JavaSl:ripiP,hrser ilelist] : Filelnfo
7 urrentFile : Intsger
r i .ﬂ hreadList]] : FileThread
Ran ey miHimiHighlighter : XMLHTMLSyntaxHighlight
;W' g 1 javaScriptHighlighter - JavaSeriptSyntaxHighlight
Py e 4 SseseHighlightsr : CSSSyntaxHighlight
‘rea:Agﬁggj 2. sourceManager ; SourceManipulation
EautoC leter : AutoC lete
::vriteﬁ.ttributes(} o it
sinCiass() addFie()
SisKeyword() BremoveFile()
@incrementindentCount{)

WcreateXMLFile()

1

JavaScriptSyntaxHighlight

BinseriComment()
YeleteComment)
Q=zarch()

eplace()

pyi)

Spaste()
Qundo()
Bredo()
SopenFile()
ereateFile()
QeaveFile()
5 YclozeFile()

‘decrementlndent(:ount{}

%gﬁreteAIIThreadFi les{)
il

C555yntaxHighlight

FileThread

@autoSa\rer: AutoSaver

Ywait()
Qdestroy()

AutoSaver

%iempFiie File

WupenTempFilel)
‘getChange i
,tount(:hanges()
aveToTemp()
BreadSavelnput)
YclearTempFile()
YsendModifyMessage()
QoetTempFie()

1

II 1
W1

AMLHTMLS yntaxHighlight

SyntaxHighlight

WshashTable : HashTable

TgmiFile - Fiie

Buirtual read XMLFile()
Pirtual constructHashTable()

Ywirtual readlastWord|)
Mvirtual isinComment|)
Fovirtual isKeyword()

Bvirtual getColor{)

Quirtual applyHighlighting()

52

Class TextEditorCore:

Attributes:

Attribute Name Attribute Type Description

Filelist Vector<Filelnfo> The list of the opened files

currentFile Integer Index of the current file

threadList Vector<FileThread> List of the threads opened
for automatic save.

xmlHtmIHighlighter XMLHTMLSyntaxHihlight | Operator that highlights the

xml and html files.

javaScriptHighlighter

JavaScriptSyntaxHighlight

Operator that highlights
JavaScript files.

cssHighlihter

CSSSyntaxHighlighting

Operator that highlights
CSS files.

sourceManager

SourceManipulation

Operator that handles the
code management between
design and text editors.

autoCompleter

AutoComplete

Operator that handles
automatic completion

Methods:

Method Name

Parameters

Return Value

Description

addFile

fileName: String
url: String

Integer

It receives input from
GUI and opens and
adds adds the file
specified with
parameters to the file
list.

removeFile

fileName: String
url: String

Integer

It receives input from
GUI and closes the file
and removes sit form
the list.

incrementIndentCount

Index: Integer Void

It increments the indent
count of the file who
has the index same as
the parameter in the
filelist.

decrementIndentCount

Index: Integer Void

It decrements the indent
count of the file who
has the index same as
the parameter in the
filelist.

insertComment

selectedLines: Void

Text

Inserts comment
characters to the
beginning of every
selected line.

53

deleteComment selectedLines: Void Deletes comment
Text characters from the
beginning of every
selected line.
search wantedExpression | Boolean Searches the parameter
: String in the file backward or
direction: Integer forward and shows the
found expression.
replace old: String Boolean Searches the old word
new: String in the given direction,
direction: Integer replaces it with the new
word.
deleteAllThreadFiles Void Void It removes all threads
cut toCut: Text Void It cuts the parameter
from the file
copy toCopy: Text Void It copies the parameter
from the file
paste void void It pastes the selected
item to the place where
Cursor is
Undo Void Void Undoes
Redo Void Void redoes
openFile fileName: String | Void Opens the specified file
url: String
createFile Void Void Creates new file
saveFile fileName: String | Void Saves the file to the
url: String specified place
closeFile fileName: String | Void Closes the file.
url: String
Class File Info
Attributes:
Attribute Name Attribute Type Description
fileName String Name of the File
columnNumber Integer Column number of the
marker of the file
lineNumber Integer Line number of the marker
of the file
indentCount Integer Count of the indentation to
the left or right
url String Url of the file

54

Methods:

Method Name Parameters Return Value Description
getFileName Void String Returns the
filename
getColumnNumber | Void Integer Returns the
columnNumber
getLineNumber Void Integer Returns the
lineNumber
getIndentCount Void Integer Returns the
indentCount
getUrl Void String Returns the url
setFileName fileName: String Void Sets filename
setColumnNumber | columnNumber: Void Sets columnNumber
Integer
setLineNumber lineNumber: Void Sets lineNumber
Integer
setIndentCount indentCount: integer | Void Sets indentCount
setUrl url: String Void Sets url
Class AutoComplete
Attributes:
Attribute Name Attribute Type Description
xmlReader XMLParserForAutoCompletion | Reads the XML files for
autocompletion
jsReader JavaScriptParser Reads the users’s javascript
files and create XML files
for autocompletion
Methods:
Method Name Parameters Return Value Description
moveCursor Void void Moves the cursor

to the correct
position after an
auto completion

getMethodsAndAttributes | Word: String Vector<String> Sends the methods
and attributes of
the written
variable to the
GUI

getBracket Void Character Read the brackets

insertBracket Bracket: Void Inserts the

Character matching bracket

of the read one.

55

Class XMLParserAutoCompletion:

Methods:

Method Name Parameters Return Value Description

readXMLFile Void void Reads theXML
files

findMethodsAndAttributes | className:String Vector<String> Finds the methods

and attributes of
the given class.

Class JavaScriptParser:

Methods:
Method Name Parameters Return Value Description
readClass File : FileInfo String Gets the classes in
the file
writeClass classInfo : String Void Writes the class
information to a
XML file
readFunction className: Vector<String> Gets the information
String of the function
functionName :
String
parameters :
vector<String>
returnType: String
writeFunction functionInfo : Void Writes the
Vector<String> information to a
XML file
readAttributes className :String | Vector<String> Gets the attributes
attributelnfo : of a class
Vector<String>
writeAttributes attributelnfo : Void Writes the
Vector<String> information to a
XML file
i1sInClass Word : String Boolean Tests whether the
word belongs to a
class or not
isKeyWord Word: String Boolean Tests whether the
given word is a
keyword or not.
createXMLFile Void Void Creates the XML
file for hiding
information.

56

Class SyntaxHighlighting:

Attributes:

Attribute Name Attribute Type Description

hashTable Hashtable It is used for hashing the

keywords with colors

xmlFile File Stores the keywords

Methods:

Method Name Parameters Return Value Description

readXMLFile Void Void Reads the XML file

constructHashTable | Void Void Constructs the hash
table from the read
XML file

readLastWord Void Void Reads the text user
has written and gets
the last word

isInComment Word: String Boolean Tests whether the
input is in comment

isKeyWord Word: String Boolean Tests whether the
input is a keyword

getColor Word: String String Finds and returns
the color of the
candidate word to
highlight.

applyHighlighting Word: String Void Applies highlighting

Color: String to the specified

word with specified
color.

Class FileThread:

Attributes:

Attribute Name Attribute Type Description

autoSaver AutoSaver It is the operator that is

responsible for automatic
save

57

Methods:

Method Name Parameters Return Value Description

Run Void Void Run method of
thread class

Wait Void Void Wait method of
thread class

Destroy void Void Destroy method of
thread class

Class AutoSaver:

Attributes:

Attribute Name Attribute Type Description

tempFile File The file opened for saving

the changes automatically

Methods:

Method Name Parameters Return Type Description

openTempFile Void Void Creates temporary
file

getChange userFile : File Void Specifies the change
the user has made if
it exists

countChanges Void Integer Return the number
of changes user has
made

saveToTemp userFile : File Void Saves the file to the
temporary file

readSavelnput Void Void Tests if the user has
pressed to save
button

clearTempFile Void Void Clears the
temporary file

sendModifyMessage | Void Void After the user has
reopened the file
after a crash, this
functions sends a
modification
message to the user

getTempFile Void File Returns tempFile

58

Class SourceManipulation:

Methods:
Method Name Parameters Return Type Description
getDesignFile designFile : File Void Reads the design
file
createtHTMLCode designFile : File Void Creates the html
code of the design
file
getAjaxItem designFile: File fileName : String Reads the ajax items
in the design file
readAjaxCode fileName : String Void Reads the AJAX
code of the specified
file.
readUserForm userForm: File Void Reads the file
created when the
user has filled the
form to make an
ajax action.
createJavaScriptCode | Void Void Creates JavaScript
code from the
related files.
Interface UndoableEdit:
Method Name Parameters Return Desciption
canUndo Void Boolean Tests whether undo
action can be
performed or not
canRedo Void Boolen Tests whether redo
action can be
performed or not
Undo Void Void Undo
Redo Void Void Redo

59

5.3.2 WYSIWYG Editor

CodeGenerat
r

ile
%reate+empFile{)

Qwrite ToFile()
QdeliteFile[}

<<imple|’nents>s

<<implements>5—

AjaxSuggestTextField

uery : string
form1 : GraphicObject

umberOfSuggestions - int
ode : string
values
@generateCode()
/l'\ 0.n

|
hasSuggestField

CanvasCore

ursorPosition - Point
bjectList]] : GraphicObject
ventList]] : EventObject

uggestField]] : AjaxSuggestTextField

|
EventObject
form1Action : int
form1 : string
form2 : string hasEvent
uery : string
ode : string b ‘n

@generateCode()
SyriteToXmi()

Constructor
initializes initial

Point
& xPosition - int
&pyPosition - int
$getxPosition()
@getyPosition()

L
M2

|
\ hasPasition
|

hasObject

0.n&

YgetProperties()
Ywirtual generateCode()

]
$generateDesignView()
YreadText()

R
A\

HtmITable

rowNumber : int
olumnNumber - int

width - int

height - int

lignCaption - string
&sbackgroundColor - string
&sborderThickness : int

ISpacing - int
IPadding : int
tableContents[][] : GraphicObject

60

CanvasCore Class:

Attributes of Class:
Attribute Name Attribute Type Description
cursorPosition class Point Stores the current position
of the cursor
objectList[] vector<class GraphicObject> The List of
GraphicalObject class
instances
eventList[] vector<class EventObject> The List of EventObject
class instances
suggestField[] vector<classAjaxSuggestTextField> The List of
AjaxSuggestTextField
class instances
Methods of Class:
Method Name Parameters Return Type Description
generateDesignView | string string Read the source code
and generate the
design view
readText void string Get the text input
from user
Graphic Object Class :
Attributes of Class:
Attribute Name Attribute Type Description
objectType int Stores the type of object
objectName string Strores the name of object
startPoint class Point Stores the start point
coordinates of object
endPoint class Point Stores the end point
coordinates of object
code string Stores the related code for
generating the Design view of
object
eventObject class EventObject If object is an ajax action
stores the eventObject of ajax
action
eventRole int If object is an ajax action

stores the role of ajax action

61

Methods of Class:

Method Name Parameters Return Type Description
getProperties void string returns the properties
of Graphical Object
virtual generateCode |void string virtual function for
creating code
according to the
properties.
EventObject Class:
Attributes of Class:
Attribute Name Attribute Type Description
form1Action int Stores the action type for ajax
action
form1 string Stores the info of first related
form
form2 string Stores the info of second
related form
query string Stores desired query for
custom ajax action
code string Stores code for custom ajax
action
Methods of Class:
Method Name Parameters Return Type Description
generateCode void string generates required
code for custom ajax
action
writeToXml void boolean writes the required
information of custom
ajax for reuse.
HtmlTable Class:
Attributes of Class:
Attribute Name Attribute Type Description
rowNumber int Stores the row number of
html table
columnNumber int Stores the column number of
html table
width int Stores the row number of

62

html table

height int Stores the row number of
html table

alignCaption string Stores the align info of html
table

backgroundColor string Stores the bg color info of
html table

BorderThickness int Stores the border thickness
info of html table

cellSpacing int Stores the cell spacing info
of html table

cellPadding int Stores the cell padding info of
html table

tableContents[][] string Stores the contents of rows
and column

Point Class:

Attributes of Class:

Attribute Name Attribute Type Description

xPosition int stores the line number
information

yPosition int stores the character
information

Methods of Class:

Method Name Parameters Return Type Description

getXpositon void int returns the xPosition

getYposition void int returns the yPosition

AjaxSuggestTextField Class:

Attributes of Class:

Attribute Name Attribute Type Description

query string It stores the sql query which
the user has entered to use the
AJAX application

forml class GraphicObject It stores the information of
which element the suggestion
will show

numberOfSuggestions int It stores the number of
suggestions

63

code string

It stores the JavaScript code
related to the AJAX action

Methods of Class:

Method Name Parameters Return Type Description

generateCode void string It generates the
necessary code for the
action.

CodeGenerator Interface:

Methods of Interface:

Method Name Parameters Return Type Description

createTempFile void boolean creates a temporary
file for sending codes
to Text Editor

writeToFile void boolean writes the codes

deleteFile void boolean delete the temporary
file after Text Editor
gets the codes

64

5.3.3 Database Editor, CVS Manager and FTP Manager

Accauntinfa

TuserMarme : String
Ternpassword | String
TeserverLocation : String

e

DatabaseAccountinfo

EdatabaseMame : String
EdatabaseType ; String

1

.1
==5indleton==
DatabaseCore

%errnmﬂessage - String
&yschemalist: DatabaseSchemal -
&suseraccount | DatabaseAccountinfo [Eptables : ArrayList _
EsqueryGenerator | QueryGeneratar &pschemahlarme : String
I%cnnnectinn JZonnection

&ystaternent : Statement /’;1?
EpresultSetlist : ResultSetinfal]

EpdatabaseCore : DatabaseCare
Qw:urrentlndex Cnteger

DatabhaseSchema

$getTableinfo)
PgetSchermalnfan
PronnectToMySaL)
®closeConnectiond
PyetErroressaged
Poxecuteuen)

FecreateFile)
FconnectToOracled

—

BupdateOperation) 1 ResultSetinfo

‘inaertDperatipnl:} BytableMame : String
®deleteOperation EpresultSet: ResultSet
1 Epcolumniames : ArraylList

Esouery : String

1

GueryGeneratar :generateUpdateQuewﬂ

Lery © Strin generateDeleteQueny)
%q " . ®oeneratelnsertuen

Byetouern) Sgetauen)

*generateCreateTabIeGuer‘y(}
*generateﬁlterTahleQuem}
*generateDrupTable@uewﬁ
*generateﬁelect@uewﬂ

65

EditTabledind ow

EscancelButtan - JButtan
&sapplyButton : JButton
%databaseCnre :DatabaseCare
Establelnfa : JTahle

DatabaseConnector FalterTablen

@hDStFiEId:JTE}t‘tFiEId
EsporField ; JTextField
EsuserMameField : JTexField
EppasswardField : JPasswordField
ExdbmsField : JComboBox
ﬂ;cancelauﬂnn - JButton o DatabaseCore
&sclearButton : JButtan
ExconnectButton : JButtan
&pdatabaseinstance : DatahaseCore
&pschemaField : JTexField

Sclearall)
$cetConnectioninfol)

MewTahleWindow
DatabaseWindow
D _ Eptahlelnfa : JTahkle
%malnaplltPane cJ8plitPane t%cancelEluttnn - JButtan
@bnﬁnmSplitPane s JSplitFane %createﬂunnn - JBUtton
&refreshButton - JBution EydatabaseCore : DatabaseCore
EexecuteButton : JBUtton
Esquerirea : JTexttrea YcroateTabled
EsresultPane : JTahbedPane
EeditButton - JButtan

&applyButton : JButton
EdiscardButtan : JButton
Edatabaselnstance - DatabaseCare
& schemaTree JTree

‘generateResultBeNiew(}
Ldiscard)
BrreateMewTablel
SeditTable(
PapplyChanges)
Pexecutelsertiuenyd

DatabaseConnector Class:

Attributes of the Class:

Attribute Name | Attribute Type | Description

hostField JTextField Text field for entering host name of the database
Server.
portField JTextField Text field for entering the port number of the

database server.

66

userNameField JTextField Text field for entering a username for connecting
to the database server.
passwordField JPasswordField | Password field for entering a password for
connecting to the database server.
dbmsField JComboBox A combo box for selecting which type of DBMS
(MySQL or Oracle) will be connected to.
schemaField JTextField Text field for entering a database for connecting to
the database server.
cancelButton JButton When pressed closes the connection screen.
clearButton JButton When pressed Clears all of the fields.
connectButton JButton When pressed a connection is tried to be
established using the entered information.
databaselnstance | DatabaseCore An instance of the class DatabaseCore. Used for
connecting to a database server.
Methods of the Class:
Method Name Parameters | Return Type | Description
clearAll void void Clears all of the text fields and the
password field.
setConnectionInfo void void Calls the appropriate connect method
of databaselnstance and sets the
connection if connection is successful
info.
EditTableWindow Class:
Attributes of the Class:
Attribute Name | Attribute Type | Description
tableInfo JTable Holds the column information of the table to be
editted.
cancelButton JButton When pressed closes the edit table window.
applyButton JButton When pressed applies the changes made to the table.
databaseCore DatabaseCore An instance of the DatabaseCore class.
Methods of the Class:
Method Name | Parameters | Return Type | Description
alterTable void void Applies the changes done to the table by

using databaseCore which uses its
generateQuery attribute’s
generateAlterTableQuery function and
then executes the query.

67

NewTableWindow Class:

Attributes of the Class:

Attribute Name | Attribute Type | Description
tableInfo JTable For entering information of the table to be created.
cancelButton JButton When pressed closes the new table window.
createButton JButton When pressed a new table with the entered
information is created.
databaseCore | DatabaseCore An instance of the DatabaseCore class.
Methods of the Class:
Method Name | Parameters | Return Type | Description
createTable void void Creates the table by using databaseCore
which uses its generateQuery attribute’s
generateCreateTableQuery function and
then executes the query.
DatabaseWindow Class:
Attributes of the Class:
Attribute Name | Attribute Type | Description
mainSplitPane JSplitPane Main split pane for splitting the window. Top part
holds the queryArea, executeButton and
refreshButtons. Bottom part holds bottomSplitPane.
bottomSplitPane | JSplitPane For splitting bottom part of the mainSplitPane into
two. Left part holds schemaTree. Right part holds
resultPane, editButton, applyButton and
discardButton.
refreshButton JButton When pressed resultPane is refreshed.
executeButton JButton Pressed to execute a user entered query.
queryArea JTextArea Text area for writing queries.
resultPane JTabbedPane Result of the last executed query.
editButton JButton When pressed table rows can be editted.
applyButton JButton When pressed changes made to rows of a table are
applied.
discardButton JButton When pressed discards the changes made to a
table’s rows.
schemaTree JTree Holds the information about the tables of the
schemas in a connected database server.
databaselnstance | DatabaseCore | Instance of the DatabaseCore class.

68

Methods of the Class:

Method Name Parameters | Return Type | Description
generateResultSetView | queryResult: | void Updates resultPane with the
ResultSet parameter it takes.
discard void void Discards changes made to rows
of a table.
createNewTable void void Opens new table window by
creating an instance of
NewTableWindow class.
editTable void void Opens edit table window by
creating an instance of
EditTableWindow class.
applyChanges void void Applies changes made to rows
of a table by using methods of
databaselnstance.
executeUserQuery query: void Calls executeQuery method of
String databaselnstance and passes
query as a parameter to it.

AccountInfo Class:

Attributes of the Class:

Attribute Name | Attribute Type | Description

userName String Holds the username used for connection.
password String Holds the password used for connection.
serverLocation String Holds the url of the server used for connection.

DatabaseAccountInfoClass:

Attributes of the Class:

Attribute Name | Attribute Type | Description
databaseName String Holds the name of the database connected to.
databaseType String Holds the type of the DBMS connected to.

QueryGenerator Class:

Attributes of the Class:

Attribute Name

Attribute Type

Description

69

| query | String | Holds the query generated.
Methods of the Class:
Method Name Parameters Return | Description
Type
getQuery void String | Returns the query.
generateCreateTableQuery | tableName: String | Generates a create table query
String, according to the parameters it
columnNames: takers and saves it into query.
ArrayList
generateAlterTableQuery | tableName: String | Generates an alter table query
String, according to the parameters it
new Values: takes and saves it into query.
ArrayList
generateDropTableQuery | tableName: String | Generates a drop table query and
String saves it into query.
generateSelectQuery tableName: String | Generates a select query
String according to the parameter it
takes and saves it into query.
DatabaseCore Class:
Attributes of the Class:
Attribute Name | Attribute Type Description
errorMessage String Holds the error message which is shown to
user.
schemalL.ist DatabaseSchema(] Holds an array of DatabaseSchema objects.
userAccount DatabaseAccountInfo | Holds account information wused when
connecting to database server.
queryGenerator | QueryGenerator Instance of class QueryGenerator.
connection Connection A connection session with a specified database.
statement Statement Used for executing a static SQL statement and
returning the results it produces.
resultSetList ResultSetInfo[] Array of ResultSetInfo objects.
databaseCore DatabaseCore Instance of DatabaseCore class. Used in
singleton design pattern.
currentIndex Integer Holds the current index value for resultSetList.
Methods of the Class:
Method Name Parameters Return Description
Type
createFile void Integer Creates a .php file with the
connection info written in it.
getSchemalnfo void ArrayList | Returns the tables in a schema.
connectToMySQL | owner:JFrame void Connects to a MySQL server.

70

connectToOracle | owner:JFrame void Connects to an Oracle server.
closeConnection void Integer Closes the database connection.
Returns 1 if successful, 0
otherwise.
getErrorMessage void String Returns errorMessage.
executeQuery query:String Integer Executes given query. Returns 1
if successful, 0 otherwise.
updateOperation tableName:String, | Integer Calls ResultSetInfo’s
rowInfo:ArraylList, generateUpdateQuery method and
columns:ArrayList gives the result to executeQuery.
insertOperation tableName:String, | Integer Calls ResultSetInfo’s
rowlInfo:ArrayList generatelnsertQuery method and
gives the result to executeQuery.
deleteOperation tableName:String, | Integer Calls ResultSetInfo’s
rowInfo:ArrayList generateDeleteQuery method and
gives the result to executeQuery.
getTablelnfo void ResultSet | Returns the result set taken from
DBMS.
DatabaseSchema Class:
Attributes of the Class:
Attribute Name | Attribute Type | Description
tables ArrayList Holds the tables in a database schema.
schemaName String Name of a schema.

ResultSetInfo Class:

Attributes of the Class:

Attribute Name | Attribute Type | Description
tableName String Holds the name of a table.
resultSet ResultSet Holds the rows of a table.
columnNames | ArrayList Holds the column names of a table.
query String Holds a query generated by an object of this class.
Methods of the Class:
Method Name Parameters Return | Description
Type
generateUpdateQuery | tableName:String, String | Generates an updates query
rowInfo:ArrayList, according to the parameters it
columns:ArrayList takes and returns it.
generateDeleteQuery | tableName:String, String | Generates a delete query

71

rowlInfo:ArrayList according to the parameters it
takes and returns it.

generatelnsertQuery | tableName:String, String | Generates an insert query

rowInfo:ArrayList according to the parameters it
takes and returns it.
getQuery void String | Returns query attribute.

5.3.4 Debugger

Debuggerinterface
&shreakPaintList
&variableList
Eseroessage
&scurrentLine

SsetBreakpointy
SgetBreakpoint?)
PstatDebugd
PctopDebugd
Pcotvariablen
Fgetvariablevalued
PstepOverd
Bstepinta)
SstepOut)
PgetTallStack)
PpauseDebuggingd
PrecumeDehugging

PyetErrarMessaged
Debugger Class:
Attributes of the Class:
Attribute Name | Attribute Type Description
breakPointList | ArrayList It stores breakpoints locations in a list.
variableList ArrayList It stores variables in a list.
errorMessage String Holds the error message which is shown to

72

user.

currentLine Integer Holds the currently executed line number.
Methods of the Class:
Method Name Parameters Return Description
Type
setBreakPoint lineNo: Integer Integer Sets the breakpoint location.
getBreakPoint 1d: Integer Integer Gets the breakpoint location.
startDebug void Boolean | It starts debugging. If it succeeds,
return true, else return false.
stopDebug void Boolean | It stops debugging. If it succeeds,
return true, else return false.
setVariable name: String Boolean Sets the variable that user wants
type: String to trace.
scope: String
getVariableValue | name: String String Gets current value of the variable.
type: String
scope: String
stepOver void Boolean Step over the breakpoint while
debugging. If it succeeds, return
true, else return false.
stepInto void Boolean | Step into the breakpoint while
debugging. If it succeeds, return
true, else return false.
stepOut void Boolean Step out the breakpoint while
debugging. If it succeeds, return
true, else return false.
getCallStack void Boolean | Gets current call stack of the
debugging program.If it succeeds,
return true, else return false.
pauseDebugging void Boolean | It pauses debugging. If it
succeeds, return true, else return
false.
resumeDebugging | void Boolean | It resumes debugging. If it
succeeds, return true, else return
false.
getErrorMessage | void String Returns errorMessage

73

5.3.5 CVS - FTP Connections

Accountinfo

Esuszerdame
Espaszsward
Epserverocation

CysAccountinfo

BprespositoryPath

YgetRespositoryPath()

$:etRespositornPath

1

1

Cwshlanager

EserrorMessage
puserfccount ; CvsAccauntingd

SyetErromiessagen
$ronnect
Ydisconnect)
ScheckoutFiled
ScommitFilen

CVSAccountInfo Class:

Attributes of the Class:

FtpAccountinfo
EftpPath

FgetFtpPath(
$cetftpPath

1

1

Fiphanager

T%errnrhnessage
%userﬂxccnunt: FtpAccountinfo

Sconnect)
Sdisconnect)
YyetErromiessagen
$sendFilen
SrequestFilen
‘requestBewerFilelnfm:}

Attribute Name | Attribute Type Description

repositoryPath | String Stores the path of the repository of the CVS
Server.

Methods of the Class:

Method Name Parameters Return Description
Type

getRepositoryPath | void String Sets the repository path.

setRepositoryPath | path: String void Gets the repository path.

74

CVSManager Class:

Attributes of the Class:

Attribute Name | Attribute Type

Description

userAccount CVSAccountInfo Stores the user account information to connect
to CVS Server.

errorMessage String Stores the error message that is shown to user.

Methods of the Class:

Method Name Parameters Return Description

Type

getErrorMessage void String Returns the error message.

connect void Boolean | Connects to CVS server. Returns
true if successful, false otherwise.

disconnect void Boolean | Disconnects from CVS server.
Returns true if successful, false
otherwise.

checkOutFile path: String File Requests the specified file from
CVS Server.

commitFile name: File Boolean | Commits a specified file to CVS
Server. Returns true if successful,
false otherwise.

FTPAccountInfo Class:

Attributes of the Class:

Attribute Name | Attribute Type Description

ftpPath String Stores the path of the FTP Server.
Methods of the Class:
Method Name Parameters Return Description

Type
getFtpPath void String Sets the ftp path.
setFtpPath path: String void Gets the ftp path.

75

FTPManager Class:

Attributes of the Class:

Attribute Name | Attribute Type Description

userAccount FTPAccountInfo Stores the user account information to connect

to an FTP Server.

errorMessage String Stores the error message that is shown to user.

Methods of the Class:

Method Name Parameters Return Description

Type

getErrorMessage void String Returns the error message.

connect void Boolean Connects to FTP server. Returns
true if successful, false otherwise.

disconnect void Boolean Disconnects from FTP server.
Returns true if successful, false
otherwise.

requestFile path: String File Requests a file from FTP Server.

sendFile name: File Boolean Sends a file to via FTP Server.
Returns true if successful, false
otherwise.

requestServerFilelnfo | void TreeModel | Gets the file information from
FTP Server.

76

5.3.6 GUI

FileMenu

EnewFileltern : JMenultem
EsopenFileltem - JMenultem
%closeFileltem - JMenultern
&saveFileltem : JMenultemn
%sa'u'eﬁsFileltem - JMenultern
EpexitSystemitem : JMenultemn
Qseparatnﬂ - JSeparatar
%separatn r2 : JSeparator
EstextEditorinstance : TextEditorCore

®additems()
YregisterActions()
%createShortcuts()
SnewFile()
%openFile()
%closeFile()
YsaveFile()
%saveFileAs()
Pexit()

EditMenu

&pundoltem : JMenultemn
Eyredoltemn : JMenultem
Escutitemn - JMenultem
&pcopyltemn : JMenultem
Eppasteltem : JMenultemn
Edeleteltern : JMenultem
Exfindltem : JMenultem
Esselectallitem : JMenultem
&yseparatort : JSeparator
t%separatnrz - JSeparator

®additems()
%registerActions()
%createShortcuts()
Pundo()

%redol)

Seut()

Scopy()

Ypaste()
Pdelete()

Sfind()
SselectAll])

a: TextEditorCore
{from GUI Architecture)

77

ProjectMenu

%debugstarted - boolean
Q}nemejedltem - JMenultemn
Q}UpenF’mjecﬂtem - JMenultem
EsrunProjectitemn - JMenultem
Esdebugltem - JMenultem
%stevaerltem - IMenultemn
%steplntoltem - IMenultemn
EstepOutitem - JMenultem
Q}separa‘[or - JSeparator

®addlterns()
$registerdctions()
%createShortcuts()
ScreateNewProject()
SopenProject()
SrunProject()
®debug()
SstepOver()
Pstepinto()
SstepOut()

:_\:;_____________

dl : Debuggerinterface
{from GUI Architecturs)

c: CwsManager
{frem GUI Architecture)

_____________:“3.

ToolsMenu

Q}databasel‘u‘lanagerltem - JMenultemn
Q}ﬂpl‘danagerltem s JMenultem

$additems()
YregisterActions()
%createShortouts()
*openDatabaseCtmnector(}
%openFTPConnector()

f: FtpMamager
{from G| Architecturs)

d: DatabaseCore
{firom GUI Architecture)

VersioningMenu

&sisConnected : boolean
&CVsManageritem : JMenultem
&scommititern - JMenultem
&scheckoutitemn - JMenultem

®additern()
%registerActions()
®create Shortcuts()
%openCvsManager()
Scommit()
®checkOut()

78

This class’
operations open
the help file

'
'
.
'
'
'
'
'
'

HelpMenu

ExhelpContentsitem : JMenultem
Esaboutitern - JMenultem

%additemsi)
‘registerﬁctinns(}
¥createShortcuts()
%displayHelpContents()
LdisplayAbout()

ToolBar

e CanvasCore
{from GUI Architecturs)

.,i _________

%newFileElutlon : ToolBarButton
Q}newF'rojectElutmn - ToolBarButton
Q}openpmjectElutlon : ToolBarButton
%saveAlIElutton : ToolBarButton
EscutButton : ToolBarButton
Q)cupyElutlon - ToolBarButton
Q}pasteﬂuﬁon - ToolBarButton
%undoElutton : ToolBarButton
%redoEluﬂon : ToolBarButton i
&sfindButton : ToolBarButton
Q}runElutton : ToolBarButton
EstartDebugButton - ToolBarButton
%stopDebugEluﬂon - ToolBarButton
%tenEditorlnstance : TextEditorCore

a: TextEditorCore
{from GU| Architecturs)

dl . Debuggerinterface
{from GUI Architectur=)

FileTreeModel

%addButtons()

®newFile()

%openFile() -.

SnewProject()

Ssavedll()

%undo()

Sreda()

®find()

®cut()

Scopy()

%paste()

%run()

@startDebua()

%stopDebua()

WorkspaceView Frojeciview
&isCopied
. YopenProject()
:GDEHF”.ED YcloseProjectview()
‘deletane(} ®newProjeci()
closeFile() & ;
"cnpyFiIeﬂ deltﬂ:terJecﬂ}
%pasteFile()
®newFile() S
4y L Eptree

a: TextEditorCore
{from GUI Architecture)

79

¥addModes()
YgetMinimumSize()
YgetPreferredSize()

MyMainWindow

&stoolBar : MyToolBar
%menuElar - MyMenuBar
t%debuggerF'anel - JPanel
&ysplittane : MySplitPane
Q}prnjectF'ane - ITabbedPane
%prnperﬂesF‘ane - JTabbedPane
&fileTabPane : JTabbedPane
&filePanel - JPanel
&ppalettePane : MyPalette
t%prnpertieswmdnw: HTMLTahle
t%eventswmduw : EventTable
Q}dnmlnspectanane :DomPanel
Q}CEIIStacWiew D CallStackTable
&pwatchView : WatchTable
&fileTab : JTabbedPane
&pviewTab - JTabbedPane
&scodeView : MyEditorPane
Q}t:lesign‘ufiew: MyEditorPane
&sbrowserView : JPanel

$initSplittane()
¥initComponents()
SinitPanel()
WinitFileTab()
¥initviewTab()
%initDebugger()
YinitTabs()
%sefTreeModel()
SgetCodeView()
%getDesignView()
PgetFileTab()

CodeView

DesignView

$getSelectedText()

$getSelectedComponent()
%deleteComponent()
%copyComponent()
%pasteComponent()
%updateComponent()

SdeleteText()
~t:np].rText()
YpasteText()
RgoToMNumber()

%showBreakPoint()

|
\
.
;
=

e CanvasCore
{from GLI Architecture)

80

MumberedEditorkit

gformatter : MumberFormat

$getviewFactony()
SgetPreviousLineCount()
SpaintChild()
$setvalue()

.
.
.
~y

a: TextEditorCore
{from G| Architecture)

ProperiesWindow

& columnName : String []
&rowData : Object[][]

¥ getSelectedComponent()
% showProperies()
Breadinput()
®changeProperties()
®isCellEditable()

AddAjaxActionForm

¥showGraphicObjects()
YshowEvents()
YreadSqlQuery()
YaddajaxAction()

InsertdjaxWindow

YshowForm1()
YshowForm2()
WshowEvents()

Ty b

e CanvasCore
{from GUI Architecturs)

"
[
"
.

EventsWindow

&ycolumnName : String []
&srowData : Object[][]

%getSelectedComponent()
%showEvents()
Preadinput()
%changeEvents()
%¥isCellEditable()

81

CallStackModel

&scolumnMNames
&rowData

¥isCellEditable()

Dominspector

EydomTree
&nodeMamelabel
EsnodeTable
ExnodeValueTextField
EytableScrollPane
EytreeScrollPane

%initComponents()
%showDom()
%getSelectedMode()
%showSelectedMode()

DebuggerView

& stackScrollPane
EbstackTable
&swatchScrollPane
&swatchTable

SinitComponents()
%getvariable()
SshowVariable()
%updateStackView()

B
{__________
™

dl : Debuggerinterface
{from GUI Architecturs)

DatabaseConnectionWindow

¥ getAccountinfol)
“getDatabaseOperation(}
%connect()
@disconnect()

WatchTableMaodel

EscolumniNames
EsrowData

%isCellEditable()

FtpConnectionWindow

d: DatabaseCore
----- :-> {from GUI Architecturs)

CvsConnectionWindow

%geticcountinfo()
%connect()

- - - {from GU| Architectura)

c: CvsManager

82

SgetAccountinfol)
SgetFile()
®sendFile()
Sconnect()
%disconnect()

i

f: FipManager
{from GUI Architecturs)

Class Diagram Dictionary of GUI

FileMenu

Attributes of the Class

Attribute Name Attribute Type Description

newFileltem JMenultem New File choice of File Menu

openFileltem JMenultem Open File choice of File Menu

closeFileltem JMenultem Close File choice of File Menu

saveFileltem JMenultem Save File choice of File Menu

saveFileAsltem JMenultem Save File As choice of File Menu

exitSystemlItem JMenultem Exit choice of File Menu

separator] JSeparator Separator of File Menu

separator2 JSeparator Separator of File Menu

textEditorInstance TextEditorCore Instance of Text Editor

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to File Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of File Menu

newFile() - File Creates a new file and invokes
TextEditorCore

openFile() - File Invokes TextEditorCore to open a file

closeFile() - void Invokes TextEditorCore to close file

saveFile() - void Invokes TextEditorCore to save file

saveFileAs() - File Invokes TextEditorCore to save file
as another file

exit() - void Invoke exit function of system

EditMenu

Attributes of the Class

Attribute Name Attribute Type Description

undoltem JMenultem Undo choice of Edit Menu

redoltem JMenultem Redo choice of Edit Menu

cutltem JMenultem Cut choice of Edit Menu

copyltem JMenultem Copy choice of Edit Menu

pasteltem JMenultem Paste choice of Edit Menu

deleteltem JMenultem Delete choice of Edit Menu

selectAllltem JMenultem Select All choice of Edit Menu

findItem JMenultem Find choice of Edit Menu

separatorl JSeparator Separator of Edit Menu

separator2 JSeparator Separator of Edit Menu

83

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to Edit Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Edit Menu

undo() - void Invokes Text Editor’s undo function

redo() - void Invokes Text Editor’s redo function

cut() - void Invokes Text Editor’s cut function

copy() - void Invokes Text Editor’s copy function

paste() - void Invokes Text Editor’s paste function

delete() void Invokes Text Editor’s delete function

find() - void Invokes Text Editor’s find function

selectAll() - void Invokes Text Editor’s selectAll funct

ProjectMenu

Attributes of the Class

Attribute Name Attribute Type Description

newProjectltem JMenultem New Project choice of Project Menu

openProjectltem JMenultem Open Project choice of Project Menu

runProjectltem JMenultem Run Project choice of Project Menu

debugltem JMenultem Debug choice of Project Menu

stepOverltem JMenultem Step Over choice of Project Menu

stepIntoltem JMenultem Step Into choice of Project Menu

stepOutltem JMenultem Step Out choice of Project Menu

separator JSeparator Separator of Project Menu

debugStarted() int Stores debugging information.

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to Project Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Project Menu

createNewProject() - Project Invokes related function to create
project

openProject() - Project Invokes related function to open a
project

runProject() - void Invokes related function to run
project

startDebug() - void Invokes DebuggerInterface to debug

stepOver() - void Invokes Debuggerlnterface to step
over

stepInto() void Invokes Debuggerlnterface to step
into

stepOut() - void Invokes Debuggerlnterface to stepout

84

ToolsMenu

Attributes of the Class

Attribute Name Attribute Type | Description

databaseManagerltem JMenultem Database Editor choice of Tools Menu

ftpManagerltem JMenultem FTP Connector choice of Tools Menu

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to Tools Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Tools Menu

openDatabaseConnector() | - void Shows Database connection
console and invoke DatabaseCore

openFTPConnector() - void Shows FTP connection console
and invoke FTPManager

HelpMenu

Attributes of the Class

Attribute Name Attribute Type Description

helpContentsltem JMenultem Help Contents choice of Help Menu

aboutltem JMenultem About choice of Help Menu

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to Help Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Help Menu

displayHelpContents() | - void Shows help contents

displayAbout() - void Shows information about IDE

VersioningMenu

Attributes of the Class

Attribute Name Attribute Type Description

CVSManagerltem JMenultem CVS Manager choice of Versioning Menu

commitltem JMenultem Commit choice of Versioning Menu

checkoutltem JMenultem Checkout choice of Versioning Menu

isConnected() boolean Stores CVS connection information.

85

Methods of the Class

Method Name Parameters | Return Type | Description

addItems() - void Adds items to Versioning Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Versioning Menu

openCVSManager() | - void Invokes CVS Manager to open CVS
window

commit() - void Invokes CVS Manager to commit file

checkout() - void Invokes CVS Manager to checkout file

ToolBar

Attributes of the Class

Attribute Name Attribute Type Description

newFileButton ToolBarButton New File button of Tool Bar

newProjectButton ToolBarButton New Project button of Tool Bar

openProjectButton ToolBarButton Open Project button of Tool Bar

saveAllButton ToolBarButton Save All button of Tool Bar

cutButton ToolBarButton Cut button of Tool Bar

copyButton ToolBarButton Copy button of Tool Bar

pasteButton ToolBarButton Paste button of Tool Bar

undoButton ToolBarButton Undo button of Tool Bar

redoButton ToolBarButton Redo button of Tool Bar

findButton ToolBarButton Find button of Tool Bar

runButton ToolBarButton Run button of Tool Bar

startDebugButton ToolBarButton Start Debug button of Tool Bar

stopDebugButton ToolBarButton Stop Debug button of Tool Bar

textEditorInstance TextEditorCore Instance of Text Editor

Methods of the Class

Method Name Parameters | Return Type | Description

addButtons() - void Add items to Tool Bar and bind
actions.

newFile() - void Creates a new file and invokes
TextEditorCore.

newProject() - void Creates a new project and invokes
related function.

openFile() - void Invokes TextEditorCore to open file.

saveAll() - void Invokes TextEditorCore to save files

undo() - void Invokes Text Editor’s undo function

redo() - void Invokes Text Editor’s redo function

find() - void Invokes Text Editor’s find function.

cut() - void Invokes Text Editor’s cut function

copy() - void Invokes Text Editor’s copy function

paste() - void Invokes Text Editor’s paste function

86

run() - void Invokes related function to run
project.
startDebugging() - void Invokes DebuggerInterface to start
debugging.
stopDebugging() - void Invokes DebuggerInterface to stop
debugging.
MyMainWindow
Attributes of the Class
Attribute Name Attribute Type Description
toolBar MyToolBar Tool Bar part of GUI
menuBar MyMenuBar Menu Bar part of GUI
debuggerPanel JPanel Debugger part of GUI
splitPane MySplitPane Split Pane part of GUI
splitPaneleft MySplitPane Split Pane part of GUI
splitPaneRight MySplitPane Split Pane part of GUI
middle MySplitPane Split Pane part of GUI
right MySplitPane Split Pane part of GUI
debuggerSplitPane MySplitPane Split Pane part of GUI
projectPane JTabbedPane Project part of GUI
propertiesPane JTabbedPane Properties part of GUI
fileTabPane JTabbedPane File view of GUI
filePanel JPanel File Panel of GUI
palettePane MyPalette Palette part of GUI
properties Window HTMLTable HTML table of Properties part
eventsWindow EventTable Event part of GUI
domlInspectorPane DomPanel Dom Inspector part of GUI
callStackView CallStackTable Call Stack View part of GUI
watchView WatchTable Watch View part of GUI
fileTab JTabbedPane Tabbed File View of GUI
viewTab JTabbedPane Code-Design-Browser Views
codeView MyEditorPane Code View of GUI
designView MyEditorPane Design View of GUI
browserView JPanel Browser View of GUI
Methods of the Class
Method Name Parameters | Return Type | Description
initSplitPane() - void Initializes main window and split
it using split panes.
initComponents() - void Initializes and place all GUI
components in main window.
initPanel() - void Initializes File and View tabs of
Code-Design-Browser part.
initFileTab() - void Initializes File Tab of Code-
Design-Browser part

87

initViewTab() - void Initializes View Tab of Code-
Design-Browser part
initDebugger() - void Initializes debugger view of GUI
initTabs() - void Initializes tabs of Project-
Workspace and Properties-Event
setTreeModel() URL : JScrollPane Provides a tree structure for
string Project and Workspace view.
getCodeView() - MyEditorPane | Places Code View for Text Editor
getDesignView() - MyEditorPane | Places Design View
getFileTab() - JTabbedPane | Places File Tab of Code-Design-
Browser part
DesignView
Methods of the Class
Method Name Parameters | Return Type | Description
getSelectedComponent() - void send selected component to
CanvasCore.
deleteComponent() - void Invokes CanvasCore to delete a
component.
copyComponent() - void Invokes CanvasCore to copy a
component.
pasteComponent() - void Invokes CanvasCore to paste a
component.
updateComponent() - void Invokes CanvasCore to update a
component.
CodeView
Methods of the Class
Method Name Parameters | Return Type | Description
getSelectedText() - void send selected text to TextEditorCore.
deleteText () - void Invokes TextEditorCore to delete text.
copyText () - void Invokes TextEditorCore to copy text.
pasteText () - void Invokes TextEditorCore to paste text.
goToNumber() - void Invokes TextEditorCore to go selected
line.
showBreakPoint() - void shows breakpoints of Debugger
NumberedEditorKit
Attributes of the Class
Attribute Name Attribute Type Description
formatter NumberFormat Describes numbers of line of Code View

Methods of the Class

Method Name Parameters | Return Type | Description
getViewFactory() - ViewFactory | Creates a new NumberedViewFactory
instance
getPreviousLineCount() | - int Counts previous lines
paintChild() g : Graphics | void Writes the line number of Code View
r :Rectangle
n:int
setValue() value:Object | void Set formatter’s value
PropertiesWindow
Attributes of the Class
Attribute Name Attribute Type Description
columnName String [] Describes column name of Properties Table
rowData Object [][] Describes row data of Properties Table
Methods of the Class
Method Name Parameters | Return Type | Description
getSelectedComponent() | - void send selected component to
CanvasCore.
showProperties() - void show properties of component.
readInput() - void gets input from user.
changeProperties() - void update properties of selected
component.
isCellEditable row : int Boolean Returns if cell is editable or not

column : int

89

EventsWindow

Attributes of the Class

Attribute Name Attribute Type Description
columnName String [] Describes column name of Events Table
rowData Object [][] Describes row data of Events Table
Methods of the Class
Method Name Parameters | Return Type | Description
getSelectedComponent() | - void Get selected component CanvasCore.
showEvents() - void show events of component.
readInput() - void gets input from user.
changeEvents() - void update events of selected component.
isCellEditable row : int Boolean Returns if cell is editable or not
column : int
InsertAjaxWindow
Methods of the Class
Method Name Parameters | Return Type | Description
showForm1() - void shows the form to insert objectl.
showForm?2() - void shows the form to insert object2
showEvents() - void shows events of inserted objects.
AddAjaxActionForm
Methods of the Class
Method Name Parameters | Return Description
Type
showGraphicObjects() - void shows the list of objects.
showEvents() - void shows events of inserted
objects.
readSqlQuery() - void gets the SQL query input of
user.
addAjaxAction() - void invokes system to add new
AJAX object.

90

ProjectView

Methods of the Class
Method Name Parameters | Return Type | Description
openProject () - void Invokes related function to open a
project.
closeProject () - void Invokes related function to close a
project.
newProject() - void Creates a new project and invokes
related function.
deleteProject () - void Invokes related function to delete
project.
WorkspaceView
Attributes of the Class
Attribute Name Attribute Type Description
1sCopied boolean Describes if selected project is copied to
workspace or not
Methods of the Class
Method Name Parameters | Return Type | Description
openFile() - void Invokes TextEditorCore to open a file.
deleteFile() - void Invokes TextEditorCore to delete a file.
closeFile() - void Invokes TextEditorCore to close a file.
copyFile() - void Invokes TextEditorCore to copy a file.
pasteFile() - void Invokes TextEditorCore to paste a file.
newFile() - void Creates a new file and invokes
TextEditorCore.
FileTreeModel
Attributes of the Class
Attribute Name Attribute Type Description
tree JTree tree structure of Files in WorkSpace

91

Methods of the Class

Method Name Parameters Return Description
Type
addNodes() currentTop : void Adds new files to file tree
DefaultMutableTreeNode
dir : File
getMinimumSize() | - Dimension | Returns min size of tree
getPreferredSize() | - Dimension | Returns preferred size of
tree
DebuggerView
Attributes of the Class
Attribute Name Attribute Type Description
stackScrollPane JScrollPane Scroll pane of call stack view
stackTable JTable Call stack view table
watchScrollPane JScrollPane Scroll pane of watch view
watchTable JTable Watch view table
Methods of the Class
Method Name Parameters | Return Type | Description
initComponents() - void Initialize Debugger components
getVariable() - void Gets the entered varible information
showVariable() - void Shows information of variable.
updateStackView() | - void Invokes DebuggerInterface to update
program stack.
CallStackModel
Attributes of the Class
Attribute Name Attribute Type Description
columnName String [] Describes column name of CallStack Table
rowData Object [][] Describes row data of CallStack Table
Methods of the Class
Method Name Parameters | Return Type | Description
isCellEditable row : int Boolean Returns if cell is editable or not
column : int

92

WatchTableModel

Attributes of the Class

Attribute Name Attribute Type Description
columnName String [] Describes column name of Watch Table
rowData Object [][] Describes row data of Watch Table
Methods of the Class
Method Name Parameters | Return Type | Description
1sCellEditable row : int Boolean Returns if cell is editable or not
column : int
DomlInspector
Attributes of the Class
Attribute Name Attribute Type Description
DomTree JTree Tree structure of DOM inspector
nodeNameLabel JLabel Node Name label of DOM inspector
nodeTable JTable Table of nodes in DOM inspector
nodeValueTextField JTextField Text field that shows value
tableScrollPane JScrollPane Scroll pane for table of DOM inspector
treeScrollPane JScrollPane Scroll pane for tree of DOM inspector
Methods of the Class
Method Name Parameters Return Description
Type
initComponents () - void Initialize DOM inspector
components
showDomy() tree : void Bind actions to menu items
DefaultMutableTreeNode
getSelectedNode() - void Gets the selected node
information
showSelectedNode() | - void Shows information of selected
node.

93

CvsConnectionWindow

Methods of the Class

Method Name Parameters | Return Type | Description

getAccountInfo() - void Gets input of connection information

from user.

connect() - void Invokes CVSManager to connect.

FtpConnectionWindow

Methods of the Class

Method Name Parameters | Return Type | Description

getAccountInfo() - void gets input of connection information
from user.

getFile() - void gets file information from user and
invokes FtpManager to get file.

sendFile() - void gets file information from user and
invokes FtpManager to send file..

connect() - void Invokes FtpManager to connect

disconnect() - void Invokes FtpManager to disconnect.

94

5.4 Activity Diagrams

5.4.1 Text Editor

95

5.4.2 WYSIWYG Editor

——
N R
=% Find Object

X

Create Ajax Action
Instance

Element Instance

L GenerateDasign'View [if ajaxdetion]

F'rupen'ms\h}'indow J

InsertajadNindow L

96

5.4.3 Database Editor

97

544 CVS-FTP

CvsManager

connect

Give Ermror
Mess_age

ftrue

i

< disconnect <check0ut#iqe N commitFile)
. J /N b

getFile

true

98

true

99

requestServerfi
lelnformation

getTreeModel

6. GUI DESIGN

6.1. Overview of GUI

“GUI Design” is one of the most important parts of our project because it provides the
permanent interaction of user with Integrated Development Environment. “Sihirbaz” has to
provide developers a user-friendly environment which they can create interactive and rich web
applications especially using AJAX actions. We designed a GUI that supports all features of
our IDE in a user-friendly way and also view of our IDE should be nice-looking. We have
investigated existing Development Environments such as “Aptana”, “Tibco” and “JSE8” to be
able to identify our design as an applicable combination of these well-designed tools. As
stated before, we have already determined our detailed GUI functional requirements mainly in
“Initial Design Report”. We revised again our GUI to provide users more usability before
writing the “Final Design Report”.

Consequently, we have started to design and coding GUI of our development environment
and it has almost finished. We have implemented nearly all functionalities that we stated in
“Initial Design Report”. We have also started to implement “Database Editor” module of our
project so GUI of “Database Connection” window and “Database Editor” have already
finished. During implementation our project, according to our needs, we have made and also
we will probably make some refinements about GUI of “SiHiRBAZ”.

As we decided to implement our project by using JAVA, we have used “JAVA Swing”

package while implementing GUIL

100

6.2 GUI Requirements

* User can see “Code”, “Design” and “Browser” views in the middle of main window,

each one will be placed in a different tab. S/he will be able to switch between these tabs.

* When user chooses “Code” tab, s/he will be able to write his/her source code with the
help of a featured text editor.
o If user right clicks in the “Code” view, s/he will be able to perform “Undo”,

“Redo”, “Save” and “Cut”, “Copy”, “Paste” actions.

* When user chooses “Design” tab, s/he will create graphical design of his/her project by
using a WYSIWYG editor.
o If user right clicks in the “Design” view, s/he will be able to perform “Undo”,

“Redo”, “Save” and “Cut”, “Copy”, “Paste” actions.

* When user chooses “Browser” tab, s/he will be able to see his/her application in an

embedded browser.

» User can see “Project” and “Workspace” view at the left of “Code/Design” view, in

tabbed structure.

* When user chooses “Project” tab, s/he will see all projects of development environment
and select by double clicking any of them. If user selects one of these projects, that
project will be set as current project and appears in “Workspace” view.

o If user right clicks in the “Project” view, s/he will be able to perform “New”,

“Open”, “Edit” and “Delete” actions.

o User will be able to expand and enclose the hierarchical tree structure of

projects.

101

* When user chooses “Workspace” tab, s/he will see current project and its files that s/he
creates and will probably run. If user selects one of these files by double clicking on it,
that file will be ready for editing or running and appears in “Code” view. User will also be
able to see JavaScript variables and functions of classes of files.

o If user right clicks in the “Workspace” view, s/he will be able to perform

“New”, “Open”, “Edit” and “Delete” actions for current project’s files.

» User will be able to see “DOM Inspector” view (Outline) just below the “Project /
Workspace” view.
o When user chooses “DOM Inspector” view, s/he will see and reach all nodes
which are tags of HTML/XML document of current project. If user chooses one of
components by double clicking on it, that component's appearances will be
highlighted in editor.
o There is also a table that shows “Node Name” and “Node Value” in “DOM
Inspector” part of GUIL

* User will be able to see “Palette” view at the right of the “Code/Design” view. There are
HTML and JavaScript components and AJAX Actions that are created before for the ease
of user in this view.
o If user selects one of these components by clicking the icon of component and
put it on the “Design” view (drag and drop), that component will be added to
design and also its source code will be added to the file in “Code” view.
o If user wants to add a new AJAX action to the palette (the one that s/he creates
or benefits from another source), s/he will click “Add New AJAX Action” button,
and a window will be open for user to write the source code of action to be added.
o After making required connection and configurations about action, user will
clicks “Add” button on window and new AJAX component will be added to

palette.

102

» User will be able to see “Properties” and “Events” views that are in table structure just
below the “Palette” view in tabbed structure.
o User will define his/her component’s properties (name, type, width, height,
action etc.) by using “Properties” table.
o User will define his/her component’s events (handlers, actions) by using
“Events” table.
o If user will click any cell of “Properties” or “Events” table, that cell will be

ready to edit or update.

» User will be able to see “Debugger” view at the bottom of main window, with two tables
which are “Call Stack” and “Variables” views.
o In “Call Stack” view, user will be able to see variables and functions currently
placed in program stack.
o In “Variables” view, user will be click a cell, write name of the variable that
s’he want to trace, and s/he will be able to see value of it during program flow.
o User will be able to add breakpoints at the line which is just left of “Code”

view.

» User will be able to see “Database” view if s/he clicks to “Database Editor” from Tools
submenu of “Menu Bar” and connects his/her database without any problem.
o When user clicks “Database Editor”, “Database Connector” dialog opens and
gets information from user. Needed information is type of database (MySQL or
Oracle), Server Host, Port, Username, Password and Schema.
o There are “Connect”, “Clear” and “Cancel” buttons in “Database Connector”
dialog. After filling required fields, user clicks “Connect” button to connect stated
database and schema. S/he also can use “Clear” button to clear all form.
o If request is accepted by DBMS, “Database Editor” view is shown to user to
interact with his/her database.
o If request is denied system shows an error message and request account

information again.

103

o After user connects to a database, schemas in that database will be shown to
user at the left of the page. User can select a schema among the list.

o After a schema is selected its tables are shown as selectable items in tree view.
User can select a table to view or modify.

o After a table is selected its rows and columns are shown at the screen in table
view at just right of the schema view.

o User can select any row or column (attributes) in the tables by clicking on.

o If cell is empty user can write new value for that attribute, if it has a value, s/he
can change it by using “Edit” icon, or discard the change by clicking “Discard”
icon. Finally changes are applied by clicking “Apply” icon

o If user wants to delete an entry in a cell, s/he can right click and select “Delete”
option to clear the selected cell.

o There is also “Refresh” button to refresh the tables after applying the recent
changes.

o If user wants to execute his/her query by using the query window on the top of
“Database Editor” view, s/he will write query and click “Execute” button to get

the result of query.

* User will be able to see “Menu Bar” on the top of the main window.
o If user selects “File” submenu of “Menu Bar”, s/he can perform “New File”,
“Open File”, “Close File”, “Save File”, “Save File As” and “Exit”.
o If user selects “Edit” submenu of “Menu Bar”, s/he can perform “Undo”,
“Redo”, “Cut”, “Copy”, “Paste”, “Delete”, “Select All” and “Find” actions.
o If user selects “Project” submenu of “Menu Bar”, s/he can perform “New
Project”, “Open Project”, “Run Project”, “Start Debugging” and “Step Over”,
“Step Into”, “Step Out” actions.
o Ifuser selects “Tools” submenu of “Menu Bar”, s/he can use “Database Editor”
to connect database or send his/her files by using “FTP Connection” option.
o If user selects “Versioning” submenu of “Menu Bar”, s/he can use “CVS

Manager”. User can easily “Commit” or “Check-out” his/her files.

104

o If user selects “Help” submenu of “Menu Bar”, s/he can choose “Help

Contents” or “About”.

* User can to see “Toolbar” on the top of the main window, just below the Menu Bar.
o Ifuser clicks any icon on the toolbar, s/he can perform the action of that icon.
o Possible icons that are shown on the toolbar are, “New File”, “New Project”,
“Open”, “Save File”, “Cut”, “Copy”, “Paste”, “Undo”, “Redo”, “Find” “Run”,
“Start Debug” and “Stop Debug”.

* If user runs his/her application or chooses “Preview in selected browser” option, s/he

will also be able to see application in an external browser.

» Efficient keyboard shortcuts are provided for user.
o New (CTRL + N)
o Open (CTRL + O)
o Save (CTRL +S)
o Save As (CTRL + Shift + S)
o Find (CTRL + F)
o Cut (CTRL + X)
o Copy (CTRL + C)
o Paste (CTRL + V)
o Select all (CTRL + A)
o Undo (CTRL + Z)
o Redo (CTRL +Y)

105

» Keyboard shortcuts for pause, resume, step in/over/out, break will be provided.
o Break (Pause)
o Go (F5)

Step into (F11)

(@)

(@)

Step over (F7)
Step out (F8)

(@)

* Powerful keyboard navigation in the file system browser is allowed.
o User will press 'ALT' and the file menu fill be opened.

o User will use arrow keys to navigate on the menu.

106

6.3. Screenshots of GUI

6.3.1 “Code”, “Design” and “Browser” views

In this part, screenshots of all GUI modules are shown.

deneme.hhﬂllkndadLhth

oo -1 Tvon s L) D

<html>

<head>

<titlexStudent</title>

</head-

<font face = "comicsans ms™ color = "pink”

<body bgcoolor = "purple’™>

<hl aligm="center”>This is heading 1</hl>
<P

This text 13 a link to a page on

this Web site.

< pF

<hd>Table headers:</hd>
<table border="1"
bgcolor = "white">
< Er-
<the-Name< / the
<th>Telephone</th>
<th»>Telephone< /the
<fTE>
< Lr
<tdrfulva</ods
<tdx1347758</td>
<tdrxhos< /ol

>

Code View | Design View || Browser View

107

6.3.2 “Project” and “Workspace” views

r&:'il Hew Project u@ﬁ

Select a Project

S l Workspace | ﬁ & project with this name already exists,

- =
-4 bin Project: Marne ! |Deneme| |
h cam
E:l images Direckary | and Settingsi Tayfun TekiniDeskiop |
E] javax
& lookandfecl
%[00 META-INF A8 Project
#- et WEB Project
=10 oracle PHP Project
EJ ord Javascript Praject
e .classpath -
o project
toe g build,3eml
o classes12.jar M

6.3.3 “DOM Inspector” view

.]

DOM Inspector

Mode Mame | |

Mode Mame Mode Value

objectl

Qang

E} Docurnent

=3 HTML
=1 HEAD
b & TITLE
-1 BODY

108

6.3.4 “Palette” view

“Palette

Built-In AJAX Actions

SERERE
B E = [
ERE

HTML
N EIERE
SERCRE
ZENERE

6.3.5 “Properties” and “Events” views

. 3

Properties l E'u'ents|
Property Value
|Mame mytable
1d 1
of rows 5
of columns 3
Width S0
[Height 50
[|Align caption center
| Background color | I
|Border thickness |1
Cell padding 1
Cell spacing]

109

. 3

| Prnperties[Events l

Function Action
on Focus Mo Action
an Click |5&Iect{]l

6.3.6 “Debugger” view

-

~Diebugger View

Call Stack | walue | Variable Name

| walus

Qlma

|SImD

6.3.7 “Menu Bar” & “Tool Bar”

Fil= Edit Project Tools Versioning Help

LPEEF¥RBREBACLODD

6.3.8 “Database Connector”

~Conneck ko a server instance
Server Hosk: |Incalhost |
Port: (3306 |
Username: |r::|c|t |
Passward: | (LT |
schema: |ceng352 |
[Connect] [Clear] [Cancel]

110

6.3.9 “Database Editor”

x

Enter query 2 =
SELECT * FROM Emplyee; W w

Execute Refrazh

; Eichemas ResulkSetl
#1-15) Schemas'ceng3so

=5 Schemas\ceng3s? ;dentlityl__l'-llumher l_!=irslt_l'-lame _Lgst_l'-lame '"y\n'age _HuurSJer_Week
L4 Schemasiceng3Sz\Department | || 12546535602 Ahmet Kalpar 1750 40
-4 Schemas\ceng3s2\DeptLocation 15645659625 Huseyin Mesteroglu 1750 40
- # Schemasiceng3Sz2|Emplavee 12356573950 fdnan Paltak. 1250 30
~# Schemasiceng3s2!Student 132564565834 Zeynep i elikkal 2000 40
EI I2) Schemast b

Ellfﬂ Schemas! e

(—| fm | [&pply Chianges Discard Changes

111

6.3.10 Final view of GUI

Il Guneds |23

A

SUONIY XYY Ul-}ing
33EEd -

1 Bupped |23 | 2NER Swep sjqeten [| anEn | HIEIS ED
ﬁ..mmm:v_u__.z JSpicH malp a266ngag. |
uoides ubiy | Maip Jasmoug. __ w2ip ubisag M2l 2poD

05 WBERH| —

0s LRI, E P/ FEOAPIF oF
£l sUWINOD JO0 # <PI/FRCLLFET<PA Pz
= SMO1 JO # <pa/RAINISpAs oz
1 PI 13> =7
: m.._m_mu_.}.E SWERE <1/ 17
| anep | ELm_n._En_ A FEuods TR LA oz
51U2A7 | saruedodd i
iy S/ FEWEAIE 8T
] <A3> 4T
<217, = I0Toafd ot
WwTW=32RI00 2TAEA= 57
<pU/>i8I12pE3 STMELDGU> BT
df> 7T
[] 3918 q20 ST TT
uo afed v 03 HUTT ¥ ST 3H31 STUL (T
<, Ty - =2hedim, =323 B> g
<d> g
<TW/>T PUTpERIY ST STULL,T3IUI2,,=ubITe TU>
= <, 27dand,, = ao7o0bq Epoq> g
<, UTd, = I0T02 LW EUREITWOD, = 22E] JU0I> g
PEIY/ = F
m E <ATATA/FUSPNAS<ETATI> ¢
PEIU> 7
.ﬁ LTWAY> T

4008 O)-®

JIL e

avaH £-E
WIHE-E
uzwnaeg 3

SrMEf POl | BWEN BPON

2WER 2poy
Jojaedsur Woag-

v

Je('|bsAw &
JENIDIT e
ONIADOD
JE['Z15255E)7 4
[png g
eloid: @
edsse 4
bao -3

320 Dm_

=} ﬂm_

AN 13w -3
pespuesion| -
*ENE] Dm_
sabew Dm_
wo3 D...A__

ug #

_wﬁz._nmns_ _ w3y Buw=U=p

[s2edstioMm _ sypaloug

ECOILEEASED

deH Buloisiss

spo) pelod W3 3|

1xE]

112

7. OFF-THE-SHELF COMPONENTS

7.1 Debugger
We are planning to use an open-source JavaScript Debugger. Rhino is an open-source
implementation of JavaScript written entirely in Java. It is typically embedded into Java

applications to provide scripting to end users.

All the features of JavaScript 1.5 which conforms to Edition 3 of the by Standard ECMA-262
ECMAScript.

e Documentation of Mozilla Rhino:
o http://www.mozilla.org/rhino/doc.html

e Mouzilla Rhino API Documents:
o http://www.mozilla.org/rhino/apidocs/

Screenshot of the Rhino JavaScript Debugger :

f23 Rhino JavaScript Debugger Ei=]
File Edit Debug Window

b
nextElement: functionf) !
returti this.elements[this. index++];

Yi:

/S now print out the array by emmerating through the Enumeration

Eociwhile (elements.hasMoreElementsi))
printielenents.nextElemnent(]) ;

P

. Context: |"enum.js®, line 69 -,

Mame | Yalug
01,2

&= array
§ elements
& __parent

=y

Thread: Thread| Thread-1.6,main]

113

7.2 Embedded Browser

We are planning to use JRex(powered by mozdev.org) which is a Java Browser Component
with set of API's for embedding Mozilla GECKO within a Java Application. To embedded
Mozilla GECKO to our project, first we need to build it.

e Mozilla GECKO is built by the instructions in these sites.

o http://developer.mozilla.org/en/docs/Build and Install

o http://gemal.dk/mozilla/build.html

e Documentation of JRex:
o http://jrex.mozdev.org/docs.html

e JRex API Documents:
o http://jrex.mozdev.org/docs/api/index.html

Features of JRex:

o Embedded Java Browser based on Mozilla GECKO.

e Event capturing like InputEvents (Mouse & keyboard), History, ContextMenu,
ContentUrlListener, Observer, Progress, ToolTip.

e Compatible with AWT and Swing.

e Build in support for window and event management.

o Easy to use, developer need not know much of Mozilla details. The effective line of
code for simple use is not more than 3 lines.

o Easy to use and easily extendable APT's.

e Compatible with windows and *nix (Having GTK support).

e Compatible with Mozilla Gecko 1.4 and above. Has been tested with Mozilla Gecko
1.4 and 1.6 and 1.7.7

e Supports Tabbed and Java Internal Pane browser windows.

e Support for Profile & preferences.

o Support for Persist, Find & BroswerSetup (to enable/disable plug-in, image etc.)

preferences.

114

e Support for accessing DOM objects of rendered page.

e JRex also implements DOM HTML2 for manipulating loaded HTML Document.

e In built support for Java WebStart deployment.

e In built support for LiveConnect which helps in communication between javascript and

Java.

o Can be used for communication between XUL and JVM in which JRex is

running.

Screenshot of the JRex embedded into a Java Application :

Eﬁ JRex - mozilla. - home of the mozilla, firefox, and camino web browsers
File Edit View Go Bookmarks Tools Help

@ @ @ @ ﬂ ‘tlg |hﬂn iivevew.mozilla.org!

mozilla

A0

—
SUPFPORT
MOZILLA

Make a donation
Jain the thousands af
Mozilla users who are
supporting our work, Ye'll
send you, or a friend, a
Mozilla CD aor t-shirt,

Need Help?
Affordable telephone
support for Mozilla 1.6 is
now available.

<
+
Get the Mozilla CD!

Save time downloading,
and receive valuable

v| &)
| mozilla - home of the mozilla, firefox, and camino weh browsers
.A
search mezilla: go |
What is Mozilla?
The Mozilla project maintaing choice and innovation on the Internet by developing the acclaimed, open
source, Mozilla 1.6 web and email suite and related products and technology.
Open Link in New Tah email, HTML editing, IRC chat,
@ BookMark this Link...
Save Link to Disk... acy and security in mind
Send Link... i gl . .
Copy Link Location... pages in the same window with
Properties
Free Download: Windows, Mac 08 X, Linux, More...
“Best browser of 2003” "Beyond Bliss”
— PC Woarld Magazine — Time Magazine
Technology Preview
Mozilla 1.7 Alpha
@ This is the latest preview of the Mozilla application suite, including MNavigator, Messenger, and

software for only US$5.95.

Order yours today »

COmposer,

B

h'ﬂp:frwwmmuzilla.o;gfprudut;tsrrnuzillai.xI'

115

8. SPECIFICATIONS
8.1 Syntax Specifications

Variable names: If a variable name consists of more than one word, first letter of each word

except the first one will be capitalized: control, requestReturnData

Function names: Functions will be named with the same rule as variables: getControl, check

Class names: The first letter of every word in a class name will be capitalized:

HomelndoorArea, Student

Class members and methods will be written in the following order:

1. Private members
Protected members
Public members
Private methods

Protected methods

A

Public methods

There will be one empty line between function bodies. Only one member can be written on a
line. There will be two empty lines after member declarations. Members in a same visibility

will be grouped according to their data types. Example:
public class Student {

private String name;

private String surname;

private int studentNumber;

public char studentType;

116

Student() {

//body

protected int getStudentNumber() {

//body

public String getName() {

//body

Functions: When writing a function the opening and closing brackets of functions will be on
individual lines. Local variables in a function will be declared on top and local variables with
the same data type will be grouped. Only one local variable can be declared on a line. After the

declaration of local variables there will be two empty lines before starting to code. Example:

Bool checkDoorCollision(void) {
int control;
int index;
float distance;

Position cameraPos;

//code starts here.

117

Conditionals and loops: Opening and closing brackets of conditional and loops will be on

individual lines. Example:

if() {
// condition body

Comments:
e At the beginning of every file, the author of it, the date file is created and the date file

was last modified will be written in a comment with the following syntax.

[
@author: Fulya Oktay
Created 01.12.2006
Modified 01.12.2006

*/

e Before the ‘if” and ‘for’ expressions, the purpose of them will be stated in a comment.

e Before every class definition, the component which the class specifies will be stated in
a comment.

e Before every function definition, the functionality will be stated in a comment.

e For every attribute of the class, an explanation will be provided in a comment.

Syntax for comments is

/**

Comment

*/

118

8.2 Project Management Specifications

8.2.1 SiHiRBAZ Package Structure

SiHIRBAZ Package Structure

* Our Product will be existing in SIHIRBAZ
directory after installation. SiIHIRBAZ
Package Structure consists of some necessary
directories and files.

* In the bin directory, there exists binary
project files.

* In the apache directory, there exists apache
web server.

* In the php directory, there exists php
software.(php and apache directories may not
exist in the package if the user has already
installed them on his/her pc.)

* In the mozilla directory, there exists open-
source Mozilla web browser for embedded
browser support of our product.

* In the plugins directory, there exists plugin
files if avaliable.

* In the licence directory, there exists
necessary licence files.

* In the icons directory, there exists project
icons image files.

* In the readme directory, there exists all
necessary help and readme files of our
product.

* There exists a sihirbaz.exe file which is an
executable file to run our product on
Windows. There will be Linux executable for
Linux Package.

* There exists sihirbaz.conf file. This is a
XML file. Our product first read this file.
Necessary information is existed about the all
project the user have created.

119

A sample sihirbaz.conf file will be like this :
e <sihirbaz> is a root tag, it contains <projects> tag and <java_jdk> tag.
e <projects> contains <project> tag which provides necessary information about
projects. There is an attribute current for currently opened project in the
workspace view of the product.
e Between the <project> </project> tags there exists there exists <name> and
<path> tags.
e Inthe <java_jdk>, there exists a path for installed Java JDK.
<?xml version="1.0" encoding="UTF-8"?>
<sihirbaz>
<projects current="Deneme">
<project type="AJAX Project">
<name>Deneme</name>
<path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>
</project>
<project type="AJAX Project">
<name>Sihirbaz</name>
<path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>
</project>
</projects>
<java_jdk>
<path>C:\Program Files\Java\jdk1.5.0 06</path>

</java_jdk>
</sihirbaz>

120

8.2.2 SiHIRBAZ Project Workspace Structure

SiHIRBAZ Project Workspace Structure

/J project name

_

* A project created by the user will be saved
in to “project name” directory. Location of
the project directory is anywhere in the local

drive of the computer chosen by the user.

* There exists three directories for the
created project files which are HTML,
JavaScript and XML files.

*

There exists a project

(SiHiIRBAZ Project Workspace) file which

name.spw

will be in XML format. User will able to run
our product with this project by clicking this
file.

The contents of the file sample .spw file will

be as follows:

This file includes information about the project which are its name, path and type.

<?xml version="1.0" encoding="UTF-8"?>
<project type="AJAX Project">

<name>Deneme</name>

<path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>

</project>

121

9. TESTING ISSUES

9.1 Testing Plan and Strategy

In order to present an error-free and defect-free product we need to make some tests. For this
purpose, we have decided on some testing strategies and built a testing plan during our design
interval. Since we will have very little time for testing, we tried to simplify our strategy and

concentrate on an efficient strategy rather than trying to do all real software test methods.

To see how easily our software can be tested we check our project with according to several

characteristics:

Operability: From the beginning we will try to work carefully and eliminate errors. This will
help us to test our product easily. Several modules and tasks will be prepared in order to

perform efficient tests and obtain better results.

Observability: We will prepare distinct error and warning messages.

Controllability: We decomposed a job into several units in order to control the actions easily.
Decomposability: Several modules and tasks will help to uncover errors.

Simplicity: We’ll also try to code as efficiently as possible.

Stability: Separate modules will help us for the stability. Past tests won’t be invalid. Function
and module dependencies, architecture are all understood clearly by group members and this

will help in testing. Also our large document archive will help this process.

We will test
e User interaction
e Data manipulation

e Display processing and generation

Below are the methods we will use.

122

9.1.1 Unit Testing

In the unit test case we will test each module separately. White box testing will be used
to both detect the errors and correct them. We will test the components by passing data

through it and we will be monitoring data to find the errors.

We will make sure that all the components work correctly and efficiently. The test will
be done primarily by the programmer who designed and implemented the module. If

necessary, the other programmer will do the second testing for the same module.

All the important paths will be tested with a white box method. Rather than the
complete program, all of the modules will be tested individually. Below are the

modules:

e GUI Testing

e Text Editor

e Database Editor

e WYSIWYSG Editor
e JavaScript Debugger
e CVS Support

e FTP Support

9.1.2 Integration Testing

Although we can find errors in modules by unit test, we must also make an integration
test in order to find errors due to integration of the modules. We will examine the
product from the user’s perspective for making integration test. We are planning to use
an incremental integration for this manner. Smoke testing may be the most suitable
because of the time interval however we won’t have time to test or product daily. This

is unrealistic. We will probably use bottom-up integration.

123

We will be looking whether all the modules work correctly, i.e. is data correctly
managed, are interface features easy to understand and use, does the product really do
the job we want, is there any confusion where more than one person uses the product,
etc. All of these tests will be implemented from the perspective of a user. However it
will not be possible to see all the errors, and there may probably be defects. Some other

tests are still needed.

9.1.3 Validation Testing

Validation asks: “Are we building the right product”. And the answer specifies whether
our program will be preferred by the web developers or not. Therefore validation is
important.

We will perform a black box testing too. Use cases will be used in order to specify all

the needed requirements and obtain possible errors.

Beta Testing: It is virtually impossible for us to foresee how the customer will use our
program. We are especially interested in alpha testing. Therefore we will release an
alpha version of the product before the demo deadline. Since our customers are web
developers, we believe we will obtain some error reports from our friends who have
experience in web developments and Ajax actions. In addition, we are planning to put
our product on web site and do advertisement in some communities and forums related

with Ajax applications.

10. CONCLUSION

This is the Detailed Design Report of “SiHiRBAZ” project. During preparing this report, we
have tried to decide on the way we will implement our product. We have reviewed our initial
design report and made some refinements. In addition the diagrams we have drawn before, we

provide activity diagrams for this report.

124

11. APPENDIX

—
project .. Sep - 06| October 2006 ‘Nnvember 2006 Decermber 2006 January 2007 FehrLa\
ek 30 |ueek 40 |[feck 41 |ilfeek 42 ‘Week 43 [ifeek 44 ‘WEEI{ 45 [ileek 46 ‘wm(47 |ileck 42 [Ueek 40 |ifeck 50 |ifeek 51 ‘WEEI{ 52 ek 53 ‘Week 1 [ieek 2 ‘WEEI{ 3 [ieek 4
SIHIRBAZ by kodadi yaziim aviz)] [94%]
[9428706 - 142407
Team
Understanding the project ayis)] [100%]
[8/28/06 - 10/10/06 |
Milestone:Project Proposal +*
Analysis [12 Davi=] [83%]
[10A0/06 - 11/4/08]
Team
Literature Survey [5 Dayis)] E} [100% |
[10/10,08 - 10§08 |
2am
Meeting with customers [2 Daviz)] [100%]
[101706 - 1120408 |
Team
Project Scheduling [3 Dayi=)] [=f] [100%]
[10/12.06 - 10721408 |
+Team
Requiremeant Analysis [Dayis)] ==y [100%]
[10420005 - 1042508]
eam
Data Modeling [2 Dayes)] =] [100%]
[102500 - 1028406]
Team
Functional Modeling [6 Dayis) | (=== [100%]
[10/256/08 - 111106 |
Team
Use-Case Modeling [0 Day)] [) [100%]
[10427106 - 114406]
Milestone:R Analysis Report +
Design [52 Day(s)] [96%]
[1143065 - 171607 |
Initial Design [21 DaviEd] [98%]
[11306 - 12208]
Team
R.Analysis Review [2 Daysd] E—lﬂ[100%]
[114208 - 11708 |
eam
Architectural Design [3 Daws)] [100%]
[117405 - 11/10/08]
P! Fulya
Text Editor Design [11 Dayiz)] === = —100%]
[1141006 - 11/25/06]
P! Mustata
WYSIWYG Editor Design [11 Dayis)] [100%]
[11006 - 11725106 |
Gikem
Database Editor Design [11 Daviz)] 100%]
[11006 - 11/26/06]
T ayfun
Dehugger Design [10 Days)] [e—100%]
[11/12/08 - 11726108 |
Aolin hMustata
CVS-FTP Design [10 Dayis)] [e— [[100%]
[1112/05 - 11/25/08]
Aoplin, T ayfun
GUI Design [5 Dayiz)] == [100%]
[A1/2706 - 12/2006 |
Milestone:Initial Design Report +
Final Design [31 DayiE)] [97%]
[12406 - 1/48/07 |
Team
Design Review [4 Dayisd] [100%]
[12H06 - 12,306 |
E Team
Detailed Arch. Design [4 Dayis)] [100%]
[125406 - 1271408 |
+ Fulya
Detailed Text Editor Design [17 Davis)] = — [100%]
[12/14086 - 1807 |
+ hiustafa
Detailed WYSIWYG Editor Design [17 Days)] [e— [100%]
[12/14/05 - 1/8/07 |
+ Géitem
Detailed DE Editor Design [17 Davis)] = [100%]
[1214/08 - 1/8/07 |
Tayfun
Detailed Debugger Design I|5 bavis) B =— [100%]
[12/21/08 - 12/28/06 |
Tayfun
Detailed CVS-FTP Design [Dayiz] === [100%]
[1242706 - 1607 |
Aylin
Detailed GUI Design [22 Days)] [— —_— e [100%]
[12/14/06 - 171807 |
Milestone:Final Design Report *
Prototype Development [37 Dayel] [21%]
[12408 - 172407 |
Team
Implementing Prototype [36 DaviE) | = — — [—1] [98%]
[124406 - /2307 |
Milestone:Prototype Demo +

125

