

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

SENIOR PROJECT

FALL 2006

DETAILED DESIGN REPORT

18.01.2007

 2

TABLE OF CONTENTS

1. INTRODUCTION..4
1.1 Purpose of the Document ...4

1.2 Scope ..4

1.3 Project Overview ..6

1.4 Design Goals...7

1.4.1 Extensibility:..7

1.4.2 Robustness: ..7

1.4.3 Reliability: ...7

1.4.4 Functionality:...7

1.4.5 Usability: ...7

2. CONSTRAINTS..8
2.1 Experience & Skills of Members Constraints ..8

2.2 Time Constraints...8

2.3 Funding Constraints..8

2.4 Resource Constraints ..9

2.5 Performance..9

3. SCHEDULE...9

4. SYSTEM MODULES ..9
4.1 Text Editor..9

4.2 WYSIWYG Editor ...13

4.3 Database Editor...15

4.4 Debugger & DOM Inspector ..19

4.4.1 JavaScript Debugger..19

4.4.2 DOM Inspection Tool..21

4.5 FTP Manager ..22

4.6 CVS Manager ...23

4.7 SYSTEM ARCHITECTURE ...24

4.7.1 Level0 DFD ...25

4.7.2 Level1 DFD ...25

4.7.3 Data Dictionary..26

5. SYSTEM DESIGN...30
5.1 Use Cases and Use Case Scenarios ..30

5.1.1 Text Editor...30

5.1.2 WYISWYG Editor ..32

5.1.3 Database Editor..34

5.1.4 Debugger ...35

5.1.5 CVS Manager ..37

5.1.6 FTP Manager ...37

5.2 Dynamic View of the System...38

5.2.1 Text Editor...38

5.2.2 WYSIWYG Editor ..44

5.2.3 Database Editor..46

 3

5.2.4 FTP Manager ...50

5.2.5 CVS Manager ..51

5.3 Static View of the System ..52

5.3.1 Text Editor...52

5.3.2 WYSIWYG Editor ..60

5.3.3 Database Editor, CVS Manager and FTP Manager...65

5.3.4 Debugger ...72

5.3.5 CVS – FTP Connections..74

5.3.6 GUI ..77

5.4 Activity Diagrams...95

5.4.1 Text Editor...95

5.4.2 WYSIWYG Editor ..96

5.4.3 Database Editor..97

5.4.4 CVS – FTP...98

6. GUI DESIGN ...100
6.1 Overview of GUI ...100

6.2 GUI Requirements...101

6.3 Screenshots of GUI..107

6.3.1 “Code”, “Design” and “Browser” views ..107

6.3.2 “Project” and “Workspace” views..108

6.3.3 “DOM Inspector” view...108

6.3.4 “Palette” view ...109

6.3.5 “Properties” and “Events” views ..109

6.3.6 “Debugger” view ..110

6.3.7 “Menu Bar” & “Tool Bar”..110

6.3.8 “Database Connector” ..110

6.3.9 “Database Editor” ...111

6.3.10 Final view of GUI..112

7. OFF-THE-SHELF COMPONENTS113
7.1 Debugger ..113

7.2 Embedded Browser...114

8. SPECIFICATIONS ..116
8.1 Syntax Specifications ..116

8.2 Project Management Specifications ..119

8.2.1 SiHiRBAZ Package Structure ...119

8.2.2 SiHiRBAZ Project Workspace Structure ..121

9. TESTING ISSUES ...122
9.1 Testing Plan and Strategy ..122

9.1.1 Unit Testing ...123

9.1.2 Integration Testing...123

9.1.3 Validation Testing ...124

10. CONCLUSION ..124

11. APPENDIX ..125

 4

1. INTRODUCTION

1.1 Purpose of the Document

This is the detailed design report for our project “SiHiRBAZ”. The purpose of this document

is to express the final design decisions resulted from the detailed functional requirements and

show the way of the development of our project. Firstly, our scope is presented in a detailed

way and an overview of the project is added. Secondly, we have explained our design

constraints which are people, time, hardware and software requirements for developer side.

Then, modules of the system are declared separately with enhanced requirements. After that,

we have shown use case diagrams which are partially updated from the analysis report.

Besides, sequence, activity and class diagrams are provided for better decide on every

component of our modules. Next, we have demonstrated our GUI with all of its functionality

in the GUI Design part. Syntax and project management specification part is also added in

order to provide a consistency and integrity between modules while writing code. Finally we

have added a schedule part and a detailed GANTT chart to the report to show the progress of

our project.

1.2 Scope

SiHiRBAZ consists of mainly 6 components which are HTML Text editor, WYSIWYG

(What You See Is What You Get) Editor, parser and debugger, GUI Design and Database

process handler. Moreover we will provide a CVS and FTP support. Embedded browser will

also be supported to test developed application.

HTML Text Editor

An HTML editor is a software application for creating web pages. Although the HTML

markup of a web page can be written with any text editor, specialized HTML editors can offer

convenience and added functionality. For example, many HTML editors work not only with

HTML, but also with related technologies such as CSS, XML and JavaScript. In some cases

they also manage version control systems such as CVS or Subversion. We are writing a text

editor with extra functionality for manipulating and previewing of typical programming

 5

languages used for web development. Standard features such as syntax highlighting and

automatic completion will be supported. HTML, XML and Java Script are supported by this

editor.

WYSIWYG (What You See Is What You Get) Editor

WYSIWYG HTML editors provide an editing interface which resembles how the page will be

displayed in a web browser. Most WYSIWYG editors also have a mode to edit HTML

directly as described above. Because using a WYSIWYG editor does not require any HTML

knowledge, they are easier for an average computer user to get started with.

The WYSIWYG view is achieved by embedding a layout engine based upon that used in a

web browser. The layout engine will have been considerably enhanced by the editor's

developers to allow for typing, pasting, deleting and moving the content. The goal is that, at

all times during editing, the rendered result should represent what will be seen later in a

typical web browser. Our WYSIWYG Editor will support standard HTML features such as

buttons, forms etc. that users will be able to drag and drop. In addition to this, some simple

AJAX components will be presented in labor of the user. These components are also available

with drag and drop option.

Parser and Debugger

The parser that we plan to write will support XML, HTML and DOM files. Debugger

supports only JavaScript because user will create AJAX components with JavaScript. Since it

is impossible to develop a debugger for this project due to time constraints, we are planning to

find, adapt and use an open source debugger component.

GUI Design

We designed a Graphical User Interface which is similar to the existing Development

Environments. “Tibco”, “Aptana” and “Eclipse” are being used as a layout of our design. We

are trying to develop a GUI design which shows our functionalities a user friendly and

costless way.

 6

Database Process Handler

This component is planed to manage a database connection. User will use this functionality to

reach his/her database with a user friendly environment. Standard database functions like

connection, table operations and SQL query evaluation are provided with this component.

Embedded Browser Support

Embedded browser will be provided to user to test and see existing file. With the help of

design view, user is able to see the HTML view however, since AJAX components are not

static, this feature will provide the realistic preview of the application.

CVS Support – FTP Publishing

We will provide a CVS connector to the user and FTP connection support for publishing.

1.3 Project Overview

At the beginning, AJAX was a new technology for nearly all of us. Therefore, we have spent

a considerable time for research about this new technique. We tried to divide the project into

modules to perform a better research activity. As a result this challenging activity we have

specified the requirements which were expressed in analysis report. These were not so

detailed but enough to explain what we our product will be like. After releasing analysis

report, we have concentrated on deciding design issues. With the help of our requirements and

technical research we have done, following principals are decided:

• The most important part of the project is WYSIWYG editor. It should provide the

usability of creating and showing an AJAX application with user friendly way. We

will implement this module by hand with existing JAVA packages.

• Text editor is the second important part of the project. It should provide all the

standard features of a text editor. We are implementing this module by hand with

existing JAVA packages.

 7

• User will be provided a JavaScript debugger, which is already mentioned. Because of

the time constraints and our preferential features (text and drag-and-drop editor), we

have found an open source debugger which can be adapted to our project.

• Since the database applications play a big role in AJAX actions, we have decided to

give importance to database connection tool.

1.4 Design Goals

1.4.1 Extensibility:

We will design our product considering that an improvement or plug in will be

supported later. So, we can provide an update mechanism to ensure that our product is

always up-to-date. Since AJAX is a developing technique, this feature will be really

important.

1.4.2 Robustness:

The product should be able to manage invalid user inputs or inconsistent conditions. It

provides error checking to ensure the right input format and returns errors and

warnings to the user.

1.4.3 Reliability:

The product should produce the expected output for a valid input at all times.

1.4.4 Functionality:

The system should function according to the requirements specified in Requirements

Analysis Report.

1.4.5 Usability:

The GUI should be user friendly. The goal is to provide the user an easy- to- use

interface. The design of the GUI is based on that of Java based applications. This

 8

design is chosen due to the familiarity of most users with this kind of interface. It

consists of a menu bar, which is further decomposed into sub menus. Text boxes,

scrollbars and pop-up menus are used to enhance user/system interaction. The user is

placed in a familiar environment, which eases the general use of the application.

2. CONSTRAINTS

2.1 Experience & Skills of Members Constraints

As developers, our programming and design skills and experiences is also one of the

restrictions. Although we have made software projects before, it was simpler than our current

project and we do not have experience about creating development environments. Thus, this

restricts our opinions of what we are able to make. In addition, it is very difficult for us to

manage unexpected problems about this field but we may consult experienced people to get

help about solving problems.

2.2 Time Constraints

We have to finish our project by June and also we should provide a prototype at the end of

this semester. Therefore, especially for a software project, this is the most important

constraints. Being able to use our time efficiently is very important for us to follow our

program regularly. In case of schedule problem, to compensate lost time we should focus on

the project instead of other responsibilities and spend more time on it. As a result, although

we thought lots of features and special properties for development environment, for timing

reasons, we may not able to do some exciting features because we should provide expected

functionalities and basics firstly.

2.3 Funding Constraints

Since we will not need any additional hardware and software that have a cost for us to

implement our project, we do not have a cost for them. In addition our team members are

students and we will not pay anyone to during the project. Therefore, there is not any funding

constraint.

 9

2.4 Resource Constraints

While we are doing our project we need different hardware and software resources. We

generally get easily these resources; as software requirements, we need web server, databases

servers and some of development tools. Many of these are freeware, and we can get others in

our department freely. We can also deal with hardware requirements for our project by the

help of our personal resources temporarily so we do not think that the resources will be a

problem for us to complete the project.

2.5 Performance

We are building our application for easy to understand and efficient to use. In addition there

will be excessive user interaction, so performance is a very important constraint for our team.

We consider the performance issue in during each steps of our project process.

3. SCHEDULE

GANTT chart can be found in Appendix.

4. SYSTEM MODULES

4.1 Text Editor

We are writing an HTML text editor with singleton design pattern for our development kit.

HTML editors are basic text editors with extra functionality for the manipulation and

previewing of code, typically of programming languages used for web development.

According to the research we have done, we have specified following functional requirements

for the text editor of our IDE:

• It will have the ability of reading and writing large files.

o Open/read/save/load/close/new file operations will be supported by GUI

module.

 10

o Large file reading is available.

• It will provide syntax highlighting for XML, HTML, JavaScript and CSS files.

o Our system will read the syntax highlighting content when a new word is

written.

o System will skip the commented areas.

o When the user has written a separate word in an uncommented area, it will be

checked from the syntax highlighting content.

o If it is matched, the related color will be applied.

o This procedure will be supported for HTML, XML, JavaScript and CSS files.

• Unlimited undo/redo will be provided.

o Undo

� Save the modifications the user has done, in a stack.

� Delete the last modification that has been done and if it is undoable in

the editor.

� Put the deleted item into a stack.

o Redo

� Read the last member on the stack.

� Apply that item in the editor if it is redouble.

� Remove it from the stack.

• "Markers" for remembering positions in files to return to later will be supported.

o Store the position of the cursor for every file.

o Restore the position of the cursor in a file when the file is selected.

o Kill the marker when the file is closed.

• Any number of editor windows may be opened.

o Open multiple files with a tab control in GUI.

o Allow user to change the file he/she is modifying with a keyboard shortcut or

tab select.

o Assign a marker to the old file to remember the position.

o Chose the marker of the new file and start from there.

• We will provide an auto-completion that does the followings:

o If you are typing the name of an object (e.g. "document"), when you type the

period (".") to call either a method or access a property for that object, it pops

 11

up a small window displaying the available methods and properties for that

object. You can also type ‘ctrl + space’ to access this help at any time.

� This type of automatic completion will be provided for only user

defined classes.

� Specify the class of the object which is at the left of the point.

� Show all the attributes and classes of that class.

� Allow user to select an attribute or method from the list described

above, put the selected item to the right of the list.

� Place the cursor.

o If you are calling a method on that object, when you type the first open

parenthesis ("({<["), our editor will automatically create the closing

parenthesis ("]>})") for you, and it will pop up a small window with the

parameters that the method takes.

� When the user writes one of the ("({<[") put the suitable ("]>})") and

place the cursor between them.

• It will provide intelligent bracket matching, skips quoted literals and comments.

o () ---- If the user has pressed to ‘%’ when he/she is on a ‘(’ or ‘)’, the cursor

will automatically go to the matched parenthesis.

o {} ---- If the user has pressed to ‘%’ when he/she is on a ‘{’ or ‘}’, the cursor

will automatically go to the matched parenthesis.

o [] ----- If the user has pressed to ‘%’ when he/she is on a ‘[’ or ‘]’, the cursor

will automatically go to the matched parenthesis.

o <> ----- If the user has pressed to ‘%’ when he/she is on a ‘<‘ or ‘>’, the cursor

will automatically go to the matched parenthesis.

o For all of parenthesis above, if there isn’t a matched parenthesis user will be

provided an error message and cursor will not move.

o A stack control mechanism will be used.

• It will provide automatic indentation.

o If the user has written a ‘<’ and hasn’t closed it, put a ’tab’ space when the user

entered a new line.

o If the user has written a ‘{‘and pressed ‘enter’, move the cursor to the next line

and one ‘tab’ space right.

 12

o If the user has written an ‘if’ or ‘else’ clause, didn’t put a ‘{’and pressed

‘enter’, move the cursor next line and one ‘tab’ space right.

o If the user has written a ‘for’ or ‘while’ clause, didn’t put a ‘{’and pressed

enter, move the cursor to the next line and one ‘tab’ space right.

o If the user has written a ‘>’ and had opened a ‘<’ before, put the ‘>’ one tab

left.

o If the user has written a ‘}’ and had opened a ‘{’ before, put the ‘}’ one tab left.

• It will provide commands for commenting and commenting out code.

o Enable user to select multiple rows.

o Understand what language the selected code belongs to.

• Search JavaScript statements for testing whether it is pure HTML or

not.

• Search HTML statements for testing whether it is pure JavaScript or

not.

o Comment the unselected code by putting the related comment item to it and

giving blue color to the code.

o Comment out the selected commented code by removing the comment items

on it and giving black color to the code.

• Test whether there exists comment items at the beginning and end of

the selected rows.

• Search and replace supported.

o Show a dialog box for search and replace to the user.

o Search a word, letter, expression when user has pressed on search.

o If the user didn’t enter an item (i.e. if it is blank) give a warning to the user and

don’t do a search.

o If the wanted item is found, show it to the user in a highlighted way and move

the cursor to the end of this found result.

o Replace the found letter, word, expression with the specified item if the user

presses replace button on the dialog box.

o Search again if the user presses next or previous.

o Backward and forward search is allowed.

o Continuous search is allowed.

 13

• There will be a relation with WYSIWYG editor to support code generation while user.

o Editor will take the design file and create html codes from it.

o When the user uses an AJAX item, there will be a separate system file that

notices this action.

o Editor will read this file and produce the related AJAX code.

o When the user is filling the forms of AJAX actions, files will be created.

o Editor will read those files and produce their codes.

• Automatic save is provided to prevent user from loosing data.

o Count the modifications the user has made to an already saved file.

o When this count is 3 save the current entry to the temporary file.

o When the system crashes, ask to modify changes when the user reopens the file.

4.2 WYSIWYG Editor

• Unlimited undo/redo will be provided.

o Undo

� Save the modifications the user has made.

� Delete the last modification that has been done in the editor.

� Put the deleted item into a stack.

o Redo

� Read the last member on the stack.

� Apply the read item.

� Remove it from the stack.

• A Palette for displaying built-in Ajax actions and HTML elements which can be added

by dragging and dropping.

o For Palette, a window will be shown which consists of drag-able Ajax actions

buttons and HTML elements buttons.

o User can drag a button from palette.

o Drop it in to the Design View area.

o Call code generation.

 14

o Open properties window if object is an HTML object.

o In the palette we will provide built-in Ajax Actions other than HTML objects

such as:

� AJAX Dynamic Table

� AJAX Photo Gallery

� Drag and drop

� Accordion

� Tabset

� Collapsible region

� Suggest text field

� Dialog box

� Rating widget

� Edit in place

• User will be able to insert text in Design view.

o Get the written text.

o Call code generation.

• An added table object can be selected. If it is selected:

o User can modify its size and size of its rows and columns.

o After a modification generate code is called.

• Create and modify added objects through properties window.

o All objects will be selectable.

o If an object is selected, relevant properties window will be shown with its

current properties.

o User can use properties window for modifications.

o After a modification call generate code

• Permits files or entire folders to be dragged directly into the editor

o If the input is a folder, zip the input folder.

o Generate code is called.

 15

• Drag & drop of image files directly into the editor, as well as file browsing

o Check the image size and type.

o If there is any violation show user an error message.

o If input is suitable after dropping it show the properties window with

parameters related with the type of button.

o Call generate code

• If the dragged object is an Ajax action open event window

o According to the type of Ajax Action an Event Window will be opened.

o User will enter the required input for actions.

o Call generate code

• Code generation will be done after using properties or event windows, dragging &

dropping an object from palette or dragging & dropping a file from outside.

o Appropriate code will be read from file or generated.

� Take id and type of button from GUI.

� Generate code.

� Send the cursor position to Text Editor to add codes the right position.

� Send the codes to Text Editor.

� Generate design view function is called to refresh the design view

according to the changes in code view.

4.3 Database Editor

The user will be able to connect to a database server if s/he has access rights on it.

• After connecting to a database a GUI window will be provided to user for database

operations.

o Show input dialog box.

� Ask user account name, password, location of database and type of

database (MySQL or Oracle)

� Get user account information.

� Try to connect to the database and get result from DBMS.

 16

� If result is true show user the database.

• Show user available and selectable schemas.

� If result is false show an error message and request account information

again.

• User will be able to execute queries on the database.

o Show a query window with execute button to the user for entering queries.

o Query window will be shown on top.

o If execute button is pressed get the query.

o Check the query if it is empty or not.

o If query is empty show user a message to enter a query.

o If query is not empty send it to DBMS and get the result.

o If result is true show the result to user.

� If it is a SELECT, UPDATE or CREATE TABLE query show the

result otherwise show a message saying “query has been successfully

executed”.

� If result is false show user the error message returned from DBMS.

• The user interface will provide user the ability to execute queries (table, column or

row creation, modification, deletion) without the need to know the proper syntax by

just clicking on the appropriate action.

o An attribute of a tuple will be selectable.

o When an attribute is selected its background color will change and user will be

able to enter a new value for that attribute.

� If the new value is empty NULL will be used.

� After user enters a new value for an attribute, an UPDATE query will

be generated. Update query is generated when update row is clicked.

� Generated update query will be sent to DBMS and the DBMS will be

listened for a result.

� If result is true the new value of the tuple will be shown to user

otherwise the error returned from DBMS will be shown.

o User can select a row. If user selects a row, its background color will change.

o After selecting a row user can delete it by a delete icon.

� If the delete icon is pressed, a delete query will be generated.

 17

� Generated query will be sent to DBMS and the result will be listened.

� If result is true updated table will be shown to user otherwise the error

returned from DBMS will be shown.

o There will be a create table button.

o If the button is pressed a dialog box will be shown with ‘Create’ and ‘Cancel’

buttons.

� User will be listened for name of table and columns of table and

properties of columns (primary key, foreign key, auto increment, data

type, NULL or NOT NULL and unique).

� If ‘Cancel’ is pressed no change is done and the dialog box is closed.

� If ‘Create’ is pressed name of table and names of columns will be

checked for emptiness.

� If at least one of them is empty user will be prompted to enter a name

for it.

� If none is empty a query will be generated.

� Generated query will be sent to DBMS and DBMS will be listened for

a result.

� If result is false error returned from DBMS will be shown.

� If result is true newly created table will be shown.

o User can insert a new row with an icon.

� After the icon is pressed, a dialog box will open asking user values for

NOT NULL attributes with ‘Insert’ and ‘Cancel’ buttons.

� After ‘Cancel’ is pressed no change will be done and dialog box will

close.

� After ‘Insert’ is pressed a query will be generated.

� Generated query will be sent to DBMS and DBMS will be listened for

a result.

� If result is false error returned from DBMS will be shown to user.

� If result is true updated table be shown to user.

o User can change the columns of a table by selecting them.

� When a column is selected, its background color will change.

� User can drop a column by selecting the delete icon.

� User can change the name of a column by entering it a new name.

 18

� User can insert a new column by clicking insert icon.

� After an operation a query is generated.

� Generated query will be sent to DBMS and DBMS will be listened for

a result.

� If result is false error returned from DBMS will be shown to user.

� If result is true updated table will be shown to user.

• Schema selection will be provided.

o After user connects to a database, schemas in that database will be shown to

user.

o User can select a schema. Schemas will be shown as rollouts (can change).

• All the tables of a selected schema will be shown.

o After a schema is selected its tables will be shown as selectable items.

• User will be able to select a table to view or modify.

o After a table is selected its rows and columns will be shown.

o There will be icons for manipulating rows and columns. (Discussed above)

• Detailed information of the selected table (columns, rows) will be shown.

o There will be an option to pass from these views to table view.

o In the detailed table view the columns of the table will be shown and all rows

of the table will be listed.

o User will be able to select to view detailed information about columns of a

table and modify it.

� All columns’ attributes (primary key, foreign key, auto increment, data

type, NULL or NOT NULL and unique) will be shown.

� NULL or NOT NULL, foreign key and unique attributes can be

changeable others not.

� After an attribute is modified, a query is generated.

� Generated query is sent to DBMS and DBMS is listened for a result.

� If result is not true, error returned from DBMS is shown.

� If result is true, updated table columns are shown.

 19

o Data types of a table’s columns will be shown when selected.

o User will be able to manipulate rows.

• If the user tries to execute an illegal query or does not have the necessary privileges to

execute a query, an error message will be shown.

o If DBMS returns an error message, it will be shown to user and user will be

asked to try again.

• When the user makes a change on database, the result will be shown immediately.

• The user will be prompted if s/he looses his/her connection.

o If database connection is lost, a message will be shown to user saying

“Connection lost”.

• The connection information will be provided as an include file to the user.

o If entered account information is correct, an include file will be generated in

PHP format.

o User can select to include this file to his/her source code.

� If user selects to include the file, necessary code statement will be

generated and sent to text editor.

4.4 Debugger & DOM Inspector

4.4.1 JavaScript Debugger

We will provide the following facilities for user in the JavaScript debugger in our

product to control the execution of scripts that users are debugging:

• Instant-on JavaScript debugger will be provided.

• Debug any web page containing JavaScript source or included JavaScript files,

or standalone JavaScript files.

o Debug button is pressed.

� If web page contains javascript sources between

<script></script> tags

 20

� Code block(s) is/are highlighted.

� If web page includes .js file

� .js file is opened in new editor view tab.

� If the file has already .js file

� .js file is opened in new editor view tab.

� User will able to stop debugging by pressing stop debugging

button.

• Pause, Resume, step in/over/out, break operations will be provided for

debugging.

o User will able to control debugging operations by buttons provided on

the toolbar.

o Currently executed code is highlighted on the editor view.

• Some views will be shown to user:

o Call Stack View

� Currently executed code/function will be showed with its name

and value.

o Watch View

� User enters variable name s/he wants to trace in to the variable

name field.

� Check whether the variable name is matched.

� If it is matched.

� Current value of it is displayed in value field.

� If it is not matched.

� Error message is shown to the user.

• User will be able to set and clear JavaScript breakpoints in:

o JavaScript files

o HTML with embedded JavaScript and linked JavaScript files

• User will be able to set a breakpoint by:

o Simply single-clicking on the line number of the line at which s/he

wants to set a breakpoint.

 21

o If the selected line contains executable code a red dot will appear next

to the line number and a breakpoint will be set at that location.

• User will be able to clear breakpoint by:

o Place the cursor on the line at which you want to clear a breakpoint

o Simply single-click on the red dot or the line number of the line at

which you want to clear a breakpoint.

4.4.2 DOM Inspection Tool

Its main purpose is to inspect the Document Object Model (DOM) tree of HTML and

XML-based documents by using dom parser. The initial HTML for an Ajax

Application is often minimal, and in any event likely to change over time due to DOM

Manipulation. All of this is very useful for checking assumptions and diagnosing

problems, since many Ajax bugs arise because the programmer misunderstood the

DOM state at a particular time.

• Showing the DOM-Tree with nodes.

o Get the file type of the current file in the editor view.

o Check whether the file extension is .html or .xml

o If the result is true

� Parse the file.

� Show the nodes on the tree view.

o Else do not show anything on the Dom inspection.

• Drill down the hierarchy, search for keywords.

o User will be collapse/expand tree view of a document.

o User enters the keyword s/he wants to search in the document

o Check whether the keyword is in document.

o If it is found

� The node is highlighted.

o If it is not found

� Error message is shown to the user.

 22

• Current element highlighted in page.

o If user will press the node on the tree view of the document.

o Send a request to WYSIWYG.

o The html component which the selected node contained will be

highlighted.

• Node name, type and value are shown.

o If user will press the node on the tree view of the document.

o Name, type and value of this node on the tree view of the document

will

be showed in the name, type and value field of the DOM Inspector

module.

4.5 FTP Manager

• User will enter required connection information like host, user, password and clicks

"Connect" button.

o If connection cannot be acquired an error is shown to user.

o If connection can be acquired FTP Window is opened.

• User selects a file and clicks to "Get File".

o User retrieves a copy of the file at the FTP Server into a local workspace.

• User selects a file and clicks "Send File"

o After user clicks send file the file is sent to FTP server.

• User presses disconnect button.

o A close connection signal is sent to FTP server.

o User is prompted that s/he is disconnected.

 23

4.6 CVS Manager

• User will enter required connection information like host, repository path, user,

password, connection type, and clicks "Finish" button.

o If connection cannot be acquired an error will be shown to user.

o If connection is acquired a CVS repository window, which includes list of files,

will be open for user to perform versioning actions like "CVS Check-out" and

"CVS Commit".

• User selects a file and clicks "CVS Commit".

o If request can be done user will be able to create a new revision of the file,

containing his/her changes, into the repository.

o If a file commit is not allowed by server, an error is shown to user.

• User selects a file and clicks to "CVS Check-out", s/he will be able to retrieve a copy

of the entire repository or a portion of the directory tree in the repository into a local

workspace.

o Selected file is requested from server.

o If file is not available an error is shown else user acquires the file.

• User can close connection by pressing a button.

o If user requests a connection close, a close signal is sent to server.

 24

4.7 SYSTEM ARCHITECTURE

 25

4.7.1 Level0 DFD

4.7.2 Level1 DFD

 26

4.7.3 Data Dictionary

name: User commands

where used / how used: GUI(1.0) input

description: Every external input that user enters

name: Displayed Response

where used / how used: GUI(1.0) output

description: Every output provided by system

name: Database Information

where used / how used: Database Editor (5.0) input

description: Information Stored in user’s database

name: Connection Information

where used / how used: Database Editor (5.0) output

description: Connection information and Queries entered by user

name: Request

where used / how used: Main Process (2.0) output

description: Signal to publish application in browser

name: Interpreter Results

where used / how used: Main Process (2.0) intput

description: Returned result from JavaScripts Errors

name: Check-in Files

where used / how used: Main Process (2.0) output

description: Sending files to CVS server

 27

name: Import Files

where used / how used: Main Process (2.0) input

description: Receiving Files from CVS server

name: User Files

where used / how used: Main Process (2.0) input

description: Sending files to FTP server

name: Publishing Files

where used / how used: Main Process (2.0) output

description: Receiving files from FTP server

name: Debug Operations

where used / how used: Main Process (2.0) output

JavaScript Debugger (6.0) input

description: Debugger related inputs

name: Debug Result

where used / how used: Main Process (2.0) input

JavaScript Debugger (6.0) output

description: Outputs of debug operation

name: Source Code

where used / how used: WYSIWYG Editor (3.0) input

Text Editor (4.0) output

JavaScript Debugger (6.0) input

description: Source Code of Application

 28

name: Cursor Position

where used / how used: WYSIWYG Editor (3.0) output

Text Editor (4.0) input

description: Inputs from design view to determine the position of cursor in code view

name: Generated Code

where used / how used: WYSIWYG Editor (3.0) output

Text Editor (4.0) input

description: Inputs from design view to add generated codes to code view.

name: User Request

where used / how used: GUI(1.0) output

Main Process (2.0) input

description: User inputs

name: System Response

where used / how used: GUI(1.0) input

Main Process (2.0) output

description: System output

name: Display Info

where used / how used: WYSIWYG Editor (3.0) output

Main Process(2.0) input

description: Design View output for display

name: Visual Operations

where used / how used: WYSIWYG Editor (3.0) output

Main Process(2.0) output

description: User inputs related with WYSIWYG editor

 29

name: Output

where used / how used: Main Process(2.0) input

Text Editor (4.0) output

description: Output from Text editor to display

name: Input

where used / how used: Main Process(2.0) output

Text Editor (4.0) input

description: User inputs related with Text editor

name: Database Operations

where used / how used: Database Editor (5.0) input

Main Process (2.0) output

description: User requests on database

name: Desired Information

where used / how used: Database Editor (5.0) output

Main Process (2.0) input

description: Information of user database for display

 30

5. SYSTEM DESIGN

5.1 Use Cases and Use Case Scenarios

5.1.1 Text Editor

 31

Undo/Redo Code: User will press undo or redo to disable or enable changes he/she

made on his/her file.

Comment/ Comment out code: User will select a part from the file and comment in

or out this part.

Search & Replace code: User will find an expression, word or sentence and replace it

with another.

Use keyboard shortcuts: User will use keyboard shortcuts to manage the tasks easily.

Select rectangle: User will select a part in a rectangle and change it according to

his/her needs.

Bracket Matching: When user comes to a bracket, cursor will automatically shoe the

match of that bracket.

Customize toolbar: User will customize the toolbar according to his/her needs.

Use palette: User will use the palette to add the source codes of the built-in

components.

Write Code: User will write source code.

Syntax Highlighting: When the user writes his/her code syntax highlighting will

automatically highlight the built-in functions or expressions of the related language.

Automatic Completion: When user is typing the name of an object (e.g. "document"),

when you type the period (".") to call either a method or access a property for that

object, it pops up a small window displaying the available methods and properties for

that object. User can also type ctrl + space to access this help at any time. When user

is calling a method on that object, when you type the first open parenthesis ("("), our

editor will automatically create the closing parenthesis (")") for him/her, and it will

pop up a small window with the parameters that the method takes.

Automatic Indentation: When the user is writing a code, automatic indentation will

indent his/her code according to the related programming language.

HTML code cleanup/formatting: After user writes the code, editor will check

HTML validity and clean the code to make a correct HTML file.

Link Checking: When the user has entered a link, editor will automatically highlight

it as a link.

HTML Validation: While user is writing the code, editor will check if he/she is

writing HTML code validly.

Code Generation: When the user uses the palette, editor will automatically generate

the related code of the component.

 32

Provide Marker: When the user opens another file, "markers" for remembering

positions in files to return to later will be supported.

5.1.2 WYISWYG Editor

 33

Undo/Redo operation: User will press undo or redo to disable or enable changes s/he

made on his/her file.

Keyboard Shortcuts: User will use keyboard shortcuts to manage tasks easily.

Using Palette: User will use drag & drop option to add built-in component to his/her

design view.

Insert Text: User will enter text input to his/her design view.

Modifying Object: User will modify components that are previously added.

Customizing the properties of element on properties editor: User will arrange the

desired properties of elements.

File Operations from desktop: User will add images and files to his/her design view

with drag and drop directly from desktop.

Image Operations: User will add, delete, resize etc. images.

Code Generation: When the user use palette/insert text/modify objects/customize

properties of elements/make file operations /make image operations.

 34

5.1.3 Database Editor

Connect to Database: User will press connect button. Then user interface will bring

up connection dialog and waits for the user to enter connection info. After user enters

connection info, user interface will send it to DBMS. If the connection info is correct,

DBMS will return database info and user interface will show the result to user and also

will prepare an include file.

 35

Select Database Schema: User will select to view a schema. User interface will

generate query and send it to DBMS. DBMS will execute the query and send the result

to UI. UI will show the result to user. If the query is invalid, UI will show an error

message to user.

View, Modify Table: User will select an operation on a table. User interface will

generate query and send it to DBMS. DBMS will execute the query and send the result

to UI. UI will show the result to user. If the query is invalid, UI will show an error

message to user.

Enter SQL Query: User will write a query. UI will send it to DBMS. DBMS will

execute the query and send the result to UI. UI will show the result to user. If the

query is invalid, UI will show an error message to user.

5.1.4 Debugger

 36

Keyboard shortcuts: User will use the keyboard shortcuts to manage the debugger

operations which are: Pause/Resume, Step in/over/out.

Pause/Resume: User will press the Pause/Resume button. The debugging engine will

stop or continue to control the execution of scripts. Call stack view and variables view

are updated according to these operations.

Step in/over/out: User will press the Step in/over/out button. The debugging engine

will go in/over/out the execution step of the scripts its debugging.

Set/clear breakpoints: User will click the the line number at which he/she wants to

set/clear breakpoints on the editor window. Breakpoint set/clear at this line. The

debugging engine will stop/continue at breakpoints. Call stack view and variables

view are updated according to these operations and the user will see the values of the

variables at that breakpoints.

Call Stack view: When the debugger is stopped, the Call Stack view displays the list

of active functions.

Variables view: When the debugger is stopped, the variables view displays values for

the current function.

 37

5.1.5 CVS Manager

5.1.6 FTP Manager

 38

5.2 Dynamic View of the System

5.2.1 Text Editor

 39

 40

 41

 42

 43

 44

5.2.2 WYSIWYG Editor

 45

 46

5.2.3 Database Editor

 47

 48

 49

 50

5.2.4 FTP Manager

 51

5.2.5 CVS Manager

 52

5.3 Static View of the System

5.3.1 Text Editor

 53

Class TextEditorCore:

Attributes:

Attribute Name Attribute Type Description

Filelist Vector<FileInfo> The list of the opened files

currentFile Integer Index of the current file

threadList Vector<FileThread> List of the threads opened

for automatic save.

xmlHtmlHighlighter XMLHTMLSyntaxHihlight Operator that highlights the

xml and html files.

javaScriptHighlighter JavaScriptSyntaxHighlight Operator that highlights

JavaScript files.

cssHighlihter CSSSyntaxHighlighting Operator that highlights

CSS files.

sourceManager SourceManipulation Operator that handles the

code management between

design and text editors.

autoCompleter AutoComplete Operator that handles

automatic completion

Methods:

Method Name Parameters Return Value Description

addFile fileName: String

url: String

Integer It receives input from

GUI and opens and

adds adds the file

specified with

parameters to the file

list.

removeFile fileName: String

url: String

Integer It receives input from

GUI and closes the file

and removes sit form

the list.

incrementIndentCount Index: Integer Void It increments the indent

count of the file who

has the index same as

the parameter in the

filelist.

decrementIndentCount Index: Integer Void It decrements the indent

count of the file who

has the index same as

the parameter in the

filelist.

insertComment selectedLines:

Text

Void Inserts comment

characters to the

beginning of every

selected line.

 54

deleteComment selectedLines:

Text

Void Deletes comment

characters from the

beginning of every

selected line.

search wantedExpression

: String

direction: Integer

Boolean Searches the parameter

in the file backward or

forward and shows the

found expression.

replace old: String

new: String

direction: Integer

Boolean Searches the old word

in the given direction,

replaces it with the new

word.

deleteAllThreadFiles Void Void It removes all threads

cut toCut: Text Void It cuts the parameter

from the file

copy toCopy: Text Void It copies the parameter

from the file

paste void void It pastes the selected

item to the place where

cursor is

Undo Void Void Undoes

Redo Void Void redoes

openFile fileName: String

url: String

Void Opens the specified file

createFile Void Void Creates new file

saveFile fileName: String

url: String

Void Saves the file to the

specified place

closeFile fileName: String

url: String

Void Closes the file.

Class File Info

Attributes:

Attribute Name Attribute Type Description

fileName String Name of the File

columnNumber Integer Column number of the

marker of the file

lineNumber Integer Line number of the marker

of the file

indentCount Integer Count of the indentation to

the left or right

url String Url of the file

 55

Methods:

Method Name Parameters Return Value Description

getFileName Void String Returns the

filename

getColumnNumber Void Integer Returns the

columnNumber

getLineNumber Void Integer Returns the

lineNumber

getIndentCount Void Integer Returns the

indentCount

getUrl Void String Returns the url

setFileName fileName: String Void Sets filename

setColumnNumber columnNumber:

Integer

Void Sets columnNumber

setLineNumber lineNumber:

Integer

Void Sets lineNumber

setIndentCount indentCount: integer Void Sets indentCount

setUrl url: String Void Sets url

Class AutoComplete

Attributes:

Attribute Name Attribute Type Description

xmlReader XMLParserForAutoCompletion Reads the XML files for

autocompletion

jsReader JavaScriptParser Reads the users’s javascript

files and create XML files

for autocompletion

Methods:

Method Name Parameters Return Value Description

moveCursor Void void Moves the cursor

to the correct

position after an

auto completion

getMethodsAndAttributes Word: String Vector<String> Sends the methods

and attributes of

the written

variable to the

GUI

getBracket Void Character Read the brackets

insertBracket Bracket:

Character

Void Inserts the

matching bracket

of the read one.

 56

Class XMLParserAutoCompletion:

Methods:

Method Name Parameters Return Value Description

readXMLFile Void void Reads theXML

files

findMethodsAndAttributes className:String Vector<String> Finds the methods

and attributes of

the given class.

Class JavaScriptParser:

Methods:

Method Name Parameters Return Value Description

readClass File : FileInfo String Gets the classes in

the file

writeClass classInfo : String Void Writes the class

information to a

XML file

readFunction className:

String

functionName :

String

parameters :

vector<String>

returnType: String

Vector<String> Gets the information

of the function

writeFunction functionInfo :

Vector<String>

Void Writes the

information to a

XML file

readAttributes className :String

attributeInfo :

Vector<String>

Vector<String> Gets the attributes

of a class

writeAttributes attributeInfo :

Vector<String>

Void Writes the

information to a

XML file

isInClass Word : String Boolean Tests whether the

word belongs to a

class or not

isKeyWord Word: String Boolean Tests whether the

given word is a

keyword or not.

createXMLFile Void Void Creates the XML

file for hiding

information.

 57

Class SyntaxHighlighting:

Attributes:

Attribute Name Attribute Type Description

hashTable Hashtable It is used for hashing the

keywords with colors

xmlFile File Stores the keywords

Methods:

Method Name Parameters Return Value Description

readXMLFile Void Void Reads the XML file

constructHashTable Void Void Constructs the hash

table from the read

XML file

readLastWord Void Void Reads the text user

has written and gets

the last word

isInComment Word: String Boolean Tests whether the

input is in comment

isKeyWord Word: String Boolean Tests whether the

input is a keyword

getColor Word: String String Finds and returns

the color of the

candidate word to

highlight.

applyHighlighting Word: String

Color: String

Void Applies highlighting

to the specified

word with specified

color.

Class FileThread:

Attributes:

Attribute Name Attribute Type Description

autoSaver AutoSaver It is the operator that is

responsible for automatic

save

 58

Methods:

Method Name Parameters Return Value Description

Run Void Void Run method of

thread class

Wait Void Void Wait method of

thread class

Destroy void Void Destroy method of

thread class

Class AutoSaver:

Attributes:

Attribute Name Attribute Type Description

tempFile File The file opened for saving

the changes automatically

Methods:

Method Name Parameters Return Type Description

openTempFile Void Void Creates temporary

file

getChange userFile : File Void Specifies the change

the user has made if

it exists

countChanges Void Integer Return the number

of changes user has

made

saveToTemp userFile : File Void Saves the file to the

temporary file

readSaveInput Void Void Tests if the user has

pressed to save

button

clearTempFile Void Void Clears the

temporary file

sendModifyMessage Void Void After the user has

reopened the file

after a crash, this

functions sends a

modification

message to the user

getTempFile Void File Returns tempFile

 59

Class SourceManipulation:

Methods:

Method Name Parameters Return Type Description

getDesignFile designFile : File Void Reads the design

file

createHTMLCode designFile : File Void Creates the html

code of the design

file

getAjaxItem designFile: File fileName : String Reads the ajax items

in the design file

readAjaxCode fileName : String Void Reads the AJAX

code of the specified

file.

readUserForm userForm: File Void Reads the file

created when the

user has filled the

form to make an

ajax action.

createJavaScriptCode Void Void Creates JavaScript

code from the

related files.

Interface UndoableEdit:

Method Name Parameters Return Desciption

canUndo Void Boolean Tests whether undo

action can be

performed or not

canRedo Void Boolen Tests whether redo

action can be

performed or not

Undo Void Void Undo

Redo Void Void Redo

 60

5.3.2 WYSIWYG Editor

 61

CanvasCore Class:

Attributes of Class:

Attribute Name Attribute Type Description

cursorPosition class Point Stores the current position

of the cursor

objectList[] vector<class GraphicObject> The List of

GraphicalObject class

instances

eventList[] vector<class EventObject> The List of EventObject

class instances

suggestField[] vector<classAjaxSuggestTextField> The List of

AjaxSuggestTextField

class instances

Methods of Class:

Method Name Parameters Return Type Description

generateDesignView string string Read the source code

and generate the

design view

readText void string Get the text input

from user

Graphic Object Class :

Attributes of Class:

Attribute Name Attribute Type Description

objectType int Stores the type of object

objectName string Strores the name of object

startPoint class Point Stores the start point

coordinates of object

endPoint class Point Stores the end point

coordinates of object

code string Stores the related code for

generating the Design view of

object

eventObject class EventObject If object is an ajax action

stores the eventObject of ajax

action

eventRole int If object is an ajax action

stores the role of ajax action

 62

Methods of Class:

Method Name Parameters Return Type Description

getProperties void string returns the properties

of Graphical Object

virtual generateCode void string virtual function for

creating code

according to the

properties.

EventObject Class:

Attributes of Class:

Attribute Name Attribute Type Description

form1Action int Stores the action type for ajax

action

form1 string Stores the info of first related

form

form2 string Stores the info of second

related form

query string Stores desired query for

custom ajax action

code string Stores code for custom ajax

action

Methods of Class:

Method Name Parameters Return Type Description

generateCode void string generates required

code for custom ajax

action

writeToXml void boolean writes the required

information of custom

ajax for reuse.

HtmlTable Class:

Attributes of Class:

Attribute Name Attribute Type Description

rowNumber int Stores the row number of

html table

columnNumber int Stores the column number of

html table

width int Stores the row number of

 63

html table

height int Stores the row number of

html table

alignCaption string Stores the align info of html

table

backgroundColor string Stores the bg color info of

html table

BorderThickness int Stores the border thickness

info of html table

cellSpacing int Stores the cell spacing info

of html table

cellPadding int Stores the cell padding info of

html table

tableContents[][] string Stores the contents of rows

and column

Point Class:

Attributes of Class:

Attribute Name Attribute Type Description

xPosition int stores the line number

information

yPosition int stores the character

information

Methods of Class:

Method Name Parameters Return Type Description

getXpositon void int returns the xPosition

getYposition void int returns the yPosition

AjaxSuggestTextField Class:

Attributes of Class:

Attribute Name Attribute Type Description

query string It stores the sql query which

the user has entered to use the

AJAX application

form1 class GraphicObject It stores the information of

which element the suggestion

will show

numberOfSuggestions int It stores the number of

suggestions

 64

code string It stores the JavaScript code

related to the AJAX action

Methods of Class:

Method Name Parameters Return Type Description

generateCode void string It generates the

necessary code for the

action.

CodeGenerator Interface:

Methods of Interface:

Method Name Parameters Return Type Description

createTempFile void boolean creates a temporary

file for sending codes

to Text Editor

writeToFile void boolean writes the codes

deleteFile void boolean delete the temporary

file after Text Editor

gets the codes

 65

5.3.3 Database Editor, CVS Manager and FTP Manager

 66

DatabaseConnector Class:

Attributes of the Class:

Attribute Name Attribute Type Description

hostField JTextField Text field for entering host name of the database

server.

portField JTextField Text field for entering the port number of the

database server.

 67

userNameField JTextField Text field for entering a username for connecting

to the database server.

passwordField JPasswordField Password field for entering a password for

connecting to the database server.

dbmsField JComboBox A combo box for selecting which type of DBMS

(MySQL or Oracle) will be connected to.

schemaField JTextField Text field for entering a database for connecting to

the database server.

cancelButton JButton When pressed closes the connection screen.

clearButton JButton When pressed Clears all of the fields.

connectButton JButton When pressed a connection is tried to be

established using the entered information.

databaseInstance DatabaseCore An instance of the class DatabaseCore. Used for

connecting to a database server.

Methods of the Class:

Method Name Parameters Return Type Description

clearAll void void Clears all of the text fields and the

password field.

setConnectionInfo void void Calls the appropriate connect method

of databaseInstance and sets the

connection if connection is successful

info.

EditTableWindow Class:

Attributes of the Class:

Attribute Name Attribute Type Description

tableInfo JTable Holds the column information of the table to be

editted.

cancelButton JButton When pressed closes the edit table window.

applyButton JButton When pressed applies the changes made to the table.

databaseCore DatabaseCore An instance of the DatabaseCore class.

Methods of the Class:

Method Name Parameters Return Type Description

alterTable void void Applies the changes done to the table by

using databaseCore which uses its

generateQuery attribute’s

generateAlterTableQuery function and

then executes the query.

 68

NewTableWindow Class:

Attributes of the Class:

Attribute Name Attribute Type Description

tableInfo JTable For entering information of the table to be created.

cancelButton JButton When pressed closes the new table window.

createButton JButton When pressed a new table with the entered

information is created.

databaseCore DatabaseCore An instance of the DatabaseCore class.

Methods of the Class:

Method Name Parameters Return Type Description

createTable void void Creates the table by using databaseCore

which uses its generateQuery attribute’s

generateCreateTableQuery function and

then executes the query.

DatabaseWindow Class:

Attributes of the Class:

Attribute Name Attribute Type Description

mainSplitPane JSplitPane Main split pane for splitting the window. Top part

holds the queryArea, executeButton and

refreshButtons. Bottom part holds bottomSplitPane.

bottomSplitPane JSplitPane For splitting bottom part of the mainSplitPane into

two. Left part holds schemaTree. Right part holds

resultPane, editButton, applyButton and

discardButton.

refreshButton JButton When pressed resultPane is refreshed.

executeButton JButton Pressed to execute a user entered query.

queryArea JTextArea Text area for writing queries.

resultPane JTabbedPane Result of the last executed query.

editButton JButton When pressed table rows can be editted.

applyButton JButton When pressed changes made to rows of a table are

applied.

discardButton JButton When pressed discards the changes made to a

table’s rows.

schemaTree JTree Holds the information about the tables of the

schemas in a connected database server.

databaseInstance DatabaseCore Instance of the DatabaseCore class.

 69

Methods of the Class:

Method Name Parameters Return Type Description

generateResultSetView queryResult:

ResultSet

void Updates resultPane with the

parameter it takes.

discard void void Discards changes made to rows

of a table.

createNewTable void void Opens new table window by

creating an instance of

NewTableWindow class.

editTable void void Opens edit table window by

creating an instance of

EditTableWindow class.

applyChanges void void Applies changes made to rows

of a table by using methods of

databaseInstance.

executeUserQuery query:

String

void Calls executeQuery method of

databaseInstance and passes

query as a parameter to it.

AccountInfo Class:

Attributes of the Class:

Attribute Name Attribute Type Description

userName String Holds the username used for connection.

password String Holds the password used for connection.

serverLocation String Holds the url of the server used for connection.

DatabaseAccountInfoClass:

Attributes of the Class:

Attribute Name Attribute Type Description

databaseName String Holds the name of the database connected to.

databaseType String Holds the type of the DBMS connected to.

QueryGenerator Class:

Attributes of the Class:

Attribute Name Attribute Type Description

 70

query String Holds the query generated.

Methods of the Class:

Method Name Parameters Return

Type

Description

getQuery void String Returns the query.

generateCreateTableQuery tableName:

String,

columnNames:

ArrayList

String Generates a create table query

according to the parameters it

takers and saves it into query.

generateAlterTableQuery tableName:

String,

newValues:

ArrayList

String Generates an alter table query

according to the parameters it

takes and saves it into query.

generateDropTableQuery tableName:

String

String Generates a drop table query and

saves it into query.

generateSelectQuery tableName:

String

String Generates a select query

according to the parameter it

takes and saves it into query.

DatabaseCore Class:

Attributes of the Class:

Attribute Name Attribute Type Description

errorMessage String Holds the error message which is shown to

user.

schemaList DatabaseSchema[] Holds an array of DatabaseSchema objects.

userAccount DatabaseAccountInfo Holds account information used when

connecting to database server.

queryGenerator QueryGenerator Instance of class QueryGenerator.

connection Connection A connection session with a specified database.

statement Statement Used for executing a static SQL statement and

returning the results it produces.

resultSetList ResultSetInfo[] Array of ResultSetInfo objects.

databaseCore DatabaseCore Instance of DatabaseCore class. Used in

singleton design pattern.

currentIndex Integer Holds the current index value for resultSetList.

Methods of the Class:

Method Name Parameters Return

Type

Description

createFile void Integer Creates a .php file with the

connection info written in it.

getSchemaInfo void ArrayList Returns the tables in a schema.

connectToMySQL owner:JFrame void Connects to a MySQL server.

 71

connectToOracle owner:JFrame void Connects to an Oracle server.

closeConnection void Integer Closes the database connection.

Returns 1 if successful, 0

otherwise.

getErrorMessage void String Returns errorMessage.

executeQuery query:String Integer Executes given query. Returns 1

if successful, 0 otherwise.

updateOperation tableName:String,

rowInfo:ArrayList,

columns:ArrayList

Integer Calls ResultSetInfo’s

generateUpdateQuery method and

gives the result to executeQuery.

insertOperation tableName:String,

rowInfo:ArrayList

Integer Calls ResultSetInfo’s

generateInsertQuery method and

gives the result to executeQuery.

deleteOperation tableName:String,

rowInfo:ArrayList

Integer Calls ResultSetInfo’s

generateDeleteQuery method and

gives the result to executeQuery.

getTableInfo void ResultSet Returns the result set taken from

DBMS.

DatabaseSchema Class:

Attributes of the Class:

Attribute Name Attribute Type Description

tables ArrayList Holds the tables in a database schema.

schemaName String Name of a schema.

ResultSetInfo Class:

Attributes of the Class:

Attribute Name Attribute Type Description

tableName String Holds the name of a table.

resultSet ResultSet Holds the rows of a table.

columnNames ArrayList Holds the column names of a table.

query String Holds a query generated by an object of this class.

Methods of the Class:

Method Name Parameters Return

Type

Description

generateUpdateQuery tableName:String,

rowInfo:ArrayList,

columns:ArrayList

String Generates an updates query

according to the parameters it

takes and returns it.

generateDeleteQuery tableName:String, String Generates a delete query

 72

rowInfo:ArrayList according to the parameters it

takes and returns it.

generateInsertQuery tableName:String,

rowInfo:ArrayList

String Generates an insert query

according to the parameters it

takes and returns it.

getQuery void String Returns query attribute.

5.3.4 Debugger

Debugger Class:

Attributes of the Class:

Attribute Name Attribute Type Description

breakPointList ArrayList It stores breakpoints locations in a list.

variableList ArrayList It stores variables in a list.

errorMessage String Holds the error message which is shown to

 73

user.

currentLine Integer Holds the currently executed line number.

Methods of the Class:

Method Name Parameters Return

Type

Description

setBreakPoint lineNo: Integer Integer Sets the breakpoint location.

getBreakPoint id: Integer Integer Gets the breakpoint location.

startDebug void Boolean It starts debugging. If it succeeds,

return true, else return false.

stopDebug void Boolean It stops debugging. If it succeeds,

return true, else return false.

setVariable name: String

type: String

scope: String

Boolean Sets the variable that user wants

to trace.

getVariableValue name: String

type: String

scope: String

String Gets current value of the variable.

stepOver void Boolean Step over the breakpoint while

debugging. If it succeeds, return

true, else return false.

stepInto void Boolean Step into the breakpoint while

debugging. If it succeeds, return

true, else return false.

stepOut void Boolean Step out the breakpoint while

debugging. If it succeeds, return

true, else return false.

getCallStack void Boolean Gets current call stack of the

debugging program.If it succeeds,

return true, else return false.

pauseDebugging void Boolean It pauses debugging. If it

succeeds, return true, else return

false.

resumeDebugging void Boolean It resumes debugging. If it

succeeds, return true, else return

false.

getErrorMessage void String Returns errorMessage

 74

 5.3.5 CVS – FTP Connections

CVSAccountInfo Class:

Attributes of the Class:

Attribute Name Attribute Type Description

repositoryPath String Stores the path of the repository of the CVS

Server.

Methods of the Class:

Method Name Parameters Return

Type

Description

getRepositoryPath void String Sets the repository path.

setRepositoryPath path: String void Gets the repository path.

 75

CVSManager Class:

Attributes of the Class:

Attribute Name Attribute Type Description

userAccount CVSAccountInfo Stores the user account information to connect

to CVS Server.

errorMessage String Stores the error message that is shown to user.

Methods of the Class:

Method Name Parameters Return

Type

Description

getErrorMessage void String Returns the error message.

connect void Boolean Connects to CVS server. Returns

true if successful, false otherwise.

disconnect void Boolean Disconnects from CVS server.

Returns true if successful, false

otherwise.

checkOutFile path: String File Requests the specified file from

CVS Server.

commitFile name: File Boolean Commits a specified file to CVS

Server. Returns true if successful,

false otherwise.

FTPAccountInfo Class:

Attributes of the Class:

Attribute Name Attribute Type Description

ftpPath String Stores the path of the FTP Server.

Methods of the Class:

Method Name Parameters Return

Type

Description

getFtpPath void String Sets the ftp path.

setFtpPath path: String void Gets the ftp path.

 76

FTPManager Class:

Attributes of the Class:

Attribute Name Attribute Type Description

userAccount FTPAccountInfo Stores the user account information to connect

to an FTP Server.

errorMessage String Stores the error message that is shown to user.

Methods of the Class:

Method Name Parameters Return

Type

Description

getErrorMessage void String Returns the error message.

connect void Boolean Connects to FTP server. Returns

true if successful, false otherwise.

disconnect void Boolean Disconnects from FTP server.

Returns true if successful, false

otherwise.

requestFile path: String File Requests a file from FTP Server.

sendFile name: File Boolean Sends a file to via FTP Server.

Returns true if successful, false

otherwise.

requestServerFileInfo void TreeModel Gets the file information from

FTP Server.

 77

5.3.6 GUI

 78

 79

 80

 81

 82

 83

Class Diagram Dictionary of GUI

FileMenu

Attributes of the Class

Attribute Name Attribute Type Description

newFileItem JMenuItem New File choice of File Menu

openFileItem JMenuItem Open File choice of File Menu

closeFileItem JMenuItem Close File choice of File Menu

saveFileItem JMenuItem Save File choice of File Menu

saveFileAsItem JMenuItem Save File As choice of File Menu

exitSystemItem JMenuItem Exit choice of File Menu

separator1 JSeparator Separator of File Menu

separator2 JSeparator Separator of File Menu

textEditorInstance TextEditorCore Instance of Text Editor

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to File Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of File Menu

newFile() - File Creates a new file and invokes

TextEditorCore

openFile() - File Invokes TextEditorCore to open a file

closeFile() - void Invokes TextEditorCore to close file

saveFile() - void Invokes TextEditorCore to save file

saveFileAs() - File Invokes TextEditorCore to save file

as another file

exit() - void Invoke exit function of system

EditMenu

Attributes of the Class

Attribute Name Attribute Type Description

undoItem JMenuItem Undo choice of Edit Menu

redoItem JMenuItem Redo choice of Edit Menu

cutItem JMenuItem Cut choice of Edit Menu

copyItem JMenuItem Copy choice of Edit Menu

pasteItem JMenuItem Paste choice of Edit Menu

deleteItem JMenuItem Delete choice of Edit Menu

selectAllItem JMenuItem Select All choice of Edit Menu

findItem JMenuItem Find choice of Edit Menu

separator1 JSeparator Separator of Edit Menu

separator2 JSeparator Separator of Edit Menu

 84

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to Edit Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Edit Menu

undo() - void Invokes Text Editor’s undo function

redo() - void Invokes Text Editor’s redo function

cut() - void Invokes Text Editor’s cut function

copy() - void Invokes Text Editor’s copy function

paste() - void Invokes Text Editor’s paste function

delete() void Invokes Text Editor’s delete function

find() - void Invokes Text Editor’s find function

selectAll() - void Invokes Text Editor’s selectAll funct

ProjectMenu

Attributes of the Class

Attribute Name Attribute Type Description

newProjectItem JMenuItem New Project choice of Project Menu

openProjectItem JMenuItem Open Project choice of Project Menu

runProjectItem JMenuItem Run Project choice of Project Menu

debugItem JMenuItem Debug choice of Project Menu

stepOverItem JMenuItem Step Over choice of Project Menu

stepIntoItem JMenuItem Step Into choice of Project Menu

stepOutItem JMenuItem Step Out choice of Project Menu

separator JSeparator Separator of Project Menu

debugStarted() int Stores debugging information.

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to Project Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Project Menu

createNewProject() - Project Invokes related function to create

project

openProject() - Project Invokes related function to open a

project

runProject() - void Invokes related function to run

project

startDebug() - void Invokes DebuggerInterface to debug

stepOver() - void Invokes DebuggerInterface to step

over

stepInto() void Invokes DebuggerInterface to step

into

stepOut() - void Invokes DebuggerInterface to stepout

 85

ToolsMenu

Attributes of the Class

Attribute Name Attribute Type Description

databaseManagerItem JMenuItem Database Editor choice of Tools Menu

ftpManagerItem JMenuItem FTP Connector choice of Tools Menu

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to Tools Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Tools Menu

openDatabaseConnector() - void Shows Database connection

console and invoke DatabaseCore

openFTPConnector() - void Shows FTP connection console

and invoke FTPManager

HelpMenu

Attributes of the Class

Attribute Name Attribute Type Description

helpContentsItem JMenuItem Help Contents choice of Help Menu

aboutItem JMenuItem About choice of Help Menu

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to Help Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Help Menu

displayHelpContents() - void Shows help contents

displayAbout() - void Shows information about IDE

VersioningMenu

Attributes of the Class

Attribute Name Attribute Type Description

CVSManagerItem JMenuItem CVS Manager choice of Versioning Menu

commitItem JMenuItem Commit choice of Versioning Menu

checkoutItem JMenuItem Checkout choice of Versioning Menu

isConnected() boolean Stores CVS connection information.

 86

Methods of the Class

Method Name Parameters Return Type Description

addItems() - void Adds items to Versioning Menu

registerActions() - void Bind actions to menu items

createShortcuts() - void Create shortcuts of Versioning Menu

openCVSManager() - void Invokes CVS Manager to open CVS

window

commit() - void Invokes CVS Manager to commit file

checkout() - void Invokes CVS Manager to checkout file

ToolBar

Attributes of the Class

Attribute Name Attribute Type Description

newFileButton ToolBarButton New File button of Tool Bar

newProjectButton ToolBarButton New Project button of Tool Bar

openProjectButton ToolBarButton Open Project button of Tool Bar

saveAllButton ToolBarButton Save All button of Tool Bar

cutButton ToolBarButton Cut button of Tool Bar

copyButton ToolBarButton Copy button of Tool Bar

pasteButton ToolBarButton Paste button of Tool Bar

undoButton ToolBarButton Undo button of Tool Bar

redoButton ToolBarButton Redo button of Tool Bar

findButton ToolBarButton Find button of Tool Bar

runButton ToolBarButton Run button of Tool Bar

startDebugButton ToolBarButton Start Debug button of Tool Bar

stopDebugButton ToolBarButton Stop Debug button of Tool Bar

textEditorInstance TextEditorCore Instance of Text Editor

Methods of the Class

Method Name Parameters Return Type Description

addButtons() - void Add items to Tool Bar and bind

actions.

newFile() - void Creates a new file and invokes

TextEditorCore.

newProject() - void Creates a new project and invokes

related function.

openFile() - void Invokes TextEditorCore to open file.

saveAll() - void Invokes TextEditorCore to save files

undo() - void Invokes Text Editor’s undo function

redo() - void Invokes Text Editor’s redo function

find() - void Invokes Text Editor’s find function.

cut() - void Invokes Text Editor’s cut function

copy() - void Invokes Text Editor’s copy function

paste() - void Invokes Text Editor’s paste function

 87

run() - void Invokes related function to run

project.

startDebugging() - void Invokes DebuggerInterface to start

debugging.

stopDebugging() - void Invokes DebuggerInterface to stop

debugging.

MyMainWindow

Attributes of the Class

Attribute Name Attribute Type Description

toolBar MyToolBar Tool Bar part of GUI

menuBar MyMenuBar Menu Bar part of GUI

debuggerPanel JPanel Debugger part of GUI

splitPane MySplitPane Split Pane part of GUI

splitPaneLeft MySplitPane Split Pane part of GUI

splitPaneRight MySplitPane Split Pane part of GUI

middle MySplitPane Split Pane part of GUI

right MySplitPane Split Pane part of GUI

debuggerSplitPane MySplitPane Split Pane part of GUI

projectPane JTabbedPane Project part of GUI

propertiesPane JTabbedPane Properties part of GUI

fileTabPane JTabbedPane File view of GUI

filePanel JPanel File Panel of GUI

palettePane MyPalette Palette part of GUI

propertiesWindow HTMLTable HTML table of Properties part

eventsWindow EventTable Event part of GUI

domInspectorPane DomPanel Dom Inspector part of GUI

callStackView CallStackTable Call Stack View part of GUI

watchView WatchTable Watch View part of GUI

fileTab JTabbedPane Tabbed File View of GUI

viewTab JTabbedPane Code-Design-Browser Views

codeView MyEditorPane Code View of GUI

designView MyEditorPane Design View of GUI

browserView JPanel Browser View of GUI

Methods of the Class

Method Name Parameters Return Type Description

initSplitPane() - void Initializes main window and split

it using split panes.

initComponents() - void Initializes and place all GUI

components in main window.

initPanel() - void Initializes File and View tabs of

Code-Design-Browser part.

initFileTab() - void Initializes File Tab of Code-

Design-Browser part

 88

initViewTab() - void Initializes View Tab of Code-

Design-Browser part

initDebugger() - void Initializes debugger view of GUI

initTabs() - void Initializes tabs of Project-

Workspace and Properties-Event

setTreeModel() URL :

string

JScrollPane Provides a tree structure for

Project and Workspace view.

getCodeView() - MyEditorPane Places Code View for Text Editor

getDesignView() - MyEditorPane Places Design View

getFileTab() - JTabbedPane Places File Tab of Code-Design-

Browser part

DesignView

Methods of the Class

Method Name Parameters Return Type Description

getSelectedComponent() - void send selected component to

CanvasCore.

deleteComponent() - void Invokes CanvasCore to delete a

component.

copyComponent() - void Invokes CanvasCore to copy a

component.

pasteComponent() - void Invokes CanvasCore to paste a

component.

updateComponent() - void Invokes CanvasCore to update a

component.

CodeView

Methods of the Class

Method Name Parameters Return Type Description

getSelectedText() - void send selected text to TextEditorCore.

deleteText () - void Invokes TextEditorCore to delete text.

copyText () - void Invokes TextEditorCore to copy text.

pasteText () - void Invokes TextEditorCore to paste text.

goToNumber() - void Invokes TextEditorCore to go selected

line.

showBreakPoint() - void shows breakpoints of Debugger

NumberedEditorKit

 Attributes of the Class

Attribute Name Attribute Type Description

formatter NumberFormat Describes numbers of line of Code View

 89

Methods of the Class

Method Name Parameters Return Type Description

getViewFactory() - ViewFactory Creates a new NumberedViewFactory

instance

getPreviousLineCount() - int Counts previous lines

paintChild() g : Graphics

r :Rectangle

n : int

void Writes the line number of Code View

setValue() value:Object void Set formatter’s value

PropertiesWindow

 Attributes of the Class

Attribute Name Attribute Type Description

columnName String [] Describes column name of Properties Table

rowData Object [] [] Describes row data of Properties Table

Methods of the Class

Method Name Parameters Return Type Description

getSelectedComponent() - void send selected component to

CanvasCore.

showProperties() - void show properties of component.

readInput() - void gets input from user.

changeProperties() - void update properties of selected

component.

isCellEditable row : int

column : int

Boolean Returns if cell is editable or not

 90

EventsWindow

Attributes of the Class

Attribute Name Attribute Type Description

columnName String [] Describes column name of Events Table

rowData Object [] [] Describes row data of Events Table

Methods of the Class

Method Name Parameters Return Type Description

getSelectedComponent() - void Get selected component CanvasCore.

showEvents() - void show events of component.

readInput() - void gets input from user.

changeEvents() - void update events of selected component.

isCellEditable row : int

column : int

Boolean Returns if cell is editable or not

InsertAjaxWindow

Methods of the Class

Method Name Parameters Return Type Description

showForm1() - void shows the form to insert object1.

showForm2() - void shows the form to insert object2

showEvents() - void shows events of inserted objects.

AddAjaxActionForm

Methods of the Class

Method Name Parameters Return

Type

Description

showGraphicObjects() - void shows the list of objects.

showEvents() - void shows events of inserted

objects.

readSqlQuery() - void gets the SQL query input of

user.

addAjaxAction() - void invokes system to add new

AJAX object.

 91

ProjectView

Methods of the Class

Method Name Parameters Return Type Description

openProject () - void Invokes related function to open a

project.

closeProject () - void Invokes related function to close a

project.

newProject() - void Creates a new project and invokes

related function.

deleteProject () - void Invokes related function to delete

project.

WorkspaceView

Attributes of the Class

Attribute Name Attribute Type Description

isCopied boolean Describes if selected project is copied to

workspace or not

Methods of the Class

Method Name Parameters Return Type Description

openFile() - void Invokes TextEditorCore to open a file.

deleteFile() - void Invokes TextEditorCore to delete a file.

closeFile() - void Invokes TextEditorCore to close a file.

copyFile() - void Invokes TextEditorCore to copy a file.

pasteFile() - void Invokes TextEditorCore to paste a file.

newFile() - void Creates a new file and invokes

TextEditorCore.

FileTreeModel

Attributes of the Class

Attribute Name Attribute Type Description

tree JTree tree structure of Files in WorkSpace

 92

Methods of the Class

Method Name Parameters Return

Type

Description

addNodes() currentTop :

DefaultMutableTreeNode

dir : File

void Adds new files to file tree

getMinimumSize() - Dimension Returns min size of tree

getPreferredSize() - Dimension Returns preferred size of

tree

DebuggerView

Attributes of the Class

Attribute Name Attribute Type Description

stackScrollPane JScrollPane Scroll pane of call stack view

stackTable JTable Call stack view table

watchScrollPane JScrollPane Scroll pane of watch view

watchTable JTable Watch view table

Methods of the Class

Method Name Parameters Return Type Description

initComponents() - void Initialize Debugger components

getVariable() - void Gets the entered varible information

showVariable() - void Shows information of variable.

updateStackView() - void Invokes DebuggerInterface to update

program stack.

CallStackModel

Attributes of the Class

Attribute Name Attribute Type Description

columnName String [] Describes column name of CallStack Table

rowData Object [] [] Describes row data of CallStack Table

Methods of the Class

Method Name Parameters Return Type Description

isCellEditable row : int

column : int

Boolean Returns if cell is editable or not

 93

WatchTableModel

Attributes of the Class

Attribute Name Attribute Type Description

columnName String [] Describes column name of Watch Table

rowData Object [] [] Describes row data of Watch Table

Methods of the Class

Method Name Parameters Return Type Description

isCellEditable row : int

column : int

Boolean Returns if cell is editable or not

DomInspector

Attributes of the Class

Attribute Name Attribute Type Description

DomTree JTree Tree structure of DOM inspector

nodeNameLabel JLabel Node Name label of DOM inspector

nodeTable JTable Table of nodes in DOM inspector

nodeValueTextField JTextField Text field that shows value

tableScrollPane JScrollPane Scroll pane for table of DOM inspector

treeScrollPane JScrollPane Scroll pane for tree of DOM inspector

Methods of the Class

Method Name Parameters Return

Type

Description

initComponents () - void Initialize DOM inspector

components

showDom() tree :

DefaultMutableTreeNode

void Bind actions to menu items

getSelectedNode() - void Gets the selected node

information

showSelectedNode() - void Shows information of selected

node.

 94

CvsConnectionWindow

Methods of the Class

Method Name Parameters Return Type Description

getAccountInfo() - void Gets input of connection information

from user.

connect() - void Invokes CVSManager to connect.

FtpConnectionWindow

Methods of the Class

Method Name Parameters Return Type Description

getAccountInfo() - void gets input of connection information

from user.

getFile() - void gets file information from user and

invokes FtpManager to get file.

sendFile() - void gets file information from user and

invokes FtpManager to send file..

connect() - void Invokes FtpManager to connect

disconnect() - void Invokes FtpManager to disconnect.

 95

5.4 Activity Diagrams

5.4.1 Text Editor

 96

5.4.2 WYSIWYG Editor

 97

5.4.3 Database Editor

 98

5.4.4 CVS – FTP

 99

 100

6. GUI DESIGN

6.1. Overview of GUI

“GUI Design” is one of the most important parts of our project because it provides the

permanent interaction of user with Integrated Development Environment. “Sihirbaz” has to

provide developers a user-friendly environment which they can create interactive and rich web

applications especially using AJAX actions. We designed a GUI that supports all features of

our IDE in a user-friendly way and also view of our IDE should be nice-looking. We have

investigated existing Development Environments such as “Aptana”, “Tibco” and “JSE8” to be

able to identify our design as an applicable combination of these well-designed tools. As

stated before, we have already determined our detailed GUI functional requirements mainly in

“Initial Design Report”. We revised again our GUI to provide users more usability before

writing the “Final Design Report”.

Consequently, we have started to design and coding GUI of our development environment

and it has almost finished. We have implemented nearly all functionalities that we stated in

“Initial Design Report”. We have also started to implement “Database Editor” module of our

project so GUI of “Database Connection” window and “Database Editor” have already

finished. During implementation our project, according to our needs, we have made and also

we will probably make some refinements about GUI of “SiHiRBAZ”.

As we decided to implement our project by using JAVA, we have used “JAVA Swing”

package while implementing GUI.

 101

6.2 GUI Requirements

 • User can see “Code”, “Design” and “Browser” views in the middle of main window,

each one will be placed in a different tab. S/he will be able to switch between these tabs.

 • When user chooses “Code” tab, s/he will be able to write his/her source code with the

help of a featured text editor.

 o If user right clicks in the “Code” view, s/he will be able to perform “Undo”,

“Redo”, “Save” and “Cut”, “Copy”, “Paste” actions.

• When user chooses “Design” tab, s/he will create graphical design of his/her project by

using a WYSIWYG editor.

 o If user right clicks in the “Design” view, s/he will be able to perform “Undo”,

“Redo”, “Save” and “Cut”, “Copy”, “Paste” actions.

• When user chooses “Browser” tab, s/he will be able to see his/her application in an

embedded browser.

 • User can see “Project” and “Workspace” view at the left of “Code/Design” view, in

tabbed structure.

 • When user chooses “Project” tab, s/he will see all projects of development environment

and select by double clicking any of them. If user selects one of these projects, that

project will be set as current project and appears in “Workspace” view.

 o If user right clicks in the “Project” view, s/he will be able to perform “New”,

“Open”, “Edit” and “Delete” actions.

 o User will be able to expand and enclose the hierarchical tree structure of

projects.

 102

 • When user chooses “Workspace” tab, s/he will see current project and its files that s/he

creates and will probably run. If user selects one of these files by double clicking on it,

that file will be ready for editing or running and appears in “Code” view. User will also be

able to see JavaScript variables and functions of classes of files.

 o If user right clicks in the “Workspace” view, s/he will be able to perform

“New”, “Open”, “Edit” and “Delete” actions for current project’s files.

 • User will be able to see “DOM Inspector” view (Outline) just below the “Project /

Workspace” view.

 o When user chooses “DOM Inspector” view, s/he will see and reach all nodes

which are tags of HTML/XML document of current project. If user chooses one of

components by double clicking on it, that component's appearances will be

highlighted in editor.

o There is also a table that shows “Node Name” and “Node Value” in “DOM

Inspector” part of GUI.

 • User will be able to see “Palette” view at the right of the “Code/Design” view. There are

HTML and JavaScript components and AJAX Actions that are created before for the ease

of user in this view.

 o If user selects one of these components by clicking the icon of component and

put it on the “Design” view (drag and drop), that component will be added to

design and also its source code will be added to the file in “Code” view.

 o If user wants to add a new AJAX action to the palette (the one that s/he creates

or benefits from another source), s/he will click “Add New AJAX Action” button,

and a window will be open for user to write the source code of action to be added.

 o After making required connection and configurations about action, user will

clicks “Add” button on window and new AJAX component will be added to

palette.

 103

 • User will be able to see “Properties” and “Events” views that are in table structure just

below the “Palette” view in tabbed structure.

 o User will define his/her component’s properties (name, type, width, height,

action etc.) by using “Properties” table.

 o User will define his/her component’s events (handlers, actions) by using

“Events” table.

 o If user will click any cell of “Properties” or “Events” table, that cell will be

ready to edit or update.

 • User will be able to see “Debugger” view at the bottom of main window, with two tables

which are “Call Stack” and “Variables” views.

 o In “Call Stack” view, user will be able to see variables and functions currently

placed in program stack.

 o In “Variables” view, user will be click a cell, write name of the variable that

s/he want to trace, and s/he will be able to see value of it during program flow.

 o User will be able to add breakpoints at the line which is just left of “Code”

view.

 • User will be able to see “Database” view if s/he clicks to “Database Editor” from Tools

submenu of “Menu Bar” and connects his/her database without any problem.

 o When user clicks “Database Editor”, “Database Connector” dialog opens and

gets information from user. Needed information is type of database (MySQL or

Oracle), Server Host, Port, Username, Password and Schema.

o There are “Connect”, “Clear” and “Cancel” buttons in “Database Connector”

dialog. After filling required fields, user clicks “Connect” button to connect stated

database and schema. S/he also can use “Clear” button to clear all form.

 o If request is accepted by DBMS, “Database Editor” view is shown to user to

interact with his/her database.

 o If request is denied system shows an error message and request account

information again.

 104

 o After user connects to a database, schemas in that database will be shown to

user at the left of the page. User can select a schema among the list.

 o After a schema is selected its tables are shown as selectable items in tree view.

User can select a table to view or modify.

 o After a table is selected its rows and columns are shown at the screen in table

view at just right of the schema view.

 o User can select any row or column (attributes) in the tables by clicking on.

 o If cell is empty user can write new value for that attribute, if it has a value, s/he

can change it by using “Edit” icon, or discard the change by clicking “Discard”

icon. Finally changes are applied by clicking “Apply” icon

o If user wants to delete an entry in a cell, s/he can right click and select “Delete”

option to clear the selected cell.

o There is also “Refresh” button to refresh the tables after applying the recent

changes.

 o If user wants to execute his/her query by using the query window on the top of

“Database Editor” view, s/he will write query and click “Execute” button to get

the result of query.

 • User will be able to see “Menu Bar” on the top of the main window.

 o If user selects “File” submenu of “Menu Bar”, s/he can perform “New File”,

“Open File”, “Close File”, “Save File”, “Save File As” and “Exit”.

 o If user selects “Edit” submenu of “Menu Bar”, s/he can perform “Undo”,

“Redo”, “Cut”, “Copy”, “Paste”, “Delete”, “Select All” and “Find” actions.

 o If user selects “Project” submenu of “Menu Bar”, s/he can perform “New

Project”, “Open Project”, “Run Project”, “Start Debugging” and “Step Over”,

“Step Into”, “Step Out” actions.

 o If user selects “Tools” submenu of “Menu Bar”, s/he can use “Database Editor”

to connect database or send his/her files by using “FTP Connection” option.

 o If user selects “Versioning” submenu of “Menu Bar”, s/he can use “CVS

Manager”. User can easily “Commit” or “Check-out” his/her files.

 105

 o If user selects “Help” submenu of “Menu Bar”, s/he can choose “Help

Contents” or “About”.

 • User can to see “Toolbar” on the top of the main window, just below the Menu Bar.

 o If user clicks any icon on the toolbar, s/he can perform the action of that icon.

 o Possible icons that are shown on the toolbar are, “New File”, “New Project”,

“Open”, “Save File”, “Cut”, “Copy”, “Paste”, “Undo”, “Redo”, “Find” “Run”,

“Start Debug” and “Stop Debug”.

 • If user runs his/her application or chooses “Preview in selected browser” option, s/he

will also be able to see application in an external browser.

 • Efficient keyboard shortcuts are provided for user.

 o New (CTRL + N)

 o Open (CTRL + O)

 o Save (CTRL + S)

o Save As (CTRL + Shift + S)

 o Find (CTRL + F)

 o Cut (CTRL + X)

 o Copy (CTRL + C)

 o Paste (CTRL + V)

 o Select all (CTRL + A)

 o Undo (CTRL + Z)

 o Redo (CTRL + Y)

 106

 • Keyboard shortcuts for pause, resume, step in/over/out, break will be provided.

 o Break (Pause)

 o Go (F5)

 o Step into (F11)

 o Step over (F7)

 o Step out (F8)

 • Powerful keyboard navigation in the file system browser is allowed.

 o User will press 'ALT' and the file menu fill be opened.

 o User will use arrow keys to navigate on the menu.

 107

6.3. Screenshots of GUI

In this part, screenshots of all GUI modules are shown.

6.3.1 “Code”, “Design” and “Browser” views

 108

6.3.2 “Project” and “Workspace” views

6.3.3 “DOM Inspector” view

 109

6.3.4 “Palette” view

6.3.5 “Properties” and “Events” views

 110

6.3.6 “Debugger” view

6.3.7 “Menu Bar” & “Tool Bar”

6.3.8 “Database Connector”

 111

6.3.9 “Database Editor”

 112

6.3.10 Final view of GUI

 113

7. OFF-THE-SHELF COMPONENTS

7.1 Debugger

We are planning to use an open-source JavaScript Debugger. Rhino is an open-source

implementation of JavaScript written entirely in Java. It is typically embedded into Java

applications to provide scripting to end users.

All the features of JavaScript 1.5 which conforms to Edition 3 of the by Standard ECMA-262

ECMAScript.

• Documentation of Mozilla Rhino:
o http://www.mozilla.org/rhino/doc.html

• Mozilla Rhino API Documents:

o http://www.mozilla.org/rhino/apidocs/

Screenshot of the Rhino JavaScript Debugger :

 114

7.2 Embedded Browser

We are planning to use JRex(powered by mozdev.org) which is a Java Browser Component

with set of API's for embedding Mozilla GECKO within a Java Application. To embedded

Mozilla GECKO to our project, first we need to build it.

• Mozilla GECKO is built by the instructions in these sites.

o http://developer.mozilla.org/en/docs/Build_and_Install

o http://gemal.dk/mozilla/build.html

• Documentation of JRex:

o http://jrex.mozdev.org/docs.html

• JRex API Documents:

o http://jrex.mozdev.org/docs/api/index.html

Features of JRex:

• Embedded Java Browser based on Mozilla GECKO.

• Event capturing like InputEvents (Mouse & keyboard), History, ContextMenu,

ContentUrlListener, Observer, Progress, ToolTip.

• Compatible with AWT and Swing.

• Build in support for window and event management.

• Easy to use, developer need not know much of Mozilla details. The effective line of

code for simple use is not more than 3 lines.

• Easy to use and easily extendable API's.

• Compatible with windows and *nix (Having GTK support).

• Compatible with Mozilla Gecko 1.4 and above. Has been tested with Mozilla Gecko

1.4 and 1.6 and 1.7.7

• Supports Tabbed and Java Internal Pane browser windows.

• Support for Profile & preferences.

• Support for Persist, Find & BroswerSetup (to enable/disable plug-in, image etc.)

preferences.

 115

• Support for accessing DOM objects of rendered page.

• JRex also implements DOM HTML2 for manipulating loaded HTML Document.

• In built support for Java WebStart deployment.

• In built support for LiveConnect which helps in communication between javascript and

Java.

o Can be used for communication between XUL and JVM in which JRex is

running.

Screenshot of the JRex embedded into a Java Application :

 116

8. SPECIFICATIONS

8.1 Syntax Specifications

Variable names: If a variable name consists of more than one word, first letter of each word

except the first one will be capitalized: control, requestReturnData

Function names: Functions will be named with the same rule as variables: getControl, check

Class names: The first letter of every word in a class name will be capitalized:

HomeIndoorArea, Student

Class members and methods will be written in the following order:

1. Private members

2. Protected members

3. Public members

4. Private methods

5. Protected methods

6. Public methods

There will be one empty line between function bodies. Only one member can be written on a

line. There will be two empty lines after member declarations. Members in a same visibility

will be grouped according to their data types. Example:

public class Student {

 private String name;

 private String surname;

 private int studentNumber;

 public char studentType;

 117

 Student() {

 //body

}

protected int getStudentNumber() {

 //body

}

public String getName() {

 //body

}

}

Functions: When writing a function the opening and closing brackets of functions will be on

individual lines. Local variables in a function will be declared on top and local variables with

the same data type will be grouped. Only one local variable can be declared on a line. After the

declaration of local variables there will be two empty lines before starting to code. Example:

Bool checkDoorCollision(void) {

 int control;

 int index;

 float distance;

 Position cameraPos;

 //code starts here.

}

 118

Conditionals and loops: Opening and closing brackets of conditional and loops will be on

individual lines. Example:

if() {

 // condition body

}

Comments:

• At the beginning of every file, the author of it, the date file is created and the date file

was last modified will be written in a comment with the following syntax.

/**

 @author: Fulya Oktay

 Created 01.12.2006

 Modified 01.12.2006

 */

• Before the ‘if’ and ‘for’ expressions, the purpose of them will be stated in a comment.

• Before every class definition, the component which the class specifies will be stated in

a comment.

• Before every function definition, the functionality will be stated in a comment.

• For every attribute of the class, an explanation will be provided in a comment.

Syntax for comments is

/**

 Comment

*/

 119

8.2 Project Management Specifications

8.2.1 SiHiRBAZ Package Structure

* Our Product will be existing in SiHiRBAZ

directory after installation. SiHiRBAZ

Package Structure consists of some necessary

directories and files.

* In the bin directory, there exists binary

project files.

* In the apache directory, there exists apache

web server.

* In the php directory, there exists php

software.(php and apache directories may not

exist in the package if the user has already

installed them on his/her pc.)

* In the mozilla directory, there exists open-

source Mozilla web browser for embedded

browser support of our product.

* In the plugins directory, there exists plugin

files if avaliable.

* In the licence directory, there exists

necessary licence files.

* In the icons directory, there exists project

icons image files.

* In the readme directory, there exists all

necessary help and readme files of our

product.

* There exists a sihirbaz.exe file which is an

executable file to run our product on

Windows. There will be Linux executable for

Linux Package.

* There exists sihirbaz.conf file. This is a

XML file. Our product first read this file.

Necessary information is existed about the all

project the user have created.

 120

A sample sihirbaz.conf file will be like this :

• <sihirbaz> is a root tag, it contains <projects> tag and <java_jdk> tag.

• <projects> contains <project> tag which provides necessary information about

projects. There is an attribute current for currently opened project in the

workspace view of the product.

• Between the <project> </project> tags there exists there exists <name> and

<path> tags.

• In the <java_jdk>, there exists a path for installed Java JDK.

<?xml version="1.0" encoding="UTF-8"?>

<sihirbaz>

<projects current="Deneme">

 <project type="AJAX Project">

 <name>Deneme</name>

 <path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>

 </project>

 <project type="AJAX Project">

 <name>Sihirbaz</name>

 <path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>

 </project>

 </projects>

<java_jdk>

 <path>C:\Program Files\Java\jdk1.5.0_06</path>

</java_jdk>

</sihirbaz>

 121

8.2.2 SiHiRBAZ Project Workspace Structure

* A project created by the user will be saved

in to “project name” directory. Location of

the project directory is anywhere in the local

drive of the computer chosen by the user.

* There exists three directories for the

created project files which are HTML,

JavaScript and XML files.

* There exists a project name.spw

(SiHiRBAZ Project Workspace) file which

will be in XML format. User will able to run

our product with this project by clicking this

file.

The contents of the file sample .spw file will be as follows:

This file includes information about the project which are its name, path and type.

<?xml version="1.0" encoding="UTF-8"?>

<project type="AJAX Project">

<name>Deneme</name>

<path>C:\Documents and Settings\Tayfun Tekin\Desktop</path>

</project>

 122

9. TESTING ISSUES

9.1 Testing Plan and Strategy

In order to present an error-free and defect-free product we need to make some tests. For this

purpose, we have decided on some testing strategies and built a testing plan during our design

interval. Since we will have very little time for testing, we tried to simplify our strategy and

concentrate on an efficient strategy rather than trying to do all real software test methods.

To see how easily our software can be tested we check our project with according to several

characteristics:

Operability: From the beginning we will try to work carefully and eliminate errors. This will

help us to test our product easily. Several modules and tasks will be prepared in order to

perform efficient tests and obtain better results.

Observability: We will prepare distinct error and warning messages.

Controllability: We decomposed a job into several units in order to control the actions easily.

Decomposability: Several modules and tasks will help to uncover errors.

Simplicity: We’ll also try to code as efficiently as possible.

Stability: Separate modules will help us for the stability. Past tests won’t be invalid. Function

and module dependencies, architecture are all understood clearly by group members and this

will help in testing. Also our large document archive will help this process.

 We will test

• User interaction

• Data manipulation

• Display processing and generation

 Below are the methods we will use.

 123

9.1.1 Unit Testing

In the unit test case we will test each module separately. White box testing will be used

to both detect the errors and correct them. We will test the components by passing data

through it and we will be monitoring data to find the errors.

We will make sure that all the components work correctly and efficiently. The test will

be done primarily by the programmer who designed and implemented the module. If

necessary, the other programmer will do the second testing for the same module.

All the important paths will be tested with a white box method. Rather than the

complete program, all of the modules will be tested individually. Below are the

modules:

• GUI Testing

• Text Editor

• Database Editor

• WYSIWYSG Editor

• JavaScript Debugger

• CVS Support

• FTP Support

9.1.2 Integration Testing

Although we can find errors in modules by unit test, we must also make an integration

test in order to find errors due to integration of the modules. We will examine the

product from the user’s perspective for making integration test. We are planning to use

an incremental integration for this manner. Smoke testing may be the most suitable

because of the time interval however we won’t have time to test or product daily. This

is unrealistic. We will probably use bottom-up integration.

 124

We will be looking whether all the modules work correctly, i.e. is data correctly

managed, are interface features easy to understand and use, does the product really do

the job we want, is there any confusion where more than one person uses the product,

etc. All of these tests will be implemented from the perspective of a user. However it

will not be possible to see all the errors, and there may probably be defects. Some other

tests are still needed.

9.1.3 Validation Testing

Validation asks: “Are we building the right product”. And the answer specifies whether

our program will be preferred by the web developers or not. Therefore validation is

important.

We will perform a black box testing too. Use cases will be used in order to specify all

the needed requirements and obtain possible errors.

Beta Testing: It is virtually impossible for us to foresee how the customer will use our

program. We are especially interested in alpha testing. Therefore we will release an

alpha version of the product before the demo deadline. Since our customers are web

developers, we believe we will obtain some error reports from our friends who have

experience in web developments and Ajax actions. In addition, we are planning to put

our product on web site and do advertisement in some communities and forums related

with Ajax applications.

10. CONCLUSION

This is the Detailed Design Report of “SiHiRBAZ” project. During preparing this report, we

have tried to decide on the way we will implement our product. We have reviewed our initial

design report and made some refinements. In addition the diagrams we have drawn before, we

provide activity diagrams for this report.

 125

11. APPENDIX

