MOON SOFTWARE SOLUTIONS

Requirement Analysis Report

1. INTRODUCTION
1.1 Background
Computer games were being considered as a means of fun at its early ages and never been considered as a commercial sector in the software industry. People were writing games just for public use and did not benefit from them except from appreciations of the users. Since users have the source codes of the simple games and home computers has evolved rapidly, users created their simple games leading to a huge increase in the number of game programmers. While the fruit of development in early video games appeared mainly (for the consumer) in video arcades and home consoles, hobbyist groups for the new computers soon formed and game software followed.

The real professional development in computer games was started after the foundation of new game companies. These companies have funded millions of dollars on video games as on other software. Also the development in personal computers (increasing computing power and decreasing cost of processors, 3D supplying and accelerating video cards, high quality sounds, decreasing cost of RAMs and disks) and networking via internet (or LAN) has contributed game industry a lot. Because, companies then would be able to create advanced games played with multiple users and using heavy 2D-3D graphics. While the first ones were stored in a floppy, nowadays most games are composed of CDs and played by installing on a computer. Today there are lots of big game companies having hundreds of engineers studying on game programming.

The popularity of games among users comes from the virtual world it supplies to user. User feels him as a part of the game and somehow feels the real adventure by giving inputs and affected with the coming outputs in a developer designed aspect. The more the user can create his own style in all possible parts of a game, it will be more realistic and gives more fun.

1.2 Project Definition
A massively multiplayer online game (MMOG) is a computer game which is capable of supporting hundreds or thousands of online players to interact and play together in a virtual environment simultaneously and played via internet. MMOGs can enable players to compete with and against each other on a grand scale, and sometimes to interact meaningfully with people around the world.

These types of games can be 2D or 3D. Most type of 2D MMOGs are played directly from a site without requiring any installation on the client computer. No heavy graphics can be seen in 2D ones. But the 3D ones attract and capture a big majority of users because of their better graphics in the game. Since the visualization of these type MMOGs includes advanced and heavy 3D graphics, most of them have to be installed to each client computer and then can be played online.

Game programming is a challenging work requiring different and a huge knowledge about computer and programming. Even for a simplest type of MMOG, the creator(s) should know and consider about the graphic design, animation, playing sound effects, processing user interaction via mouse, keyboard and joystick, artificial intelligence, online networking and combining all of these in a real time, error-free manner within a main context.

Moon Software Solutions will develop a car racing game in which user can compete against a group of user which is online or controlled by the computer. Since the “car” is not distincted between men and women or according to age, unlike first-person shooter ones, our game will address the entire user group from the world. Users will be free to create their unique profile by selecting car, car color, backwards, mirrored, track, location, game and race type, style, laps, transmission and etc. User can also get information about the previous races, his profile, cars, tracks and etc. Our game will provide a user friendly interface with simple and categorized menus. There will also be animations and special sound effects to support the scenario. The details of the characteristics of the game will be explained in the following sections.
1.3 Project Goals and Scope
The goal of this project is to design and implement an interactive, massively multiplayer online 3D game up to a position such that it can be released for commercial purpose. The resulting program will be real-time, realistic with its graphical environment and car physics.

During development of project, we will follow the below methodology.

· Analyzing the current car racing games

· Analyzing all the requirements and specifications for the game

· Design of a game according to the defined criteria

· Detailed search on the requirements and solutions

· Implementation and testing of the game

· Technical support and documentation

2. THE PROCESS
2.1 Team Structure
Since our team has no permanent leader, all tasks are appointed for short durations to members and all the communication within group is horizontal, our team has democratic decentralized (DD) structure. Decisions on problems and approach are made by group consensus.

2.2 The Process Model
To be successful at the end of the project, the process model should be decided carefully. We have no customer waiting, so we can postpone the implementation of the game just after the analysis and design. The sequence is as described in the goals and scope part (1.3). So we choose the linear sequential model as our process model. We gather information and requirements at analysis and design parts, it will not be so difficult to accommodate the model.

2.3 Major Constraints
2.3.1. Project Schedule
The schedule of our project is explained in the Gantt-Chart part. According to this time chart, the project has to be designed and implemented in 8 weeks.
2.3.2. Language Constraints
We will use an object-oriented language to program the game. The options are C++ and C#. We consider OpenGL and DirectX to implement the graphics. We decide after comparing the pros and cons of them.
2.3.3. Data Constraints
As we process a heavy visualization and store the data for other users we need a huge amount of data storage.
2.3.4. Execution Speed
To be realistic especially in a massive online car racing program, data transfer should be fast and minimal. Also to obtain a perfect smooth transition between frames we need to supply minimum 24 frames per second refresh rate.
2.3.5. User Interface
The user interface will be simple and easy to use. Menus should be provided in a logically categorized way.
3. RESEARCH
3.1 Current Popular Games And Their Features Search
We have searched some popular games to understand their capabilities, common features, extreme features, menu options etc. There are some 2D multiplayer online race games but we did not analyze these ones since our game will be 3D game. The games include F1 2002, NFS2, Collin McRae, Street Legal Racing Redline, Nascar, Raging Thunder, Test Drive Unlimited, GT Legends, Grandpix4, NFS Underground.
Common features used in evaluating the games are :

· Game Modes : arcade or simulation modes (realism versus fun)

· Genre: type of racing (off-road, street etc.)

· Multiplayer Supports : playing games with others via network

· Variety of tracks : number of tracks that users can play in

· Interface quality : including high graphical features

· Difficulty level support: setting that effects how much game is challenging.

· AI level : the degree of realism of car physics

· Turbo(nitrous oxide) : speeding up the car when in this mode

· Upgrade car : to be able improve car features as player wins the races

· Unlock racing circuits : being able to race only after a level

We have formed a table and for each feature, valued each box. The result is included in the appendix. Some games provide mode types but some do not. For example in arcade mode being able to escape from other players are included. So this mode is for fun and in this mode realism is not extremely applicable. So fun is aimed over realism. While some games take place in the streets, others may take place a definite circular track (i,e F1 2002). Some games support multiplayer feature but some of do not for efficiency. Almost each game provides users a number of tracks so that they can race wherever they want. Some games have 10-15 tracks but some of them may have 50-60 tracks. Most of games that do not support multiplayer feature include high quality graphical features. When players want to some challenge, some games provide difficulty level support for these players. In all racing games AI component mostly include car physics. For example while turning left, game should take action accordingly. Most of games provide users turbo feature where car speeds up. In some games, if players can collect some points, after a limit they can improve their car features such as suspension feature. There are some tracks which are unlocked at the beginning of the game but as players make progress they can make this tracks unlock.

3.2 Survey and Results
We made a small survey among the 30 computer engineering students. The results were important for us since our team would use these results regarding selection of the type of game. We asked them some questions about games and we concluded that:

· Most players prefer street racing (i,e NFS 2)

· Some players prefer racing for their popularity (i,e F1 2002)

In F1 racing there are lots of tracks. But generally since there is no objects except terrain, players do not enjoy it much, that is it restricts visual effects. But while passing through the city players can see lots of buildings, lights, streets, bridges and etc. As a result they enjoy from this type of games. So we decided to do street racing genre.

3.3 MEETING WITH AYKUT SEVIM
An important disadvantage at the same time a risk for project team is that throughout our education on computer engineering, we have not seen any subject related to Game developing. That is, project was a little bit different to us in terms of content. So, we decided to arrange a meeting with a game developer Aykut Sevim who is project manager in a company called Kitlesel at Bilkent CyperPlaza. Meeting took place at 20.10.2006 in his office. The meeting was very helpful. You can find the notes related to the results of the meeting in the Appendix

3.4 Literature Survey and Technical Analysis
3.4.1. Developer Tools
To design and develop a game for the project, we have conducted a number of surveys and research to gain experience and create knowledge in technical aspects of a game. For the 3D modeling the developing tools include:
· 3D Studio Max

· Alias

· milkShape3D

· trueSpace ,

· Maya

· Lightwave

3D Studio Max is the most popular one. Since we have time constraints, maya is not good preference. So we are going to use 3D Studio Max.

For editing textures and creating images

For physics we should use some physics engine. Computer games (especially racing games) use physics engines to ensure realism. Some engines are :

· Open Dynamics Engine

· Tokamak

· Bullet

· Opal

· Newton Game Dynamics

Since these are all for realism-based games we will choose one of them.
3.4.2. Infrastracture
3.4.2.1. Network Analysis
In a head-to-head death match multiplayer game, players form ad-hoc and short-lived sessions. Any client can be selected as a server and the speed is much higher than an online game. There is no persistent state in these games.

However in a MMOG there must be a server other than the clients computers and connection should be persistent. So the infrastructure in server should be handled in a good way.

There are two things to be considered in a MMOG networking: Backend infrastructure and client-side networking.

Backend infrastructure:

· Lobby where gamers meet.

· Gamers are authenticated

· Gets data from all client sides

· Controls over all client computers

· Processes clients data with inside AI

Security and speed is very crucial to this part.

Client-side networking:

· Main processes are done required for the game such as graphic rendering, sound playing etc.

· Gets controlling data from server (backend infrastructure) and creates visualization and interaction

· Sends current status of user’s game to the server

[image: image9.jpg]Player

Player

Servel

Player

Player

Player

Player

Player

The figure on the right reveals the communication between server and players. There can be more servers and more players according to the game.

For our case, there is single server and hundreds of users.

[image: image10.png]High-speed
Connection
€ Server2

Serverl
ol M Player
Playef Player
'Playel Player

Player

Player

Different from the above one, this figure shows interaction between user-server and servers-server. Users from different locations are controlled over different servers, but then servers talk to each other with a high-speed connection and updated objects send to each user. In this case, servers must be kept consistent.

Message passing through server-client:

[image: image1]
Server takes inputs from all users and sends updated states to all players. Then each client updates his own game state.

There are some protocols in networking which are standards that computers can talk to each other. It is important for a programmer to choose the suitable one. We analyzed and gathered information about some of them.
Internet Protocols

[image: image11.jpg]osi
Refarance Model

Internet Protocal Suita

Application

Presantatian

Sessian

FTP, Talnet,
SUTR SNUP

NFS

XoR

RPC

Tansport

Tc, uop

Netwark

Routing Protocols

3

icup

Link

Physical

ARP, RARP

Not Specified

3.4.2.1.1. Internet Protocol (IP)
The Internet Protocol (IP) is a network-layer protocol that contains addressing information and some control information that enables packets to be routed. IP is the primary network-layer protocol in the Internet protocol suite. Along with the Transmission Control Protocol (TCP), IP represents the heart of the Internet protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery of datagram through an internet work; and providing fragmentation and reassembly of datagram to support data links with different maximum-transmission unit (MTU) sizes.

3.4.2.1.2. Transmission Control Protocol (TCP)
The TCP provides reliable transmission of data in an IP environment. TCP corresponds to the transport layer of the OSI reference model. Among the services TCP provides are stream data transfer, reliability, efficient flow control, full-duplex operation, and multiplexing.

With stream data transfer, TCP delivers an unstructured stream of bytes identified by sequence numbers. This service benefits applications because they do not have to chop data into blocks before handing it off to TCP. Instead, TCP groups bytes into segments and passes them to IP for delivery.

[image: image12.jpg]‘Source port

Destiatin port

‘Sequence number

‘Acknowlsdgment number

Data offset | Resarved

Flags

Window

Checlsum

Ungent pointer

Options (+ pacding)

Data (variable)

TCP offers reliability by providing connection-oriented, end-to-end reliable packet delivery through an internet work. It does this by sequencing bytes with a forwarding acknowledgment number that indicates to the destination the next byte the source expects to receive. Bytes not acknowledged within a specified time period are retransmitted. The reliability mechanism of TCP allows devices to deal with lost, delayed, duplicate, or misread packets. A time-out mechanism allows devices to detect lost packets and request retransmission.

TCP offers efficient flow control, which means that, when sending acknowledgments back to the source, the receiving TCP process indicates the highest sequence number it can receive without overflowing its internal buffers.

A TCP package
3.4.2.1.3. User Datagram Protocol (UDP)
The User Datagram Protocol (UDP) is a connectionless transport-layer protocol that belongs to the Internet protocol family. UDP is basically an interface between IP and upper-layer processes. UDP protocol ports distinguish multiple applications running on a single device from one another.

Unlike the TCP, UDP adds no reliability, flow-control, or error-recovery functions to IP. Because of UDP's simplicity, UDP headers contain fewer bytes and consume less network overhead than TCP. UDP is useful in situations where the reliability mechanisms of TCP are not necessary, such as in cases where a higher-layer protocol might provide error and flow control.

UDP is the transport protocol for several well-known application-layer protocols, including Network File System (NFS), Simple Network Management Protocol (SNMP), Domain Name System (DNS), and Trivial File Transfer Protocol (TFTP).

[image: image13.jpg]32Bits

Saurce Port

Destination Port

Length

Checksum

The UDP packet format contains four fields, as shown in. These include source and destination ports, length, and checksum fields. Since UDP is “connectionless”, it is widely used in games. But we are not ready to decide which one to use. We keep searching and learning basics of networking by writing simple hello-worlds.

3.4.2.2. Graphics
Graphic infrastructure is another important of project. In this phase we will use some graphical libraries and components which compose important part of this section.According to our research there are some collection of API’s used for development of computer games. They are DirectX and OpenGL. They support some graphic libraries also and both of them have some advantages.

Advantages of using OpenGL

1.
It is a consistent, straightforward C style API, which of course means you can use it in both C and C++. DirectX requires you to have a pretty good working knowledge of C++ before you can get much out of it.

2.
 Each graphics card vendor can add their own extensions, allowing programmers to use the latest features of the hardware as long as the graphics card drivers support them. Eventually, if the extension proves itself as being useful and good, the OpenGL ARB (Architecture Review Board) will make a standardized extension taking into account that vendor specific extension. The standardized extension then becomes non vendor specific. As time goes, the standardized extension might make it directly into GL core. You can use libraries to ease the use of extensions (really good, and makes life much easier), and remember you don't have to use extensions; they're just there to provide more cool features.

3.
It is easier to find documentation. Older copies of "The Red Book" can be found online for free. DirectX changes versions so quickly that often as soon as you find a book about the current version, a new version comes out.

4.
If you have a compiler, the headers and libraries you need to get started with OpenGL are almost certainly sat on your computer right now.

Advantages of using DirectX

1.
DirectX offers a lot more than just rendering: it can also handle user input, sound/music, networking, and there are also a whole load of tools that make life much easier. DirectX also gives you 3D math functions, mesh manipulation functions, image loaders, tools for viewing models, effects, textures, performance etc... This has to be considered too if development time is a constraint. It's definitely possible to use OpenGL for graphics alongside DirectX for the other stuff (DirectInput and DirectSound being good examples), and there are plenty of other libraries floating around you can use as well, but you might decide you'd prefer a "one stop shop" for all this game functionality.

2.
DirectX comes with its own formats for models, textures etc. The models, for instance, are the .X file format, and most modeling packages can export these. DirectX already contains the code to load .X files, so you don't have to write your own model loader like you would in OpenGL. Although writing stuff like model loaders can be a fun challenge and will certainly teach you a lot about game development, you might prefer to have a loader in place already to get up and running quickly.

4. PROJECT REQUIREMENTS
Software requirements is the documentation that completely describes the behavior that is required of the software—before the software is designed, built, and tested. Any coherent and reasonable project must have requirements that define what the project is ultimately supposed to do.
4.1 Functional Requirements
Functional requirements define the internal workings of the software: that is, the calculations, technical details, data manipulation and processing and other specific functionality that show how the use cases are to be satisfied.

Functional requirements fall into three groups of types, namely normal requirements, expected requirements and exciting requirements.
(*) Normal Requirements: The objectives and goals that are stated by the instructor and the assistant of the course. These features are expected from a massively multiplayer online car racing game.

(**): Expected Requirements: These requirements are implicit to the product and so fundamental that the instructor does not explicitly state them.

(***): Exciting Requirements: These features go beyond the instructor’s expectations and prove to be satisfying when present. These features are not guaranteed to be implemented because of the time and manpower constraints.

4.1.1. Menu Requirements
These are the requirements related to the menu that is displayed when player enters to the game. This requirement is composed of two subtitles, namely general requirements for the general properties of the menu, and menu items requirements for the functionalities of the menu items.

4.1.1.1. General Requirements
This Main menu is displayed when player enters to the game and when a race is finished and turned back to main menu.

· (*) This menu must be designed esthetically so as to be attractive for the player. Suitable colors must be selected and elliptic shapes must be used instead of cornered shapes.

· (*) Player can move on sub-menu titles with keyboard by clicking up-down arrows. And also user can freely move and use mouse for entering sub-menus.

· (**) User can make some primitive changes on sub-menus without entering to them by clicking left-right arrows on keyboard. For example “Location” of the race can be changed in this way without entering to sub-menu.

· (**) When a submenu is become active (i.e. mouse is over submenu name but not selected, also maybe done by the help of keyboard) a sound is played.

· (**) A suitable music is played when user stays inside this menu.

4.1.1.2. Menu Items Requirements
· Game Setup

· (*) Game settings are made from here. User will be able to select game type such as “one player”, “split screen” or “internet play”. One player and split screen games are played off-line. Internet play is played with distant players.

· (**) User can select race type such as “single race”, “tournament” in which at the end of each race players collect points and “knockout” in which at the end of each race the last position holder is eliminated.

· (***) User can select race mode such as “wild” in which car physics is a little bit surrealistic such that car does not slide when it enters to a turn with high speed. Also there exists another mode “simulation” in which car slides more on road when car is fast, as it is in real case.

· (***) Catch-up mode is used for slowing down the car that is played by the computer when it is on first position. This is because player will get bored when s/he is far back from the first positioned computer played racer.

· (***) In mirrored mode user can change the direction of the race to the reverse direction. By this way user will have the feeling of riding on a different track.

· Location

· (**) Users can select different tracks for racing.

· (**) Users can select the number of circuits s/he wants to make around the selected track. Alternatives for this part will be static numbers such as 1/2/4/8/12 etc.

· (**) User will be able to visualize detailed info about the track selected and see the road map.

· (**) User will be able to see the saved track records.

· (***) Track records will be displayed in two ways. One record table will be displayed for the off-line games played on computer. And one will be hold for the online games played and will be synchronized when internet connection is established.

· Select Car

· (*) Users can select cars.

· (**) There will be two distinct menus for selecting car. They will be probably named as “Player One” and “Player Two” respectively. Player two menu will be activated only when “Split Screen” is selected as game type.

· (**) User can visualize the statistics of the car such as acceleration, max speed, breaking, handling etc. Also user can see the photos and the detailed information about the car.

· (**) User can select either “Manual” or “Automatic” transmission.

· (**) User can select color for the car that is selected.

· Opponents

· (*) User can select options for the opponents in off-line plays. So this submenu is disabled when “Internet Play” is selected as game type. Opponents stated here are the racers that are played by the computer (i.e. they are product of artificial intelligence).

· (**) User can select cars of the opponents. One choice will be no opponent. User can select just one car type for all opponents (ex. all opponents race with Ferrari F50). User can select a car group for opponents. For this purpose cars will be grouped such as “Group A” for powerful cars, “Group B” for less powerful cars and etc.

· (**) Number of cars is selected by the user. Choices are 1 or “full team” meaning that number of racers is 8 in total, i.e. all racers other than one player or two players is split screen are played by computer.

· (**) Users can select two distinct types of skill levels for the computer’s artificial intelligence. For example they may be called “beginner” and “advanced”.

· (***) User can add traffic on race. By activating this mode, there will be light city traffic on track.

· General Options

· (*) By the help of this menu, user can make changes on general game options.

· (**) User can change the speed unit that is displayed on the race screen. Choices are km/h and mph.

· (**) User can make changes on audio settings. A submenu exists in options menu. In this menu “menu music”, “racing music”, and “sound effect” sections exist, which are used to increase and decrease the sound of the related kind.

· (**) User can select the tune that s/he wants to listen while having a race.

· (***) User will be able to change the selected tune from the “Pause” menu of the race.

· (**) Users will be able to visualize and change the game controls(which will only be on keyboard).

· (***) Users will be able to “Save Replay” of a played game. Near that, users will be able to “View Replay” of a saved replay, and also “Delete Replay” will be available for deleting a record.

· (**) Users will be able to change the graphics options. “Window Size” will be able to be changed. “Image Quality” will be able to be changed.

· (***) Viewing distance will be able to be set by the user as “far” and “near”. This option will define how far distance will be rendered. For a more realistic feeling, this must be set to far. But it may be set to near because of hardware constraints of the user.

· Credits

· (**) This menu will list the names of the members of the project team, related information about our company, and names of the individuals and corporations.

· (**) This list will slide slowly on the screen while a music is played at the background.

· Race

· (*) User can start to race in “Single Player” and “Split Screen” modes.

· Connect

· (*) User can connect to server for playing an internet game by clicking connect button when “Internet Play” game type is selected. This “Connect” property is displayed in place of “Race” property when “Internet Play” is selected.

· (**) User can see the list of available on-line games when clicked “Connect” button and connected to the server.

· (**) User can set up a new game. After setting up a new game, user becomes the moderator of the game. A moderator has the privilege of choosing the race type, style, location in single races, laps in single races over joiners.

· (**) Each game that is set up can take at most 8 players and at least 2 players. Race starts when all participants click race button. Racers are completed to 8 by the server, i.e. absent players are played by the server (artificial intelligence of the racers are controlled by the server).

· (**) Each user can change his/her car, car color, transmission.

· (**) Users will be able to chat with each other on this main race screen before race starts, by typing on keyboard.

4.1.2. Game Flow Requirements
These are the requirements that are related to the game play. We examined game flow requirements in for subtitle: Game logic requirements, environment requirements, Car requirements, and player-game requirements.

4.1.2.1. Game Logic Requirements
· (*) Game provides user to race against some other intelligent thing. This may be another person or a group of people or a computer. So game makes player taste the feeling of competition in all races.

· (**) Game provides player to race in different circuits, thus player will be eager to win one race so as to have a better position on other circuit. Improvement makes people to go on action. So by changing track in a, say tournament, player will not get bored from playing.

· (***) Each track has a photo or video intro that is played when track is being loaded.

· (***) A hidden track may be visible for the last two racers, who are the finalists of a knockout.

4.1.2.2. Environment
· Terrain, Buildings and Objects

· (*) Game must have a terrain which gives the feeling of realism to player.

· (**) Terrain will consist of sky, ground, road, buildings, trees, and some extra objects such as statue, street lamps, dustbin etc.

· (**) Car is not permitted to get out of the road. This will either be satisfied by putting protective embankment on borders of the road, or by just preventing the car from getting out of the road as if it can not climb over pavements.
· (***) Some external objects can be drawn such as a passing helicopter, plane, ship etc.
· Cars

· (*) Cars can crash. Crashing will not give any damage to the car, but will effect the speed of both cars.

· (**) Wheels of the cars will turn left and right according to the direction given by the player.

· (***) Smoke can arise from the car in serious crashes.

· (***) Sparks can rise from car when it crashes with a barrier.

· Computer Controlled Cars

· (*) Computer controlled race cars uses artificial intelligence.

· (**) Race cars will have different AI capabilities, so as to make race more realistic. Because in real world races, generally all racers have different riding skills and the winner is the one with most skill (generally). So in our race some computer controlled cars will behave cleverer than others.

· (***) Computer can control ordinary cars when traffic mode is open.

4.1.2.3. Player’s Car
· It has movement capabilities

· (*) Go forward, go backward.

· (*) Turn left, turn right.

· (*) Stop suddenly by using handbrake.

· It has external effects

· (**) It can turn on headlights.

· (**) It can sound the horn.

· (***) When stepped on break suddenly, car tires will mark the road.

· (**) When stepped on break, back break lights are turned on.

4.1.2.4. Player – Game Interaction Requirements
· (*) Player controls the car with the keyboard.
· (*) Game uses monitor and speakers to send output to player.
· (**) Player can view the game from different camera views.
· (***) Player can view the game from inside the car, i.e. view the steering wheel, speedometer, etc.
· (**) Player can see the road map, back of the car from mirror, his/her current position on the race, speed and gear of the car, time passed since passing from starting point. All these are located in suitable positions on screen.
· (***) Player will hear motor sound, changing according to the motor spin.
· (***) Player will take a shaking view when a crash occurs and camera view is from inside of the car.
· (**) Player can pause the game by clicking on probably ESC key.
· (**) Player can change the sound settings from escape menu.
· (***) Player can change the tune that is playing during race from escape menu of the race.
· (*) Player can exit from race, exit from game directly from the escape menu of the race.
· (*) Player can resume the game from the escape menu of the race.
· (*) Player can restart the race from the escape menu.
· (*) Player can not stop the Internet game by escape, but just get out of the game by pressing escape.
4.1.3. Operational and Structural Requirements
These requirements form the basic of the game. Despite the fact that player is not coming face to face with these components, they are essential for the formation of the game. We examined these requirements in six subtitles: Game engine, graphics, sound, AI, physics, game data, networking.

4.1.3.1. Game Engine
· (*)The core functionality typically provided by a game engine includes a rendering engine for 2D or 3D graphics, a physics engine or collision detection, sound, scripting, animation, artificial intelligence, networking, and a scene graph.
· (*)Combines the subcomponents of the game.
4.1.3.2. Graphics
· (*) Renders the scene in 3d mode.
· (**) Maps the textures on objects.
· (***) Draws the objects that are far to camera with low resolution than that is near.
4.1.3.3. Sounds
· (**) Menu clicks; passing from menu to menu actions produces sound.
· (**) In main menu and escape menu, music is played at the background.
· (***) Motor sound is played during race, changing according to motor cycle.
· (**) Collision sound is played on car crashes.
· (**) At the beginning of the race, counting back from three to one in speech is played.
· (**) At the end of each lap, and at the end of the race, notifications regarding the lap time and position is pronounced.
· (***) Music is played during race.
4.1.3.4. Artificial Intelligence
· (*) Computer will play for the rest of the team that is not played by real people.
· (**) Computer will play as clever as possible so as to give player pleasure. For example cars should enter to the curves from inside so as to decrease the distance, or decrease and increase speed in essential places.
· (**) There should be different AI levels for different cars in one race, so that realism is reached.
4.1.3.5. Physics
· (*) Car must obey to the real world physics rules.
· (***) Car should wave by help of shock absorber’s movement.
4.1.3.6. Game Data
· Track

· (*) Terrain

· (*) Objects

· (*) Buildings

· (*) Statistics

· Sounds

· (*) Menu clicks

· (**) Speeches

· (***) Music

· (***) Motor/Horn/Collision/Crash

· (**) Replay

· (*) Textures

· (**) Car features/photos/statistics

· (*) Car models(3D objects)

· (*) Images

· (*) Settings

4.1.3.7. Networking
· (*) Players will connect to a network game via internet
· (**) Server will collect the coordinates of each player, combine data, manipulate collisions, is using AI racers add this into account, then serve the data to every client. This process will be repeated periodically.
· (**) Server will be able to apply AI.
4.2 Non-Functional Requirements
Non-functional requirements support functional requirements, by imposing constraints on the design or implementation (such as performance requirements, security, quality standards, or design constraints).

4.2.1. Usability and Playability
Since games are for fun, it must be easy to learn and use so as not to be boring for the user. So we thought that menus must be designed as understandable as possible. Also we planned to follow the traditional approaches in many designing menus, because players will compare our game to the other car racing games that s/he has played earlier. So in design we inspired by some other games on market.

Near usability, playability is also very essential. User must not get bored when riding car. Game will give the feeling of competition and happiness of victory to player. It will not be too hard or too easy. Control of the car will be efficient and easy as it is in most of the car racing games that are on market today
4.2.2. Reliability and Security
Game must be debugged very carefully. Product must be checked in many aspects so as not to cause any problem to the end user. Since our game is also an online playable game, security is very important for us. Protocols that we use must be integrated to system very carefully. There shouldn’t be any open backdoor left on computers of players during and after plays.

4.2.3. PORTABILITY
Since we are still investigating which graphic language we will use, OpenGL or Direct3D, our game may or may not work on Linux machine according to our preference. But it will work on Windows machines in both cases.

4.3 SOFTWARE REQUIREMENTS
An operating system, Windows or Linux, is needed according to the graphics language we will prefer, as stated above.
4.4 HARDWARE REQUIREMENTS
· A PC with Pentium 4 class CPU
· Internet connection via modem or wireless or Ethernet card
· Sound card
5. SYSTEM ANALYSIS AND MODELLING
5.1 Structured Analysis - Functional Model
5.1.1. Level 0 of DFD
[image: image2.jpg]Graphic and Sound

5.1.2. Level 1 of DFD
[image: image3.jpg]

5.2 Use Case Analysis
5.2.1. Menu Use Cases
[image: image4.jpg].....

5.2.2. CONNECT MENU Use Cases
[image: image5.jpg]Player

5.2.3. Character Use Cases
[image: image14.jpg]

5.2.4. GAME FLOW Use Cases
[image: image6.jpg]

6. PROJECT SCHEDULE

6.1 Gantt Chart
Gannt Chart is located at Appendix.

7. SOFTWARE QUALITY PLAN
Software quality assurance is to evaluate the quality of software product standards, processes and product. It provides a way of deciding how the product is making process and reviewing it periodically throughout the development. It has a systematic life cycle and compliance with standards is decided with the help of process monitoring and product evaluation.

Standards and procedures are critical for a software development since it is a framework for product to be developed. Standards are the established criteria to which product is compared. Procedures are criteria to which process and development are compared. Types of standards include:

· Documentation standards (content of control and planning)

· Design standards (translating software requirements into the software design)

· Code standards (restriction on use of language)

 Procedures are steps to be followed. They include activities like configuration management and testing. Life cycle of SQA in our project will include:

7.1 Requirement Phase
In this phase we should assure that problem is understood and project requirements are stated clearly.

7.2 Design Phase
We should assure that there are approved design standards. For example, data structure, modularity, flow diagrams and prototyping.
7.3 Implementation Phase
We should assure that software design is suitable to standards. For example, each member will write his own module, but the language and tools must be same for each team member so that there should not be any inconsistency while integrating the modules as a whole. We should provide all the functionality that is expressed in the software requirement and design phases. Furthermore, we should control that all the deliverable items.
7.4 Test and Integration Phase
We should assure that all deliverable items are tested, all modules are integrated successfully, and testing is complete and correct. After implementation phase each group member will do a great amount of testing using test techniques such as white-box testing.

Since our project is a 3D multiplayer on-line game, it requires lots of graphics library usage and data transfer along the clients and servers. So, in addition to testing programming parts, we should assure that network protocols are compliance with the standards. For example our server will take large amount of data from users and interpret them accordingly. As a result, after choosing network protocol, we must comply with it also.

In case of any changes throughout the software project, all group members are going to be informed and if they agree on the changes, necessary modifications are going to be reflected accordingly.

8. APPENDIX
8.1 NOTES FROM MEETING WITH AYKUT SEVIM

· He stated that game play is very important concept and we should be careful as much as possible.

· He stated that our project is very time-consuming since it includes 3D game properties as well as networking features. Especially, he said that network control is very important.

· He added that while games like SimCity does not require real-time strategy massively multiplayer online games need (if it is a race) it very much.

· He suggested that we should prefer object oriented design for our project as it has been widely used in lots of projects nowadays.

· He advised us to use DirectX or OpenGL as component graphics library and added that if we want this game to be able to played for all platforms, we must choose OpenGL and if it will be a window-based game, the other one. But he stated that first one has more components according to other one.

· He advised us to start extensive research on networking part since our game type is real-time strategy and requires synchronization.

· He stated that we should use as much as textures for graphical environment. Otherwise the packages to be created during data transfer will have huge data. As a result synchronization may not be succeeded.

· He advised us to do lots of testing since project includes two or three components (network, graphic, AI) which are in different context so that the possibility of encountering problems during integration will be low.

· He suggested that there should be simplicity in our game as much as possible since there is time-constraint (eight months). For example if we spend more time on graphical environment such as visual and audio effects, we may fail to succeed.

· He advised us to analyze some race games such as Need for Speed 2 SE , F1 Racing, Colin McCrae Rally in terms of Graphical features and menu options and to make comparisons accordingly and to decide which one of is the best for networking and AI also.

· He emphasized that there will be mainly two problems about networking.

· Identification (being able to direct the correct data to the correct area in your game)

· Timing(synchronize time to be able to identify when things happen in the game and when messages arrive)

· If we achieve to implement these properties, he said that we will ensure synchronization and it will be more realistic and entertaining from the point of view of players.

· He provided us some resources which include Developing Online Games, Socket Programming and Artificial intelligence and Expert Systems.

· He suggested that we should choose at least one person to work only about networking since this part is strange to many programmers and it means learning a new program from the beginning (like a student learning C program first time)

· Lastly, he wanted us to inform him about our progress in game developing.

8.2 Results of the Search on Current Popular Games and their Feature
	Name
	Mode
	Genre
	Supporting Multiplayer
	# of Tracks
	Interface Quality
	Difficulty Level
	AI Level
	Turbo /Nitro
	Upgrade Car
	Unlock Circuit

	F1 2002
	No
	Racing
	Yes
	17
	High
	Yes
	High
	No
	No
	No

	NFS 2
	Yes
	Street
	Yes
	7
	Low
	Yes
	Medium
	No
	No
	No

	Collin McRae
	No
	Off-Road
	Yes
	12
	High
	Yes
	Very High
	No
	Yes
	No

	Street Legal Racing Redline
	Yes
	Racing
	Yes
	9
	Medium
	Yes
	Medium
	No
	No
	No

	Nascar
	No
	Nascar
	Yes
	20
	Medium
	No
	High
	No
	No
	No

	Raging Thunder
	No
	Racing
	No
	7
	Low
	Yes
	Medium
	No
	No
	No

	Test Drive Unlimited
	Yes
	Racing
	Yes
	1
	High
	Yes
	High
	Yes
	No
	No

	GT Legends
	Yes
	Street
	Yes
	60
	Very High
	Yes
	Very High
	Yes
	No
	No

	Grandpix4
	No
	Racing
	Yes
	17
	Medium
	No
	Medium
	No
	No
	No

	NFS Underground
	Yes
	Street
	Yes
	8
	High
	Yes
	High
	Yes
	Yes
	Yes

8.3 GANNT CHART
[image: image7.jpg]Analysis 01710796 [05/11/06

Proposal Jot/10/06 [10710706

Deciding on platforms 10710706 [30r10/06
Listing requirements 1010106 | 30/10/05
Marketing research 20110706 [29710/06
Preparing analysis repart 20710706 [05/11/06
Milestone] 05/11/06

Design 07713708 | 15701707

Design madules and sub modules (07/11/06 | 2/11/06
Basic user interface design [21/11/06 [07/12/06.
Gatatass (on server) design u/tisos [oorizr06
Preparing design report 29711706 [15712/06
Implementation of demo 11712708 [23712705
Wilestone | 23/11/08

Detailed Research [o5/11/08 | 30/05/07
Rraiona database management 5 |o711/07 /03107
Research on efficient data transfer on Net _|10/02/07 |20/03/07
Socket programming analysis [10/02/07 [10704707
Tdentitying 5P requirements 10702707 [20704707
Research on car physics AT (12702707 [05704707
Open source car physica engines analysia 10101107 | 2005107
Tdentifying engines requirements 12/03/07 | 71/04/07
3D Modeling software anaiysis [09/01/07 |07/01/07
ol ol e oo, [1y10/8 25105108
Collecting music and sound 11710705 |25/05/06
[20/01/07 [30/05/07

Main menu design (detailed) [0/01707 | 10702707
Constructing modules 20702707 [30704707
Integrating moduies 10704707 [15705/07
Testing & bebugging 02705707 [15702707
Preparing help file 11705707 [24/05/07
Preparing installation guide [11/05/07 | 25708707
30/05/30

Preparing installation package
Milestone.

1505730
Jortet

01/06/07

[image: image8.png]

-game AI

-update states

Main Logic:

Client

Player inputs

Send local input

Receive remote players inputs

Send updated states

PAGE
27

