

MIDDLE EAST

TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

 DETILED DESIGN REPORT

 Ainura MADYLOVA e1408657

 Asiye KIYAK e1347673

 Fatma ÖZYILDIRIM e1347830

 Esin YÖNDEM e1348168

 Hüsna IŞIK e1347566

NewStreamLine Detailed Design Report

 2

TABLE OF CONTENTS

1. INTRODUCTION.. 4
1.1 Purpose..4
1.2 Scope and Project Description..4
1.3 System Overview...4
1.4 Requirements ..6

1.4.1 Hardware Requirements..6
1.4.2 Software Requirements..6
1.4.3 Functional Requirements...6
1.4.4 Nonfunctional Requirements ...7

2. DESIGN CONSTRAINTS... 8
2.1 Time Constraints ..8
2.2 User Interface..8
2.3 Hardware Constraints ..8
2.4 Performance Constraints..9

3. DATABASE DESIGN.. 9
3.1Database Tables ...9
3.2. SQL Commands of Database ..10

4. MODELLING .. 12
4.1. Functional Model ...12

4.1.1Data Flow Diagram - Core..12
4.1.2 Data Flow Diagram – Web Application ..17

4.2. Data Dictionaries ...22
4.2.1 Data Dictionary of Core System ...22
4.2.2Data Dictionary ...32

5. SYSTEM ARCHITECTURE .. 38
5.1 System Modules ..38

5.1.1 News Service Module ...38
5.1.2 Web Service Module ..39
5.1.3 Mail Service Module ..40
5.1.4 SQL/XML Engine Module...40
5.1.5 File Query Engine Module...40
5.1.6 RSS Module..41

5.2 Architecture Diagram...41

6. UML DIAGRAMS ... 42
Class Diagrams ...42

6.1.1Class Diagram of News Service ..42
6.1.2.1Class Diagrams of Web Service ...43
6.1.2.2 Class Diagram of Request Object - Database...44
6.1.2.3Class Diagram of Request Object – File System ...44
6.1.3.1Class Diagram of Mail Service...45
6.1.3.1Class Diagram of Mail List ..46

6.2 Sequence Diagrams ...47
6.2.1 Sequence Diagram for Post..47
6.2.2 Sequence Diagram for Newsgroups...48
6.2.3 Sequence Diagram for Update Personal Information49
6.2.4 Sequence Diagram for Search Post ...50

NewStreamLine Detailed Design Report

 3

6.2.5 Sequence Diagram for Admin Login ...51
6.2.6 Sequence Diagram of Admin Operations ..52
6.2.7 Sequence Diagram for Mail Service ..52
6.2.7 Sequence for mail list ...53
6.2.8 Sequence Diagram for RSS Request ...54

6.3. Activity Diagrams ..55
6.3.1News Service Activity Diagram ..55
6.3.2Update Personal Information Activity Diagram..56
6.3.3 Request Statistics Activity Diagram ..57
6.3.4 Post Related Requests Activity Diagram...58
6.3.5 Activity Diagram of Admin User Interface ...59
6.3.6Activity Diagram of Searching ...60
6.3.7 Activity Diagram for Mail Service ..61

6.4 Deployment Diagram of the System...62
7. USER INTERFACE of the SYSTEM ... 63

7.1Administrator Graphical User Interface ..63
7.1.1 Adding New Group Page ...63
7.1.2 Adding New User ...64

7.2User’s Graphical User Interface..66
7.2.1. Viewing Post ..66
7.2.2Reply Post..67
7.2.3Options page..68
7.2.4Searching Page ..69

8. SYNTAX SPECIFICATION... 70
8.1Syntax Conventions: ..70
8.2XML Representation ...71

9. PDL MODEL ... 82
10. CONCLUSION... 83
11. APPENDIX - GANNT CHART... 84

NewStreamLine Detailed Design Report

 4

1. INTRODUCTION

1.1 Purpose

The purpose of this document is to give the detailed design specifications of the

NEWSUNI project of NewStreamLine. In this report, to have a major guideline for our future

studies, we explained our design process in an illustrative way through our diagrams. These

diagrams are Data Flow Diagrams (DFD) and Unified Modeling Language (UML) Diagrams.

Through these diagrams, we tried to clarify the functional, structural and behavioral aspects of

our system. Purpose of this project is to write the universal server for news exchanging that

will give the ability to reach the news and posts via different types of protocols such as HTTP,

SMTP, and NNTP using the secure data transfer layers. We have improved our initial design

report, redefined some important models of our system, added new models to it and created

some graphical user interfaces of the web page.

1.2 Scope and Project Description

NewStreamLine is a project that implements different access methods for news reading

namely RSS, NNTP service, E-Mail list and Webpage. These different access methods are

synchronized with the help of core. Core is the main part of our system including web

service modules and extensions. From the user side when a user reply a post through forum

page, post will feed RSS clients on the web, mailed to the subscribed users, displayed on a

newsreader as a follow up and also displayed on the forum page.

1.3 System Overview

In this project, we aim to merge several service providers in NewStreamLine

middleware. Among those providers, there are NNTP, SMTP, HTTP Servers and an XML file

generator for RSS access. In order to implement a well-performing system, we decided to

divide all that servers in particular models and proceed over them one by one.

First module is an NNTP server module that listens to the NNTP clients. As a server for

NNTP data exchange, we have chosen Apache James 2.3.0 Server that includes not only an

NNTP server but also an SMTP server as well. The reason for choosing James is that it is

written in Java language, in other words James is platform independent. This module

NewStreamLine Detailed Design Report

 5

communicates with client via appropriate news reader programs, and uses file repository as a

storage type.

Second module is a Web server that provides an access to NewStreamLine via Internet. As a

web server we used Apache Tomcat 5.0 and implemented web pages as Java Server Pages.

Web Site has a forum-like structure that provides user with abilities of reading and writing

post, subscribing to receive new posts via e-mail.

Third module is an SMTP server that automatically sends mails to users that subscribed for

receiving posts of specified news groups via e-mail. This module communicates both with

database and file system, taking user and mailing list from database and post list from file

system.

Fourth module is SQL/XML service that provides connection with database and generates sql

queries for insert, delete and update operations of database according to user’s requests. These

requests can come either from Web server module or from SMTP module.

Fifth module is File Query System module that builds a bridge between file repository and all

other modules. It serves as a post list provider both for Web page and for SMTP module. It

reports any changes occuring in file system to SMTP module that will process them and send

to subscribed users.

To sum up, the Core connects each module to one another and provides data flow and

repository synchronization. Since we record all incoming posts in one file system, there will

be no need for reading posts and recording them to database. All services get the post data

from file system.This makes our core work effciently.

To sum up, the Core waits for modules to communicate with each other and listens to the

external ports, sends the related information in case of there is a need. The basic aim of this

project is to make all of these services work together in synchronization and our Core

application is created with this purpose of service.

NewStreamLine Detailed Design Report

 6

1.4 Requirements

1.4.1 Hardware Requirements

As our project is mainly based on data storage all hardware requirements are focused on this

topic. We have two kinds of data repositories to store all information of the system: one for

NNTP server and one for SQL/XML service. Totally, we need 40 GB of Hard Disk Driver

space and the same amount for the back up. Moreover, there must be an Internet connection

fast enough to accept the daily load depending on the system usage.

1.4.2 Software Requirements

There are basically three servers for our system; NNTP, SMTP, HTTP Servers. We have used

Apache Tomcat 5.0 web server for our project. We have used Apache James Server 2.0 for

NNTP and SMTP. The Apache Java Enterprise Mail Server (a.k.a. Apache James) is a 100%

pure Java SMTP and POP3 Mail server and NNTP News server. James is designed to be a

complete and portable enterprise mail engine solution based on currently available open

protocols. We have used MySQL Server 5.0 as a relational database management system for

web page applications. For developing Java Server Pages, we are using IntelliJ Idea 5.1. on

Windows machines and NetBeans 5.0. on Linux machines. Both of them use JDK 1.5.0. To

connect to system via NNTP server, one should use any news reader (like Mozilla

Thunderbird, etc), and to get RSS news feed, one should use any rss reader (like Aggregator,

etc).

1.4.3 Functional Requirements

Visitor Functionality: A visitor can use NewStreamLine system only after subscription.

Therefore, visitor can only subscribe to system in order to be a user.

User Functionality:

• Login to the system throughout the system dialog box,

• Create new topics/news groups,

• Subscribe/ unsubscribe to news groups,

• Post / reply to / read / discuss messages,

• Select news groups to be informed about via e-mail posting,

• Modify account information,

NewStreamLine Detailed Design Report

 7

• See statistics about topic reading,

• Select different categories to be informed about,

• Search about a topic which already exists in the system.

Admin Functionality:

• Insert/delete news group,

• Insert/delete user,

• Delete posts,

1.4.4 Nonfunctional Requirements

Usability:

Companies from varying sectors and people from all age groups use Internet really

extensively. Thus, our product gives service to a wide variety of users, such that people

having not much knowledge about computers in profession can use our system. Thus,

developing a user friendly interface and usability is very important for our project.

Security:

Security is the main concern of our product. There is a user authentication password-login

system which provides a more secure working space for the system users. Moreover, the

authentication is for maintaining the user hierarchy. Administrators have the right to modify

the inputs and the outputs of the system, and manage the system database, modify it. Admin

also has the right to change file system. Users do not have the right neither to reach to the

system database, nor to modify it. One more important security aspect of our development is

Secure Sockets Layer protocol, namely SSL. It is a high-level security protocol that protects

the confidentiality and security of data while it is being transmitted through the Internet based

on RSA Data Security's public-key cryptography.

Maintenance:

Maintenance is required to be able to overcome the problems occurred after enabling the

system. With this aim, we have decided to obey to some standardization rules, such as the

standardized variable names and producing codes throughout commenting. This is the

NewStreamLine Detailed Design Report

 8

professional coding and if we do such coding, it will be available to enhance the system

anytime if required. Therefore, to be a high-qualify project, the source code must be

maintainable.

Reliability:

Our product will be so stable such that any minor problem will not cease the NewStreamLine

NEWSUNI system. Moreover, we plan to do many tests including unit testing, integration

testing and higher order testing after implementation.

2. DESIGN CONSTRAINTS

2.1 Time Constraints

Within next week we will be showing a prototype of the NewStreamLine that contains only

few functionalities of main system. More important aspects as integration of SMTP server

with NNTP server will be implemented in the second term. Web service and RSS feeding

parts are nearly over. In February 2007 we probably will be dealing with the web page of our

team. In March 2007 we will be integrating NNTP server with SMTP server. In April 2007 all

security issues (as SSL) will be added to the system and we will start testing. By the end of

May 2007 we will release the end product. In addition to all of these development stages, the

aim of minimization of time consumption will remain our main concern.

2.2 User Interface

Graphical user interface of the system is represented by web page mainly. Despite the fact

that, we are focused on implementing the core middleware, GUI is an important part of the

project. Since all of our work, is shown through this interface, it must correctly demonstrate

the abilities of the system. Even if we are not planning to spend much time on it, we will try

to make it simple, user friendly, and functional. There can be found some user interface

representations of web page through out this report.

2.3 Hardware Constraints

Our department will provide us with Linux Server Machine next semester. Since we do not

have a server machine having the exact needed specifications, sometimes we have difficulties

in implementing our project. Our machines have different operating systems, and we have no

network among them. Consequently, it is difficult to work parallel with each other. Although

NewStreamLine Detailed Design Report

 9

this semester does not require an intensive programming for the project, these constraints

slowed us down to get more involved with the project.

2.4 Performance Constraints

NEWSUNI Project requires high network communication speed. Thus, the performance of

the software is very important for us. Our system will use the existing servers and will not try

to implement a new one, since it is time consuming and hard to finish in limited amount of

time we have. This will avoid us from generating abuse network traffic and consume our time

and bandwidth gap uneconomically.

3. DATABASE DESIGN

3.1 Database Tables

According to changes in our system, we have updated our database too. Since we save the

incoming news in files, we have constructed file system instead of Post Table in database.

So, the constructed database in MySQL includes following tables.

User Table:

Name: Content: Supplementary Information:

ID Int Primary Key + AUTO INCREMENT

Password Varchar(15) Not Null

FirstName Char(15)

LastName Char(10)

Username Char(20) Not Null

E-mail Char(40) Not Null

Subscribe Table:

Name: Content: Supplementary Information:

User_ID Varchar(10) Foreign Key(ID)

Group_ID Varchar(10) Foreign Key

NewStreamLine Detailed Design Report

 10

SendRead Table:

Name: Content: Supplementary Information:

User_ID Varchar(10) Foreign Key(ID)

Post_ID Varchar(10) Foreign Key

Mail_List Table:

Name: Content: Supplementary Information:

User_ID Varchar(10) Foreign Key(ID)

Group_ID Varchar(10) Foreign Key

3.2. SQL Commands of Database

In first step, we have specified the tables. The second step is constructing our database in

MySQL by the following commands

create User(

ID int AUTO INCREMENT,

Password varchar(15) not null,

UserName char(20) not null,

firstName char(15),

lastName char(15),

E_mail char(40) not null,

primary key(ID)

);

create Subscribe(

User_ID varchar(10),

Group_ID varchar(10),

primary key(User_ID, Group_ID),

foreign key(User_ID references User on delete cascade,),

);

NewStreamLine Detailed Design Report

 11

create SendRead(

User_ID varchar(10),

Post_ID varchar(10),

primary key(User_ID, Group_ID),

foreign key(User_ID references User on delete cascade,),

);

create Mail_List(

User_ID varchar(10),

Group_ID varchar(10),

primary key(User_ID, Group_ID),

foreign key(User_ID references User on delete cascade),

);

NewStreamLine Detailed Design Report

 12

4. MODELLING

4.1. Functional Model

 4.1.1 Data Flow Diagram - Core

 Level 0

Core
0.0

News Server Mail Server
Web Server

 FILE SYSTEM

News Server

Mail Server Web Server

News Server Request

Mail Server Request

Web Server Request

News Server Response Mail Server Response

Web Server Response

F
ileO

u
er

y In
p
u
t

Q
u
er

y
 O

u
tp

u
t

 DATABASE SYSTEM

F
il
e
Q
u
e
ry

 O
u
tp

u
t

O
u
ery In

p
u
t

N
ew
S
tr
ea
m
L
in
e
D
et
a
il
ed
 D
e
si
g
n
 R
ep
o
rt

1
3

L
ev
el
 1

M
ai
l

Se
rv
ic
e

M
od

ul
e

1.
0

F
il
e

E
ng

in
e

M
od

ul
e

6.
0

W
eb

A
pp

lic
at
io
n

M
od

ul
e

4.
0

M
ai
l S

e
rv
er

N
ew

s
Se

rv
er

W
e
b
Se

rv
er

 F

IL
E
 S
Y
ST

E
M

Data & File Queries

Resp on se D a taMail Se rve r Request

N ew s Serv e r Req u est

Web Server Requ est

Web App lication Modu le Requ est

D atab ase En gin e M odule Respon se

Mail Se rv ice Modu le Response

W eb App lica tion Modu le Respon se

 New s Service Modu le Resp onse
N ewsServ ice Module Requ est

N
ew

s
Se

rv
ic
e

M
od

u
le

2.
0

Mail Se rvice Modu le Requ est

File Eng ine Module Respo nse

D
at
ab

as
e

E
ng

in
e

M
od

ul
e

5.
0

 D

A
T
A
B
A
SE

Data & Qu erie s
D atabase Eng ine Module Respo nse

M ail Se rvice Module Requ est

Da tabase Eng ine Modu le Respo nse

File Engine Module Response

N ew sServ ice Module Requ est

Web Applica tion Module Request

File Eng ine Module Response

R
S
S

Se
rv

ic
e

M
od

ul
e

3.
0

F
ile
 E
n
g
in
e
 M
od
u
le
 R
es
p
o
ns
e

X
M
L
 S
er
v
ic
e
 M
o
d
ul
e
R
e
q
u
e
st

Re
sp
on
se
 D
ata

N
ew
S
tr
ea
m
L
in
e
D
et
a
il
ed
 D
e
si
g
n
 R
ep
o
rt

1
4

L
ev
el
 2

S
er
vi
ce
 M

od
u
le

S
M
T
P

S
er
vi
ce

1.
1

M a il S er ver R eq uest

SMTP S er v ic e R esp o nse

N
N
T
P

S
er
vi
ce

2.
1

N ew s Se rve r R eq u est

NNTP S e rv ic e R esp on se
X
M
L

S
er
vi
ce

3.
1

SMTP S e rv ic e R equ e st

XML S e rv ic e R e sp o nse

RSS C lie n t R eq ue st

XML S er vi ce R eq u es t

NNTP S er vi ce R equ es t

Da tab ase Eng ine Mo du l e R espo nse

Da taba se E ngi ne M od ule Respon se

Da tab ase En gine Mo dul e R espo nse

SMTP S er v ic e R eq u e st

F ile Eng ine Mo du le R espon se

File En gin e M od u le Respo nse

SMTP Se r vi ce R eq u es t

File En gin e M od ule Re spo nse

N
ew
S
tr
ea
m
L
in
e
D
et
a
il
ed
 D
e
si
g
n
 R
ep
o
rt

1
5

L
ev
el
 2

W
eb

 A
p
p
li
ca
ti
on

 M
od

u
le

H
T
T
P

S
er
vi
ce

4.
1

H TT P Se rvice Re spon se

W eb S er ver R eq ues t

HTT P Ser vice Requ est

Da tab ase E ngi ne M od ule R esp onse

F ile Eng ine M o dul e Re spo nse

HTT P Se rvice Req uest

NewStreamLine Detailed Design Report

 16

Level 2

Database Engine Module

XML Engine
5.1

S
M

T
P S

e
rv

ic
e
 R

e
q
u
e
st

SQL Engine

5.2

N
N
T
P S

e
rv

ice
 R

e
q
u
e
st W

eb Service R
equest

DATABASE

T
ra

n
sf
e
r
D
a
ta

S
Q

L
 E

n
g
in

e
 R

e
sp

o
n
se

X
M

L E
n
g
in

e
R
es

p
o
n
se

X
M

L
E
n
g
in

e
 R

es
p
o
n
se

X
M
L
E
n
gi
n
e
R
es
p
o
n
se

HTTP
 Serv

ice R
eque

st

XML Engine Response

Q
u
er

y
 O

u
tp

u
t

Q
u
e
ry

 I
n
p
u
t

NewStreamLine Detailed Design Report

 17

4.1.2 Data Flow Diagram – Web Application

Level 0

Web Application

Visitor
Panel

User
Panel

Admin
Panel

User Panel
Display

Admin Panel
Display

Visitor Panel
Display

0.0

New streamlineID & Password

Administrator commands and data

Admin display

info

FILE SYSTEM

CORE

R
eq

u
es

t
d
at

a

U ser commands and data

Visitor disp lay info

Login status

User display info

Login status

Username & Password

R
es

p
o
n
se

 d
at

a

DATABASE

R
eq

ue
st

R
eq

u
es

t R
esp

o
n
se

R
esp

on
se

Registration info

Visitor commands and data

NewStreamLine Detailed Design Report

 18

Level 1

Web Application

User
Panel

Admin
Panel

User Panel
Display

Admin Panel
Display

4.0

Personal

info

modific ation

5.0

System

configuration

3.0

User New s

Operations

2.0

User

Interaction

CO RE

1.0

Registration

Visitor Panel
Display

Visitor
Panel

Invalid dataId
 &
 P
a
ss
w
o
rd

Id
 &
 P
a
ss
w
o
rd

Personal info

Configure news groups

Interaction Response

Interaction Request

Password&ID

Response to core

O
p
e
ra
tio
n
 R
e
q
u
e
st

M
e
m
b
e
rs
h
ip
 r
e
sp
o
n
se

Approval message

M
e
m
b
e
rsh
ip
 re
q
u
e
s
t

C
o
n
fi
g
u
re
d
 n
e
w
s
g
ro
u
p
 i
n
fo

M
o
d
if
ic
a
ti
o
n
 r
e
q
ue
st

M
o
d
if
ic
a
ti
o
n
 r
e
sp
o
n
se

M
o
d
if
ie
d
 u
se
r
d
a
ta

Modified data

R
e
a
d
 /
 W
ri
te
 P
o
st
 R
e
q
u
e
st

FILE SYSTEMFILE SYSTEMFILE SYSTEMFILE SYSTEM

Personal info

Password&ID

S
e
n
d
 p
o
st

S
e
a
rc
h
 p
o
st
 r
e
q
u
e
s
t

Output response

Request of the core

Password & ID

Configure member info

C
o
n
fi
g
u
ra
ti
o
n
 r
e
s
p
o
n
s
e

C
o
n
fi
g
u
ra
ti
o
n
 r
e
q
u
e
st

O
p
e
ra
tio
n
 R
e
s
p
o
n
se

Output response

Modified admin data

Configured member info

DATABASEDATABASEDATABASEDATABASE
Request of the core

Response to core

NewStreamLine Detailed Design Report

 19

Level 2

 Registration

Filled ID & Pas sword

Password & Id

1.1

Fill personal
information

1.2

Fill ID &
password

1.2
Read &

accept terms
of usage

Filled personal info

dis approved te rms

of usage

e_mail

name&surname

approve_message

us ername

Level 2

 User Interaction

Id

Entered Id

Entered ID & Passw ord

Interaction request

2.1

Enter

Id

2.3

Ask for

entrance

2.2

Enter

passw ord

Invalid data

NewStreamLine Detailed Design Report

 20

Level 2

User News Operation

3.1

Subscribe/

Unsubscribe

to a group

3.2

Read

news

3.3

Post a

new s

Subscribe to a group

3.5

Receive

mail

N
ew
s
ti
tl
e

Title Posted news

Sent mail

Received mail

3.4

Search

titles

Search titles / posts request
Search results

3.6

Check

news

statis tics

Unsubscribe to a group

Article

N
e
w
s
ID

C
h
e
c
k
 s
tatis

tic
s re

q
u
e
st

Checked statis tics

NewStreamLine Detailed Design Report

 21

Level 2

Personal Info Modification

4.1

Update

login

information

News group ID

4.2

Update

personal

information

4.3

Update

subscription

information

4.1

Update

login

information

Personal

info

Modified ID

Modified personal info

Modified subscription info

ID

Password

Modified Password

News group title

Level 2

News Server Configuration

5.1

Configure

news

groups

information

5.2

Configure

news

information

5.3

Configure

member

information

Group configuration data

Membership Configuration data

News configuration data

Configured group data

Configured news data

Configured member data

NewStreamLine Detailed Design Report

 22

4.2. Data Dictionaries

4.2.1 Data Dictionary of Core System

Name: News Server Request

Alias: None

Where & How It is used: News Server Input

Description: “sent requests by news server ”

Name: News Server Response

Alias: None

Where & How It is used: News ServerOutput

Description: “responses to news server ”

Name: Mail Server Request

Alias: None

Where & How It is used: Mail Server Input

Description: “sent requests by mail server ”

Name: Mail Server Response

Alias: None

Where & How It is used: Mail Server Output

Description: “responses to mail server ”

Name: Web Server Request

Alias: None

Where & How It is used: Web Server Input

Description: “sent requests by web server ”

NewStreamLine Detailed Design Report

 23

Name: Web Server Response

Alias: None

Where & How It is used: Web Server Output

Description: “responses to web server ”

Name: Query Input

Alias: Query request

Where & How It is used: Accessing database

Description: “queries from core”

Name: Query output

Alias: Query response

Where & HowIt is used: Database output

Description: “Output data coming from database”

Name: File Query Input

Alias: File Query request

Where & How It is used: Accessing file system

Description: “ file queries from core”

Name: File Query output

Alias: File Query response

Where & How It is used: File System output

Description: “Output data coming from file system”

Name: Mail Server Request

Alias: None

Where & How It is used: Mail Service Module Input

Description: “Requests coming from mail server to mail

service module”

NewStreamLine Detailed Design Report

 24

Name: Mail Service Module Response

Alias: None

Where & How It is used: Mail Service Module Output

Description: “Responses coming from mail service

module to mails server”

Name: Mail Service Module Request

Alias: None

Where & How It is used: Database Engine Module Input

Description: “Requests coming from database engine

module to mail service module”

Name: Database Engine Module Response

Alias: None

Where & How It is used: Database Engine Module Output

Description: “Responses coming from mail service

module to database engine module”

Name: Mail Service Module Request

Alias: None

Where & How It is used: File Engine Module Input

Description: “Requests coming from file engine module

to mail service module”

Name: File Engine Module Response

Alias: None

Where & How It is used: File Engine Module Output

Description: “Responses coming from mail service

module to file engine module”

NewStreamLine Detailed Design Report

 25

Name: News Server Request

Alias: None

Where & How It is used: News Service Module Input

Description: “Requests coming from news server to news

service module”

Name: News Service Module Response

Alias: None

Where & How It is used: News Service Module Output

Description: “Responses coming from news service

module to newss server”

Name: News Service Module Request

Alias: None

Where & How It is used: Database Engine Module Input

Description: “Requests coming from database engine

module to news service module”

Name: Database Engine Module Response

Alias: None

Where & How It is used: Database Engine Module Output

Description: “Responses coming from news service

module to database engine module”

Name: News Service Module Request

Alias: None

Where & How It is used: File Engine Module Input

Description: “Requests coming from file engine module

to news service module”

NewStreamLine Detailed Design Report

 26

Name: File Engine Module Response

Alias: None

Where & How It is used: File Engine Module Output

Description: “Responses coming from news service

module to file engine module”

Name: Web Server Request

Alias: None

Where & How It is used: Web Application Module Input

Description: “Requests coming from Web server to Web

Application module”

Name: Web Application Service Module Response

Alias: None

Where & How It is used: Web Application Module Output

Description: “Responses coming from Web Application

service module to Web server”

Name: Web Application Module Request

Alias: None

Where & How It is used: Database Engine Module Input

Description: “Requests coming from database engine

module to Web Application module”

Name: Database Engine Module Response

Alias: None

Where & How It is used: Database Engine Module Output

Description: “Responses coming from Web Application

module to database engine module”

NewStreamLine Detailed Design Report

 27

Name: RSS Service Module Request

Alias: None

Where & How It is used: File Engine Module Input

Description: “Requests coming from file engine module

to rss service module”

Name: File Engine Module Response

Alias: None

Where & How It is used: File Engine Module Output

Description: “Responses coming from rss service module

to file engine module”

Name: Data & Query Input

Alias: Query request

Where & How It is used: Accessing database

Description: “queries from database engine module”

Name: Response Data

Alias: Query response

Where & How It is used: Database output

Description: “Output data coming from database”

Name: Data &File Query Input

Alias: File Query request

Where & How It is used: Accessing file system

Description: “ file queries from file engine module”

NewStreamLine Detailed Design Report

 28

Name: Response Data

Alias: File Query response

Where & How It is used: File System output

Description: “Output data coming from file system”

Name: Mail Server Request

Alias: None

Where & How It is used: SMTP Service Input

Description: “Requests coming to smtp service”

Name: SMTP Service Response

Alias: None

Where & How It is used: SMTP Service Output

Description: “Response coming from smtp service”

Name: SMTP Service Request

Alias: None

Where & How It is used: SMTP Service Output

Description: “Requests coming from smtp service

Name: Database Engine Module Response

Alias: None

Where & How It is used: SMTP Service Input

Description: “Responses coming to smtp service

Name: SMTP Service Request

Alias: None

Where & How It is used: SMTP Service Output

Description: “Requests coming from smtp service

NewStreamLine Detailed Design Report

 29

Name: File Engine Module Response

Alias: None

Where & How It is used: SMTP Service Input

Description: “Responses coming to smtp service

Name: News Server Request

Alias: None

Where & How It is used: NNTP Service Input

Description: “Requests coming to nntp service”

Name: NNTP Service Response

Alias: None

Where & How It is used: NNTP Service Output

Description: “Response coming from nntp service”

Name: NNTP Service Request

Alias: None

Where & How It is used: NNTP Service Output

Description: “Requests coming from nntp service

Name: File Engine Module Response

Alias: None

Where & How It is used: NNTP Service Input

Description: “Responses coming to nntp service

Name: NNTP Service Request

Alias: None

Where & How It is used: NNTP Service Output

Description: “Requests coming from nntp service

NewStreamLine Detailed Design Report

 30

Name: Database Engine Module Response

Alias: None

Where & How It is used: NNTP Service Input

Description: “Responses coming to nntp service

Name: RSS Client Server Request

Alias: None

Where & How It is used: XML Service Input

Description: “Requests coming to xml service”

Name: XML Service Response

Alias: None

Where & How It is used: XML Service Output

Description: “Response coming from xml service”

Name: XML Service Request

Alias: None

Where & How It is used: XML Service Output

Description: “Requests coming from xml service

Name: File Engine Module Response

Alias: None

Where & How It is used: XML Service Input

Description: “Responses coming to xml service

Name: XML Service Request

Alias: None

Where & How It is used: XML Service Output

Description: “Requests coming from xml service

NewStreamLine Detailed Design Report

 31

Name: Database Engine Module Response

Alias: None

Where & How It is used: XML Service Input

Description: “Responses coming to xml service

Name: Web Server Request

Alias: None

Where & How It is used: HTTP Service Input

Description: “Requests coming to http service”

Name: HTTP Service Response

Alias: None

Where & How It is used: HTTP Service Output

Description: “Response coming from http service”

Name: HTTP Service Request

Alias: None

Where & How It is used: HTTP Service Output

Description: “Requests coming from http service

Name: File Engine Module Response

Alias: None

Where & How It is used: HTTP Service Input

Description: “Responses coming to http service

Name: HTTP Service Request

Alias: None

Where & How It is used: HTTP Service Output

Description: “Requests coming from http service

NewStreamLine Detailed Design Report

 32

Name: Database Engine Module Response

Alias: None

Where & How It is used: HTTP Service Input

Description: “Responses coming to http service

4.2.2 Data Dictionary of Web Application

Name: Registration info

Alias: None

Where & How it is used: Visitor Input

Description: “written input data and interface commands by visitor in order

to registration to the system”

Name: User commands and data

Alias: None

Where & How it is used: User Input

Description: “written input data and interface commands by user”

Name: Admin commands and data

Alias: None

Where & How it is used: Administrator Input

Description: “written input data and interface commands by admin”

Name: Visitor commands and data

Alias: None

Where & How it is used: Visitor Input

Description: “written input data and interface commands by user”

NewStreamLine Detailed Design Report

 33

Name: Visitor display info

Alias: None

Where & How it is used: Output of the Newstreamline News system

Description: “output of the system which is shown on the visitor monitor”

Name: User display info

Alias: None

Where & How it is used: Output of the Newstreamline News system

Description: “output of the system which is shown on the user monitor”

Name: Admin display info

Alias: None

Where & How it is used: Output of the Newstreamline News system

Description: “output of the system which is shown on the admin monitor”

Name: Request data

Alias: Request

Where & How it is used: Input of Core according to the Newstreamline system

Description: “the input request data coming from user by web interaction”

Name: Response data

Alias: Response

Where & How it is used: Output of the core system to the responding requests & Input

of the Newstreamline system

Description: “the output response data to the request data coming from

core”

Name: Login status

Alias: None

Where & How it is used: Output of Newstreamline(0.0)

Description: “it is the desired input coming from visitor panel to register to

the system”

NewStreamLine Detailed Design Report

 34

Name: Password & Id

Alias: Visitor commands output data

Where & How it is used: Output of the Registration(1.0)

Description: “given password & id to the visitor, it is a display message of

the Visitor Display Panel ”

Name: Personal info

Alias: None

Where & How it is used: Input of the Registration(1.0)

Description: “The personal information of the visitor for registering to the

system like name, surname, e-mail, etc.”

Name: Approval message

Alias: None

Where & How it is used: Output of Registration(0.0)

Description: “It is an output to the visitor for after Registration(1.0)

process has been completed”

Name: Password & ID

Alias: Id & Password

Where & How it is used: Input of User Interaction(2.0)

Description: “the id and password of user/admin given by the system in

order to login”

Name: Invalid data

Alias: None

Where & How it is used: Output of the User Interaction(2.0)

Description: “an error message that shows the invalidation of Id and

password, it does not let the user/admin log in”

NewStreamLine Detailed Design Report

 35

Name: Interaction Request

Alias: Request data

Where & How it is used: Input of Core according to the User Interaction(2.0)

Description: “It is an request for being a member of the system”

Name: Interaction Response

Alias: Response data

Where & How it is used: Output of Core

Description: “it is a response to the system for logging in to the system”

Name: Read / Write Post Request

Alias: None

Where & How it is used: Input of User News Operations(3.0)

Description: “the request for reading or writing a post to the system”

Name: Send Post Request

Alias: None

Where & How it is used: Input of User News Operations(3.0)

Description: “the request for sending a post to the system”

Name: Search Post Request

Alias: None

Where & How it is used: Input of User News Operations(3.0)

Description: “the request for searching a post of the system”

Name: Operation Request

Alias: Request data

Where & How it is used: Input of Core according to the News Operations(3.0)

Description: “it is an request for doing news operations”

NewStreamLine Detailed Design Report

 36

Name: Operation Response

Alias: Response data

Where & How it is used: Output of Core

Description: “it is a response to the system doing news operations”

Name: Output response

Alias: Output data

Where & How it is used: Output of User News Operations(3.0)

Description: “it is a response to the system for logging in to the system”

Name: Modification data

Alias: None

Where & How it is used: Input to the Personal info modification(4.0)

Description: “it is necessary data to modify personal information”

Name: Modification Request

Alias: Request data

Where & How it is used: Input of Core according to the Personal info modification(4.0)

Description: “it is an request for updating personal information”

Name: Modification Response

Alias: Response data

Where & How it is used: Output of Core

Description: “it is a response to the system for updating personal

information”

Name: Modified user data

Alias: User display info

Where & How it is used: Output of the Personal info modification(4.0)

Description: “it is a display message according to the modification of the

user data”

NewStreamLine Detailed Design Report

 37

Name: Modified admin data

Alias: Admin display info

Where & How it is used: Output of the Personal info modification(4.0)

Description: “it is a display message according to the modification of the

admin data”

Name: Configure news groups

Alias: None

Where & How it is used: Input of the Newsserver configuration(5.0)

Description: “it is necessary data to do configuration about news groups”

Name: Configure member info

Alias: None

Where & How it is used: Input of the Newsserver configuration(5.0)

Description: “it is necessary data to do configuration member information”

Name: Configuration Request

Alias: Request data

Where & How it is used: Input of Core according to the Newsserver configuration(5.0)

Description: “it is an request for configuring the system”

Name: Configuration Response

Alias: Response data

Where & How it is used: Output of Core

Description: “it is a response to the system for configuring the system”

Name: Configured news group info

Alias: Admin display info

Where & How it is used: Output of the Newsserver configuration(5.0)

Description: “it is an admin display message according to the configuration

of the news group information”

NewStreamLine Detailed Design Report

 38

Name: Configured member info

Alias: Admin display info

Where & How it is used: Output of the Newsserver configuration(5.0)

Description: “it is an admin display message according to the configuration

of the members’ information”

5. SYSTEM ARCHITECTURE

5.1 System Modules

5.1.1 News Service Module

Functionality of a News Service module is divided into two: communication with a News

Server Client, and communication with a File Query Engine.

Communication with a News Server Client includes several functions but the main thing that

module does in this part is continuous listening to the port which news server connected to. If

any request comes, it processes it and sends that request to the File Query Engine. If

information from file system is wanted, same mechanism works in inverse directions;

information from file system comes to module through File Query Engine and passed to News

Server Client.

Requests that come from news service client are:

• Start/Stop Service

• Read Post

• Write Post

• Send Post

Requests that are send to File Query System

• Update Post Directory

• Select Post from Post Directory

• Create Post Directory

NewStreamLine Detailed Design Report

 39

NewsServerClient connects to NewsServer which is in NewsService Module and starts to

interact with it. Here NewsServerClient represents a user (client) of the News Server that send

different requests to NewsService. NewsService process that request and forwards them to

File Query Engine. There are three functionalities of NewsService.

It creates data class ,Post that will be used by File Query Engine and passes this class to it.

File Query Engine takes the income data and (do xml parsing and) generates file queries.

Then, it connects to File System and stores data to File System.

It passes the PostId or GroupId to File Query Engine, which connects to File System and

retrieves the appropriate information according to given data. Retrieved data sent back to

NewsService and to NewsServerClient through it.

5.1.2 Web Service Module

For web applications, we use web application GUI class. It depends on several classes namely

PersonalInfoScreen, ResultScreen, Loginscreen, SearchScreen, PostScreen and

AdminInterface. When system starts there exist severeal objecs of these classes.

According to user type display screen will change. For example, admin type user can modify

system capabilities so there exists a adminInterface class.

In order to choose which kind of user trying to enter to the system, there exists a loginScreen

class. After login, a regular user may want to change his or her personal information. For this

purpose, there exists a PersonalInformation class. With the help of this class, user can easily

modify his/her own settings. Moreover, user indicates his/her mail preference to the system

from this dialog. What I mean from the mail preference is that, some users may want to

follow some newsgroups from mail accounts. Therefore, when a new article has posted to a

newsgroup, our system sends mail to user.

 User can search in posts according to subject and title. SearchScreen class is created for this

purpose. Result screen class is used for displaying results of user requests.

Webservice class is an important part of our system since it is husnas part. All user operations

can be done via this class. Webservice class calls the WebApplicationGUI to handle user

requests. After handling requests from GUI, Webservice class invokes the XML/SQLEngine

class and File Query Engine. XML/SQLEngine class can talk with database. This class has a

parser class to select which type of request is formed. Then, it creates a request object which

NewStreamLine Detailed Design Report

 40

is used by database. On the other hand , File Query Engine class can talk with file system and

it can create a request object which is used by file system

Request object types are searchRequest, StatisticsRequest, ModificationRequest, RSSRequest

and IdentificationRequest.

In our system, there are two places to save information. For posts data, we have constructed a

file system. For user information and their relations with news groups are saved in database.

Consequently, we have used File Query Engine for some user requests, like read post, write

post, search post, etc. SQL/XML Engine is used for other user requests like create news

group, register to system, login, rss feed, mail etc.

Database will execute the request and creates a result object. This result object reaches

ResultScreen through firstly XML/SQL Engine and then WebService.

5.1.3 Mail Service Module

MailServerClient connects to MailServer which via Web Service. The client send request to

Web Service, in order to get mail from subscribed news groups. Web Service acts as a

transporter and forward it to SQL/XML Service and File Query Service. In other words, when

a user wants to get mail from a specific news group, he/she select this group. Then this

information is saved in Mail_List Table in database. When a news is posted, a mail list is

constructed. Then, Mail Service Module, send this post according to mail list.

5.1.4 SQL/XML Engine Module

SQL/XML Engine listens Mail Service, Web Service in the core. It constructs queries with

respect to incoming requests from services. It puts these queries to the database in order.

These queries are executed. The result set of executed queries are sent to related destinations.

Moreover, database sends all triggers and data via SQL/XML Engine.

5.1.5 File Query Engine Module

Since news service save the posts to file system, we ave added this module to our project to

make connection between services and file system. File Query Engine listens News Service,

Web Service, and Mail Service. It constructs queries with respect to incoming requests from

services. These requests have to be related with post operations. It puts these queries to the

file system in order. These queries are executed. The result set of executed queries are sent to

related destinations.

NewStreamLine Detailed Design Report

 41

5.1.6 RSS Module

This service is responsible for constructing xml files according to RSS format. It constructs

these files for each news group separately by always listening to file system for incoming

news. If a new post is come RSS Module updates the related xml file. When a user wants to

get an RSS news feed, the following steps has to be done:

1. He/she must have an RSS reader, in order to read.

2. He/she must write down the RSS links, which are present in Web Page.

Then, when news comes to the system, he/she can learn them from RSS reader without the

opening web page obligation.

5.2 Architecture Diagram

Web Service Module

News Service Module

RSS Module

Mail Service Module

Database

File System

File Query
Engine Module

SQL/XML
Engine Module

NewStreamLine Detailed Design Report

 42

6. UML DIAGRAMS

6.1 Class Diagrams

6.1.1 Class Diagram of News Service

NewStreamLine Detailed Design Report

 43

6.1.2 Class Diagrams of Web Service

ResultScreen

resultSet

detailedInfoButton

displayResult()
adddResult()

getResultSet ()

getSelected()

LoginScreen

username

password

initializaGUI()

actionPerformed()

ha
s

has

has

cal
ls

calls

1

*

1

1

AdminInterface

activeGroups

activeUsers

blockedUsers

statistics

formRequest_givePerm iss ionT oUsers

formRequest_givePermissionToGroups

formReques t_UpdateGroupList
formReques t_Updat eUs erLi st

WebService

userInformation

startService()

stopService()

getResult()

sendResult()

handleUserRequest()

SQL/XMLEngine

serviceInformation

startService()

stopService()

handleWebServiceRequests()

handleMailServiceRequests()

getXMLParserResult()

sendXMLParserQuery()

XMLParser

adminRequest

userRequest

resultObject

getRequestInformation()

parseUserRequest()

parseAdminRequest()

formModifyAdminSettingsRequest()

formViewStatisticsRequest()

formModifyNewsGroupRequest()

formModifyUserSettingsRequest()

generateXMLResponse()

ha
s

searchScreen

postName
postSubject

searchAct ivity

getPostName()
getPos tTitle()

setSearchAct ivity()

h
as

PostScreen

PostTitle
PostGroup

PostSubject

readPost()

writePost()

h
as

Web Application GUI

searchGUI

searchResultGUI

loginGUI

personalInformat ationGUI

viewPostGUI

preferenceOfUser

AdminInterface

toResultScreen()

toPersonalInfoScreen()

toLoginScreen()

toPostScreen()

t oSearchScreen()

toAdminInterface()

PersonalInfoScreen

firstName

lastName

gender

email

telephoneNumber

preference

username

password

init ializeGUI()

actionPerformed()

h
as

NewStreamLine Detailed Design Report

 44

6.1.3 Class Diagram of Request Object - Database

XMLParser

adminRequest

userRequest

resultObject

getRequestInformation()

parseUserRequest()

parseAdminRequest()

formModifyUserSettingsRequest()

formModifyAdminSettingsRequest()

formViewStatisticsRequest()

formModifyNewsGroupRequest()

formModifyUserSettingsRequest()

generateXMLResponse()

RequestObject

name

type

getName()

getType()

setName()

setType()

DatabaseManager

dbHost

dbPort
username

password

stat ist icsType
setDBHost()

setDBPort ()

setUserName()

setLogType()

processLog()

connectToDB()

saveLogsToFile()

creates
g
et
s

ModificationRequest

groupName

groupType

Username

performModification()

addNewsGroup()

deleteNewsGroup()

modifyNewsGroup()

addUser()

blockUser()

IdentificationRequest

Username

Password

Type

authenticate()

setUserName()

setPassword()

descrip tPassword()

6.1.4 Class Diagram of Request Object – File System

FileSystemEngine

- serviceInformation

s tartService()

s topService()

handlePostReques t ()

parseUserRequest ()

formCreatePostReques t()

formSearchPos tReques t()

getResult()

WebService

- userInformation

st artService()

st opService()

getResult()

sendResult()

handleUserReques t()

creat eServ iceInformation()

RequestObject

Name

Type

getName()

getType()

setName()

setType()

SearchRequest

postTit le

pos tSubject

pos tDate

activit y

getSelctedPos tArticle

getSelect edPostTitle

getSelect edPostSubject

getSelect edPostDate

getSelect edActivity

StatisticsRequest

frequentlyUsedGroupName

frequentlyReadPost

onlineVisitors

getGroupName()

getPost ()

getOnlineVisito rs ()

 us es

create
s

calls

DatabaseManager

dbHost

dbPort

username

password

s tatis t icsType

setDBHost()

setDBPort ()

s etUserName()

setLogType()

processLog()

connectToDB()

saveLogsToFile()

NewStreamLine Detailed Design Report

 45

6.1.5 Class Diagram of Mail Service

Mail Service Client

-UserId
-UserPassword
-UserType

+Send_Request_Start
Service();
+Send_Request_Stop
Service();
+Send_Request_Receiv
e mail();

<<implementation
class>>

Mail Service

-g_portid

+GetStartRequest();
+ StartService();
+ListenPort(gportid);
+ConnectDataBase();
+SendRequestDatabase();
+SetMail(Post);
+SendMail();
+StopService();

<<implementation class>>
Mail

-MailId:int=autoincreament
-MailTitle:String
-MailDateTime:Date
-MailText:Text
-MailAttachment
-MailSenderId:int

+ CreateMail(MailId,
MailTitle,MailDateTime,MailTe
xt,
MailAttachment,MailSenderId)
;
+GetMail(MailtId):Post

*

1

*

*

*

1

*

1

File Query Service

-serviceInformation

+startService();
+stopService();
+RetrivePost();
+SavePost();
+RetriveUserInformation(
);
+RetriveNewsgroups();
+GetRequest();
+SendResponseToMailS
ervice();
+handleWebServiceRequ
est();

1

1

Web Service

-userInformation

startService();
stopService();
getResult();
SendResult;
handleUserRequest();

<
<
cre
ate
s>
>

1

calls

calls

1
<<uses>>

1

NewStreamLine Detailed Design Report

 46

6.1.6 Class Diagram of Mail List

Mail Service Client

-UserId
-UserPassword
-UserType

+Send_Request_Start
Service();
+Send_Request_Stop
Service();
+Send_Request_Receiv
e mail();

<<implementation class>>
Mail

-MailId:int=autoincreament
-MailTitle:String
-MailDateTime:Date
-MailText:Text
-MailAttachment
-MailSenderId:int

+ CreateMail(MailId,
MailTitle,MailDateTime,MailTe
xt,
MailAttachment,MailSenderId)
;
+GetMail(MailtId):Post

*
*

*
11

Web Service

-userInformation

startService();
stopService();
getResult();
SendResult;
handleUserRequest();

<<creates>>

calls
calls

1

<<implementation
class>>
Mail_List

-NewsgroupId=autoincrem
ent
-UserId=autoincrement

+CreateMailList(Newsgrou
pId,UUserId);

+GetMail(NewsgroupId):P
ost

<<implementation
class>>

Mail Service

-g_portid

+GetStartRequest();
+ StartService();
+ListenPort(gportid);
+ConnectDataBase();
+SendRequestDatabase();
+SetMail(Post);
+SendMail();
+StopService();

1

News Service

-userInformation

startService();
stopService();
getResult();
SendResult;
handleUserRequest();

<<implementation
class>>

File Query Service

+GetStartRequest();
+ StartService();
+SendRequestFile();
+SetMail(Post);
+SendMail();
+StopService();

S
e
n
d
s
M
a
il_
li
s
t

1 1

<<uses>>

*

NewStreamLine Detailed Design Report

 47

6.2 Sequence Diagrams

6.2.1 Sequence Diagram for Post

Client send request to the News Server to create a new Post by sending post data. News

Server creates a new Post and passes it to the File System which saves that newly formed

post. After post is saved, notification about the fulfillment of the request is forwarded to the

client.

In the same way, client can send a request to view a particularly post. This time a post id is

passed to the News Server that forwards it to the File System. If post is found, template for a

post is created with the data from the File System and that newly created post is passed to the

user through the News Server.

NewStreamLine Detailed Design Report

 48

6.2.2 Sequence Diagram for Newsgroups

:Clien t :Web Server :SQL/XML Eng ine

CreateNewsGroup(Newsgroup)

notify()notify()

:Newsgroup

Construc t

 new group

Request_CreateNewsgroup(Name)
<<creates>>

New Gruop(Newsgroup)

Crea te Group

Request_Ge tNewsgroup (GroupId)
Process _GetNewsgroup(GroupId)

GetNewGroup(GroupId)

<<creates>>
Construct

 new g roup
New Group

New Group(News gorup)

Show Group(Newsgroup)

Administrator of the system send request to the Wes Server to create a new news group by

sending name data. Web Server creates a new News Group and passes it to the database by

SQL/XML engine. After news group is created, notification about the fulfillment of the

request is forwarded to the administrator.

In the same way, administrator can send a request to view a particularly news group. This

time a news group id is passed to the Web Server that forwards it to the SQL/XML Engine. If

news group is found in database, it is shown in the administrator web page by Web Server.

NewStreamLine Detailed Design Report

 49

6.2.3 Sequence Diagram for Update Personal Information

actionPerformed

actionPerformed

User can modify his/her personal information via Web Application GUI. He/she selects

change personal information option from GUI. Then a personal information screen is opened

that shows his/her personal information. User enters necessary data to update. After

submission of data, Web Service sends request to SQL/XML Engine to perform update in

database. When user personal information is updated in user table, by the help of SQL/XML

Engine the updated personal data is shown via Web Service.

NewStreamLine Detailed Design Report

 50

6.2.4 Sequence Diagram for Search Post

actionPerformed

actionPerformed

User can search a particular post via Web Application GUI. He/she selects search a post

option from GUI. Then a search screen is opened. User enters either post subject or post title

information. After submission of data, Web Service sends request to File Query Engine to

perform search in posts which are recorded in file system. The result of search operation is

shown in Result screen, via File System Engine firstly and via Web Service secondly.

NewStreamLine Detailed Design Report

 51

6.2.5 Sequence Diagram for Admin Login

:Visitor :WebService:WebApplicationGUI :LoginScreen :AdminInterface

create

loginrequest

displayLoginScreen

enterUsername&Password

actio
nPer

form
ed

sendDataToWebService
RequestHandler

Generate XML

actio
nPer

form
ed

:SQL/XMLEngine

ExecuteRequest

AdminLogin

DisplayAdminInterface

In admin login, actions performed are similar to the actions explained above. Admin enters

username and password to web application GUI, and sends request to SQL/XML Engine via

Web Service. SQL/XML Service executes query in user table and sends the result to GUI. If

login is succeeded, then admin user interface will be opened.

NewStreamLine Detailed Design Report

 52

6.2.6 Sequence Diagram of Admin Operations

Admin sends all of requests to web service which connects to file system and database via

File Query Engine and SQL/XML Engine. The responses to the resulted requests are sent

to admin interface via Web Service again.

6.2.7 Sequence Diagram for Mail

Service

:Client

SendData()

:Web Service

SendMail()

Send_Requests_Receive_Mail()

:SQL&XML

Engine

SendRequestDatabase()

:Database

<<action

performed>>

 GenerateSQLquery()

:MailService

StartService()

StopService()

SetMail()

RetrieveData()

Client sends request to Web Service, if he/she wants to get an e-mail from system when a new

post is come to the news group that he/she is subscribed to.

NewStreamLine Detailed Design Report

 53

6.2.8 Sequence for mail list

StartService()

SetMail()

:File System

SendData()

:News Service :SQL&XML
Engine :Database

<<actionperformed>>

 GenerateSQLquery()

:File Query Service

RetrieveData()

newPost()
send_request_database()

 Generatefilequery()

RetrieveData()

<<actionperformed>>

:MailService

StopService()

Send_ Mail _List()

:Client

Send_Mails()

When a new post is come and saved in file system, a request is send to SQL/XML Engine to

create a mail list from database Mail_List table. After getting mail list from database, the post

data is obtained from File System via File Query Service. Then both data are sent to the Mail

Service, in order to make it send mail. Finally, mail including new post data is sent to clients

in mail list.

NewStreamLine Detailed Design Report

 54

6.2.9 Sequence Diagram for RSS Request

StartService()

CreateXMLFile()

:File System

SendData()

:News Service :File Query Service

newPost()

 Generatefilequery()

RetrieveData() <<actionperformed>>

:RSSService

StopService()

:Client

SendRssRequest()

SendRSSFeed()

When a new post is come and saved in file system, a request is send File Query Service to

obtain new post data from file system. Then, a request is sent to RSS module to make it

generate an XML file in RSS format. The RSS news feed is obtained by client via RSS news

feed reader which uses XML file generated by RSS Module.

NewStreamLine Detailed Design Report

 55

6.3 Activity Diagrams

6.3.1 News Service Activity Diagram

NewStreamLine Detailed Design Report

 56

6.3.2 Update Personal Information Activity Diagram

NewStreamLine Detailed Design Report

 57

6.3.3 Request Statistics Activity Diagram

Display Web Applicaiton GUI

Select Statistics

Select NewsGroup Statistics Select Post Statistics Select Online Visitor statistics

Create Selection Request

Call Web Service

Handle Request

Connect to database

Gather statistics

Display changes in Result Screen

Get result

NewStreamLine Detailed Design Report

 58

6.3.4 Post Related Requests Activity Diagram

Display Web Application GUI

Display PostScreen

Select PostOpen New Thread

Reply Read

createRequest

Call web service

Call File System Engine

Get response

Display changes in Result Screen

NewStreamLine Detailed Design Report

 59

6.3.5 Activity Diagram of Admin User Interface

Login

Yes
No

Select Configurat ion

Option

Configure News Group Configure Member Info

Fill Text Fields

Get Informat ion

from Database

display Result

No

Log Out

Okay

NewStreamLine Detailed Design Report

 60

6.3.6 Activity Diagram of Searching

Display Web

Application GUI

Fill Title InfoFill Subject

Info

Gather search

information

display Result

Screen

createPostReques t

Call Web Service

Call File System Engine

get SearchResult

Not Found

Found

NewStreamLine Detailed Design Report

 61

6.3.7 Activity Diagram for Mail Service

Wait for

FileSystem

Trigger

:MailService

Process_Request

:File Query System
:SQL/XML Engine

Generate Post List Generate Mail_List

Process_Result

SendToClient

NewStreamLine Detailed Design Report

 62

6.4 Deployment Diagram of the System

Web Server News Server

Mail server

SQL/XML Engine

Database Manager

File System Engine

In deployment diagrams, servers are shown in a different nodes and associations among them

is shown. Mail Server and Web Servers are both connected to SQL/XML Engine and File

System Engine, whereas NNTP Server uses only File System Engine.

NewStreamLine Detailed Design Report

 63

7. USER INTERFACE of the SYSTEM

Before constructing our user interface we examined several web pages that provides an

interface for a NNTP servers and found many things that they have in common. That’s why

while designing our graphical user interface we decided to preserve the existing format of

similar sites because most of the potential users are familiar with them.

The goal is to keep GUI simple but in the same time very functional and coherent.

Our user interface is dived in two parts, one is for administrator, and the other is for users.

7.1 Administrator Graphical User Interface

We omit showing some pages like logging in page or pages that are very similar to the shown

one. However, in the sense of functionality, all pages have notification windows, error

explanation labels and all that kind of thing that help users to understand system’s work.

7.1.1 Adding New Group Page

In the “Action” table, functionalities of the administrator are listed. They are all rows in a

column and clicking on the area within the row will activate the link to the appropriate page.

TextBox1

TextBox2

NewStreamLine Detailed Design Report

 64

In the TextBox1 Group name of new group is written. If you want to create a group that is a

subgroup of another one, you must first check the checkbox near the TextBox2 and then write

the name of the parent group in the TextBox2. After clicking the button SAVE system will

check newly written groups for existence and act accordingly (for example will bring an error

message if the group with the same group name already exists). By clicking on the button

“Cancel” you will simple ignore the operation and return to the first page.

7.1.2 Adding New User

TextBox1 and TextBox2 are in the html type “password”. When all information is entered the

first thing done is matching these textboxes. If they do not match, error message is written.

Then all fields are checked to be entered. When it’s done, system checks all fields to be

entered in appropriate format (for example e-mail address must contain “@” in it etc) After

these, system connects to database which holds all user information, checks if the user with

TextBox1

TextBox2

NewStreamLine Detailed Design Report

 65

the same username exists. If yes, it writes notification and invites to enter new username. If

not, it inserts new username and its information to database and notifies about successful

creation of new user.

Last three actions have very simple GUI that’s why they are not shown. To delete a

newsgroup administrator must simple insert its name. It will be first checked for existence and

than deleted. Similar procedure is followed when deleting user and post. They are first

checked for existence and then deleted. Error message, notifications and all such kind

information are printed all through the action.

NewStreamLine Detailed Design Report

 66

1
2 3

4 5 6

7

8

7.2 User’s Graphical User Interface.

Here we again omit showing simple pages, and display only pages which functionalities are

more noticeable.

7.2.1. Viewing Post

News Group table (1) shows the news groups which are subscribed by user. It it’s a div html

space which has a scrolling vertical bar if needed. Field (2) shows the username of a user.

Field (3) shows numbers of pages that exist in file system according to chosen group name.

Column Subject (4) shows the post names. Reply posts are shown accordingly, deeper than

the one which it is replied to. Column Sender (5) shows the name of the user, who sent the

post, and column Date (6) shows the date and time when the post was posted. Field (7) shows

s small menu items available for the user. By clicking Write link (8) User can write new post.

User can view post simply by clicking on it. Post is shown in the bottom part of the page with

NewStreamLine Detailed Design Report

 67

appropriate information about it. By clicking reply user can reply to the post that is being

viewed.

7.2.2 Reply Post

After clicking Reply button page is redirected to new page that has a field for writing a post,

that is a textbox within the form structure of html. In fields Subject, Sender and Date the

information of post being replied is displayed. Subject Area can be changed and new title for

a post can be written in that area. By clicking button “Send” post will be posted. All

information bind to the post is send with it (such as sender, date etc) automatically. By

clicking “Clear” text inside the textbox will be cleared. Write page is similar to reply that’s

why it is not shown.

NewStreamLine Detailed Design Report

 68

7.2.3 Options page

Options page provides user with ability of subscribing to a group and choosing a group that

s/he wants to follow from his/her mail address. Checkboxes are used in order to record the

specifications. After clicking “Save” button, information about preferences of user is saved in

database of Mail_List and Group_List accordingly depending on a user id.

Also user can change User Information following the link on this page. We do not show it

here because it is very similar to user page of administrator part. The difference is only that

user can not change his username. But can change password and specify new e-mail address

to receive mails of subscribed groups. All information about user is stored in database that’s

why it’s updated if any changes are made.

NewStreamLine Detailed Design Report

 69

7.2.4 Searching Page

In Searching page, by specifying some parameters user can search for a particular post. In

Field 1 the name of the group for searching is entered. In Field 2, which is activated by

checking the checkbox, the name of the sender can be specified. In Field 3 which is also

activated by checking the checkbox one can specify the date, which the post was posted after.

Date is specified using the drop down list to avoid the conflict between the day-month-year

formats. In Field 4 the post name is entered. The return value of the engine is post view page

containing the searched post, if found

Field 1

Field 2
Field 3

Field 4

NewStreamLine Detailed Design Report

 70

8. SYNTAX SPECIFICATION

We have decided to obey to some standardization rules for the design and implementation of

our project.

8.1 Syntax Conventions:

� Variables in global will have a name beginning with ‘g_’, so that they will be

differentiated easily from the local ones. Moreover, variable names will have type

conventions besides the global/local touchstones. To illustrate, “g_int_length” and

“int_width” are valid variable names for global and local variables consecutively.

Lastly, pointer variables will have a name beginning with ‘p_’.

� Functions will have commented descriptive identification tags, clarifying the

parameters and return types of functions.

� Class names will begin with an upper case letter; moreover, class names consisting of

multiple words will have an upper case letter at the beginning of each word. For

example, “User” and “NetworkAdmin” are valid class names.

� Attribute names and method names of classes will begin with a lower case letter;

moreover, names consisting of multiple words will have an upper case letter at the

beginning of each word.

� Database table names will begin with capital letters and the same procedure of class

names will be valid for the names consisting of multiple words.

NewStreamLine Detailed Design Report

 71

8.2 XML Representation

Here, we have provided the main skeleton of our XML files which enables the

communication between servers and the connected clients. For further observation and details

some explanatory XML can be found below:

<?xml version="1.0"?>

<!-- CONFIGURATION -->

<config>

 <James>

 <postmaster>newstreamline@googlegroups.com</postmaster>

 <servernames autodetect="true" autodetectIP="true">

 <servername>localhost</servername>

 </servernames>

 <usernames ignoreCase="true" enableAliases="true" enableForwarding="true"/>

 <inboxRepository>

 <repository destinationURL="file://var/mail/inboxes/" type="MAIL"/>

 </inboxRepository>

 </James>

 <spoolmanager>

 <threads> 10 </threads>

 <processor name="root">

 <mailet match="All" class="PostmasterAlias"/>

 <mailet match="RelayLimit=30" class="Null"/>

 </mailet>

 <mailet match="HasMailAttribute=spamChecked" class="ToProcessor">

 <processor> transport </processor>

 </mailet>

 <mailet match="All" class="SetMailAttribute">

 <spamChecked>true</spamChecked>

 </mailet>

NewStreamLine Detailed Design Report

 72

 <mailet match="SMTPAuthSuccessful" class="ToProcessor">

 <processor> transport </processor>

 </mailet>

 <mailet match="InSpammerBlacklist=query.bondedsender.org."

 class="ToProcessor">

 <processor> transport </processor>

 </mailet>

 <mailet match="InSpammerBlacklist=dnsbl.njabl.org."

 class="ToProcessor">

 <processor> spam </processor>

 </mailet>

 <mailet match="InSpammerBlacklist=relays.ordb.org."

 class="ToProcessor">

 <processor> spam </processor>

 </mailet>

 <mailet match="All" class="ToProcessor">

 <processor> transport </processor>

 </mailet>

 </processor>

 <processor name="error">

 <mailet match="All" class="ToRepository">

 <repositoryPath> file://var/mail/error/</repositoryPath>

 </mailet>

 </processor>

 <processor name="transport">

 <mailet match="SMTPAuthSuccessful" class="SetMimeHeader">

 <name>X-UserIsAuth</name>

 <value>true</value>

 </mailet>

 <mailet match="HasMailAttribute=org.apache.james.SMIMECheckSignature"

class="SetMimeHeader">

 <name>X-WasSigned</name>

NewStreamLine Detailed Design Report

 73

 <value>true</value>

 </mailet>

 <mailet match="RecipientIsLocal" class="LocalDelivery"/>

 <mailet match="HostIsLocal" class="ToProcessor">

 <processor> local-address-error </processor>

 </mailet>

 <mailet match="RemoteAddrNotInNetwork=127.0.0.1" class="ToProcessor">

 <processor> relay-denied </processor>

 <notice>550 - Requested action not taken: relaying denied</notice>

 </mailet>

 <mailet match="All" class="RemoteDelivery">

 <outgoing> file://var/mail/outgoing/ </outgoing>

 <delayTime> 5 minutes </delayTime>

 <delayTime> 10 minutes </delayTime>

 <delayTime> 45 minutes </delayTime>

 <delayTime> 2 hours </delayTime>

 <delayTime> 3 hours </delayTime>

 <delayTime> 6 hours </delayTime>

 <maxRetries> 25 </maxRetries>

 <deliveryThreads> 1 </deliveryThreads>

 <sendpartial>false</sendpartial>

 <bounceProcessor>bounces</bounceProcessor>

 </mailet>

 </processor>

 </spoolmanager>

 <dnsserver>

 <servers>

 <server>127.0.0.1</server>

 </servers>

 <autodiscover>true</autodiscover>

 <authoritative>false</authoritative>

 <maxcachesize>50000</maxcachesize>

 </dnsserver>

NewStreamLine Detailed Design Report

 74

 <remotemanager enabled="true">

 <port>4555</port>

 <handler>

 <helloName autodetect="true">myMailServer</helloName>

 <administrator_accounts>

 <account login="root" password="root"/>

 </administrator_accounts>

 <connectiontimeout> 60000 </connectiontimeout>

 </handler>

 </remotemanager>

 <smtpserver enabled="true">

 <port>25</port>

 <useTLS>true</useTLS>

 <handler>

 <helloName autodetect="true">myMailServer</helloName>

 <connectiontimeout>360000</connectiontimeout>

 <authRequired>true</authRequired>

 <authorizedAddresses>127.0.0.0/8</authorizedAddresses>

 <verifyIdentity>true</verifyIdentity>

 <maxmessagesize>0</maxmessagesize>

 </handler>

 </smtpserver>

 <nntpserver enabled="true">

 <port>119</port>

 <handler>

 <helloName autodetect="true">myMailServer</helloName>

 <connectiontimeout>120000</connectiontimeout>

 <authRequired>false</authRequired>

 </handler>

 </nntpserver>

NewStreamLine Detailed Design Report

 75

 <nntp-repository>

 <readOnly>false</readOnly>

 <rootPath>file://var/nntp/groups</rootPath>

 <tempPath>file://var/nntp/temp</tempPath>

 <articleIDPath>file://var/nntp/articleid</articleIDPath>

 <articleIDDomainSuffix>news.james.apache.org</articleIDDomainSuffix>

<!--NEWSGROUPS CAN BE SPECIFIED HERE-->

 <newsgroups>

 <newsgroup>NewStreamLine</newsgroup>

 </newsgroups>

 <spool>

 <configuration>

 <spoolPath>file://var/nntp/spool</spoolPath>

 <threadCount>1</threadCount>

 <threadIdleTime>60000</threadIdleTime>

 </configuration>

 </spool>

 </nntp-repository>

 <spoolrepository destinationURL="file://var/mail/spool/" type="SPOOL"/>

 <mailstore>

 <repositories>

 <repository class="org.apache.james.mailrepository.AvalonMailRepository">

 <protocols>

 <protocol>file</protocol>

 </protocols>

 <types>

 <type>MAIL</type>

 </types>

 </repository>

 <repository class="org.apache.james.mailrepository.AvalonSpoolRepository">

NewStreamLine Detailed Design Report

 76

 <protocols>

 <protocol>file</protocol>

 </protocols>

 </repository>

 <repository class="org.apache.james.mailrepository.JDBCMailRepository">

 <protocols>

 <protocol>db</protocol>

 </protocols>

 <types>

 <type>MAIL</type>

 </types>

 <config>

 <sqlFile>file://conf/sqlResources.xml</sqlFile>

 </config>

 </repository>

 <repository class="org.apache.james.mailrepository.JDBCSpoolRepository">

 <protocols>

 <protocol>db</protocol>

 </protocols>

<!--SQL MAIL REPOSITORY CAN BE SPECIFIED HERE-->

 <config>

 <sqlFile>file://conf/sqlResources.xml</sqlFile>

 <maxcache>1000</maxcache>

 </config>

 </repository>

 <repository class="org.apache.james.mailrepository.JDBCMailRepository">

 <protocols>

 <protocol>dbfile</protocol>

 </protocols>

 <types>

 <type>MAIL</type>

 </types>

 <config>

NewStreamLine Detailed Design Report

 77

 <sqlFile>file://conf/sqlResources.xml</sqlFile>

 <filestore>file://var/dbmail</filestore>

 </config>

 </repository>

 <repository class="org.apache.james.mailrepository.JDBCSpoolRepository">

 <protocols>

 <protocol>dbfile</protocol>

 </protocols>

 <config>

 <sqlFile>file://conf/sqlResources.xml</sqlFile>

 <filestore>file://var/dbmail</filestore>

 <maxcache>1000</maxcache>

 </config>

 </repository>

 <repository class="org.apache.james.mailrepository.MBoxMailRepository">

 <protocols>

 <protocol>mbox</protocol>

 </protocols>

 <types>

 <type>MAIL</type>

 </types>

 </repository>

 <repository

class="org.apache.james.mailrepository.filepair.File_Persistent_Object_Repository">

 <protocols>

 <protocol>file</protocol>

 </protocols>

 <types>

 <type>OBJECT</type>

 </types>

 <models>

 <model>SYNCHRONOUS</model>

 <model>ASYNCHRONOUS</model>

 <model>CACHE</model>

NewStreamLine Detailed Design Report

 78

 </models>

 </repository>

 <repository

class="org.apache.james.mailrepository.filepair.File_Persistent_Stream_Repository">

 <protocols>

 <protocol>file</protocol>

 </protocols>

 <types>

 <type>STREAM</type>

 </types>

 <models>

 <model>SYNCHRONOUS</model>

 <model>ASYNCHRONOUS</model>

 <model>CACHE</model>

 </models>

 </repository>

 </repositories>

 </mailstore>

 <users-store>

 <repository name="LocalUsers"

class="org.apache.james.userrepository.UsersFileRepository">

 <destination URL="file://var/users/"/>

 </repository>

 <repository name="LocalUsers"

class="org.apache.james.userrepository.JamesUsersJdbcRepository"

destinationURL="db://maildb/users">

 <sqlFile>file://conf/sqlResources.xml</sqlFile>

 </repository>

 &listserverStores;

 </users-store>

 <database-connections>

 <data-source name="maildb" class="org.apache.james.util.dbcp.JdbcDataSource">

 <driver>com.inet.tds.TdsDriver</driver>

NewStreamLine Detailed Design Report

 79

 <dburl>jdbc:inetdae7:127.0.0.1?database=NSL</dburl>

 <user>NSL_user</user>

 <password>newstreamline</password>

 <max>20</max>

 </data-source>

 </database-connections>

 <connections>

 <idle-timeout>300000</idle-timeout>

 <max-connections>30</max-connections>

 </connections>

 <sockets>

 <server-sockets>

 <factory name="plain"

class="org.apache.avalon.cornerstone.blocks.sockets.DefaultServerSocketFactory"/>

 </server-sockets>

 <client-sockets>

 <factory name="plain"

class="org.apache.avalon.cornerstone.blocks.sockets.DefaultSocketFactory"/>

 </client-sockets>

 </sockets>

 <thread-manager>

 <thread-group>

 <name>default</name>

 <priority>5</priority>

 <is-daemon>false</is-daemon>

 <max-threads>100</max-threads>

 <min-threads>20</min-threads>

 <min-spare-threads>20</min-spare-threads>

 </thread-group>

 </thread-manager>

</config>

NewStreamLine Detailed Design Report

 80

<!-- SERVER -->

<server>

 <factories>

 <factory type="file"

class="org.apache.avalon.excalibur.logger.factory.FileTargetFactory"/>

 </factories>

 <categories>

 <category name="" log-level="INFO">

 <log-target id-ref="default"/>

 </category>

 <category name="James.Mailet" log-level="INFO">

 <log-target id-ref="James-Mailet-target"/>

 </category>

 <category name="James" log-level="INFO">

 <log-target id-ref="James-target"/>

 </category>

 <category name="spoolmanager" log-level="INFO">

 <log-target id-ref="spoolmanager-target"/>

 </category>

 <category name="dnsserver" log-level="INFO">

 <log-target id-ref="dnsserver-target"/>

 </category>

 <category name="remotemanager" log-level="INFO">

 <log-target id-ref="remotemanager-target"/>

 </category>

 <category name="pop3server" log-level="INFO">

 <log-target id-ref="pop3server-target"/>

 </category>

 <category name="smtpserver" log-level="INFO">

 <log-target id-ref="smtpserver-target"/>

 </category>

 <category name="nntpserver" log-level="INFO">

NewStreamLine Detailed Design Report

 81

 <log-target id-ref="nntpserver-target"/>

 </category>

 <category name="nntp-repository" log-level="INFO">

 <log-target id-ref="nntp-repository-target"/>

 </category>

 <category name="mailstore" log-level="INFO">

 <log-target id-ref="mailstore-target"/>

 </category>

 <category name="users-store" log-level="INFO">

 <log-target id-ref="users-store-target"/>

 </category>

 <category name="objectstorage" log-level="INFO">

 <log-target id-ref="objectstorage-target"/>

 </category>

 <category name="connections" log-level="INFO">

 <log-target id-ref="connections-target"/>

 </category>

 <category name="sockets" log-level="INFO">

 <log-target id-ref="sockets-target"/>

 </category>

 <category name="scheduler" log-level="INFO">

 <log-target id-ref="scheduler-target"/>

 </category>

 <category name="fetchmail" log-level="INFO">

 <log-target id-ref="fetchmail-target"/>

 </category>

 </categories>

 </targets>

 </logs>

</server>

</targets>

</logs>

</server>

NewStreamLine Detailed Design Report

 82

9. PDL MODEL

Main()

SET DEFAULTS

LOOP WHILE ListenMode

IF (int_request) THEN

IF(not int_queue)

DO ServeUserRequest(int_userRequest)

ELSE push the request to the existing queue

serve to first pending request from queue

ENDIF

ENDIF

END LOOP

ServeUserRequest(int_request)

IF (int_userRequest) THEN

 check the rules to be applied to that user

IF(int_userBlocked) THEN

int_action < - - NONE

ELSE int_Action < - - SERVE

ENDIF

Serve(int_request)

ENDIF

Serve(int_request)

LOOP WHILE (not int_request NONE)

DO invoke Web Service

parse the int_request

IF (int_request is RSS related) THEN

 invoke XML Service

 update the request

ELSE IF (int_request is Email related) THEN

 invoke SMTP Service

update the request

ELSE IF (int_request is News related) THEN

 invoke NNTP Service

 update the request

 ENDIF

NewStreamLine Detailed Design Report

 83

ENDIF

parse the request

ENDLOOP

 10. CONCLUSION

Throughout this document we described in details the work of the NewStreamLine news

exchange server. All differences done to the system after initial design report submission were

shown and explained accordingly. Different types of diagrams were used in order to show the

workflow of the system. Firstly, we have added System Architecture Part that explains

modules in general aspect. Moreover we added an architecture diagram of the system to

explain different modules graphically. Secondly, Use Case diagrams were dropped of because

of Object- Oriented Software Design rules which use UML for modeling. In addition to these,

we have updated all UML diagrams according to the changes that were done to the system.

Thirdly, Graphical User Interface was constructed for the Web Page of the NewStreamLine

and most important pages were shown in this document. Fourthly, as an XML configuration

files are very important in any kind of server including software, we decided to include the

part of config.xml file of our server in the design report. Finally, PDA model that includes

general functionality of the server was written.

We are sure that this report clarified all points which were not clear in all previous reports.

NewStreamLine Detailed Design Report

 84

11. APPENDIX - GANNT CHART

