Middle East Technical University
Department of Computer Engineering

CENG491
Computer Engineering Design |
Design Report

OZGUR YAZILIM

|

o——

Ozgiir Ozgiir
Firat Erdogan
Onur Demircan
Abdulkerim Mizrak

1
2

4

0 ~N o o1

. Project DefiNItiON ... e e e e
c DESIGN GOAIS ... e ———————

3
3
4

3.1 Graphical User INterfacecooveie ittt e e e e
3.2 GaAME ENQING ot it e e e e e e e s 6
B3 INPUEIMOTUIE ... e e e e e e e e e e ———— 7
SAMENUMOTUIE ... e |
3.5 Artificial Intelligence Engine Moduleccooiiiiiiii i 10
3.6 Graphic ENgine ModUIe ... 11
3.7 NetWOrk MOAUIE ... e e e 11
3B AUAIO MOUUIE ... e e 13

B9 Chat MOTUIE ...t e e e ————— 14
. CLASS DEFINITIONS ...t et e e e e e e e e seseenenn LD
4.1 BaSEODJECE ClaSS ... ettt et te cte et e e e et et e e e e e e ——— 14
4.2 POSIION ClaSS ... e e et e e e e e e e e e e 15
4.3 Treasure ODJECT Classuuve i e e e e e e e 16
O 0 To o [o] =Tt O F- TS PSRN 17
4.5 Furniture OBJect Classvveiiiiiiieie e i e see e 19
4.6 CharaCter Class ... coiit i it e e e e e e e e e e 19
4.7 Virtual Player Classce i i i et e e e e e e e e e 21
A8 MAP ClaSSES ..ttt e e e e e e e 21
A.8.1 POINT ottt e e e e e - 21

4.8.2 WINDOW ...ttt e e e e e e e e e e e, 21
4.8.3 DOOR ...ttt ————— 22
A4.8.4 ROOM ...ttt e e e e e e e e e e e ————— 22
4.9 NEIWOTK CIaSS ... vttt e e e e e e 23
A.10 AUGIO ClIaSS ... e et e e e e e e e e e e 28
4.11 GameENQGINE ClaSSv vt 24
O A [] o1 O - PR TR 25
4.13 AIENQGINE CIASS ... vttt et it e e e et e e e et e e e e e e 26
4.14 GraphiCSENGING ClIaSSuuiniiie e e e e e e e e 27
A.15 CRat CIaSS ...ttt e et e e e e e e e e ———— 28
. CLASS DIAGRADM L. e e e e e e ————— 29
. USE CASE DIAGRAM .ot e st e e e e e e e e e e 30
DD e ————————————— 33
8.1 Data Flow Diagram LeVel 0c.inniriii i e 33
8.2 Data Flow Diagram Level 1 ... e e e 33
8.3 Data Flow Diagram Level 2 ... e 35
CGANTE CNAIT o e e e 37

1. PROJECT DEFINITION

Treasure Hunt is a massively multiplayer online game (MMOG) with 3D graphics. It is
designed to support hundereds of online players to interact and play together in a virtual
environment.

The game has a nice scenario. Players are restricted in a multi-storey building with lots of
rooms connected by several paths. Players are given the chance of choosing one of the pre-
defined characters. In the game, characters have calorie values increase with the food they eat.
On the other hand as time passes, movement and metabolism result in the decrease of calorie
values.There are some predefined calorie limits which determine the characters movement
capability. According to calorie value character can walk or run or crawl.There are some food
objects that characters can compensate the energy loss by eating. Characters have special
characteristics, for example, some characters are vegeterian. Vegeterian characters can not eat
meat. Moreover, some characters are allergic to some kind of food. Players dedicate themselves
to find the treasure. Players approches the TREASURE, wandering inside the building and
passing steps by finding step related treasure objects. Finally the one most skillful, fast and wise
hunter will reach the TREASURE.

2. DESIGN GOALS

Treasure Hunt is going to be a massively multiplayer online game which supports 3D
Graphics Rendering, Multimedia (sound), and Game Al.

In this report, our main goal is to show the design made by our group in order to document
our project properly. This report is going to describe a detailed functionality of the system,
main components of the system and their interaction with each other, graphical user interfaces,
and a gantt chart.

In general, we will not only try to implement a game with successfully played in any way,
but also try to satisfy the following software design goals as well.

e Object-Oriented — Object oriented design results in self-contained modules that are easy to
manage and maintain. The modular design of Treasure Hunt makes it easy to implement,
test, maintain, and extend.

o Extensibility — The system evolution for games such as Treasure Hunt is endless, so the
design should allow for the implementation of future requirements with minimal changes to
the current design. We are planning to build a system with *plug-in’ property. So that, we
will add new objects easily to the system.

o Ease of use — It is important that the application has a clean and easy to use interface. The
interface should be intuitive and look very familiar to both new and experienced gamers.

Performance Treasure Hunt is designed to minimize the resources occupied and to
maximize the output in terms or frames per second. The game is designed to be responsive,

robust, and error-free in any system that meets the minimum system requirements specified
in the non-functional requirements.

3. MODULES

3.1 Graphical User Interface

Interface 1.

Interface 2.

Interface 4.

- el
e o 4

At

" onur
| Shag:hi alll
| Hakanl ots start

3.2 Game Engine

The game engine will be implemented as a module. It will involve data about game
progress and some member functions to uppdate these data accordingly.

3.3 Input Module

We will implement an input module that will handle with all the input data through the use
of mouse, keyboard, and console. The mouse, keyboard, and console events will be captured by
frame listener binded with OGRE window and necessary callback functions will be called.

3.4 Menu Module

The game will include two menus that provide the user to interact with the game. The

content of these menus is determined, of course, according to the general properties of game.

a) Game Main Menu
This menu involves items to start a game. The items in this menu are:
e Join Game
This item is used to register user for the game of next session. Server starts each session of
game in a predefined time period. The player that wants to join the game has to wait current
session to terminate.
e Choose Character
This item is to make the user select one of pre-defined characters in the game.
e Options
This item provides change of graphics, audio and keyboard controls.
e Set Name
This item leads user to set name.
o Exit
This item is used to exit from the game.
e About
About us and game.

OPTIONS

b) In Game Menu

e Objectives
The last task assigned to that user is seen by this item.
e Inventory
Inventory that player had get so far.
e Map
A 2D map of the current storey is observed from top view by this menu item.
e Chat
Player can chat with each other.

Bb =]

N

=

v

-

= |

V)|

¢) Game Pause Menu
By this menu only the player pauses.
. Leave Game
The user will quit from the current game session.
o Options
This item provides change of graphics, audio.
. Return To Game

This item provides to resume game.

3.5 Artificial Intelligence Engine Module

Being a MMOG, one should be able to play the game although there’s no one online
besides him/her. This requires implementation of some Al. For this purpose, our game involves
Virtual Players (a.k.a. VP). These players ,controlled by an Al engine, has the same attributes

and methods as the real players. However, they are not controlled by human players. So that, if

10

an action needs to be taken, action is not triggered (i.e. call to the related [\VP prefixed] member
function) by a user input, but from the Al engine according to the current situation & progress
of the character, and state of the environment. Namely, if the energy level of the character is
under some predefined value, then finding food has more priority. If not, then the VP does not
spend time and energy to take food, but tries to find the treasure as early as possible (i.e.
finding treasure has more priority). And throughout this process, the VP does not go into a loop

or does not visit the same room multiple times for the same purpose.

3.6 Graphic Engine Module

Graphic Engine is the one of the most important modules of our project. Graphic Engine
will handle all of the rendering operations during the game according to user input from player

input and feedbacks from game engine.

We will use OGRE 3D (Object-Oriented Graphics Rendering Engine) as our graphic
engine. OGRE (Object-Oriented Graphics Rendering Engine) is a scene-oriented, flexible 3D
engine written in C++ designed to make it easier and more intuitive for developers to produce
applications utilizing hardware-accelerated 3D graphics. The class library abstracts all the
details of using the underlying system libraries like Direct3D and OpenGL and provides an
interface based on world objects and other intuitive classes. . Because our game project will be
a highly object oriented project and integration of OGRE 3D is easiar relatively we decided to

use this engine for the rendering issues of the scene.

3.7 Network Module

Treasure hunt is a massively multiplayer online game connecting players through the
internet .It is a real time application with the interaction of server and clients.Since it is a real
time process, we have to handle some problems because of some external constraints such as
connection rate and speed.

11

Designing the network module and handling problems is one of the most important work
for Treasure Hunt.

We will run game engine on server part on the other hand graphic engine, audio engine,
pyhsics engine on the client parts.Also we think that we will provide a second computer as a
server to run the ai engine.This will be done for efficiency constraints.Server will have a
database schema keeping the position of each character and the step the player is in.

Server will send the position of other players to a player if they are in the same room.A
time period of 50 ms will be enough.We have estimated that if we send the position in every
50 ms accuretly there will be no lag in the game.And if a player takes a treasure or food
object the object_id of this object will send to server.And server will send the object _id
immediately to the remaining clients as the object is now passive.

We will have one server and many clients.Server will be the fastest computer with the
best connection and other computers will be clients. Although there are many ways of
encoding packets, they are all transmitted as either UDP or TCP packets. TCP packets are
very good for transferring data, but TCP packets are not so good for games.Because of the
TCP protocol, TCP packages are often delayed (resulting in games with a lot of lag) and
arrive as streams rather than packets.As a result we have to implement our scheme to separate
the data.On the other hand UDP packets are very good because they are sent right away and
sent in packets. Therefore data can easily be distinguished.Since efficiency is another
constraint it is also good to use UDP protocol.Since TCP has a handshake protocol.

However UDP have some disadvantages and we have to deal with below problems :

UDP packets are not guaranteed to arrive.All the packets that we send, some fraction or
possibly none of the packets could be get.For example a player could pick the treasure but
this information would be lost.As a result, player could not see the treasure object of the next
step, altough he has picked the object of previous step,.

UDP packets are not guaranteed to arrive with the same order it has been sent.It would be
a huge problem for our game.Because it is an important concept in our game who does
before.

UDP packets have no protection from hackers but it is not a important task to handle in
this step.

UDP transport does not provide flow control or aggregation so it is possible to overrun the
recipient and to send data inefficiently.

Another problem according to the connection rate and speed is explained in this scenario:
A player gets a food object and the object_id will be send to server.After that the server will
send all the clients that the food has taken.So food object will dissappear.But what can be
done if another player gets the same food with same object_id during this period (client to
server and server to cients).

12

Morever another problem is that if the second players’ information comes before the first.

We have to define an error management system. Assuming the internet is not reliable,we
have to handle connection problems rather than block, lock-up, or crash.

We have to define a resend package method for the packages that does not arrive.

We have to define order and sequence method that the packages arrive out of order.

We have to define a flow control and aggreagation method.

—

SERVER Al SERVER
- - b
S =
Q L]
X =

CLIENT

CLIENT

3.8 Audio Module

Game will have different soundtracks during game and waiting for the next session. The
soundtrack will change between the steps. Sound effects will be used during games.

Sound options will be controlled and volume level is adjusted by user.

We will use FMOD as our sound library. Fmod provide us all our needs. The most
important feature of FMOD sound library for us is that using minimal resources and being

scalable. We will use sound library in two place in our game. One for environment sounds like

13

footsteps. And the other one for playing game musics. FMOD also provide us to play multiple
sounds simultaneously, so that we can play some game music and environment sounds at the

same time.

The Audio Module will hold the path of the selected sound file and load the file to
memory when desired. The Audio Module will call the required functions from the fmod
library. Player can input the properites of audio module like play/stop music, change volume of
music from the user interface. After initialization in the beginning of the program, it starts

playing when program call ‘play’ and stops when we call ‘stop’ function.

3.9 Chat Module

Chat module will enable players conversing with other players,in real time.Players will be
able to post his/her message in a chat window and watch others post their messages on the
game screen. During game interaction between players make some lively dialogue,and a much
more enjoyable game. Moreover user can send some sound effects.When they find a treasure

object he can send a sound effect. A sound effect can be a laugh,haw-haw,"you have no
chance","go your home","I am the hunter”,"Yeah | have found".

4. CLASS DEFINITIONS

4.1 BaseObject Class
e Attributes:
It is the base class that treasure object, food object and furniture object that inherit from.
object_name: It is a unique string value to each object which identify the object.We will
have treasure object, food object and furniture object and all of them will have a unique

name such as key, book, laptop or cake,apple,bread or table,chair and computer.

object_id: Objects which have the same name will uniquely identify which object it is.

14

object_position: It is a pointer to position object.
angular_direction: It is a float number that provides the direction of object according to
the angular constraints.
model: the name of model object that will be used while importing objects.(such as
model.3ds)
texture: the name of texture file that will be used while importing object.

e Methods:
void init_model(): Initializes all Object3DS instances with its respective *.3DS file from
an external resource using void initialize() method. It also initializes position and scaling
factor of object using void set_scalar() and void set_position() method.

void initialize(): Initializes Object3DS instances from a source of *.3DS file using
model and texture attribute.

void set_position(): Sets the position of objects according to the angular direction using
rotate and translate methods.

void render(): The top-level drawing function. This function makes all calls necessary to
create the world.

void disappear(): This function makes picked food and treasure objects invisible. Also if
the player is at the first step of treasure hunt he/she cannot see the treasure objects related
to remaining steps.

void appear(): This function makes treasure objects visible. If the player passes the first
step of treasure hunt he/she can see the treasure objects related to next step.

void set_scalar(): This funcion is used to scale the model from its natural size.
void translate(): This function will be used to translate 3D objects.

void rotate(): This function will be used to rotate 3D objects.

4.2 Position Class

e Attributes:

x_coordinate : It is a float value indicating the x coordinate of the object in xy plane.

15

4.3

y_coordinate : It is a float value indicating the y coordinate of the object in xy plane.

z_coordinate : It is a float value indicating the relative z coordinate of contact point of
the object.

floor_info : It is an integer value indicating at which floor the object is.

Methods
Get_Position() : gets position attributes.

Change_Position() : changes position attributes.

Treasure Object Class

Attributes:

Object_name, object_id,object_position,angular_direction,model and texture
attribute will be inherited from base object class.

is_active=If the player takes the treasure object the object will lose brightness
(inactivated) so other players cannot take this object.

Books, Keys, Phone, Notebook, Cup, Money, Pass Card, T-shirt, Pants, Shirt, Socks,
Tea-pot, Life Preserver, Tape Recorder.

Methods:

void init_model():
void initialize():
void set_position():
void render():

void disappear():
void appear():
void set_scalar():

void translate():

16

4.4

void rotate():
Methods above will be used from the base class by inheriting.

void activate deactivate(): If the player takes a step related item it will be deactivated
for all other but the next steps’ item will be all activated.

Food Object Class
Attributes:

is_active: If the player pickes the food object the object will lose brightness (inactivated)
so other players cannot take this object.

calorie: It is the integer value that shows the calorie value of the food object.

is_animal: It is the boolean value that shows the food is pertaining to an animal.
Vegetarian players could not eat this type of food.

Cake: Coke:
calorie =200 Calorie=80
is_animal=0 Is_animal=0
Bread: Ice-Cream:
Calorie=100 Calorie=100
Is_animal=0 Is_animal=0
. Hamburger:
Cheese: Calorie=100
Calorie=50 i
L Is_animal=1
Is_animal=0
Banana: Fish:
Calorie=50 Calorie=200
Is_animal=0 Is_animal=1

17

Chocolate: Buttock:

Calorie=150 Calorie=300

Is_animal=0 Is_animal=1
Watermelon: Chicken:

Calorie=30 Calorie=200

Is_animal=0 Is_animal=1

Apple:
Calorie=20
Is_animal=0

Methods:

void init_model():
void initialize()
void set_position():
void render():

void disappear():
void appear():
void set_scalar():
void translate():

void rotate():

Above methods will be used from the base class by inheriting.
void deactivate():If the player takes a food item it will be deactivated for all others.

void eat(): If the character does not have any allergic problem to the founded food object
the calorie of the food will be added to energy of character.If it has it would not add.

18

4.5 Furniture Object Class

Table, Chair, Wardrobe, Personal Computer, Refrigerator, Sofa, Blackboard, Flower, Garbage.

e Methods:
void init_model():
void initialize():
void set_position():
void render():
void disappear():
void appear():
void set_scalar():
void translate():
void rotate():

These methods will be used from the base class by inheriting.

4.6 Character Class

o Attributes

name : It is a string unique to each character which is given by player or if it is virtual
player this name is given by game engine.

type : Itis an integer to indicate type of character, which are predefined by us.

status : It is an integer indicating the status of the character as ‘Stand’, ‘Slow
Walk’,*Walk’, ‘Run’

19

energy : It is an integer to determine the speed of character. Throughout the game, this
value will decrease from its initial value, and can be increased by eating food found in
rooms. If this value is under a threshold value, character can only do ‘Slow Walk’.

position : It is a pointer to Position object.

crouch: It is an integer indicating whether the character is crouching or not. So that in
raycasting the camera position is lowered.

inventory : it is an array of object_names that have been taken.

direction: Its is float to determine the angle between character's current direction
and x axis.

allergic_foods : it is array of object_names that cannot be eaten by character.

is_vegetarian : it is an integer indicating whether the character is vegetarian or not. If so
animal foods can not be eaten by character.

is_virtual : It is an integer indicating whether the character is a virtual player or not. If so,
VP_Base_Function is called throughout the game to control the virtual player.

Methods:

Move(): This function gets an input from player and according to that input changes the
position and status of character, if possible (i.e. There is not any object in front of the
character). To change the position it uses some information of the character. To determine
the direction of move it uses the direction of the character. The current energy of
character and input from player is used to determine the speed.

Rotate(): This function gets an input from player and according to that input changes the
direction of character.

Pick_Treasure() : This function provides taking a treasure object. If called, this function
removes the object from the map and add that object to the inventory of the player.

Pick_Food() : This function provides taking a food object. If called and the food is not in
allergic_foods, this function removes the food object from the map, and increases the
energy of the player according to energy value of that food.

Decrease Energy() : This function is called in main loop according to time value of

game. This function is called every 10 seconds, and it decreases the energy by an amount
of 30 calories.

20

4.7 Virtual Player Class

This is a class inherited from Character Class.

e Attributes:-

The ones inherited from character class.

e Methods
VP_Base Function() : This is the function to control the virtual player(\VVP) throughout
game, and according to the situation & energy of the VP, it decides to call helper
functions (either VP_Find_Food(), or VP_Find_Treasure()).
VP_Find_Food() : This function is called by VP_Base_Function() when the energy level
is under a predefined threshold level. When called, required Move(), and Pick_Food()
functions are called by this function till finding some food to gain energy.
VP_Find_Treasure() : This function is called by VVP_Base_Function() when the energy
level is over a predefined threshold level. When called, required Move(), and Pick_Food()

functions are called by this function till VP finds the trasure object or the energy level of
VP falls under the treshold.

4.8 Map Classes

4.8.1. POINT

o Attributes

position : It is a pointer to POSITION object.

e Methods

Get_Position() : get position of point.
4.8.2 WINDOW
o Attributes

window _id : It is an interger unique to each window.

21

first_point : It is a pointer to POINT object.

second_point : It is a pointer to POINT object.

width : it is a float indicating width of window.

heigth : it is a float indicating heigth of window.

heigth_from_ground : it is a float indicating heigth of window from ground.
Methods

Draw_Window() : draw the window

4.8.3 DOOR

Attributes

door _id : It is an interger unique to each door.
first_point : It is a pointer to POINT object.
second_point : It is a pointer to POINT object.
width : it is a float indicating width of window.
heigth : it is a float indicating heigth of window.
is_open : itis a bool indicating whether open or not.
Methods

Draw_Door() : draw the window.

Open_Door() : open the door.

Is_It Open() : is this door open or not

484 ROOM

Attributes

room_id : Itis an interger unique to each room.

22

corners : It is an array of room floor polygon’s corner POINTS.
doors : It is an array of DOORs of room.
windows : It is an array of WINDOWS of room.
objects : It is an array of OBJECTSs of room.
e Methods:

Draw_Room() : Draw this door.

4.9 Network Class

Server will have a database schema keeping the position of each character and the step the
player is in.

e Attributes
player _id: it is an integer which is unique to all user.
ip_no: it is an integer number which keeps the related ip number of all other objects.
Position *object_postion;
character_position : It is a pointer to position object.lIt takes the position of a character.
taken_tre object id[]: Itis an integer array of object_ids of the taken treasure objects.
taken_food_object id[]: It is an integer array of object_ids of the taken food objects.
struct serverdatabase{
player_id
taken_tre_object_id[]=
ip_no
character_position
}

e Methods (server)

send_data(): Sends the related data to clients.It has a resend method package for the data
doe not arrive to clients.

23

listen_port():Listens the same port for all clients.

take data(): Takes and handles the data sent by client.

Server will send the position of other players to a player if they are in the same room.And
if a player takes a treasure or food object the object_id of this object will send to
server.And server will send the object_id to the remaining clients to tell the objects are
now passive.

e Methods (client)

send_data(): Sends the related data to clients.It has a resend method package for the data
doe not arrive to server.

take data(): Takes and handles the data sent by server.

order_packages(): Orders that the packages arrive out of order

4.10 Audio Class

e Attributes
audio_id : it is unique integer indicating the id of audio data.
volume : it is float indicating volume of sound.

e Methods:
Play_Audio() : This function play the audio which’s id is audio_id.
Stop_ Audio() : This function stop the audio which’s id is audio_id.
Set_Volume() : This function set the volume of audio.
Get_Volume() : This function get the volume of audio.

Get_Audio_File() : This function get the audio which’s id is audio_id.

4.11 GameEngine Class

This is a class handling the game progress.

24

e Attributes:

position *current_position: this is a pointer to a position type object, holding the current
position of the character.

int objective: holds the object_id of the object, that is assigned to character to find.
e Methods:

Update_Environment_Info(): When called, this function updates the environment
information.

Update_Objective(): This function is called when an objective is finished (i.e. assigned

object is found). If the objective is not the last one(i.e. the found object is not the
treasure), the objective attribute is updated according to the new objective.

4.12 Input Class

e Attributes:
chat_message : it is a string value that the player writes on the chat console.
mouse_input : it is a position object that specify the place that mouse clicked
keyboard _input : it is a key from keyboard that have a functionality in our game. Most
probably the keys that have functionality in our game will be Enter, Up, Down, Left,
Right, Space and etc.

e Methods
void Get_Message From_Mouse() : Get mouse input
void Get_Message From_Keyboard(): Get keyboard input
void Get_Message From_Console(): Get the message written to the chat console
void Send Message From_ Mouse() : Send mouse input to the appropriate classes

void Send_Message From_ Keyboard(): Send keyboard input to the appropriate classes

void Send_Message From_Console(): Send the message written to the chat console

25

4.13 AIEngine Class

VIRTUAL PLAYER

This is a class inherited from Character Class.

Attributes: -

Methods:
VP_Base Function() : This is the function to control the virtual player(\VVP) throughout
game, and according to the situation & energy of the VP, it decides to call helper
functions (either VP_Find_Food(), or VP_Find_Treasure()).

VP_Find _Food() : This function is called by VP_Base Function() when the energy
level is under a predefined threshold level. When called, required Move(), and
Pick_Food() functions are called by this function till finding some food to gain energy.

VP_Find_Treasure() : This function is called by VP_Base Function() when the energy
level is over a predefined threshold level. When called, required Move(), and
Pick_Food() functions are called by this function till \VP finds the trasure object or the
energy level of VP falls under the treshold.

4.14 GraphicsEngine Class
e Attributes: -

e Methods:

26

void Draw_map(): It will render the parts of the building that are visible to the player.
void Draw_furnitures(): It will render the the furnitures visible to the player.

void Draw_objects(): It will render the objects looked for by the player.

void Draw_treasure(): It will render the Treasure, if it is visible by the player.

void Draw_characters(): It will render the charecters visible to the player.

void Draw_food():It will render the foods visible to the player.

void Draw_All(): It will call the methods above in the correct order.

4.15 Chat Class

Attributes:

static Audio *audios; This audio will contain the audio files played when the user send a
sound effect.

static int sound_id; This integer will be unique to audio files

Methods (server)

send_data() : This function will be inherited from network class.

take data() : This function will be inherited from network class.
send_sound_effect(): This function will send the sound_id of the object to all clients.
Methods (client)

send_data() : This function will be inherited from network class.

take data():This function will be inherited from network class.
take_sound_effect(): This function will send the sound_id of the object to all clients.

play_sound_effect():This function will play the audio of the related sound_id.

27

5. TOOLS

Throughout the implementation of our game, needs will arise by means of different aspects.

After some research and analyze we decided on following issues.

Our game will run on Microsoft Windows XP operating system. The reason is its wide
usage and compatibility with other tools which will be used throughout the project.

We will develop our game on Microsoft .NET platform.

In terms of graphics, we will use C++ for implementation and OpenGL as graphics
library.The reason is being experienced about C++ programming language and OpenGL
as a team.

We will also use OGRE (Object-Oriented Graphics Rendering Engine). Being a flexible
open-source engine and implemented using C++, makes it a considerably helpful tool for
our project.

Handling images and textures raises a need to use a tool. For this purpose, we will be
using Adobe PhotoShop, being one of the most poweful & easy-to-use tools, and
experience of team members.

Another need arises by means of handling 3D modelling issue. 3D Studio Max will be
used for this purpose

28

6. CLASS DIAGRAM

BASEOBJECT::FOOD _ MEVhaRi
wextendsy Hs_aclive * bool :i;::lra:\zr__:ﬂt. int
:‘izsalg:':ﬁ'rie:ln'[bool -ulTaracterjcsitiun : POSITION
Ersdai o wUEas Haken_tre_object_|d © int
:dﬂam_”;‘;f! +void taken_food_object id : int
eall): eend_datal) - void
. Hlisten_paort() @ void
BASEOBJECT l+take data() : void
_object_name : char (rorder_packages) : void
lcbject_id : int waxtandsys wUSes

langular_direction ; finat
Fmodel | char
Hexture : char

-object_position : POSITION

1= e

BASEOQBJECT.:FURNITURE

POSITION

+inil_model () - vaid
+initialize() : void
+sat_position() : void
Hranden) : void
+disappean) : void
+appear() ; void
+set_scalar() : void
+iranslate() : void
Hrotate() : void

agxlendss

Fx_coordinate : floal
Ly coordinate : float
z_coordinate : float
Hloor_info :int

+Gat_Position() © void
+Change Position() - void

BASEOBJECT: :TREASLIRE,}

Hs_active : boal

+activate_deactivate() : void

«exhen.d:x_[:;.

CHARACTER

Fname : char

Hype - int

Fafatus | int

a@nargy : int

position : POSITION

susesfcrouch - int

q Hinventory : BASEOBJECT
Fdirection : fleat

Lallergic_foods : BASECBJECT::FOOD
kis_wvegetarian - int
Hs_virtual :int

+hbovel) | void

+Rotatel) : void
+Pick_Treasure() : void
HPick_Food() ; woid
HDecrease Energy() : void

GraphicsEngine

AlEngine

+Draw_map()() - void

+Draw_furnitures() ; void

+WP_Find_Food() : woid

+WVP_Base Function() : void

+WP_Find_Treasure{) : woid

+Draw_ohjects() - void
+Draw_treasure{) : void
+Draw_characters() : void

AUDIO

-sudio_id - int
Svolume : float

WINDOW

Fwindow_id = int
[Hirst_point @ POINT
-second_point | POINT
Fwidth :
Hhesgth : float

float

POINT
ROOM P +-position : FI'OSITIDI?l
o +Get_Position() : void
-room_id - int
Foomers ; POINT #USESH
Fdaars - DOOR
Fovindows | WINDOW
[-objects : BASEOBJECT, | cbexy
+Draw_Room() : woid I
DOOR
Foar_id : int

[-first_point | POINT
leecond_point @ POINT
-width - float

Fhaigth ; float

Hs open : bool

+Play_Audio() : void
+Stop_ Audio() void
+5et Volume() : void
+Get_Volumed) : float
+Get_Audio_Filal) : int

+Draw_ Al - void

Hhedgth_fram_ground : int
+Draw_Window() : woid

+Draw_Door() - void
+Open_Door() - void
+Hs_ Il Open() : bool

Chat
Fsound_id - int
Haudio_id - float
Hsend_data() : void
+ake_datal) ; void
Hsend_sound_effect() | void
Hplay_sound effect() : void

29

INPUT

rchal_message char
Lmouse_input : POSITION
+keyboard_input : char

HGEet_Message From_Mouse() : void
Het_Message_From_Keyboard() : void
HGet_Message From_Console() - void
#Send_Message_From_Mouse() ; void
+Send_Messape_From_Keyboard() : woid

F+Send_Message_From_Console() : void

7. USE CASE DIAGRAM

a)Game Main Menu Use Case:

These are the use cases that user will face while joining the game.

Chaose
Charactar

Set Name o
characier

Sound Contral
Video Control

Exit(Loo out)

Obszerve Server
Time

GAME MENU

30

b) Game Pause Menu

These are the cases that user can do while pausing the game.

Return To Game

PAUSE MENU

31

¢) In Game Menu Use Cases

These are the use cases that user will face while playing the game.

Sea Chathoard @ Move Downstairs
Send Sound Effect
) See Caloriemeter
Chiat with others

Chbserve Map

Pausa Manu

()
Pause
Find a food object

Find a treasure
ohject

Plagyen

Fick the treasure
object

See objeclives
See inventory

IN GAME MENU

32

8. DFD

8.1 Data Flow Diagram Level 0

Level 0 DFD in Figure 1 of 9.1 is the overall system. It shows the interaction between user (game
client) and game server, it also shows the interaction beetween game Al machine and game

Server .
.-I—GF-.ME DATA

-JGAME DATAdie- —-GAME DATA

.*—GAME DATA

Figure 1 of 8.1

8.2 Data Flow Diagram Level 1

Game Client

Figure 1 of 8.2 is more detailed look on overall system in game client. Innerstructures and sub-
modules are described in a detailed way. Player will provide inputs using keyboard and mouse
and take graphics and audio outputs. Game client sends scene data to graphics engine and graphic
engines sends graphics outputs to the game client. Game client sends game state to audio and
player take audio input.

33

SCENE DATA

GRAPHIC

ENGINE

INPUT MAUSE & KEYBOARD
=l MODULE | INPUTS — PLAYER
A A
AUDIO ID
T GRAPHIC OUTPUT
AUDIO
MODULE AUDIO OUTPUT-

FAUDIO |8}

AUDIO
RESOURCE

—ALIDIC FILE

Game Server

Figure 1 of 8.2

Network component provides data transfer between game client and game server in Figure 2 of
8.2. Game server sends game data to Al cleint and takes Al players (virtual characters) data, such
as its behaviour, its coordinates.

34

CLIENT GAME DATA,
GAME STATE DATA

GAME
CLIENT

NETWORK
MODULE

CLIENT DAT As

CHEMA DATA

READ SCHEMA

GAME
SERVER

DATABASE
SCHEMA

UFDATE SGHEMAJ

Al GAME DATA

<GAME STATE DATA

Figure 2 of 8.2

8.3 Data Flow Diagram Level 2

Network Module
Game Data is transferred from clients to game server, game server to clients by network engine
and with use of a database schema in Figure 1 of 8.3

aif—CEND DATA

GAME
CLIENT

WRITE DATAﬁ

DATABASE
SCHEMA

CLIENT

Figure 1 of 8.3

35

Input Module

Input module that will handle with all the input data through the use of mouse, keyboard to
graphic and chat angine in Figure 2 of 8.3

MAUSE
I—KEYBOARD
PLAYER
IINPUT INPUT1
GRAPHIC
ENGINE
Figure 2 of 8.3

Audio Module

The Audio Module will hold the path of the selected sound file and load the file to memory when
desired in Figure 3 of 8.3

RESOURCE M——AUDIO ID

I—AUDID FILE;

AUDIO DATA—=| PLAYER

OUND FUNCTIONS
VOLUME FUNCTIONS

AME STATE

Figure 3 0of 8.3

36

9. Gantt Chart

Task Name Duration Start Finizh oy 'O |20 Moy ‘06 04 Dec ‘06 [18Dec'0f |01 Jan'07 |15 Jan ‘07
FlT s |wls [T IM]E]T[s[w|s|T|mM[E[T][5 |w]s5]
Initial Design 19 days Tue1411.06 Sun 03.12.06 I i i
Design Graphical Uzer Interface Jdayz Tue141106 ThulG611.06 m

Deatiled Modularization of System Jdays Fri17.44.06 Sun1941 .06
= Sub-Module's Design ddays Wed 22.11.06 Sat 25.11.06
Dezign Data Structures 2days Wed 221106 Thu 231106
Design Class Hierarchy 1 day Fri 2441 06 Fri 2441 06
Dezign Sub-Claszes Tday Sst251106 Sat 251106
Initial Design Report GBdays Sun 261106 Fri01.12.06
Iritizl Desig Yerification Tday Sun031206 Sun031206
=l Project Presentation 1 15 days Tue 051206 Fri 22.12.06
Preparing Presentation 2days Tue 051206 Wed 051206
Preparation of Presentation 1 ddays ThuO71206 Mon111206
Preparation of Presentation 2 ddays Tue121206 Fri1512.06
Preparation of Prezentation 3 4days Tue 191208 Fri 221206
[= Final Design Jidays Tue05.12.06 Mon 15.01.07
Final Design of Graphical User Interface Bdays Tue051206 Mor11.1206
Conclusion of System Modules 7 days Fwied 051205 wed 131208
[=l Final Design of Sub-Models 13days Fri15.12.06 Tue 02.01.07
Final Design of Data Structures Sdays Fri154206 Thu21A206
Final Degign of Clazs Hierarchy 4 days Fri221206 Wed 27 1208
Final Design of Sub-Classes ddays Thu281206 Tue 020107
= Multimedia Design § days Wed 03.01.07 Fri12.01.07
Dezign of Madels Sdays Wed 030107 Fri12.01 .07
Design of Aldio Sdays Wed 030107 Fri12.01 OF
Final Design Report Jdays Fri120107 Sun14.0 .07
Final Design Verification 1day Mon150107 Mond1500.07
= Prototype 15days Fri05.01.07 Tue 23.01.07
Design of Prototype Qdays Frina o1 0y Kon 1501 07
Preparation of Prototype Sdays Tue 1604107 Mon 2204 07
Dema Tday Tue2301 07 Tue 23007

37

