
Middle East Technical University
Department of Computer Engineering

CENG491
Computer Engineering Design II

Test Specification Report

ÖZGÜR YAZILIM

Özgür Özgür
Fırat Erdoğan

Onur Demircan
Abdulkerim Mızrak

Mehmet Emin Ulusoy

1

1. INTRODUCTION ..2

1.1. Goals and Objectives ...2

1.2. Scope of Document ..2

1.3. Statement of Testing Plan Scope ..2

1.4. Major Constraints ...3

2. TESTING STRATEGY AND PROCEDURES ..4

2.1. Unit Testing ...4

2.1.1. Game Engine Tests ...4

2.1.2. Game Network Tests ...6

2.1.3. Game Data Tests ...6

2.2. Integration Testing ..6

2.3. Validation Testing ...7

2.3.1. Requirements Validation ..7

2.4. High-Order Testing ...8

2.4.1. Performance Tests ..8

2.4.2. Stress Tests ...8

2.4.3. Alpha and Beta Tests ..9

3.TEST RECORD KEEPING AND LOG ..9

3.1 Test Report Forms ...10

4. REPRODUCIBILITY: FOR DEBUGGING ..12

5. TESTING RESOURCES AND STAFFING ..13

6. TEST SCHEDULE ..13

2

1. INTRODUCTION

1.1. Goals and Objectives

Being a 3D MMOG, Treasure Hunt consists of multiple modules. These modules are

handled under two main titles, which are graphics and networking. In addition to these

modules, Treasure Hunt brings the need of physics implementation, which is related to

both of these main modules (i.e. graphics and networking) and the other submodules.

Being a game, Treasure Hunt must be implemented in a logical way, and bugs and

problems should be eliminated as much as possible to be able to serve users efficiently.

This brings the requirement of an intense testing on every module (like network,

graphics, sounds, physics, etc.), and on the overall architecture as a whole to be able to

see the problems derived from integration of the modules. Besides the small tests and

debugging processes during development, the testing of the whole program will let us

reach our goal of developing a bug-free game.

1.2. Scope of Document

 This document involves the types of tests, and the methods of these testing processes.

Since the testing issue is something that walks together with the development, we

actually did some testing up to a point. The results and logs of these tests are also

involved in this document.

But approaching to the end, a more intensive testing phase becomes compulsory, and

this document gives information about the strategy to be used, and specifications of the

testing process.

1.3. Statement of Testing Plan Scope

3

Treasure Hunt will be (and is being) tested by using multiple types of tests, and different

strategies. Consisting of multiple modules, makes integration testing the most important

one. All of the tests are going to be mentioned in next part of this document. They can

be briefly explained as follows:

Type of test Description

Unit Testing This testing strategy involves testing process of modules

as if they are standalone parts.

Integration Testing The test type to check the consistency between different

modules.

Validation testing This test is applied to see if the requirement and design

goals are achieved.

Performance testing The tests to see the current performance of the game,

and to improve the performance.

Stress testing The test to see the maximum capability of the game by

means of embedded characters & objects, and the

networking.

Alpha testing The test applied by non-programmers of the game, but

with all of the requirements supplied.

Beta Testing The test applied by end-users to reach a more stable

version.

1.4. Major Constraints

Besides the testing & debugging process during the implementation, testing is a main

phase on its own in the development process.

Taking into account the deadline of the project, time becomes the most important of the

major constraints in testing. Still having work to be done, the remaining time should be

4

carefully organized to be able to achieve the test phase and get rid of the existing, (and

also possible) bugs and problems.

Another important constraint is the usefulness of the testing code. Before testing a

module or the overall system, we should take into account the trade-offs about writing

testing codes for the modules. It should be done if it is compulsory, but generally the

problems arise at the integration phase -which cancels the need of testing code-.

Hardware is another constraint about testing phase. Although this becomes important at

beta testing, it also shows the actual hardware requirement of the game for the end-

user.

The last constraint about testing is the staff. Our team consists of 5 members, and each

member should try to come up with bug-free codes. The limitation on the number of

people makes the staff another constraint, since the testing should go hand-in-hand with

the development.

2. TESTING STRATEGY AND PROCEDURES

The procedures and strategies that we will follow will be stated in this part.

2.1. Unit Testing

In this project unit testing is essential in three areas: the game engine, game network,

and game data. Since the time-cost and hardware resource of testing are very critical for

our project, we will try to do the best of us while doing testing. For example we can not

do a test with more than 10 computers.

2.1.1. Game Engine Tests

5

Since our game is played with multiplayer, there are two main game engines: Client-side

game engine and Server-side game engine. Obviously, to test both engines together in

a complete way is not possible for us but we will test at least the minimum requirement

to be satisfied in our game. Since the client-side game engine modules can be tested

easier than the server-side game engine, probably we will do better tests on the client-

side game engine.

Black-box testing is our main test method while doing engine tests, because in a real-

time system it is sometimes impossible to satisfy the test condition properly.

Since now, we have applied unit testing on these modules:

 1. Character

 2. Map

 3. Sound

 4. Collision Detection

To test the character, some cameras viewing the character are created and from

different perspective the behaviors of the character are observed.

To test the map again we used some different cameras with different perspective.

To test the sound we use different sounds and attach each sound to a specific event or

buttons and then by pressing a key or button we expect the correct sounds.

To test collision detection, we played with our character in the game map. We try to hit

the walls of the architecture.

The above modules are now working correctly and they integrated to each other.

After now we will do the unit test on puzzle manager module, treasure-hunt objects

manager module and treasure-hunt food manager module. Since these three modules

are related with both server-side and client-side game engine it will be more difficult to

6

test these modules than the others. Also, since the Character module is related to the

objects and foods manager modules, the Character module will be updated soon.

2.1.2. Game Network Tests

As mentioned above our game is a multiplayer game so that the network is one of the

most important parts of the game. Testing network is the most costly testing part of our

game. Lack of both time and resource limit us to test network properly. However so far

we construct a network infrastructure for our game. For example, chat module is working

very well. Sending and capturing the position of the character is also finished. After now

we will focus on to adopt the network to the futures that will be added.

2.1.3. Game Data Tests

Since our game is a 3D game the importance of 3d models, textures and audio

resources is increasing. Beside the difficulties to create such resources, the game

performance is highly affected by them. To create the resources we use some tools and

programs such as 3ds Max 7, Photoshop, and Sound Effect Maker. Also these tools are

very efficient for us to test each data that we created. Before using a data we test them

in these programs and try to get rid of possible problems of that data.

The production of data is easily managed by group members but the efficiency is a

serious problem. Because of that, sometimes we do not use some well designed

resources that need high system requirements.

2.2. Integration Testing

We integrate a module in to the game when we test this module so that, we are sure that

this module have enough maturity for the project. After the integration, we test the

overall game to see the effects of newly added module to the game. This process is still

used by us.

7

The method used for integration testing is sandwich testing method. Because all project

members can not do his duty on time and in a complete manner, and each task ends

without any importance or priority based. So that, bottom-up or top-down methods are

impossible to use for us during the implementation. We integrate each module that is

finished by the member who is responsible for.

We sometimes use black-box and white-box testing methods for integration of some

specific modules also, but the main method that is used for integration testing is

sandwich testing method.

2.3. Validation Testing

Validation test is a testing procedure which we have to do before any release. The

validation tests will be performed into two main groups: Requirement validation and

Design validation.

2.3.1. Requirements Validation

Since we have to supply all the requirements that we accept in the design report, all the

tests for requirement validation will be done with black-box testing method. Below we will

list the functional requirements of our game and the way how we will test them.

Game Menus:

 The place of the menus, the place of menu items, the easy-to-use capability of menus

will be taken into consideration. Each button will be clicked, each text will be written with

some random texts. Each item will be tested whether it provides the expected

functionality.

Game Flow:

8

 The game will be played by some number of players and it will be tested during this

run. The connection of a player will be blocked by cable disconnection so that testing the

response of the server.

 Testing the object taken by some player whether that object disappear from the other

player game environment.

 Whether the player’s location in the game is correct or not will be tested during test

runs of our game. One player will go to a specified location in the environment and the

others also will be said to go there.

Character:

 The game character will be tested by a test run by which we will do some experiments

with that character. We will try to hit the walls, try to collect objects and foods.

All Engines:

We will do some experiments on all the modules during the test run. For example, we

will send long string of message to the network engine during the chat, we will go to the

options menu and try to lower the sound, we will not collect food so that we will expect

some warning, etc.

2.4. High-Order Testing

To provide security for player’s machines we have to test some extreme cases also.

2.4.1. Performance Tests

Our game frame rate have to be at least 24 fps, otherwise the physics of the game goes

unexpectedly. We will find maximum number of objects, characters, and models that can

be managed by a computer easily.

2.4.2. Stress Tests

9

We will add lots of characters, models and objects until a crash is occurred. So that, we

will prevent a client machine to crash.

To test the network we will try to find as much computer as we can find and try to find

how much client the server can serve.

2.4.3. Alpha and Beta Tests

Since our project is multiplayer, it is difficult to find tester who can test the game exactly

at the same time, but we will try to do alpha and beta tests by ourselves and with some

close friends and relatives. We will note the bugs during the test runs. And we will want

our friends’ and relatives’ opinion about the game.

3.Test Record Keeping and Log

Since we are using as graphics engine Delta3d it has its own logging procedure.These

are classes dtUtil::LogFile class dtUtil::Log class which the engine uses for all of its

logging needs. The log file is formatted using html tags; therefore, any browser should

display the log without any problems. There are different types of log messages that

help us to find the reason of the problem easily and more quickly.

Log is a simple utility class for managing log messages in our code. It's the Delta3D way

to put debug/warning/error logging behavior in our application without using printf or cout

or std::cerr. dtUtil::Log lets us add permanent logging behavior that we can turn on and

off.

The different types of log messages.

Member Enumeration Documentation

Enumerator:

10

LOG_DEBUG

LOG_INFO

LOG_WARNING

LOG_ERROR

LOG_ALWAYS

The log level is adjusted according to the member enumaration of log messages.We can

assign level of logging that will be logged by logmessagetypes.If we set the lowest level

to the LOG_DEBUG, all messages will be sent.On the other hand if we set the level to

error only errors will be sent.

OutputStreamOptions

enum dtUtil::Log::OutputStreamOptions

Enumerator:

NO_OUTPUT Log messages don't get written to any

device.

TO_FILE Log messages get sent to the output file.

TO_CONSOLE Log messages get sent to the console.

STANDARD The default setting.

We can define output stream options as shown in the table.We can write them in an

output file or console or we don’t write anywhere.These options are available by output

stream options.

3.1 Test Report Forms

11

We will use Delta3d’s logging classes to get information about tests,test results

execution progress and bugs.We have divided our log files for all modules.For example

Mehmet Emin will be responsible for the log report of CEGUI which shows the defects

about interfaces.On the other hand serverlogfile and clientlogfile will be interpreted by

network team.

We can observe some test reports from the previous work:

CEGUI.txt:

03/05/2007 15:07:57 (InfL1) CEGUI::Logger singleton created.

03/05/2007 15:07:57 (InfL1) ---- Begining CEGUI System initialisation ----

03/05/2007 15:07:57 (InfL1) CEGUI::ImagesetManager singleton created

03/05/2007 15:07:57 (InfL1) CEGUI::FontManager singleton created.

03/05/2007 15:07:57 (InfL1) CEGUI::WindowFactoryManager singleton created

03/05/2007 15:07:57 (InfL1) CEGUI::WindowManager singleton created

03/05/2007 15:07:57 (InfL1) CEGUI::SchemeManager singleton created.

03/05/2007 15:07:57 (InfL1) CEGUI::MouseCursor singleton created.

03/05/2007 15:07:57 (InfL1) CEGUI::GlobalEventSet singleton created.

03/05/2007 15:07:57 (InfL1) CEGUI::WidgetLookManager singleton created.

03/05/2007 15:07:57 (InfL1) CEGUI::WindowRendererManager singleton created

03/05/2007 15:07:57 (InfL1) WindowFactory for 'DefaultWindow' windows added.

03/05/2007 15:07:57 (InfL1) WindowFactory for 'DragContainer' windows added.

03/05/2007 15:08:00 (InfL1) WindowRendererFactory 'Falagard/Editbox' failed to

add.

On the other hand we will have forms for alpha and beta testers questioning whether

any defect occured.If occured where and whether the defect is fatal or not.After getting

this kind of reports team members will read the reports and find the responsible module

for defect or crash.The developer of the module will debug and find out the responsible

part.

12

4. REPRODUCIBILITY: FOR DEBUGGING

Debugging is done when our game doesn’t do what it is meant to do and according to

that we try to understand the problem and fix it.

We have 2 main debugging steps :

First one is pre-integration debugging

Second one is post-integration debugging

In the pre-integration debugging step every group member implements the part that he

is responsible for and tests it apart from the whole project. This helps us to find the

errors which are specific to one module. As our project consists of 5 main modules

namely network, model, GUI, audio and physics each module is tested and debugged by

each member separately in the pre-integration step. If the reproducibility can not be

achieved then the member logs the error and shares it with the other group members in

order to fix the problem. If there are still some problems with it then the decision to

change or remove this part is taken.

In the post-integration debugging step as we integrated the modules into whole project

we make our tests on the whole project. Some problems occur after integrating the

modules. The testing is done by every member in this part and if an error occurs we

classify the error and the debugging process is done by the group member who is

responsible for this error. At this part the other group members try to help this member

while debugging to understand other parts of the project.

Being a real-time application, testing is done by following different ways in the game or

trying to accomplish some tasks in the game. For example hitting a wall or climbing onto

a car or falling down from something. Most of the bugs are seen by chance in a test

drive. These kind of bugs are hard to find and even impossible to reproduce them with

the path followed previously. After all the tests and debugs we release a new version for

the final stable state of the program.

13

5. TESTING RESOURCES AND STAFFING

For implementation, test and debug purposes we only need a PC with the required

development environment set.

Who is responsible for what in the testing phase is as follows:

Testing and debugging of network module Onur Demircan

Testing and debugging of models and environment Abdulkerim Mızrak

Testing and debugging of main menu and in-game menu Mehmet Emin Ulusoy

Testing and debugging of audio module Fırat Erdoğan

Testing and debugging of physics module Özgür Özgür

6. TEST SCHEDULE

Test plan delivery 06.05.2007

Unit Testing 15.05.2007 – 18.05.2007

Integration Testing 19.05.2007 – 21.05.2007

Validation Testing 22.05.2007 – 23.05.2007

Correction 23.05.2007 – 01. 06.2007

High-Order Testing 02.06.2007 – 09.06.2007

