
MIDDLE EAST TECHNICAL UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

CENG 490

System Requirement Specification
And

Analysis Report

By
ResolveSoft

Project:

Emulator and Development Environment for
CEng Embedded System Card

Members:

Adem HALİMOĞLU

Hayri ERDENER

Ulaş TUTAK

Fatih Mehmet DOĞU

1 INTRODUCTION.. 3
1.1 Purpose of this document ... 3
1.2 Scope of this document .. 3
1.3 Problem definition.. 3
1.4 Business Context .. 4

2 GENERAL DESCRIPTIONS .. 4
2.1 Product Functions... 4
2.2 Similar System Information ... 4

2.2.1 MPLAB IDE ... 4
2.2.2 The MPLAB C18 Compiler .. 5
2.2.3 HI-TECH PICC ... 5
2.2.4 GPSIM... 5
2.2.5 ProgPIC2 - PIC-Programmer-Software .. 6

2.3 user characteristics ... 6
2.4 User Problem Statement... 6
2.5 User Objectives ... 7
2.6 General Constraints .. 7

3 TEAM ORGANIZATION ... 7
4 LITERATURE SURVEY .. 8

4.1 GENERAL INFORMATION ABOUT PIC MICROCONTROLLER............................ 8
4.2 Microcontrollers versus Microprocessors ... 8
4.3 Units of PIC 16F877 .. 9

4.3.1 Memory unit .. 9
4.3.2 Central Processing Unit... 9
4.3.3 Bus.. 10
4.3.4 Input-output unit.. 11
4.3.5 Serial communication.. 11
4.3.6 Timer unit .. 12
4.3.7 Watchdog .. 13
4.3.8 Analog to Digital Converter ... 14

4.4 Coding For PICs.. 14
4.5 Programming PICs ... 15
4.6 RS232 Protocol ... 15
4.7 PIC16F877 DEVICE OVERVIEW .. 16
4.8 Compilers ... 17

4.8.1 Lexical analysis ... 18
4.8.2 Preprocessor .. 19
4.8.3 Parsing... 19
4.8.4 Code Generation.. 20

5 FLOWCHART .. 21
6 DATA FLOW DIAGRAMS .. 22
7 DATA DICTIONARY... 23
8 PROCESS SPECIFICATIONS.. 25
9 REQUIREMENTS ... 26

9.1 Interface Requirements ... 26
9.1.1 General IDE Overview.. 26
9.1.2 Menu Bar.. 27
9.1.3 Tool Bar... 30
9.1.4 Text Editor... 31
9.1.5 Console.. 31

9.1.6 Status Bar .. 31
9.1.7 Hot Keys... 31

9.1 Emulator Overview ... 31
9.2.1 Registers Part.. 32
9.2.2 EEPROM.. 32
9.2.3 Command Window .. 32

9.3 Non-Functional Requirements .. 33
9.3.1 Usability .. 33
9.3.2 Reliability .. 33
9.3.3 Portability .. 33
9.3.4 Performance .. 33

10 DESIGN CONSTRAINTS... 34
11 REFERENCES... 34

1 INTRODUCTION

1.1 Purpose of this document

Purpose of this document is to describe the product that will be produced for senior project
course. In this document we are going to try to designate our goals and expectations about our
software project, namely DEVEMB. We are going to try to shed light upon our tentative
agenda, our future undertakings and details of our intended project.

1.2 Scope of this document

This document will derive the requirements for DEVEMB Emulator and Development
Environment for PIC Development Board. In this document we defined our functional
requirements, interface requirements, performance requirements and our preliminary design
and constraints on these. This document also includes our tentative agenda and proposed
development methods and environments.
 The requirements to DEVEMB as delineated in this report shall be met by the DEVEMB
design and implementation. Detailed plans to achieve these goals are to be devised later and
described in separate documents. In this paper we did not concentrate on cost and effort
estimation. Effort estimation can not change anything since this project must be
done in a limited time and also cost estimation is unnecessary since most of the hardware is
supplied by the university and there is no one working for salary in our team.

1.3 Problem definition

In DEVEMB project, we are going to develop a software development environment, compiler
and emulator for a specific embedded system card which is PIC demo board that is designed
for CENG 336 Embedded Systems course. By using DEVEMB, users will be able to compile,

debug and test their programs in the virtual card emulated by software. Since, testing and
simulation software is not integrated, testing is very difficult. Therefore, DEVEMB will be a
software which integrate the simulation and testing.

1.4 Business Context

In this project we are developing software which will be used in industry and education.
Therefore, our customers will be students, engineers and technicians. Our product has to work
correctly and fast. The interface has to be easy to understand and by using our product one
should develop his/her program rapidly. Also, our product should include all the necessary
tools in order to program 16F877 PICmicro microcontroller.

2 GENERAL DESCRIPTIONS

2.1 Product Functions

DEVEMB an integrated toolset for the development of embedded applications for
Microchip's PIC 16F877 microcontrollers. DEVEMB runs as a 32-bit application on Linux, is
easy to use and includes software components for fast application development debugging.
DEVEMB serves as a software emulator, compiler and development environment for CEng
Card which is used in CEng336 course. Users will be able to compile, upload and debug their
programs to the card. Also they will be able to test their programs in the virtual card emulated
by software.

2.2 Similar System Information

In this section we would like to inform you about some other products functioning similar to
our product.

2.2.1 MPLAB IDE

 MPLAB is an Integrated Development Environment for Microchip PIC MCU
families.
It is a 32 bit Windows application. Like many other IDEs, it consists of a project manager, a
text editor, an assembler, and a simulator. Similar to IDEs targeting personal computers, in
MPLAB too, user writes programs in the editor, organizes files into projects, compiles
assembles-links files into executables and runs them (albeit on a simulator in the case of
MPLAB). Debugging is done mainly through watching memory locations, stepping and
tracing the code and measuring times spent on various code sections.

 MPLAB also may integrate with other products from the developer such as PIC C
compilers, ICE emulator, etc.

2.2.2 The MPLAB C18 Compiler

It is a free-standing, optimizing ANSI C compiler for the PIC18 PICmicro microcontrollers
(MCU). The compiler deviates from the ANSI standard X3.159-1989 only where the standard
conflicts with efficient PICmicro MCU support. The compiler is a 32-bit Windows console
application and is fully compatible with Microchip’s MPLAB IDE, allowing source level
debugging with the MPLAB ICE in-circuit emulator, the MPLAB ICD 2 in-circuit debugger
or the MPLAB SIM simulator.

2.2.3 HI-TECH PICC (1)

HI-TECH PICC is the leading C compiler for the Microchip PICmicro 10/12/14/16/17 series
of microcontrollers. HI-TECH PICC makes full use of specific PIC features and using an
intelligent optimizer, can generate high-quality code easily rivalling hand-written assembler.
Automatic handling of page and bank selection frees the programmer from the trivial details
of assembler code. HI-TECH PICC Compiler Features:

 ANSI C - full featured and portable
 Reliable - mature, field-proven technology
 Multiple C optimization levels
 An optimizing assembler
 Full linker, with overlaying of local variables to minimize RAM usage
 Comprehensive C library with all source code provided
 Includes support for 24-bit and 32-bit IEEE floating point and 32-bit long data

types
 Mixed C and assembler programming
 Unlimited number of source files
 Listings showing generated assembler
 Compatible - integrates into the MPLAB IDE, MPLAB ICD and most 3rd-

party development tools
 Runs on multiple platforms: Windows, Linux, UNIX, Mac OS X, Solaris

2.2.4 GPSIM (2) (3)

gpsim is a full-featured software simulator for Microchip PIC microcontrollers distributed
under the GNU General Public License (see the COPYING section).
gpsim has been designed to be as accurate as possible. Accuracy includes the entire
PIC - from the core to the I/O pins and including ALL of the internal peripherals. Thus
it's possible to create stimuli and tie them to the I/O pins and test the PIC the same PIC
the same way you would in the real world.
gpsim has been designed to be as fast as possible. Real time simulation speeds of
20Mhz pics are possible.
gpsim has been designed to be as useful as possible. The standard simulation paradigm
including breakpoints, single stepping, disassembling, memory inspect & change, and
so on has been implemented. In addition, gpsim supports many debugging features that

are only available with in-circuit emulators. For example, a continuous trace buffer
tracks every action of the simulator (whether you want it or not). Also, it's possible to
set read and write break points on values (e.g. break if a speci_c value is read from or
written to a register).
gpsim can be operated either in a command line only mode or in a graphical mode.
The command line mode is similar to gdb. Users can set break points and control the
simulation. The graphical mode provides a more intuitive debugging interface.
gpsim also supports external modules. Users can extend gpsim for their custom debugging
applications.

2.2.5 ProgPIC2 - PIC-Programmer-Software (4)

 This is a PIC Programmer Program having features:
* For Win95/98/NT/ME/2000/XP
* Programs Flash -Devices
like the PIC16F87x, PIC16F62x
(New PICs can be added in the INI-File)
* In-system programming
* Connects via parallel- or com-port, many circuits available
* Low voltage programming possible
* Write , readback and verify Flash- and EEProm-Memory
* Loads files with Intel Format

2.3 user characteristics

The user of our product will be programmers. The users want to develop their program
rapidly and they also want to test and debug their source code without losing much time.
Therefore, our program should work fast and include all the necessary tools for PIC 16F877
microcontroller.

2.4 User Problem Statement

For a programmer, working with an assembly language is almost painful and by this
method sophisticated projects are hard to realize. Moreover assembly programs, being
succinct and cryptic, are not very accessible. Beside these, by copying the program to the
hardware for every testing is a waste of time. The development of on-chip debuggers, and on-
chip BASIC interpreters by an industry in which the profit margins are already slim, is a
strong indicator of a need in this field.

 MPLAB is very widely used by PIC developers because its freeware and produced
and distributed by the developer of the PIC MCU and thus accepted to be the most standard
development tool. It also supports the widest variety of PIC families. However, it does not run
on Unix-like operating systems, to which category most free operating systems belong.

Beside these, it is not open source, thus not suitable for adapting to other uses and does not
lend itself readily to interfacing with other applications. Moreover, trying to determine how a
peripheral (e.g. an LCD) will behave in certain situations by tracing the code and watching
numerical values are very cumbersome to say the least. Also, simulating more sophisticated
features of PIC MCU, such as analog/digital conversion or serial communication, in MPLAB
is either very hard or just totally impossible.

By using DEVEMB, developer will be able to compile and debug their programs and
test their programs in the virtual card emulated by software and upload them to the PDB,
quickly. The products told in above part used for development for PIC micro-controller units
in the market, compilers, debuggers and simulators. However, testing is cumbersome in those
software, because development environment and simulation software is not integrated. For
instance, when using MPLAB IDE, one can not examine the output of LCD, whereas, when
simulating a program on ISIS, basic debugging facilities such as tracing are not available to
the programmer. Likewise, each of the other products suffer some deficiency, be it limited
capabilities, limited licenses or high prices. Being compatible with Unix OS and containing
all necessary tolls for PIC 16F877 programming, DEVEMB will be a solution to those
problems.

2.5 User Objectives

Our system have to be:
 Easily installed
 Easily understood
 Easy to use
 Precise

2.6 General Constraints

Our system would need to be:
 Real-time
 Portable
 Quite fast

3 TEAM ORGANIZATION

The team organization selected for the project is controlled decentralized with Hayri
ERDENER being the project leader. This type of an organization is selected since our project
is related with various concepts and these concepts are partially new to us so vast researches
are needed. The project leader assigns specific search areas to the members and
communications which are made are both horizontal and vertical. All decisions are taken with
the opinions of group members and since the team consists of four members all decisions can

be taken without ambiguity. In addition to these all members have the same rights for a
decision to agree or disagree.

4 LITERATURE SURVEY

4.1 GENERAL INFORMATION ABOUT PIC MICROCONTROLLER

Integrated circuits development has made it possible to store hundreds of thousands of
transistors into one chip. This provided the production of microprocessors. The first
computers were constructed by adding external peripherals such as memory, input-output
lines, timers and other. Increasing the volume of the package resulted in creation of integrated
circuits. These integrated circuits contained both processor and peripherals. This is how the
first microcontroller invented.

PIC is a family of RISC microcontrollers made by Microchip Technology, derived from the
PIC1650 originally developed by General Instrument's Microelectronics Division. The
original PIC was built to be used with General Instrument's new 16-bit CPU, the CP1600.
While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit PIC was
developed in 1975 to improve performance of the overall system by offloading I/O tasks from
the CPU. The PIC used simple microcode stored in ROM to perform its tasks, and it is a RISC
design that runs one instruction per cycle (4 oscillator cycles).

In 1985 the PIC was upgraded with EPROM to produce a programmable channel controller,
and today a huge variety of PICs are available with various on-board peripherals (serial
communication modules, UARTs, motor control kernels, etc.) and program memory from 512
words to 32k words.

4.2 Microcontrollers versus Microprocessors

A microcontroller a microprocessor is not the same. The most important difference is in
functionality. In order to use a microprocessor, other components such as memory, or
divisions for receiving and sending data must be added. Microprocessor is the heart of the
computer but microcontroller is designed to be all of those components in one. No other
external components are needed for an application of microcontroller because all necessary
peripherals are already embedded into it. Thus, time and space needed to construct those
devices are saved.

4.3 Units of PIC 16F877

PIC 16F877 Microcontroller has the following units:

4.3.1 Memory unit
Memory is the unit whose function is storing data. I can be simply thought as a chiffonier.
The drawers can be thought as memory locations and we can think that each drawer is marked
so that we know the adresses, and any of their contents will then be easily accessible.

 Figure 4.1 R/W (Determines whether the data is read or written)

Memory components are exactly like in the figureXXX.1. For a certain input we get the
contents of a certain addressed memory location. Addressing and memory location are two
concepts in those operations. Memory is the collection of all memory locations, and
addressing is just selecting one of them. “This means that we need to select the desired
memory location on one hand, and on the other hand we need to wait for the contents of that
location. Beside reading from a memory location, memory must also provide for writing onto
it.” This is done by supplying an additional line called control line. We will symbolize this
line as R/W (read/write). For a control line is:

 if r/w=1, reading is done.
 if r/w=0 then writing is done on the memory location.

4.3.2 Central Processing Unit
Central Processing Unit (CPU) is the unit that interprets instructions and processes data
contained in computer programs. Its memory locations are called registers.

Figure 4.2
The role of the register is to help in performing various operations. It is a temprorary storage
for the operands. Memory and CPU are interconnected, and any exchange of data is hindered,
as well as its functionality. If we wish to add the contents of two memory locations and return
the result to memory, we would need a bus between CPU and memory.

4.3.3 Bus
A bus is a group of wires. There are two types of buses, namely address and data bus. The
data bus consists of as many lines as needed to adress the whole memory. The data bus is as
wide as data. Function of the address bus is to transmit address from CPU memory, and the
function of the data bus is to connect all blocks inside the microcontroller.

Figure 4.3

We have a unit which is capable of working by itself and to communicate with this device we
need to add a block which contains several memory locations whose one end is connected to
the data bus, and the other end has been connected to the output lines on the microcontroller.
Those locations are called ports.

4.3.4 Input-output unit
There are different types of ports, namely, input, output or bidirectional ports. When working
with ports, first, we have to choose which port we need to work with, and then communicate
from the port.

Figure 4.4

When working with a port, it acts like a memory location. Anything is being written into it or
read from it, and it could be noticed on the pins of the microcontroller.

4.3.5 Serial communication
The way of communicating told above has its drawbacks. One of the vital drawbacks is the
number of lines which transfer data. Also, one should consider the transfer of data to a distant
location? One need an economic solution for sending wide data to a distant place. Without
decreasing the functionality the number of lines should be reduced. Suppose we are
performing operations with three lines only, and one of the lines is used for sending data, the
other for receiving data, and the third one is used as a reference line for both the input and the
output side. In order to work as in this method one have to set the rules of data exchange.
These rules are called protocol. Protocol must be defined before. Therefore, any
misunderstanding between the sides that are communicating with each other would not arise.

Figure 4.5

As we have separate lines for receiving and sending data, it is possible to receive and send
data at the same time. This way of communication is called a serial communication block.
Unlike the parallel transmission, data moves, in this method, bit by bit, or in a series of bits
what defines the term serial communication comes from. After the reception of data we need
to read it from the receiving location and store it in memory as opposed to sending where the
process is reversed. Data goes from memory through the bus to the sending location, and then
to the receiving unit according to the protocol.

4.3.6 Timer unit

Since we have the serial communication explained, we can receive, send and process data
with the help of the timer block. Timer unit is significant since it gives information about
time, duration, protocol etc. The basic unit of the timer is a counter which is in fact a register
whose numeric value increments by one in even intervals freely, so that by taking its value
during periods T1 and T2 and calculating their difference we can determine how much time
has passed. This is a very vital part of the microcontroller.

Figure 4.6

4.3.7 Watchdog
“One more thing is requiring our attention is a flawless functioning of the microcontroller
during its run-time.” Assume that, as a result of some interference,which often does occur in
industry, our microcontroller stops executing the program, or it starts working incorrectly.
When this happens with a computer, one reset it and it will keep working again. However,
there is no reset option for microcontroller. To find solution to this problem, we need to a
block called watchdog. In fact, this block is another counter. In case that program gets work
abnormally the counter alone will reset the microcontroller upon achieving its maximum
value. This will result in reexecuting the program, and correctly this time. That is an
important element of every program to be reliable without interference of human.

Figure 4.7

4.3.8 Analog to Digital Converter
As the peripheral signals usually are substantially different from the ones that microcontroller
can understand (zero and one), they have to be converted into a pattern which can be
understood by a microcontroller. “This task is performed by a block for analog to digital
conversion (ADC). This block is responsible for converting an information about some
analog value to a binary number and for follow it through to a CPU block so that CPU block
can further process it.”

Figure 4.8

The picture below shows what a microcontroller looks like:

Figure 4.9

4.4 Coding For PICs

PICs use a RISC instruction set, which varies in length from about 35 instructions for the low
end PICs to about 70 instructions for the high-end PICs. The instruction set includes
instructions to perform a variety of operations on the accumulator and a constant or the
accumulator and a memory location, as well as for conditionally executing code and jumping
or calling other parts of the program and returning from them, and specific hardware features
like interrupts and one low-power mode called sleep. Microchip provides a freeware IDE
package called MPLAB, that also includes a software simulator as well as an assembler.

Third parties make C and BASIC language compilers for PICs. Microchip also sells
compilers for the high-end PICs ("C18" for the 18F series and "C30" for the dsPICs). They
also make available for download a "student edition/demo" version of C18 or C30 which
disables some optimiser features after a timeout period. Open-source compilers for the C,
Pascal, JAL, BASIC, and for the Forth programming language, PicForth, have also been
released.

GPUTILS is an Open Source collection of tools, distributed under the GNU General Public
License. GPUTILS includes an assembler and linker and works on Linux, Mac OS X, OS/2
and Microsoft Windows. GPSIM is an Open Source simulator for the PIC microcontrollers
featuring hardware modules that simulate specific devices that might be connected to them,
like LCDs.

4.5 Programming PICs

Devices called "programmers" are traditionally used to get program code into the target PIC.
Most PICs that Microchip sells nowadays have ICSP (In Circuit Serial Programming)
and/or LVP (Low Voltage Programming) capabilities, allowing the PIC to be programmed
while it is sitting in the target circuit. ICSP programming is performed using the RB6 and
RB7 pins for clock and data, while a high voltage (12V) is present on the Vpp/MCLR pin.
Low voltage programming allows for the elimination of the extra voltage rail in the
programmer but comes at the cost of an IO pin and can therefore be disabled (once disabled it
can only be re-enabled using high voltage programming). There are many programmers for
PIC microcontrollers, ranging from the extremely simple designs that rely on the
communications software for taking care of all the communication details to complex designs
that can verify the device at several supply voltages and can do much of the work in the
hardware. Many of these complex programmers use a pre-programmed PIC themselves to
send the programming commands to the PIC that is to be programmed.

Many of the higher end flash based PICs can also write to their own program memory. Demo
boards are available with a small bootloader factory programmed that can be used to load user
programs over an interface such as RS-232 or USB.

4.6 RS232 Protocol

RS232 is an asynchronous serial communications protocol, widely used on computers.
Asynchronous means it doesn't have any separate synchronizing clock signal, so it has to
synchronize itself to the incoming data; it does this by the use of 'START' and 'STOP'
signals. The signal itself is slightly unusual for computers, as rather than the normal 0V to 5V
range, it uses +12V to -12V. Current usage of RS232 states that, data is transmitted in
groups or characters of 7 or 8 bits. Each character is preceded by a start bit that must be 0 and
is followed by at least one stop bit that must be a one. And also we have parity bit and it is
optional. The parity may be odd, even or may not be present.

4.7 PIC16F877 DEVICE OVERVIEW (5)

. 28/40/44 pin packages

. 14bit core - 35 instructions

. 200ns instruction time (Tclk = 20MHz)

. 8,092 14bit FLASH program memory

. 368 8bit data memory or registers (“File registers”)

. 256 8bit EEPROM (nonvolatile) data registers

. 8 level hardware stack

. Interrupt capability (up to 14 sources)

. 33 pin I/O (for 40 pin package)

. 3 Timer/Counter modules
. Timer0: 8-bit
. Timer1: 16-bit
. Timer2: 8-bit

. Two Capture, Compare, PWM modules
. Capture: 16-bit
. Compare: 16-bit
. PWM: max. resolution is 10-bit

 10-bit 8 channel Analog-to-Digital Converter
. Synchronous Serial Port (SSP) with SPI and I2C
 Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit
address detection
. Parallel Slave Port (PSP) 8-bit

Figure 4.10 (6)

4.8 Compilers (7)

A compiler is a computer program (or set of programs) that translates text written in a
computer language (the source language) into another computer language (the target
language). The original sequence is usually called the source code and the output called object
code. Commonly the output has a form suitable for processing by other programs (e.g., a
linker), but it may be a human readable text file.

The most common reason for wanting to translate source code is to create an executable
program. The name "compiler" is primarily used for programs that translate source code from
a high level language to a lower level language (e.g., assembly language or machine
language). A program that translates between high-level languages is usually called a
language translator, source to source translator, or language converter. A language rewriter is
usually a program that translates the form of expressions without a change of language.

A compiler is likely to perform many or all of the following operations: lexing(lexical
analysis), preprocessing, parsing, semantic analysis, code optimizations, and code generation.

4.8.1 Lexical analysis

Lexical analysis is the processing of an input sequence of characters (such as the source code
of a computer program) to produce, as output, a sequence of symbols called "lexical tokens",
or just "tokens". For example, lexers for many programming languages convert the character
sequence 123 abc into two tokens: 123 and abc (whitespace is not a token in most languages).
The purpose of producing these tokens is usually to forward them as input to another
program, such as a parser.

A lexical analyzer, or lexer for short, can be thought of having two stages, namely a scanner
and an evaluator. (These are often integrated, for efficiency reasons, so they operate in
parallel.)

The first stage, the scanner, is usually based on a finite state machine. It has encoded within it
information on the possible sequences of characters that can be contained within any of the
tokens it handles (individual instances of these character sequences are known as lexemes).
For instance, an integer token may contain any sequence of numerical digit characters. In
many cases the first non-whitespace character can be used to deduce the kind of token that
follows, the input characters are then processed one at a time until reaching a character that is
not in the set of characters acceptable for that token (this is known as the maximal munch
rule). In some languages the lexeme creation rules are more complicated and may involve
backtracking over previously read characters.

A lexeme, however, is only a string of characters known to be of a certain type. In order to
construct a token, the lexical analyzer needs a second stage, the evaluator, which goes over
the characters of the lexeme to produce a value. The lexeme's type combined with its value is
what properly constitutes a token, which can be given to a parser. (Some tokens such as
parentheses do not really have values, and so the evaluator function for these can return
nothing. The evaluators for integers, identifiers, and strings can be considerably more
complex. Sometimes evaluators can suppress a lexeme entirely, concealing it from the parser,
which is useful for whitespace and comments.)

Though it is possible and sometimes necessary to write a lexer by hand, lexers are often
generated by automated tools. These tools generally accept regular expressions that describe
the tokens allowed in the input stream. Each regular expression is associated with a
production in the lexical grammar of the programming language that evaluates the lexemes
matching the regular expression. These tools may generate source code that can be compiled
and executed or construct a state table for a finite state machine (which is plugged into
template code for compilation and execution).

Regular expressions compactly represent patterns that the characters in lexemes might follow.
For example, for an English-based language, a NAME token might be any English
alphabetical character or an underscore, followed by any number of instances of any ASCII
alphanumeric character or an underscore. This could be represented compactly by the string
[a-zA-Z_][a-zA-Z_0-9]*. This means "any character a-z, A-Z or _, followed by 0 or more of
a-z, A-Z, _ or 0-9".

Regular expressions and the finite state machines they generate are not powerful enough to
handle recursive patterns, such as "n opening parentheses, followed by a statement, followed
by n closing parentheses." They are not capable of keeping count, and verifying that n is the

same on both sides — unless you have a finite set of permissible values for n. It takes a full-
fledged parser to recognize such patterns in their full generality. A parser can push
parentheses on a stack and then try to pop them off and see if the stack is empty at the end.

The Lex programming tool and its compiler is designed to generate code for fast lexical
analysers based on a formal description of the lexical syntax. It is not generally considered
sufficient for applications with a complicated set of lexical rules and severe performance
requirements; for instance, the GNU Compiler Collection uses hand-written lexers.

4.8.2 Preprocessor

Preprocessor is a program that processes its input data (source code) to produce output that is
used as input to another compilation phase. The amount and kind of processing done depends
on the nature of the preprocessor; some preprocessors are only capable of performing
relatively simple textual substitutions and macro expansions.

4.8.3 Parsing

parsing is the process of analyzing an input sequence (read from a file or a keyboard, for
example) in order to determine its grammatical structure with respect to a given formal
grammar. It is formally named syntax analysis. A parser is a computer program that carries
out this task. The name is analogous with the usage in grammar and linguistics. The term
parseable is generally applied to text or data which can be parsed.

Parsing transforms input text into a data structure, usually a tree, which is suitable for later
processing and which captures the implied hierarchy of the input. Generally, parsers operate
in two stages, first identifying the meaningful tokens in the input, and then building a parse
tree from those tokens.

Parsers have simple grammars with few exceptions. Parsers for programming languages tend
to be based on context-free grammars because fast and efficient parsers can be written for
them. However, context-free grammars are limited in their expressiveness because they can
describe only a limited set of languages. Informally, the reason is that the memory of such a
language is limited. The grammar cannot remember the presence of a construct over an
arbitrarily long input; this is necessary for a language in which, for example, a name must be
declared before it may be referenced. More powerful grammars, however, cannot be parsed
efficiently. Thus, it is a common strategy to create a relaxed parser for a context-free grammar
which accepts a superset of the desired language constructs (that is, it accepts some invalid
constructs); later, the unwanted constructs can be filtered out. It is usually easy to define a
context-free grammar which includes all desired language constructs; on the other hand, it is
often impossible to create a context-free grammar which admits only the desirable constructs.
Parsers are usually not written by hand but are generated by parser generators.

Semantic Analysis

In computer science, semantic analysis is a pass by a compiler that adds semantical
information to the parse tree and performs certain checks based on this information. It
logically follows the parsing phase, in which the parse tree is generated, and logically
precedes the code generation phase, in which executable code is generated. (In a compiler
implementation, it may be possible to fold different phases into one pass). Typical examples

of semantical information that is added and checked is typing information (type checking) and
the binding of variables and function names to their definitions (object binding). Sometimes
also some early code optimization is done in this phase.

For this phase the compiler usually maintains so-called symbolic tables in which it stores what
each symbol (variable names, function names, etc.) refers to.

4.8.4 Code Generation

code generation is the process by which a compiler's code generator converts a syntactically-
correct program into a series of instructions that could be executed by a machine.
Sophisticated compilers may use several cascaded code generation stages to fully compile
code; this is due to the fact that algorithms for code optimization are more readily applicable
in an intermediate code form, and also facilitates a single compiler that can target multiple
architectures as only the final code generation stage (the backend) would need to change from
target to target.

The input to the code generator stage typically consists of a parse tree, abstract syntax tree, or
intermediate language code (often in three address code form). Since the target machine may
be a physical machine such as a microprocessor, or an abstract machine such as a virtual
machine or an intermediate language, (human-readable code), the output of code generator
could be machine code, assembly code, code for an abstract machine (like JVM), or anything
between.

In a more general sense, code generation is used to produce programs in some automatic
manner, reducing the need for human programmers to write code manually. Code generations
can be done either at runtime, including load time, or compiler time. Just-in-time compilers
are an example of a code generator that produce native or nearly native code from byte-code
or the like when programs are loaded onto the compilers. On the other hand, a compiler-
compiler, (yacc, for example) almost always generates code at compiler time. A preprocessor
is an example of the simplest code generator, which produces target code from the source
code by replacing predefined keywords.

When code generation occurs at runtime, it is important that it is efficient in space and time.
For example, when regular expressions are interpreted and used to generate code at runtime, a
non-determistic FSA instead of deterministic one is often generated because usually the
former can be created more quickly and occupies less memory space than the latter. Despite it
generally generating less efficient code, code generation at runtime can take the advantage of
being done at runtime. Some people cite this fact to note that a JIT compiler can generate
more efficient code than a compiler invoked before runtime, since it is more knowledgeable
about the context and the execution path of the program than when the compiler generates
code at compile time.

In addition to basic conversion from intermediate representation into machine instructions,
code generator also tries to use faster instructions, use fewer instructions, exploit available
fast registers and avoid redundant computations.

 Instruction selection. With the diverse instructions supported in a target machine,
instruction selection deal with the problem of which instructions to use

 Instruction scheduling. In what order to run the instructions.

 Register allocation. The speed gap between processors and memory is partially
bridged by the registers in processors. How to put useful variables into registers has a
great impact of the final performance.

The usual method is a state machine, or weak artificial intelligence scheme that selects and
combines templates for computations.

5 FLOWCHART

Warnings or Error Report

User User Interface
Text File

Error in Compilation

Correct Compilation

Emulator

Debugger

Card Program

User Interface

Hex File

Hex File
Card Program

Stimuli

Correct Code

6 DATA FLOW DIAGRAMS

DFD- Level 0

DFD- Level 1

DFD- Level 2

7 DATA DICTIONARY

Name User Input
Where used / How used Input to >>User Module
Description:
 The basic idea of this data is to provide user to to do some register related coding
like in mplab.Text editor is going to be used.User command goes to command
classifier to classify the commands.

Name User Output
Where used / How used Output from << User Module
Description:
The basic idea of this data is to show the the user what is the output of Project .

Name File
Where used / How used Input to >> File Data Storage

Output from << User Module
Description:
 This data as known includes all sort of files like source and hex files.

Name Compile Option
Where used / How used Input to >> Compiler

Output from << User Module
Description:
 This is a simple compile option like –c in gcc -c file.c .But this will be a simple
option file name because it will be enough.

Name File Name
Where used / How used Output from << User Module

Input to >> Compiler
Description:
 This name will be used for compile.File data storage will give the rest of file to
compiler.

Name Compiler Response
Where used / How used Input to >> User Module

Output from << Compiler
Description:
 Compiler sends the data to user module whether its true or not or the absolute
machine code to send the user as an output or use it.

Name Debbuger Command
Where used / How used Input to >> User Module

Output from << Debugger
 or vice versa

Description:
Debugger command is a command that specify and arrange the input and output
of debugger.

Name Stimulus
Where used / How used Input to >> User Module

Output from << Simulator
 or vice versa

Description:
Stimulus is a file that includes the input and output files.In stimulus there is a text
file that arranges the job that will be done step by step per clock time.

Name Commands
Where used / How used Input to >> Loader

Output from << User Module
Description:
These are some specific commands that comes to loader as loader
commands.Loader is going to show the results to the screen after that.This request
comes from user.

Name Responses
Where used / How used Input to >> User Module

Output from << Loader
Description:
This prints the screen whether it is loaded or not.Loader will arrange it .An error
message shown in output displayer may come.

8 PROCESS SPECIFICATIONS

1 User Module:
 This part is the most important part of our project.It is simply known as the mplab.exe.It
means it has the same characteristics of mplab.There are also some parts that construct it.This
is the outher layer that also communicates with the user an taking inputs.

 1.1 Buffer:
 This process has the same characteristics with a simple text editor.User text input is its
input and it creates a source file that goes to compiler.Compiler will run the rest.

 1.2 Command Classifier:
 It classifies the command that comes from the user and sends these instructions to
debugger or loader .It is a bridge like process that connects the debugger and loader to user
module.

 1.3 Output Displayer:
 It displays the output .It can be also an error message that comes from other process
which connects to it.It displays the message on screen.

 1.4 Simulator Interface:
 It is an interface that takes the the stimulus files and the user will be able to see the
changes .It is the interface of Simulator so ;the Simulator deals with the code part and you
can see changes from screen.

2 Compiler :
 It is the part that we all have to know /It compiles the code that you write in.It takes the
file from file data storage unit then gives it to user module back as an absolute machine code.

 2.1 Preprocessor:
 It translates the simple source code that we write and store to file data storage unit to
source program that compiler understands.It is preparation to compile.

 2.2 Compiler:
 It translates the source program to assembly program.

 2.3 Assembler:
 It translates the assembly program to relocatable machine code.

 2.4 Link-editor:

 Last step of compilation.It translates the relocatable machine code to absolute machine
code that will be sent to User Module.

3 Debugger:
 It is the process that helps to run the code step by step to find errors.

4 Simulator:
 Simulator is connected to the User Module .It learns when to do simulation from User
Module then it sends the output.

 4.1 Simulator:
 This is the main part of the simulation it sends an gets data from MCU
Simulator and do the rest.

 4.2 MCU Simulator class:
 This process is a simple class that is designed to help the main part it takes the
instructions and give the exact data that Simulator needs.

5 Loader:
 It gets and gives the hex files to the board .Also its main job is to take user commands
that came and load the data to screen.

9 REQUIREMENTS

9.1 Interface Requirements

As for all softwares, graphical user interface is very important for our project too since easy to
use, easy to learn and adaptation is crucial for all softwares. Therefore, we will make the user
interface clear and understandable. Moreover, graphical user interface will meet all the users’
needs as far as it is possible. Hence, while we were deciding our tool’s features, we took into
consideration both the inexperienced and professionals. As a conclusion, we considered the
user satisfaction as the primary goal of our project.

9.1.1 General IDE Overview

 IDE will be based on multiple document interface concept because several sheets can

be used to write code and simulate them.

 Project title header will contain the name of the application and the current active

sheet.

 Menu bar has to facilitate to access to all system features of the application.

 Tool bar has to contain the symbols of the most frequently used features.

 There will be a text editor to write code.

 Status bar will display the processor information and cursor position.

9.1.2 Menu Bar

Menu bar will contain the following menus:

 File

 Edit

 View

 Project

 Debugger

 Macros

 Window

 Help

9.1.2.1 File Menu

 New: This option enables the user to create a new file.

 Open: This option enable the user to open an existing file.

 Close: This option enable the user to close the current file.

 Save: This option enable the user to save the current file.

 Save As: This option enable the user to save the current file with a different name.

 Recent Files: This option enable the user to view and open the most recently used

files.

 Print: This option enable the user to print the current file.

 Exit: This option enables the user to exit from the program.

9.1.2.2 Edit Menu

 Undo: This option enable the user to go to the situation before the changes made

recently.

 Redo: This option enable the user to make the change which is canceled again.

 Cut: This option enable the user to cut the selected part.

 Copy: This option enable the user to copy the selected part.

 Paste: This option enable the user to paste the last cut or copied part.

 Select All: This option enable the user to select everything in the current sheet.

 Find: This option enable the user to find the desired word or phrase in the current

sheet.

 Replace: This option enable the user to replace the desired word or phrase with

another desired word or phrase.

 Properties: This option enables the user to change the background color, font and size

of the text, etc.

9.1.2.3 View Menu

 Toolbars: This option enables the user to specify the tool bar by selecting.

 Status Bar: This option enables the user to show or hide.

9.1.2.4 Project Menu

 Project Wizard: This option enables the user to create a new project.

 New: This option enables the user to create a new project.

 Open: This option enable the user to open an existing project.

 Close: This option enable the user to close the current project.

 Quickbuild: This option enables the user to compile its code.

 Clean: This option enable the user to delete all files in the project.

 Build All: This option enable the user to compile all files in the project.

 Make: This option enable the user to link all files in the project.

 Save Project: This option enable the user to save the current project.

 Save Project As: This option enable the user to save the current project with a different

name.

 Add Files to Project: This option enable the user to add files from other projects to the

current project.

 Add New Files to Project: This option enable the user to add a new file.

 Remove File From Project: This option enable the user to remove file from the current

project.

9.1.2.5 Debugger Menu

 Clear Memory: This option enable the user to clear the selected memory (All Memory,

Program Memory)

 Run: This option enable the user to execute the code.

 Animate: This option enable the user to see the program execution step by step

automatically.

 Halt: This option enable the user to stop the running animation.

 Step Into: This option enable the user to step into the desired code segment.

 Step Over: This option enable the user to step over the unwanted code segment.

 Step Out: This option enable the user to step out from the unwanted code segment.

 Reset: This option enable the user to restart the debugger.

 Breakpoints: This option enables the user to put breakpoint to the desired place to stop

the program.

 Stopwatch: This option enables the user to measure the time.

 Stimulus Controller: This option enables the user to draw a scenario the program will

execute accordingly.

9.1.2.6 Macros Menu

 Record Macro: This option enable the user to save the current project as a macro in

order to support reusage.

 Stop Recording: This option enable the user to cancel the recording of a macro.

 Open Macro: This option enable the user to load previously recorded macro.

 Exit Macros: This option enables the user to exit from the macros.

9.1.2.7 Window Menu

 Close All: This option enable the user to close all open windows.

 Cascade: This option enables the user to cascade all the open windows.

 Tile Horizontally: This option enable the user to spread all the open windows

horizontally.

 Tile Vertically: This option enable the user to spread all the open windows vertically.

Moreover, all opened windows’ names are shown at the bottom of the Window Menu and
user can reach any window from this window list by clicking them.

9.1.2.8 Help Menu

 About: This option enables the user to learn some information about our product.

Maybe they can connect our web site by this option.

 Custom Help: This option enables the user to see the tutorials about usage of our

product.

9.1.3 Tool Bar

Tool bar contains symbols of the most frequently used actions and these are the followings:

 New: This icon is the shortcut of the create a new file operation.

 Open: This icon is the shortcut of the open an existing file operation.

 Save: This icon is the shortcut of save the current file operation.

 Cut: This icon is the shortcut of cut the selected part operation.

 Copy: This icon is the shortcut of copy the selected part operation.

 Paste: This icon is the shortcut of paste the last cut or copied part operation.

 Print: This icon is the shortcut of print the current file operation.

 Find: This icon is the shortcut of the desired word or phrase in the current sheet

operation.

 Help: This icon is the shortcut of the Help Menu.

 New Project: This icon is the shortcut of the create a new project operation.

 Open Project: This icon is the shortcut of the open an existing project operation.

 Save Project: This icon is the shortcut of save the current project operation.

 Make: This icon is the shortcut of the link all files in the project operation.

 Build All: This icon is the shortcut of the compile all files in the project operation.

 Run: This icon is the shortcut of execute the code operation.

 Halt: This icon is the shortcut of stop the running animation operation.

 Animate: This icon is the shortcut of see the program execution step by step

automatically operation.

 Step Into: This icon is the shortcut of step into the desired code segment operation.

 Step Over: This icon is the shortcut of step over the unwanted code segment operation.

 Step Out: This icon is the shortcut of step out from the unwanted code segment

operation.

 Reset: This icon is the shortcut of restart the debugger operation.

9.1.4 Text Editor

This is used for writing code and it will be an empty text sheet.

9.1.5 Console

 Console view will display warnings (if there are any) after building of the project.

 Console view will display errors (if there are any) after building of the project.

 Console view will display messages (if there are any) after building of the project.

9.1.6 Status Bar

 Status Bar will display the processor type information.

 Status Bar will display the cursor information in terms of line and column numbers.

9.1.7 Hot Keys

There exists some common hot keys for different kinds of programs that users often familiar
from many programs such as Ctrl-S, Ctrl-C, Ctrl-V, etc. Therefore, we will add these hot key
functions to our product. These are the followings:

 Ctrl-S: Save

 Ctrl-C: Copy

 Ctrl-X: Cut

 Ctrl-V: Paste

 Shift-Insert: Paste

 Ctrl-Z: Undo

 Ctrl-Y: Redo

9.1 Emulator Overview

Our emulator will be a terminal emulator. At the beginning, user will see some default
information on the terminal and as program runs, these information change accordingly.
Besides, all actions can be done with commands. At the top of the terminal some counters will
be seen. These counters are:

total: ic = 00000000 sim time = 0.00 ns

delta: ic = 00000000 sim time = 0.00 ns

stopw: ic = 00000000 sim time = 0.00 ns

stackdepth = 0 max stackdepth = 0:0000 0000 0000 0000 0000 0000 0000 0000

W = 00 IP = 0000 Status = 18 (bank = 0 NZ ND NC) CONF = 3FFF

0000 3FFF ADDLW FF

9.2.1 Registers Part

Registers part will take place below the counters part. In this part registers and their contents
in hexadecimal format will be demonstrated. They will be sorted according to the register
numbers 0 to 1F0.

Since, this is the terminal emulator all actions can be made by commands and for these
commands we need to some keys. Therefore, for our emulator there will some special purpose
keys and these will be seen at the top of the Registers part. These special keys are ↑, ↓, PgUp,
PgDn, Home, End, <Ctrl-Tab>.

 ↑ : This key will be used to scroll the Registers part up line by line.

 ↓ : This key will be used to scroll the Registers part down line by line.

 PgUp : This key will be used to scroll the Registers part up page by page.

 PgDn : This key will be used to scroll the Registers part down page by page.

 Home : This key will be used to see the top of the Registers part.

 End : This key will be used to see the bottom of the Registers part.

 <Ctrl-Tab> : This key will be used to pass to the other parts.

9.2.2 EEPROM

EEPROM part will take place in our emulator below the Registers part. This part contains
EEPROM registers and their contents, this part gene. They are also sorted according to their
register numbers 0 to F0. Again this part has control keys and these will be demonstrated at
the top of the EEPROM part. These keys are ↑, ↓, PgUp, PgDn, Home, End, <Ctrl-Tab>.
Since, I have written these keys’ functionalities, I do not want to write them again.

9.2.3 Command Window

Command Window part will be below the EEPROM part. At the bottom of this part of course
command line will take place. This part also will have control keys and they will be seen at
the top of the Command Window part. These keys are: ←, →, Home, End, Del, Esc, F3,
<Ctrl-Tab>. Functionalities of these keys are:

 ← : This key is used for to go to the previous character in the command line.

 → : This key is used for to go to the next character in the command line.

 Home : This key is used for to go to the start of the command line.

 End : This key is used for to go to end of command line.

 Del : This key is used for to delete the last inserted character.

 Esc : This key is used for to escape.

 F3 : This key is used for to see the last command inserted into command line.

 <Ctrl-Tab> : This is used for to pass to the other parts.

If “H” is inserted into command line, help topics will be seen in the main part of Command
Window. These help topics are: ENTEREeprom, READUsestris, ALLRegs, STIMulus, DIR,
RETurn, BRegisters, SAve, Fill, Proceede, #, CHECKPoint, RESET, REGBreakpoints,
REGDisplay, THRottle, WATchregs, EXecute, WRite, Breakpoints, Trace, Output,
CHECKStack, SOFTUart, SHOWregs, FEEprom, MACro, WAke, TTrace, Registers, Help,
Input, TRACETrue, STOPWatch, CALC, HEXScreen, EEEprom, OSCope, FRequency,
Name, Unassemble, Quit, View, PAUSE, SETPorts, CONFig, BROwse, HEX, I2C, EEprom,
Enter, Go, ;, Keys.

9.3 Non-Functional Requirements

9.3.1 Usability

Without considering how the software is good and powerful, if it not user friendly, it is not
successful. Our observations in the current product range show us that most of these
programs’ user interface does not satisfy the users’ needs. Therefore, our primary goal in this
project is to create the best user interface as far as it is possible. So, our interface should be
easy to understand and easy to use. To realize the user satisfaction, the interface items will be
well designed and located effectively that the user can easily access everything without
spending more effort. Moreover, menus and tool bar will be clear and the user will be able to
access some of the menu items with hot keys. Besides, to facilitate the adaptation to our
product and solving problems easily, we plan to put a tutorial about our product.

9.3.2 Reliability

Our product will be used by students, academicians and professionals in the industry. Hence,
our product should be cleaned from the bugs as much as we can because any corruption which
yields data loss will affect users.

9.3.3 Portability

Our topic is a general topic and our product will be used by students, academicians and
professionals in the industry. Namely, our product has a wide range of usage area because of
this some users can use Windows, some users can use Linux and some user can use other
operating systems. Therefore, our product should be run almost all computer platforms. Since
we will develop our product in Java, it will have high portability. It will run in almost all
computers having Java runtime environment.

9.3.4 Performance

Since time is very important for people, speed of our product becomes an important issue in
our design. In general, wrong programming methodologies that are used in the applications

slow down the programs, not the complex algorithms used in the applications. Therefore, we
will try not to do this mistake. The usage of system resources will be reduced as much as
possible to increase the performance of our design. User can run other applications easily
while our program working.

10 DESIGN CONSTRAINTS

The programming language will be Java so that we can use the object oriented concepts and
reusability will be achieved. Our main graphics library will be Open GL and we will use 3D
Max for graphical design part.

11 REFERENCES

1 http://www.htsoft.com/products/picccompiler.php
2 http://www.gnupic.org/
3 http://www.dattalo.com/gnupic/gpsim.pdf
4 http://www.speedy-bl.com/pic16fxxx-e.htm
5 lecture notes
6 lab manual
7 http://en.wikipedia.org

**references are shown in paranthesis near the related titles

