\g

Middle East Technical University
Department of Computer Engineering

CENG 491

Computer Engineering Design |
2006-2007

SimSys Corporation

Final Design Report

PIDE

Emulator and Development Environment for

CEng Embedded System Card

18.01.2007

Table of Contents

L INErOAUCTION .. e 4
1.1 Purpose Of the DOCUMENT..........ccviiiiieiieie e 4
1.2, PrOJECt DESCIIPIION. ...c.eiiiieiteitisie sttt 4

2. SYStem AFCHITECTUNEooieeeiecee e 6

KT AV, (0T =1 T o SRR 8
3.1. Scenario Based MOUEIINGccveveiiiiieie et 8

3.1.1. Manage Project FIlES........coiiiiiiiiiiieeceerete e 8
3.1.2. MANAQE FIlES....ocuveiiee e 9
3.1.3. Change SELINGScoeeieieieie et 9
3.1.4. COMPIIE PrOJECE ...ttt 10
3.1.5. SIMUIALE PrOJECT......cviiiiiiiiiicieeee s 11
3.1.6. DEDUG PrOJECL......eeiieeeece e e 12
3.1.7. Manage File TranSTer......c.ccoieiiiiieiesese e 13
3.2. Object and Data Structure Modelingccccovevieieiieieee e 14
3.2.1. Classes of QUi PACKAGE.........cccoviiiiiiiieics e 14
3.2.2. Classes of projectManager Package..........ccccceovvevveieiiieveese e 18
3.2.3. Classes of editor and compiler Packages..........ccccovvvverenencneninisiseenns 22
3.2.4. Classes of simulator Package..........c.cccvvveieeiiiieii e 24
3.2.5. Classes of debugger Package.cccooviiiiiiiiniiiccsee e 40
3.2.6. Classes of programmer Package...........ccccovevieiieieeie i 42
3.3. Flow-Oriented MOGeliNgcccoiiiiiiiiiieieieiee e 43
3.3.1L EdItOr MOQUIE ...t 43
3.3.2. COMPIIE MOAUIE ...t 45
3.3.3. SIMUIAte MOTUIEocuiiiiiiiieieee e 46
3.3.4. Debugger MOTUIEcoiiiiiiieeee e 47
3.3.5. PIC Programmer Module...........ccoveiveiiiie e 49

4. Graphical User Interface Design..........cccocvevveveeiiesie e 51

5. Components to be Simulated ... 56
T80 N = (O 1Y/ S 56

I 0 I Y/ =T 1 4 To YRS PP PR 56
5.1.2. PORTS .ottt ettt st b e se et e et et e tenteeneeneeneas 63
5.1.3. Parallel SIaVe POIT ..o 64
5.1.4. Analog to Digital CONVEITE..........ccoiiieierieic e 64
5.1.5. Other Features 0f the MCU..........coocoiiiiiiiiniiisieiee e 65
5.2, PEIIPNEIAIS. ..ot 65
5.2.1. INPUL PEFIPNEIAlSccviiiiciicce e 65
5.2.2. OULPUL PEFIPRETALScvveieiiie e 66

6. Language SPecCifiCationsS...........ccvevveiveiiesie e 68
6.1. ASM++ Language FOrMALcccooiiiiiiiieiee e e 68
6.2. Test Bench File Language FOrmat..........ccccoovveiviiieiieese e 75

7. FIlE FOIMALS.......ooiieei et 78
7.1, System File FOrMAL........ccoiiiiieice e 78
7.2. ProjeCt File FOMMALccoiiiiieiece et 79
7.3. Debug File FOMMALcooiiieiieiee e 82
7.4. ASM Header File FOMMAL.........ccccoiiiiiiiieeese e 84

8. CodiNg STANAITScccvveciieiiecie e 85
8.1. COdING CONVENTIONS.ceiiiiieiieeieeie sttt bbb eneens 85

8.2. NaMING CONVENTIONScueiuiiiiieieiie sttt 85

TR T 0] 0 01 0411 1 £ 86
0 [0o (=T a1 7= L T IR 86
10. System Testing ConSIderations..........ccvvvieeiienieeneesee e 87
11, GANTE CRAIT oottt et e e e e e eeaeeees 88

1. Introduction

1.1 Purpose of the Document

This document is prepared to supply the final design of the PIDE Project.

This report should be considered as final outcome of the design process. The work
done and results are included in this document in a formal way. Since design
process consists of modeling the system, the report contains diagrams and
models of the current system. All the diagrams, design issues and models are

meant to be final.

The report consists of three parts. In the “Modeling of the System” part, static
and dynamic components of the system are represented. In the System and
Project Specifications part, standards related to project implementation and
various system components are introduced. In the Testing the System part,
issues related to the final product testing are addressed and methods to be used

are proposed.

1.2. Project Description

As the technology evolves, the embedded systems start to find wide area of
usage. In most of the devices that people use daily, there exists a core logic
which is mostly an embedded microcontroller or microprocessor with some
external storage. Besides, those integrated devices also let the implementation
and testing of various new controller ideas very easily. This popularity of
embedded systems is a little overshadowed by the difficulty in developing
embedded software due to the lack of a well fitted development environment and

pre-testing it on a special independent system prepared just for testing purposes.

An example to the above discussion exists for the CEng336 Embedded Systems
course. Among the course contents, development of embedded software and
testing on a test board is of primary importance. However, obviously a standalone
testing environment that will simulate exactly the same features with high

accuracy would greatly simplify the testing procedure.

As a solution to the problem stated above, SimSys Corporation will develop an

emulator and development environment, called PIDE (PIC Integrated

Development Environment), for the card used in Ceng336 Embedded Systems
course. Considering such a development and simulation environment, the system
will fully support the CENG336 board, i.e. support 16F877 PIC microcontroller and
the other components on the board, communicate through various interface
standards such as parallel, serial or USB and accommodate some display
interfaces such as LCD or LED driving structures. Users will have the chance of
compiling their programs and they can test and debug it on the virtual card
emulated by the software. The virtual card will look the same as the CENG336

board.

PIDE is a real-time interactive and event-driven program. Among all of the
interactions, the ones with the simulator is very important since the system
should simulate the CENG336 Board with full functionality and give very similar
responses to the user. Of course, it is not possible to give the same responses
and simulate real-time behavior in a virtual environment because of reasons such
as difference between the computational power of the PIC and the current
computers, loss of data due to representing real time data, etc. But with careful

estimations and assumptions, behavior of the board can be mimicked.

For such a development and simulation environment design project, the
implementation areas are unlimited just as the fact that the implementation areas
of the embedded systems are unlimited. As a result, such a system, which will
simplify the development and testing process, will find great interest from the
embedded systems developers. Together with the Ceng336 Card, this software
will be useful for computer engineers, electrical engineers, high school students

and everyone interested in PIC programming.

2. System Architecture

PIDE system is composed of several subsystems. The logical subsystem view of
these components is represented below. The communication between the user
and the system and among other components is managed by the GUI. GUI acts
as the core of the system and each subsystem provides an interface to the core
to make communication among each other. Other than the basic dependencies
between subsystems and GUI, debugger depends on simulator. Debugger
simulates the board using ExecutionController class which is inherited from

Simulator class.

“xnhsystem ~=subsystem
Compiler A Editor
4
!
L
L
,ﬁ'\ FJ
1 ’
1 e
r
! '
! ’
1)
“~subsystem <=5 bsystemn 1 / <= subsyste m
#
r
PIC Programer e = - GUT R Project Manager

S s

==subsystem = subsysteimn

Sinulator e e e Debugger

The main strategy for implementing subsystems is to initiate a main thread for
each subsystem, divide their tasks into processes, handle each process by a
thread and manage sub-threads by the main subsystem threads. Choosing a
multi-threaded system architecture is inevitable for systems that requires high

processing power and have frequent interactivity like PIDE.

Since GUI is designed as the core of the program, it should be working all the
time. GUI itself initiates several threads some of which are handled by Java
classes and the others by PIDE classes. One thread of importance handled by
PIDE classes is the BreakPointHandler thread. This thread loads breakpoint data
from project file, passes the data to corresponding editor, compiler and debugger
threads. Another important thread is for managing project-related operations and
handled by Project Manager Subsystem. Editor module works as a separate
thread and manages threads fired for each file opened in editor. The other
modules initiate new threads as needed and their threads are killed after
requested processing is finished. Having each subsystem handled by seperate a
thread, the system can supply functionality without the user loosing the

interaction with the system.

3. Modeling

3.1. Scenario Based Modeling

The use cases of the system describe the interaction between the system and the
user from the user’s point of view. This schematic is important to define the
capabilities that are given to the user and his/her possible choices. There is no
timing relationship existing in this diagram; however that information is given in
the sequence diagrams, since these use cases are only to present the alternative

paths that can be followed.
3.1.1. Manage Project Files

MANAGE
PROJECT FILES:

wehendss

Q BLISES

emove Files from
Project

Manage Project
Files

webends:

Add Files to
Project

Managing a project is in fact handling of files within a project. Creation of new

Lser

files, adding existing files to the project, removing files from the project are the
possible tasks that can be performed in this use case. The files that are
mentioned here may be of various types. The alternatives for file types are
ASM++ source files, ASM source files and test bench files. Any change in the

configuration of the projet is saved in corresponding project file.

PIDE Final Design Report

3.1.2. Manage Files

MANAGE FILES:

«extends»

nextndss Manage Test Files k—
Manage Files ‘

Manage Source Files

wextd nds»

|

agxtendss

User

The user may select to manage the files using PIDE. Here, files may be created,
saved, opened and edited. These files are the source files and test bench files.
The source files are the ASM++ files or ASM files. The test bench file contains the

input timing information for the peripherals.

3.1.3. Change Settings

Froject Settings
CHANGE SETTINGS:

waxtends:

Compiler Settings

HUSESH

Change System Simulator Settings

Analysis Tools
Settings

Debugger Settings

Programmer Settings

SimSys Corporation 9

This use case defines the interaction of the user with the system to manage the
settings of various internal modules of the software. Here, by means of graphical
dialog windows, the user will be able to modify the system settings. This use case
is in fact composed of a number of independent use cases. These are setting the
project settings, compiler settings, simulator settings, debugger settings, analysis
settings and finally the programmer settings. The first ones are self explanatory;

however the last two require some elaboration.

Analysis settings are the specification of signals that are to be saved for later
investigation. Here, some probes are inserted to the system, where the logic
levels or voltages on those nodes are saved. Those saved waveform graphics can

later be viewed via the analysis tool.

Programmer settings are about the programming interface of the board. Here, the
parallel port selection can be performed and other choices about device

programming can be made.
3.1.4. Compile Project

COMPILER:

Q HUISE50

Compile Files

Usear

The use case with the compile system is very straightforward. The user just
requests a compile operation from the system. All syntax checking, parsing,
linking and conversions are performed transparently to the user. The results are

displayed in the output pane of the user interface.

10

3.1.5. Simulate Project

SIMULATE
PROJECT :

wexlendss

Q aligesn LX
13 Simulate Project
5
User aexiendst

Interacts with
Virtual Ceng336 Board

Inputs Data

Display Analysis
Results

<}
o e
waxtaniss @

uextengss

L= [< ocextend
Control Simulation™y"x
Flow
gextendss
<)

i D
waytendss

et Simulation
Speed

nable/Disable
Periherals
nable/Disable
Analysis Tools

Set Simulation
Settings J
s

Run with Test Banch

In the simulation use case, the user will ask the system to run according to the

specified inputs. The inputs may be provided by the user either in real time by

means of the graphical user interface which is exactly the same as the layout of

the board, or by some files that specifies some sequence of data to the input

devices. These special files are called test bench files and have their special file

format.

Simulation system has some special features. One of them is the enable/disable

mechanism of the peripherals on the evaluation board. Another one is the

selectable run speed. This feature will make the user much more comfortable in

simulation of high frequency systems. For instance, in order to observe a signal

toggling at 100 KHz, the system may be configured to run in 5us steps.

11

3.1.6. Debug Project

Set/Remove
Watchpoint on/from registers

nsert Breakpoint
to Source File

Remove Breakpoint
from File

nput Redirection
fram File
Control Execution
Flow Run until
Breakpoint

Run until
Watchpaoint

Debugging a project is to concentrate on the flow of the program on some specific

wUsess
@ > Debug Project

Usear

parts of the source code. Debugging a project internally requires the project to be
compiled and if current system is in not compiled state, then automatically the
compile routine is invoked. Critical concepts for the debugger are the breakpoints

and watch points.

Breakpoints are identifiers on some source code lines that state that the
execution of the program will continue until that point and will halt there. The
internal state of the system will be completely visible to the user, together with
the contents of the registers. The execution flow will continue with some special

events from the user such as a “step” command.

Watch points are identifiers attached to registers. These watch points are
triggered when the value in the register is modified. The execution of the
program halts at this point. Resuming is based on the same procedure as the one

in breakpoints.

12

3.1.7. Manage File Transfer

Manage File -
Transfer

Q LSBT

wextendss

User

Downloads/Uploads
from/to Board

Once the simulation is performed and the required results observed in the
system, the user will upload the hex file to the microcontroller on the board to
verify the operation physically. The user may also request to see the source of
the program in currently residing in the microcontroller or may request a
verification to check whether the uploaded program is consistent with the one in
hand. The user may also want to clear the contents of the memory in the

controller to be on the safe side and to start everything from scratch.

13

3.2. Object and Data Structure Modeling

3.2.1. Classes of gui Package

ConsolePane PToolhar
fiewButton Button
— openButton]Button
mﬁﬂﬂeo . _ saveButton Button
printiutpat{outputitiing String) saveAlButtonIButton
FptintBrronerroniteing Steing) cutButton:JButton
copyButtonIButton
pasteButtor]Button
PMenuBar undoButton:] Button
tedoButton:TButton
toolBarpToolbar findButton:]Button
filell eI erna teplaceButton:Button
edithl ey Thien wotkspaceT oggleButton:JButton
viewller Men consoleToggleButton:TButton
projecthlemaI e registetT oggleButton: I Button
simulatellermyThen watchpoittT oggleButton:Button
detughlemy M enn buildButton:JButton
programiuethlemyIhenn startdimulateButton:IButton
analysishlemyTherm stopdimulateButton:IButton
toolshlem I enu Hnitialize()
helpMenu.Menu +eetH ewButton):.TButton
Hiuitialize() +zetOpenButton):.JButton
+eetFilehd ema): M ena +zetdaveButton) T Button
+eetEdithl e Then +aetdaveAlButton).TButtan
+aetViewhlenu:Ih enu +zetCutButton):JButton
+getProjecthl emna) T ers +eetCopyButton):TButton
+eet3inodatell et T e +zetPasteButton):.JButton
+eetD et en): I er +zetlUndoButton):TButton
+eetProgrammeth emni):. T enn +zetRedoButton):TButton
+eetAnalysishletn: M ena +zetFindButton):JButton
+getToolshlera): e +zetReplaceButton’).TButtan
+getHelphd erna): I enu +zetWorkspaceT oggleButton):]Button
+eetConsoleToggleButton): TButton
+aetRegisterToggleButton):JButton
PFrame +zetWatchpointT oggleButton():]Button
. +getBuildButton):JEutton
jPanel/Panel +getStantSimulateButton):TButton
root3plitPane:JphitP ane +zetStopBirulateButton):TButton
topRoot3plit ane J3plitPane
leRT o plitP ane: T3plitP ane
plooBarPTooBat
phlermBar P enuBar WorkspacePane
c::nnls{nlePane.Cc!nscnlePane WorkspaceTreedTres
wotkspaceP aneWorkspaceP ane ; e
editorP ane EditorPane dutpelnry File
statusBarJToolBar Hrtialize()
statusBarl ahel:JLabel +addM odes(DefaulthlutableTreel ode, file)
Hinitialize() +azetWodkspaceTree(): T Tree
+getlPanel():JF anel
+eetRoot3plitF ane): I3 plitE ane
+eetTopRoot3plitP ane): Jophitl ane
Teetleft T opd plitP ane() J3plitPane
+eetdtatusBarlabel):.TLabel

PFrame :: JFrame

This class defines the main outline of the PIDE GUI. It contains toolbar, menubar, statusbar as well as the

console, debug, workspace and editor panes.

other components.

It supplies methods to change the outline of the panes and

Attribute Name Type Description
jPanel JPanel The main panel of GUI
JSplitPane instance that divides the
rootSplitPane JSplitPane main panel into top and bottom panels.
Bottom split panel is the console panel.
JSplitPane instance that divides the top
. . panel of rootSplitPane into left and right
topRootSplitPane ISplitPane panels. Right console panel is the
debugger panel.
JSplitPane instance that divides the top
leftTopSplitPane 3SplitPane panel of rootSp_IltPane |_nto left and right
Attributes panels. Left split panel is the workspace
panel and right is the editor panel.
pToolBar PToolBar The toolbar.
pMenuBar PMenuBar The menubar.

consolePane

ConsolePane

The console Pane.

workspacePane WorkspacePane The workspace Pane.
editorPane editorPane The editor Pane.

statusBar JToolBar The status bar.
statusBarLabel JLabel The label of the status bar.
Method Name Return Arguments Description

initialize() void void Initializes the PFrame.
getJPanel() JPanel void Returns the jPanel item.

Methods getRootSplitPane ()

JSplitPane | void

Returns the rootSplitPane item.

getTopRootSplitPane ()

JSplitPane | void

Returns the topRootSplitPane item.

getLeftTopSplitPane ()

JSplitPane | void

Returns the leftTopSplitPane item.

getStatusBarLabel ()

JLabel void

Returns the statusBarLabel.

PMenuBar :: JMenuBar

This class holds all menu items and related methods of the PIDE menubar. Most functionality of the system

can be carried using PIDE menubar.

Attribute Name Type Description

Reference to he toolbar instance. Used to
toolBar PToolBar -

change view of the pToolBar.
fileMenu JMenu The File menu item.
editMenu JMenu The Edit menu item.
viewMenu JMenu The View menu item.
projectMenu JMenu The Project menu item.

Attributes - . .

simulateMenu JMenu The Simulate menu item.
debugMenu JMenu The Debug menu item.
programmerMenu JMenu The Programmer menu item.
analysisMenu JMenu The Analysis menu item.
toolsMenu JMenu The Tools menu item.

15

helpMenu JMenu The Help menu item.
Method Name Return Arguments Description
initialize() void void Initializes the menu bar.
getFileMenu() JMenu void Returns the File menu item.
getEditMenu() JMenu void Returns the Edit menu item.
getViewMenu() JMenu void Returns the View menu item.
getProjectMenu() JMenu void Returns the Project menu item.
Methods
getSimulateMenu() JMenu void Returns the Simulate menu item.
getDebugMenu() JMenu void Returns the Debug menu item.
getProgrammerMenu() | JMenu void Returns the Programmer menu item.
getAnalysisMenu() JMenu void Returns the Analysis menu item.
getToolsMenu() JMenu void Returns the Tools menu item.
getHelpMenu() JMenu void Returns the Help menu item.
PToolBar :: JToolBar
This class holds all toolbar buttons of PIDE. Some functionalities of PIDE are shortcutted via toolbar buttons.
Attribute Name Type Description
newButton JButton The New button of the toolbar.
openButton JButton The Open button of the toolbar.
saveButton JButton The Save button of the toolbar.
saveAllButton JButton The Save All button of the toolbar.
cutButton JButton The Cut button of the toolbar.
copyButton JButton The Copy button of the toolbar.
pasteButton JButton The Paste button of the toolbar.
undoButton JButton The Undo button of the toolbar.
redoButton JButton The Redo button of the toolbar.
Attributes findButton JButton The Find button of the toolbar.
replaceButton JButton The Replace button of the toolbar.
workspaceToggleButton JButton 'tl':;bvé\]/?.rkspace Toggle button of the
consoleToggleButton JButton 'tl':;b(;c;?sole Toggle button of the
registerToggleButton JButton tT:;bii?iSter Toggle button of the
watchpointToggleButton JButton :—:;bvgf_t(:hpomt Toggle button of the
buildButton JButton The Build button of the toolbar.
startSimulateButton JButton I;flbsatgrt Simulate button of the
stopSimulateButton JButton -tr:;bzt:p Simulate button of the
Method Name Return Arguments Description
initialize() void void Initializes the tool bar.
getNewButton() JButton void Returns the New Button.
Methods getOpenButton() JButton void Returns the Open Button.
getSaveButton() JButton void Returns the Save Button.

16

Methods

getSaveAllButton() JButton void Returns the Save All Button.
getCutButton() JButton void Returns the Cut Button.
getCopyButton() JButton void Returns the Copy Button.
getPasteButton() JButton void Returns the Paste Button.
getUndoButton() JButton void Returns the Undo Button.
getRedoButton() JButton void Returns the Redo Button.
getFindButton() JButton void Returns the Find Button.
getReplaceButton() JButton void Returns the Replace Button.
getWorkspaceToggleButton() | JButton void ;Etggs the Workspace Toggle
getConsoleToggleButton() JButton void Returns the Console Toggle Button.
getRegisterToggleButton() JButton void Returns the Register Toggle Button.
getWatchpointToggleButton() | JButton void gﬁta’;‘]s the Watchpoint Toggle
getBuildButton() JButton void Returns the Build Button.
getStartSimulateButton() JButton void Returns the Start Simulate Button.
getStopSimulateButton() JButton void Returns the Stop Simulate Button.

ConsolePane :: JPane

This class is responsible for the management of the console panel of PIDE. Console panel is used to output

some system messages to the user.

Methods

Method Name Return Arguments Description

initialize() void void Initializes the Console Pane.
printOutput() void string Prints the output to the console.
printError() void string Prints the error message to the console.

WorkspacePane :: JPane

This class is responsible for the management of workspace panel of PIDE. Workspace panel shows the file

and folder outline of the existing projects and supplies quick access to any file in a project.

Attribute Name Type Description
Attributes workspaceTree JTree The workspace tree structure.
. . The path name of the folder where
directory File . o
project file is located.
Method Name Return Arguments Description
initialize() void void Initializes the Workspace Pane.
Methods i DeafultMutableTreeNode, | Adds new nodes to the Workspace
addNodes() void .
file Tree.
getWorkspaceTree() JTree void Returns the Workspace Tree.

17

PIDE Final Design Report

3.2.2. Classes of projectManager Package

SystemSettingsFile
<<PIDESYS=>

svatemPratziences SvatemPreferences

Project

projgectiame sting

projgctPathosting

projectFilz ProjctFile

pEditorPane PEditcrPane
compiler{Compiler

dzbuggerDebugger
breakPomtHandler:BreakPointHandler
watchPointHandler Watch PointHandler
sinmilator: Sinmilator

+aave()

Hoad{propcetMame projctPath)
+newFile{fileMame. filzPath file Tvpe)
+addFile{fil=Mame fil=Path}
+ramoveFila(fileMName filePath)

h
I
LN

1

PIDEFile

fil=Tvpe it
fil=Mame: String
fil=Path:String
filzBuffzr:Sting
dirtv hool

+savea()
+oad{fileMName.fil=Hath) +save()
+reaet ToDefanlt() +Hoad}
+closeFile(} TestFile
+is Divtw () <<TEST==
tﬁ +save()
+saveAs(fileMarce filePath)
+oad(fileMame fil=Path)
+updateBuffer(}
+getlnputsicyele)}
ProjectFile AsmFile HeaderFile
<P <<ASNE= <<AH->
nzerinfouzerlDy
programPreferences ProgramPreferences +save() +aave()
+savel) +aave As{fileMName filsPatlh} +aaveAsifileName filsPath)
+oad{fileName filsPath} Hoad{filsMame filsPath} +HoadifilsMame filsPath}
+esetToDefault() +updateBuftei) +updateBuftai()
AsmPlusFile He xFile DebugFile
=<ASMFPP>> <<HEX=> ==<DBG==
+3ave() +aavea(}
+savedsifileMaime filePath) +save() Hoad{filaMame filPath)
HoadifileMName filsPath) + loadifilsMame fil Path)
+updateBuftai}

SimSys Corporation

18

Project

This class is responsible for the management of a project. It links the project files with editor, simulator,
compiler and debugger modules. Any

change in the project is performed by this class.

Attribute Name Type Description

projectName string The name of the project.

projectPath string The path of the project on the disk.
projectFile ProjectFile The preferences of the project that are

kept in file.

pEditorPane

PEditorPane

Editor pane of the project.

Attributes
compiler Compiler The compiler module.
debugger Debugger The debugger module.
breakPointHandler BreakPointHandler The breakpoint handler.
watchPointHandler WatchPointHandler The watchpoint handler.
simulator Simulator The simulator module.
Method Name Return Arguments Description
save() void void Saves the project.
. projectName, .
load() void projectPath Loads the project.
Methods .) fileType, fileName, Creates a new file and adds it to the
newFile() void) .
filePath project.

. . fileType, fileName, -) .
addFile() void filePath Adds an existing file to the project.
removeFile() void fileType, fileName, Removes a file from the project.

PIDEFile

This class is an abstract class. It is the base class which encapsulates basic functionalities of different

types of files used by PIDE. PIDEFile classes represent the actual files stored on hard disc.

Attribute Name Type Description
fileType int The type of the file: asm, hex, test, etc.
fileName string The name of the file.

Attributes filePath string The path of the file on the disk.
fileBuffer string The buffer to hold the content of the file.
dirty bool It will be true, when the file content has

been changed after the last save.
Method Name Return Arguments Description
save() void void Saves the file.
Methods load() void fileName, filePath Loads the file.
close() void void Closes the file.
isDirty() bool void Returns the value of dirty variable.

SystemSettingsFile :: PIDEFile

This class is responsible for managing “pide.sys” file. SystemSettingsFile holds general information and
preferences which affects overall program execution.

Attributes

Attribute Name

Type

Description

systemPreferences

SystemPreferences

The program preferences of the user.

19

Methods

Method Name Return Arguments Description

save() void void Saves the file.

load() void fileName, filePath Loads the file.

resetToDefault() void void Resets the program preferences to

default values.

ProjectFile :: PIDEFile

This class is responsible for managing files with “.pde” file extension.

and preferences which affects only the corresponding project.

ProjectFile holds general information

Attribute Name Type Description
Attributes userInfo userID Info_rmatlon about the user of the
project.
projectPreferences ProjectPreferences The project preferences of the user.
Method Name Return Arguments Description
save() void void Saves the file.
Methods
load() void fileName, filePath Loads the file.
resetToDefault() void void 5:|sl,|e::ss the project preferences to default

ASMPIlusFile :: PIDEFile

This class is responsible for managing files with “.asmpp” file extension. ASMPlusFile is the main source
file of PIDE. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the

buffer is saved into actual buffer using one of the save methods.

Methods

Method Name Return Arguments Description
save() void void Saves the file.

.)) Saves the file with a different name
saveAs() void fileName, filePath and/or to a different location.
load() void fileName, filePath Loads the file.
updateBuffer () void void Updates the file with the current

changes.

AsmFile :: PIDEFile

This class is responsible for managing files with “.asm” file extension. ASMFile is the basic source file of

PIC microcontrollers.

Any ASMPlusFile is first converted into this file type and then further process is

performed on this file type during compilation. The actual file is loaded into buffer and editing is
performed on this buffer. Changes in the buffer is saved into actual buffer using one of the save methods.

Methods

Method Name Return Arguments Description
save() void void Saves the file.

.)) Saves the file with a different name
saveAs() void fileName, filePath and/or to a different location.
load() void fileName, filePath Loads the file.
updateBuffer () void void Updates the file with the current

changes.

20

HexFile :: PIDEFile

This class is responsible for managing files with “.hex” file extension. HexFile is the basic executable file of
PIC microcontrollers. Any ASMFile is converted into this file type and then further process is performed on
this file type. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the
buffer is saved into actual buffer using the save method.

Method Name Return Arguments Description
Methods save() void void Saves the file.
load() void fileName, filePath Loads the file.

HeaderFile :: PIDEFile

This class is responsible for managing files with “.ah” file extension. ASM header files are simply a reduced
version of ASM source files. They include only procedure and macro definitions and can be included in the
source files. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the
buffer is saved into actual buffer using one of the save methods.

Method Name Return Arguments Description
save() void void Saves the file.
. . . Saves the file with a different name
Methods saveAs() void fileName, filePath and/or to a different location.
load() void fileName, filePath Loads the file.
updateBuffer () void void Updates the file with the current
changes.

DebugFile :: PIDEFile

This class is responsible for managing files with “.dbg” file extension. Debug files store the information
required for the debug process. They are outcome of compilation process. The actual file is loaded into
buffer and editing is performed on this buffer. Changes in the buffer is saved into actual buffer using one
of the save methods.

Method Name Return Arguments Description
Methods save() void void Saves the file.
load() void fileName, filePath Loads the file.

TestFile :: PIDEFile

This class is responsible for managing files with “.test” file extension. Test files input and timing data for
automated simulations. They are user defined. The actual file is loaded into buffer and editing is
performed on this buffer. Changes in the buffer is saved into actual buffer using one of the save methods.

Method Name Return Arguments Description
save() void void Saves the file.
. . . Saves the file with a different name

saveAs() void fileName, filePath and/or to a different location.
Methods load() void fileName, filePath Loads the file.

updateBuffer() void void (L:Jr?;j:gtgz the file with the current

etInputs() void cvcle Gives the input values that should be
9 P Y applied at the given cycle.

21

PIDE Final Design Report

3.2.3. Classes of editor and compiler Packages

Compiler

crossFilsRefareanceTable HashTabls

+oompils(AsmPlus Filz)

syntanCheck{ AsmPlus File)

svintasCheckAzsml AsFile)

-ganztate AsmFile{ AsmPlusFile)

-genzrate HexFile{ AsmFilz)
-addToCrossFileReference Table{Cross FileReferece)

- LS |
L_.’ 1
FPIDEFile Project
|l
L
PEditorPane

filsBuffer Arav: BufferAnay
fil= Arvav File Aviay
breakPointHandler BreakPount Handler

Parser

+retActivaFila()

+elose ActivaFile()

Hilis plavTest(testBufizr)

+readFileIntoBuifzn filaMame fils Path bnffzrSize fileBuiferAnavindey)
+azlzeticurs orStart Pos o annberOfCharact21s)

Hinditest filsBufferA mavinds)

Hreplace{test curs orStart Position nvmber O harictens |

+parse| SomeeFils sonrceFils)
“parseLina Stig Lines)

|
PEditorkit
bufter Stong
Freadi)
+wnte)

+ent{enrs orStartPosttionanunerOfCharacters, clipboard Buffen

+eopylensorStan Postonnber O haractes clipboard Buffen
+paateienmorStartPostion ke O hamcters clipBoard B ffer file Bufter A may Tndex)
Hughbght W ord(word)

+aliowLimeMumbers(file Bufter Amay Index)

SimSys Corporation

22

PeditorPane :: JEditorPane

This class is responsible for editing files that user has edit permission. PeditorPane is actually a multi-file

editor but it is designed so that it can be plugged into other systems. Additional functionality such as code
highlighting is supplied with PEditorKit.

Attribute Name Type Description
fileBufferArray BufferArray The contgnts of the currently
opened files.

Attributes fileArray fileArray The files those are currently open.
breakPointHandler BreakPointHandler The breakpoint handler.
cursorPos CursorPosition Current position of the cursor
Method Name Return Arguments Description
getActiveFile() File void Returns the currently active file.
closeActiveFile() void void Closes the currently active file.

Methods displayText() void textBuffer Displays the text in the buffer.
fileName, filePath, — -
readFileIntoBuf() void bufferSize, Eﬁﬁfgf the file into the specified
fileBufferArrayIndex)
cursorStartPosition, Selects numOfCharacters
select() void numOfCharacters, characters starting from the
fileBufferArrayIndex cursorStartPosition.
) . text, cursorStartPosition, . .)
find() void fileBufferArrayIndex Find text in the file.
Methods text, newText, : - -
replace() void cursorStartPosition, Find text in the file and replace

fileBufferArrayIndex

with newText.

PeditorKit :: DefaultEditorKit

This class is responsible for supplying both basic and advanced functionalities required for an editor.

Attribute Name Type Description
Attributes
buffer string The buffer of editor kit.
Method Name Return Arguments Description
read() void void Reads a portion of the file into the
buffer.
write() void void Writes the buffer into the file.
cursorStartPosition, . . .
cut() void numOfCharacters, Eﬂ;?etrhe selected item into the clipboard
clipboardBuffer, ’
cursorStartPosition, . . .
Methods copy() void numOfCharacters, Cgples the selected item into the
; clipboard buffer.
clipboardBuffer,
cursorStartPosition,
aste() void numberOfCharacters, | Pastes the last item in the clipboard
P clipBoardBuffer, buffer.
fileBufferArrayIndex
highlightWord() void word Highlights the word.
showLineNums() void fileBufferArrayIndex Shows the line humbers.
Parser

This class is responsible for parsing ASM and ASM++ source files and generating meaningful tokens for

further evaluation during compilation.

Methods

Method Name Return Arguments Description
parse() void AsmPlusFile Parses the file.
parseLine() TokenList | Line Parses the given line.

23

PIDE Final Design Report

Compiler
This class is responsible for compiling ASM++ source files. It supports both ASM and ASM++ files. An
ASM++ file compilation generates an ASM file. The final product of the compile operation is a PIC-
executable HEX file.
Attribute Name Type Description
Attributes : _ : ;
crossFileReference Hash Table The mapping _between the source file
Table and the hex file.
Method Name Return Arguments Description
compile() void AsmPlusFile Starts the compilation process.
syntaxCheck() void AsmPlusFile Checks the syntax of the AsmPlusFile.
Methods syntaxCheckAsm() void AsmFile Checks the syntax of the AsmFile.
enerateAsm() void . Generates an AsmFile from the
9 AsmPlusFile AsmPlusFile.
enerateHex() void . Generates a HexFile from the
9 AsmFile AsmFile.
addToCrossFile- void . Adds the CrossFileReference entry to
ReferenceTable() CrossFileReference the CrossFileReferenceTable.

3.2.4. Classes of simulator Package

Simulator

pic:PIC
led Arrav: LED Aray
sevenSegmentDisplay Amrav:SevenSegimentDis plav Arrav

Project kevPad:KevPad

1zaetButton:RezatButton
led: LCD

parallzlPort Parallz1Port

senalPort: Senallort

usart: USART

apeakerSpeaker

ushPort: LISEPort

smartCardFeader: Smart CardReader
potentiometer:Potentiometer

nfrared Transmutter: Infrared Transwitter

infraredReceiverInfraradReceiver
teatFilz:TestFilz |

stopwatch: Stopwatch
pimlastenzrbist: Vector-PmListenar
swmlationbode © it

3 : 3 nstruction
=sinmilateIns tructhiondIns truction)

+ainmilate(HEXFile)
+runTestSinmilationd HEXFilz TestFile)

+atopsinmlationd
+atopTestSmmlationd}
+enablzParipharaliPauipherallD)
+dizable Penpherall Penphearlll

peripherals wemicrocontroller analvsistools
perpherak trolle Iysistools

SimSys Corporation 24

Simulator

This class manages the simulation operation and communicates virtual

analysis tools.

It provides methods to control simulation progress.

PIC with other peripherals and

Attribute Name Type Description
pic PIC PIC microcontroller.
ledArray LEDArray LED array on the board.

sevenSegmentDisplayArray

SevenSegmentDisplayArray

7segment display array on the
board.

keyPad KeyPad Keypad on the board.
resetButton ResetButton Reset button on the board.
lcd LCD LCD display on the board.
parallelPort ParallelPort Parallel port on the board.
serialPort SerialPort Serial port on the board.
usart USART USART module on the board.
Attributes speaker Speaker Speaker on the board.
usbPort USBPort USB port on the board.
smartCardReader SmartCardReader Smart card reader on the board.
potentiometer Potentiometer The analog input POT on the
board.
infraredTransmitter InfraredTransmitter Infrared-transmitter on the
board.
infraredReceiver InfraredReceiver Infrared-receiver on the board.
. testFile TestFile Test bench data for simulation.
Attributes St th o K the
stopwatch Stopwatch opwatch to keep the time
during simulation.
pinListenerList Vector<PinListener> Pin listener to I_<eep the logic
values of the pins.
simulationMode int The mode of the simulation.
Method Name Return Arguments Description
simulate() void HexFile Makes the simulation.
runTestSimulation() void HexFile, TestFile Makes the test bench simulation.
Methods stopSimulation() void void Stop the simulation.
stopTestSimulation() void void Stop the test bench simulation.
. . . Enables the peripheral in the
enablePeripheral() void PeripheralIlD simulation
. . . . Disables the peripheral in the
disablePeripheral() void PeripherallD simulation

25

PIDE Final Design Report

3.2.4.1. Classes of picmicrocontroller Package

FLASHProgramMemory

FIC

data word[]
EEDATA Register
EEDATH:Register
EEADER Register
EEADEH Register

+ mitialize Bufferivoud
+ readiaddress Fword

Datalle mory

SpecialRegisters Regista] |
CGeneralRegisters Ragistay] |

+ readibank, address pbyte
+witedbank, addizss phvie

flashProghlemFlashProgramh emory

eepromDatal emory: EEPROM DatalMemory

datablemory: Databdemony
PCProgram ounter
portAPORTA
portB:PORTE
portCPORTC
port:PORTD
portEPORTE

mntermupt: Intermupt
adConverter ADConverter
PSP Parallzl8lavePort
timer: Timerl

timer] Timerl
comparatorComparator

+ decodznstiuctiond)
+ ammlatzIns truction()

- latchInRegisters()
- wiiteRzga()

Frogram Counter

PCL:Register
PCLATH:Register

+ getPC 1 3-bats
+ merement PO 1 3-bits
+ merementPCBy 200 1 3-bats

Register

data-byte
prevData:byte

+ read()byte
+ wnte(byte wnteData) vod
+1sChanged() ool

PIC

This class simulates a PIC16F877 microcontroller. It simulates one instruction at a time and does

necessary changes in its components.
Attribute Name Type Description
flashProgMemory FlashProgramMemory Flash program memory
eepromDataMemory EEPROMDataMemory EEPROM data memory
dataMemory DataMemory Data memory
pc ProgramCounter Program Counter
portA PORTA PORT A of the PIC
portB PORTB PORT B of the PIC
portC PORTC PORT C of the PIC

Attributes portD PORTD PORT D of the PIC
portE PORTE PORT E of the PIC
interrupt Interrupt Interrupt module of the PIC
adConverter ADConverter Analog-to-Digital Converter
Attributes psp ParallelSlavePort Parallel Slave Port
timer0 Timer0 Timer 0 of the PIC
timerl Timerl Timer 1 of the PIC
comparator Comparator Comparator of the PIC
Method Name Return Arguments Description
decodelnstruction() void void Decodes the next instruction.
Methods simulatelnstruction() void void Simulates the next instruction.
chinRegs()
writeRegs() void void Wri_te the updated values of the
registers after a step.

SimSys Corporation

26

Register

This class represents a simple register of the data memory of PIC16F877 microcontroller.

Attribute Name Type Description
Attributes data byte The content of the register
prevData byte Previous content of the register
Method Name Return Arguments Description
read() byte void Reads the data in the register.
Methods write() void byte Writes the byte into the register.
Returns true if the content of the
isChanged() bool void register has been changed,

returns false otherwise.

FlashProgramMemory

This class represents the flash program memory of PIC16F877 microcontroller.

Attribute Name Type Description
The content array of the memory
data word[] (each element is 14 bits)
. EEDATA Register EEDATA register
Attributes
EEDATH Register EEDATH register
EEADR Register EEADR register
EEADRH Register EEADRH register
Method Name Return Arguments Description
Methods initialize() void Buffer Initializes the memory.
read() 14bit-data Address Read the data at the Adress.
DataMemory
This class represents data memory of PIC16F877 microcontroller.
Attribute Name Type Description
. . . . The special registers in Data
Attributes specialRegisters Register[] Memory.
. . The general registers in Data
generalRegisters Register[] Memory.
Method Name Return Arguments Description
Methods read() byte Bank, Address ;:2zs the byte at the Adress on
. . Writes the byte to the Adress on
write() void Bank, Address, byte
Bank.
ProgramCounter
This class encapsulates related data and methods for the program counter of PIC16F877 microcontroller.
Attribute Name Type Description
Attributes PCL Register PCL Register in the PIC
PCLATH Register PCLATH Reglster in th_e PIC
(only 5 bits are meaningful)
Methods Method Name Return Arguments Description
get() 13bit void Gets the current value of the PC.

27

ADConverter

cyelebyte =0
etabled:bool=0
ADCOND register
ADCON] register
ADREEL register
ADREEH: register
INTCON Register
FIRL: Register
PIEl Register
TEISA Register
PORTA Register
TEISE: Register
PORTERegister

+ startC onversion/double voltage)woid
+ sittiulate()

EEPROMDataMemory

ADCONL Register
FIR1 REegister
FIEl Register

+PEPread()
+ PEPwrtitel)

. . . Increments the value of the
increment() 13bit void program counter.
. . . Increments the value of the
incrementBy2() 13bit void program counter by 2.
EEPR OMDataMemory Interrupt
databyte[] + checkInternapts()void
EEDATA Register Ti 10
FEDATH Register s
EEADE Register TMRD Regist
e ParallelSlavePort ERS
EEADRH Register i INTCON Register
+read(address) TRISD Register CPTION_EREGRegister
+ write[address) TRISE:Register
FORTD:Register
FORTE.Register

Timerl

Comparator

CIICON Register
CVRCON Register
INTCON Register
FIR2:Register
PIEZ:Register
PORTA Register
TRIZA Register

INTCON Register
FIRl Fegister
PIEl:Register
TWMEIL Register
TWMEIH Register
T1CON Register

This class represents EEPROM data memory of PIC16F877 microcontroller.

Attribute Name Type Description
The content array of the memory
data byte] (each element is 8 bits)
i EEDATA Register EEDATA register
Attributes

EEDATH Register EEDATH register
EEADR Register EEADR register
EEADRH Register EEADRH register
Method Name Return Arguments Description

Methods read() byte Address Reads the byte at the Adress.
write() void Address, byte Writes the byte to the Adress.

ADConverter

This class represents the analog-to-digital converter of the PIC16F877 microcontroller.

Attributes Attribute Name Type Description
cycle byte AD conversion cycle
enabled bool If AD conversion is enabled

28

ADCONO Register ADCONO Register
ADCON1 Register ADCONL1 Register
ADRESL Register ADRESL Register
ADRESH Register ADRESH Register
INTCON Register INTCON Register
PIR1 Register PIR1 Register
PIE1 Register PIE1 Register
PORTA Register Local copy of PORTA
PORTE Register Local copy of PORTE
TRISA Register Local copy of TRISA
TRISE Register Local copy of TRISE
Method Name Return Arguments Description
Methods startConversion() void double :it\?;sat:aelc?gDvcocipavgeerjsion of the
simulate() void void Simulates the AD conversion.
Interrupt

This class handles the interrupt routines of PIC16F877 microcontroller.

Methods

Method Name

Return Arguments

Description

checkInterrupts()

Void Void

Checks if there are interrupts.

ParallelSlavePort

This class represents the Parallel Slave Port of PIC16F877 microcontroller.

Attribute Name Type Description
PORTD Register Local copy of PORTD
PORTE Register Local copy of PORTE
TRISD Register Local copy of TRISD
Attributes
TRISE Register Local copy of TRISE
ADCON1 Register Local copy of ADCON1
PIR1 Register Local copy of PIR1
PIE1 Register Local copy of PIE1
Method Name Return Arguments Description
Methods pspRead() void Void Read the data.
pspWrite() void Void Write the data.
TimerO

This class represents TimerQ of PIC16F877 microcontroller.

Attributes

Attribute Name Type Description

TIMERO Register Local copy of TIMERO
INTCON Register Local copy of INTCON
OPTION_REG Register Local copy of OPTION_REG

29

PIDE Final Design Report

Timerl
This class represents Timerl of PIC16F877 microcontroller.
Attribute Name Type Description
INTCON Register Local copy of INTCON
PIR1 Register Local copy of PIR1
Attributes PIE1 Register Local copy of PIE1
TMR1L Register Local copy of TMR1L
TMR1H Register Local copy of TMR1H
T1CON Register Local copy of TICON
Comparator
This class represents the registers related with the compare mode of PIC16F877 microcontroller.
Attribute Name Type Description
CMCON Register Local copy of CMCON
CVRCON Register Local copy of CVRCON
INTCON Register Local copy of INTCON
Attributes
PIR2 Register Local copy of PIR2
PIE2 Register Local copy of PIE2
PORTA Register Local copy of PORTA
TRISA Register Local copy of TRISA
Port
+ readhpa)void
Hwritelbvtebvoud
PORTA PORTC PORTE
PORT A Register PORTC:Register TRISE Ragister
TRISA Register TRISC:Register PORTE Register
+readIngut] pvoid +rzadInput! kv oid + readInput{ pvoud
+write(byteyvoid +wiite{bytehvoid +wirite(bvte pvoud
PORTB PORTD
PORTE:Register PORTIVRegister
TRISE:Register TRISIXRagista

OPTHON_REGRegister

+ readInput{tvoid
+ wiite{bvte bvoid

+ rzadingut{pvoud
+ witte bvte pvoud

SimSys Corporation

30

Port

This class represents the ports of PIC16F877 microcontroller. Specific ports are inherited from this class.

Method Name Return Arguments Description
Methods readInput() byte Void Reads the input data in the port.
write() void Byte Writes the data into the port.
PORTA :: Port
This class represents PortA.
Attribute Name Type Description
Attributes | PORTA Register (T::I;"S”E?tr;ta°r2trr:qeeapgirrt];ugli)Ster
TRISA Register The data direction Register
Method Name Return Arguments Description
Methods readInput() byte Void Reads the input data in the port.
write() void Byte Writes the data into the port.
PORTB :: Port
This class represents PortB.
Attribute Name Type Description
PORTB Register The content of the Port register
Attributes
TRISB Register The data direction Register
OPTION_REG Register OPTION_REG Register
Method Name Return Arguments Description
Methods readInput() byte Void Reads the input data in the port.
write() void Byte Writes the byte into the port.
PORTC :: Port
This class represents PortC.
Attribute Name Type Description
Attributes PORTC Register The content of the Port register
TRISC Register The data direction Register
Method Name Return Arguments Description
Methods readInput() byte Void Reads the input data in the port.
write() void Byte Writes the byte into the port.
PORTD :: Port
This class represents PortD.
Attribute Name Type Description
Attributes PORTD Register The content of the Port register
TRISD Register The data direction Register
Methods Method Name Return Arguments Description
readInput() byte Void Reads the input data in the port.

31

write() void Byte Writes the byte into the port.
PORTE :: Port
This class represents PortE.
Attribute Name Type Description
Attributes PORTE Register The content of the Port register
TRISE Register The data direction Register
Method Name Return Arguments Description
Methods readInput() byte Void Reads the input data in the port.
write() void Byte Writes the byte into the port.

3.2.4.2. Classes of instructions Package

Instruction

et

+anmlateonself parameterList)

Instruction

This class is an abstract base class for the simulation of PIC mcu instructions.

Attribute Name Type Description
Attributes tvpe int The type of the instruction. (From
yP 1 to 35).
Method Name Return Arguments Description
Methods Simulates the instruction with the
simulateYourself() void parameterList given parameters. Will be
overwriten in the derived classes.

PIC microcontroller has 35 instructions and we have a class for each of these

instructions, which are all derived from the class Instruction. The .hex file to be

simulated will first be converted to a list of instructions, then simulateYourself()

function of each element of the

list will be called. Each

instruction class is

responsible for simulating itself, i.e. performing the required operation, updating

the required registers, etc.

32

PIDE Final Design Report

3.2.4.3. Classes of peripherals Package

Peripheral

wdant
BEnablad bool

Hdraw}

Peripheral
This is a general class representing the peripherals on the CENG336 Board. Specific peripherals are
inherited from this class.
Attribute Name Type Description
Attributes id int ID of the peripheral
isEnabled Bool if the peripheral is enabled
Method Name Return Arguments Description
Methods
draw() void Void Draws the peripheral
Simulator
l - —
P L
- --_,______
I Sy
-~ --_\-""‘--_
KeyPad
St 1 pushButtonVector Vector=PushButton=
+sendDatai ButtonID)
LEDArray SevenSegmentDisplayArray +rzadInput()
= : +wntelnputi Input. PortID)
ledVector Vector<LED sevenSegment Display Vector Vector=SevenSegment Display +drawi)
+3 Yats 1]18)
.:jend[ata(LEDIDY +sendData(SDisplayID) 1
+readIngut{} L
drawi} readinputih .
+arayv +idraw } l(‘l
1 1 PushButton
3 buattenData bryte
b bttondd me
SevenS egmentDisplay s Enalrled bool
LED pushButtonState ButionState
sadlatabvie
led[ratabvta ssildint +wateData(buttonData)
ledld int isEnabledbool +izadData()
o) +elrawi)
s Enabled bool +uriteDatals evenSegmentDis play Data) —
+writeDatailed Data) + f“{[[}_"""") /_?
+readData(} Hdraw)
+draw(} ResetPushButton

SimSys Corporation

+EendResetSignalToliemeontioller PIC)

33

LEDArray :: Peripheral

This class is created in order to keep the information of 8 LEDs. The class is inherited from the Peripheral

class.
Attribute Name Type Description
Attributes
ledVector Vector<LED> The vector of 8 LEDs
Method Name Return Arguments Description
sendData() void ledID Sends data to the LED with ledID.
Methods
readInput() void Void Reads the input.
draw() void Void Draws this peripheral.
LED

This class represents a single LED on the CENG336 Board.

Attribute Name Type Description

ledId int The ID of this LED
Attributes

ledData Byte The data of this LED

isEnabled Bool if this LED is enabled

Method Name Return Arguments Description

writeData() void Byte Writes the data to this LED.
Methods

readData() byte Void Reads the input.

draw() void Void Draws this LED.

SevenSegmentDisplayArray :: Peripheral

This class is created in order to keep the

from the Peripheral class.

information of three “7-Segment Display”s. The class is inherited

Attribute Name Type Description
Attributes -
se_:venSegment Vector<SevenSegmentDisplay > T_he vector of 3 seven segment
DisplayVector displays.
Method Name Return Arguments Description
sendData() void ssdID Sends data to the SSD with ssdID.
Methods
readInput() void Void Reads the input.
draw() void Void Draws this peripheral.

SevenSegmentDisplay

This class represents a single 7-segment display of the CENG336 Board.

Attribute Name Type Description

ssdld int The ID of this SSD.
Attributes

ssdData Byte The data of this SSD.

isEnabled Bool if this SSD is enabled

Method Name Return Arguments Description

writeData() void Byte Writes the data to this SSD.

Methods
readData() byte Void Reads the input.
draw() void Void Draws this SSD.

34

KeyPad :: Peripheral

This class represents the Keypad display of the CENG336 Board. The class is inherited from the Peripheral

class.
Attribute Name Type Description
Attributes
pushButtonVector Vector<PushButton> The vector of 16 push buttons.
Method Name Return Arguments Description
. Sends data to the push button
sendData() void buttonID with buttonID.
Methods readInput() void void Reads the input.
. . Sends the input data to the port
writeInput() void Data, portID with portiD.
draw() void void Draws this peripheral.
PushButton

This class represents a single “push button” display of the CENG336 Board.

Attribute Name Type Description
buttonId buttonID The ID of this push button.

Attributes buttonData Int The data of this button.
isEnabled Bool if this button is enabled
State Int The state of this button
Method Name Return Arguments Description

Methods readData() Int Void Reads the input.

draw() Void Void Draws this push button.

ResetButton :: PushButton

This class represents the “reset button” display of the CENG336 Board.

Method Name

Return

Arguments

Description

Methods

sendResetSignalToPIC()

Void

Void

Sends RESET signal to the PIC.

35

PIDE Final Design Report

USART

SmartCardReader

l siatCard Data: SoartCard Data

+wiiteInput{}
+rzadlnput{}
+draw(}

__a" +readInput(SmartCard Data)
o |rdoaw()

paralzlPortData ParalelPort Data

s bPortData: USBEPort Data

SerialPort

senalPortDiata SenalPort Data

I. F f..' 7
/ Potentiometer
"4 I
£
7 I | [analogData:float
i/ £ i
1 f_; 1 f,.-"' ,»’f Hevrite Inpaatd gt FootI0
L /1 -~ +readInputi)
. Simulator el
Speaker I
l_ 1 g InfraredTransmitter
+rzadingt{) B -, '“‘-ul
+ensateSound() = N| ~|uDataInfiaredData
, e x__ W
lraw() 1 P 1 i N, +Hransut(}
e \ *, +drawi()
sz '_. ‘\x
l /f \"\\.‘
- b, 1 InfraredReceiver
BoardPort M, Y
S YiData Infrar=dData
\
. .\. - 1Tr
+write Input{heput Port [T 5, Tracevel)
+rzadlnput(} h, +draw(}
+Hnitializ=Port(} b
by
+draw(} b,
b,
A ¥ LCD
'\\._.
1 jcdData LCDData
led Strng :Sting
; +sendData(LCDLine, String)
FarallelPort USBFPort)

+rzadinput{}
+aetLCD ontrast)
+draw(}

LCD :: Peripheral

This class represents the LCD display of the CENG336 Board. The class is inherited from the Peripheral

class.
Attribute Name Type Description
Attributes Data LCDData The data of the LCD.
lcdString String The string on the LCD.
Method Name Return Arguments Description
sendData() void String Sends data to the LCD.
Methods readInput() void Void Reads the input.
setContrast() void Float thir?(g?;v?ne \f;::.aSt of the LCD
draw() void Void Draws this peripheral.

SimSys Corporation

36

ParallelPort :: BoardPort

This class represents the Parallel Port of the CENG336 Board. The class is inherited from the BoardPort

class.
Attribute Name Type Description
Attributes
Data ParallelPortData The data of the port.
Method Name Return Arguments Description
Methods
draw() Void Void Draws this peripheral.

SerialPort :: BoardPort

This class represents the Serial Port of the CENG336 Board. The class is inherited from the BoardPort

class.
. Attribute Name Type Description
Attributes -
Data SerialPortData The data of the port.
Method Name Return Arguments Description
Methods
draw() Void Void Draws this peripheral.

USBPort :: BoardPort

This class represents the USB Port of the CENG336 Board. The class is inherited from the BoardPort class.

Attribute Name Type Description
Attributes

Data USBPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() Void Void Draws this peripheral.

USART :: Peripheral

This class represents "USART(Universal Synchronous Asynchronous Receiver Transmitter)” of the
CENG336 Board. The class is inherited from the Peripheral class.

Method Name Return Arguments Description

writeInput() void Void Writes data.
Methods

readInput() void Void Reads the input.

draw() void Void Draws this peripheral.

Speaker :: Peripheral

This class represents the “Speaker” of the CENG336 Board. The class is inherited from the Peripheral

class.
Method Name Return Arguments Description
readInput() void Void Reads the input.
Methods) Generates sound according to the
generateSound() void Data given input.
draw() void Void Draws this peripheral.

37

Potentiometer :: Peripheral

This class represents the “Potentiometer” of the CENG336 Board. The class is inherited from the

Peripheral class.

Attribute Name Type Description
Attributes
analogData float The an_alog voltage value of the
potentiometer.
Method Name Return Arguments Description
. . Writes data to the Port with

writeInput() void Data, PortID PortiD

Methods :
readInput() float void Reads the input.
draw() void void Draws this peripheral.

InfraredTransmitter :: Peripheral

This class represents the “Infrared Transmitter” of the CENG336 Board. The class is inherited from the

Peripheral class.

Attribute Name Type Description
Attributes data InfraredData -trr};eréjnitiftg:.the infrared
Method Name Return Arguments Description
Methods transmit() Void void Transmits the data.
draw() Void void Draws this peripheral.

InfraredReceiver :: Peripheral

This class represents the “Infrared Receiver” of the CENG336 Board. The class is inherited from the

Peripheral class.

Attribute Name Type Description
Attributes
data InfraredData The data of the infrared receiver.
Method Name Return Arguments Description
Methods receive() void void Receives the data.
draw() void void Draws this peripheral.

38

3.2.4.4. Classes of analysis Package

AnalysisTool

1d: it
1z Enablzd: bool

+degplan}
+enabla(}
+dizabla(}
+oollzctStatistics ()

Stopwatch PinListener

watchstatus WatchStatus pot - Port
b long puiMumber © it
tune Chart -t []

+displavi(}

+startTunei(} +eisplay i)
+3 h.‘llJTj.lIk‘l‘i b +aceStamsToTune Chart(PmStatos mib
+eleai() +ddrawGaphi)
+mcrzment(} Hieset)
AnalysisTool

This is a general class representing the analysis tools we defined. Specific analysis tools are inherited from
this class.

Attribute Name Type Description

Attributes id Int The ID of the analysis tool.
isEnabled bool If the analysis tool is enabled.
Method Name Return Arguments Description
enable() void void Enables the analysis tool.

Methods disable() void void Disables the analysis tool.

display() void void Displays the analysis tool.
collectStatistics() void void Collects the anaysis results.

StopWatch :: AnalysisTool

This class represents the “stop watch” property of the analysis tools. The class is inherited from the
AnalysisTool class.

Attribute Name Type Description
Attributes status Int The stop watch status
time Long The time passed during execution
Method Name Return Arguments Description
startTimer() void Void Starts the timer.
increment() void Void Increments the timer value.
Methods
stopTimer() void Void Stops the timer.
clear() void void Resets the timer.
display() void void Displays the analysis tool.

39

PIDE Final Design Report

PinListener :: AnalysisTool

This class represents the “pin listener” property of the analysis tools. The class is inherited from the
AnalysisTool class.
Attribute Name Type Description
Port Port The Port that the pin belongs to.
. pinNumber int The pin humber on the Port.
Attributes
Status int Current status of the pin.
The array to display the pin value
timeChart int[] (0 or 5) with respect to time.
(Starts from time = 0)
Method Name Return Arguments Description
. . . Adds the given status of the pin (0
addStatusToTimeChart() void int or 5) to the timeChart.
Methods drawGraph() void void Draws the timeChart graph.
reset() void void Resets the pin listener.
display() void void Displays the analysis tool.

3.2.5. Classes of debugger Package

Break PointHandler

brealPomtList List=BraakPout

+addBrzakPomt{ LineFumber)
+dizablzBreakpomt{braakPomt D
+remove BreakPomt{ breakPomt [0
+displavBreakPoints(}

+1z AthreakPomt LinzBumber)

+1z Valid BreakPomt{ LineMumber)

WatchPointHandler

watchPomtList List="WatchPomt

+addWatchPomt LineMumber}
+disableaWatchpomtiwatchPont D
+remove WatchPoint{watchPomt 1D
+displayWatchPomts(}

+is WatchPointChangediwatchPointIL)
+isValidWatchPointregisterAddress)

Debugger

breakPomHandlzr BreakPomtHandlzy
watchpomtHandlzr WatchpomtHandler
debugFilz DebugFilz
expeutionControllar ExzcutionControllar

+debug(}

+atep(LineReference
+atepintolLinsReterence)
+atepCut{LineReference)
+atepUiver(LineRefarence)
+eoToCus o Cus orLine Re farence)

+displayDatad}
1

|

ExecutionController

Simulator

—axzentesmgleIns tructiond s toaction
~exgenteLinsLinsRefaience)

SimSys Corporation

40

Debugger

This class involves the general attributes and related methods of the debugger.

Attribute Name

Type

Description

breakPointHandler

BreakPointHandler

The breakpoint handler.

watchPointHandler

WatchPointHandler

The watchpoint handler.

Attributes

debugFile DebugFile The file used during debugging
process.

executionController ExecutionController The 5|m_ulator used during
debugging process.

Method Name Return Arguments Description

debug() void void Starts the debugging process.

step() void LineReference Executes one step.

stepInto() void LineReference Steps into the next block.

Methods

stepOut() void LineReference Steps out of the current block.

stepOver() void LineReference Steps over the next block.

gotoCursor() void cursorPosition Executes upto the cursor position.

displayData() void void Displays the debug data.

ExecutionController :: Simulator

This class involves the methods to control the execution of a program. The

Simulator class.

class is inherited from the

Methods

Method Name Return Arguments Description
executeSinglelInstruction() | void Instruction Fnﬁ?ﬁzfiz;he the given single

. . . Executes one line in the
executeLine() void LineReference

AsmPlusFile.

BreakPointHandler

This class involves the necessary attributes and methods related with the breakpoints specified in the
debug procedure.

Attribute Name Type Description
Attributes
BreakPointList List<BreakPoint> The list of the breakpoints.
Method Name Return Arguments Description
addBreakPoint() Void LineNumber ;’-i\ggs a break point to the given
. . . . Disables the break point with
disableBreakPoint() Void breakPointID breakPointiD.
. . . Removes the break point with
ethod removeBreakPoint() Void breakPointID breakPointiD.
ethods ; ;
displayBreakPoints() Void Void eDésit;:);z:ys the breakpoints on the
Returns true if there exists a
isAtBreakPoint() Bool LineNumber breakpoint on the line with
lineNumber.
Returns true if there exists a valid
isValidBreakPoint() Bool LineNumber breakpoint on the line with
lineNumber.
WatchPointHandler

This class involves the necessary attributes and methods related with the breakpoints specified in the
debug procedure.

41

Attribute Name Type Description
Attributes
watchPointList List <WatchPoint> The list of the watchpoints.
Method Name Return Arguments Description
. . Adds a watch point to the given
addWatchPoint() void Variable variable. P 9
. . . . Disables the watch point with

disableBreakPoint() void watchPointID watchPointiD.

removeWatchPoint() void watchPointiD Remove; the watch point with
watchPointID.

Methods

displayWatchPoints() void Void Displays the watch points.
Returns true if there exists a

isValidWatchPoint() bool registerAddress watch point associated with the
given registerAddress.
Returns true if the variable

isWatchPointChanged() bool watchPointID associated with watchPointID is
changed.

3.2.6. Classes of programmer Package
Programmer

Com pParallelPort

buffzr Buffzr

pavallzlPort Parall2lPort

+itiahzs Port()
+sendDatalBuffer)
+HecewveDatal Buffzr)

+ writeFile{HEXFil=)
+rzadFile{ HEXFil=Buffzr)
+veanfyFile(filz 1. HEXFil=_fil=2- HEXFil=}

+erasebamorvi)

Programmer
This class involves the necessary attributes and methods to program the microcontroller.
Attribute Name Type Description
Attributes The parallel port of_the co_n_"nputer
port CompParallelPort to be used for reading/writing
programs to the PIC.
Method Name Return Arguments Description
write() void HexFile Writes the hex file to the PIC.
read() void HexFileBuffer Reads the program on the PIC.
Methods) Compares the program on the PIC
verify() void HexFile, with the one on the buffer and
HexFileBuffer .
verifies.
erase() void Void Erases the program on the PIC.

CompParallelPort

This class drives the parallel port of the computer which is going to program the board.

Attribute Name Type Description
Attributes
portBuffer Buffer The buffer to be used for the parallel port
of the computer.
Method Name Return Arguments Description
initialize() void void Initializes the port.
Methods i i
sendData() void void Sends the data in the buffer to the port.
receiveData() void void Ejfcfilres the data from the port into the

42

3.3. Flow-Oriented Modeling
3.3.1. Editor Module

Open File
)
<1; PMenuBar PEditorPane Source File Parser PEditorkit
A
l,n". \ T : T : T
! \ 1
User : : I : :
| ! I I
| |
- I |
— | I
I |
| I
I |
| I
| I
Ll y !
I l
| I
readFileIntoBuffer{)) : :
S loadFile() Py : :
: parselsourceFile) I :
|
! l
1
|
h]

highlightWords(;iourchiIc)"

1]

| displayText(fileBuffer)

When the user selects "Open File" from the menu, a file selection dialog is shown.
As soon as user picks a valid file, it invokes the readFileIntoBuffer() method of
the PEditorPane object which reads the text data of the file into its buffer array.
For this purpose, this function invokes the loadFile() method of the related source
file object. After the actual source file is loaded into memory, it is parsed and
tokenized and these tokens are sent to PEditorKit to be colored. After highlighting

the source code, it is displayed on the screen.

43

PIDE Final Design Report

Save File
()}
EhlenuBar PEditorPane PIDEFile
Fi)
=g : . i
User ! ; i
1 I i
1 1
— -
getActiveFile() -
g 2ctiveFileName
1
1
1
1
saveFdes0

When the user selects "Save File" from the menu, the system determines the
active file in the current editor panel with the getActiveFile() method of
PEditorPane object. Then saveFile() method of the related File object is invoked

so that content of the fileBuffer is written into specified file.

Close File
I’—\
4\% ‘PhlenuBar :PEditorPane PIDEFile
_,f"f \ : E
User : :
1 L
- -
getActiveFile() —
S activeFilkeName
-‘T"\-‘
isDhrtyy) -
/

[isDvirty = Fake]closeActiveFike()
-

closeFile()

When the user selects "Close File" from the menu, the system determines the

active file with the getActiveFile() method of PEditorPane object and check if the

SimSys Corporation 44

PIDE Final Design Report

file is dirty, i.e. any change has been made since the last save operation. If the

file is not dirty, the related editor tab of the active file closed. If the file was dirty,

then system would warn the user and ask if he would like to save the changes

before closing the file.

3.3.2. Compile Module

compilz()

Y

[ABM++]
syntax_heck()

il
-

[Exron]puint Errorf A SM++SvntaxEror) |

[no Emor& & A Sh++]

generate ASM()
-
\T“
creats) ok LA -

. =t ASMFile
I

saveFila{} : 4‘—

closeFile() | NS
! N
I

-
-

addFileToPropct{generated A SMFile}
|

generate HEX()

A

cleate

= :ExecutableFile

|

closeFile(}

-
|-

|
+
|
I
|
saveFile() i
I
|
|
I

addFilsToProjct{gensrated HEXFil=)

(]

When the user presses "Compile" button on the toolbar, the system invokes the

compile() method of the Compiler object. If the file is an ASM++ file, it calls the

syntaxCheck() method, which checks if there is an error or not syntactically or

not. If there are any errors it prints an error message on the PConsolePane. If

there are no errors, it creates an ASMFile object for the intermediate ASM file.

The generated ASM file is added to the project workspace.

SimSys Corporation

45

PIDE Final Design Report

After generating an ASM file, Compiler object generates the executable file from

the ASM file. This file is added into project workspace, too.

3.3.3. Simulate Module

:PMenuBar :Simulator dnput TestFile :PIC Output ..-.\.lﬁﬂif.hm
Eeripherals Peripherals

T T
1 T !
1 I !
! I
1 | !
1 | !
i i I
simulate() : : :
readlnput(d | 1 I |
getnputs(y : :
I
1 | !
! I
1 | !
1 1 I I
5 1 1 !
! I
1 1 !
! nput il 1 I |
T Lz 1 I
\ 1 | |
'/ 1 | |
l | |
T L ;
1 1 I I
1 1 !
! I
1 I !
1 | !
l | i
1 I I
sumilate[nstruction() " I :Flchln"Regsn] :
= I I
:rlemclé‘lnslmclmm_l :
I I
G Pl ‘
] |
| |
I I
| |
| |
| I
1 I
1 I !
1 | !
i I
1 | |
1 1 !
; I
| |
| |
| I
I
K I
wite Input{ o5 |
I
I
I
I
collzctStatistics()
; -
sinmilation completed]
‘HmlnlmnTemInnlec
i
1
1
i

When user selects “Simulate” from the menu, the system invokes the simulate()
method of the Simulator module. simulate() method runs until simulation is
stopped. In the sequence diagram, operations after simulate() method simulates
one clock cycle of the board. In other words, simulation runs in discrete time

intervals. During simulation, simulate() keeps simulating the clock cycles.

Simulator module can be run in two different modes. First of them is the direct
interaction with the user and the other is using a test file. In either case
Simulator sends readlnput message to all enabled input peripherals to see if

there is an input from a source. Peripherals update their data accordingly and

SimSys Corporation 46

return. Simulator then sends simulatelnstruction() message to PIC which first
calls latchInRegs function to take a snapshot of the current registers before
simulating a cycle of the PIC. After saving registers, PIC simulates its modules
and saves last data with writeRegs() function. After simulating the PIC, Simulator
now passes PIC's last state to output peripherals and simulates them. At the end
of the cycle, analysis tools such as pin listeners update data with

collectStatistics() method. Simulation is stopped by user's request.

3.3.4. Debugger Module

When the user presses the "Debug" button on the toolbar, the system calls the
debug() function of the Debugger object. The Debugger object calls the
nextInstruction() method immediately of the ExecutionController object.
ExecutionController object calls two functions:

1. isBreakpoint() method of the BreakpointHandler object to see if the
current line has any breakpoints. It returns “true" or "false".

2. isWatchpoint() method of the WatchPointHandler object to see if data

elements in the current line have any watchpoint. It returns “true" or "false".

It takes three branches into execution according to the return values of these
functions.
Debug at Breakpoint
9
[‘PMenuBar :Debugger :g‘]- !‘. :llll =

i
\
b,

User

debug(}

- nexlnstmction()

isBreakpoint()

[EBF]
debugHalt_breakpt

stepl)

; *nextIns tmectiond}

i

47

PIDE Final Design Report

If isBreakpoint() returns true, Execution Control returns the breakpoint
information to the Debugger and it informs the system that a breakpoint is
reached. So debugger stops simulating and waits for the user interaction. When
user steps into the next instruction, the stepCallBack() method is invoked and the

Debugger continues with the next instruction.

Debug at Watchpoint

0
' PMenuBar ‘Debugger Lxecution :Breakpoint Watchpoint
A\ 2 Tog
f../ \ Controller Handler Handler
Vi T T
! & 1 1 T - T
User 1 1 | i 1
| 1 I | | !
| | I I | !
P 'S MR S — R i
- debug(y
nestinstchion(} o
>
s Braakpomt(} -
- false
15WalchFomt()
|-
<l
-
[WE]

‘ncbu gHalt watchpt

stepl)

Fneatlnstuction]) o
-

If isBreakpoint() returns false and isWatchpoint() returns true, the Execution
Controller returns the watchpoint information to the Debugger and it informs the
system that some data that has watchpoint on it has been changed. So debugger
stops simulating and waits for the user interaction. When user steps into the next
instruction, the stepCallBack() method is invoked and the Debugger continues

with the next instruction.

SimSys Corporation 48

PIDE Final Design Report

Debug without Breakpoint and Watchpoint

Facegubic) Brealpoint Watehpoint
-
PMenuBa Delugger el T Handler
T T
]] | :]
| : ; | ;
] | |) |
debnz(i i
=) nextinstmetion o
>
pBreakpoint{}
- false
|
i=WatchFomHh)
- |‘.1||>;¢
|
Ve Instmehoni)
f—— e e e

If isBreakpoint() and isWatchpoint() return false, the Debugger steps into the

next instruction without any prompt.

3.3.5. PIC Programmer Module

Write

cetAactvel e)

witeFila(filaMame)

When the user selects "Write" from the menu, the system controls if the active
file in the editor is an executable file which is directly passed on to Programmer

module. If not, a file browser window pops up so that user can select an

SimSys Corporation 49

PIDE Final Design Report

executable file to download to the PIC. Then the module establishes a connection

with the board and programs the PIC using parallel port.

Read

-

_4
&
s
=

readFile(}

loadFilsIntoBuffen) _

When the user selects "Read" from the menu, system invokes readFile method of
the Programmer module. Programmer establishes a connection with the board
and flash program memory is read by the Programmer. The retrieved file is read
to the editor buffer by calling the loadFileIntoBuffer() method of the PEditorPane

object.
Verify
o
I (PhdenuBar PEditorPane Progranumne:
"I-.’ -\-\-. ! :
[Tlst: i o :

gt A ctiveFilaq}

werify Filed)

When the user selects "Verify" from the menu, the system controls if the active
file in the editor is an executable file. If not, a file browser window pops up so
that user can select an executable file to compare with the one currently on the
PIC. Then the module establishes a connection with the board and compares two

files.

SimSys Corporation 50

PIDE Final Design Report

4. Graphical User Interface Design

Below in Figure 4.1, the GUI of the PIDE program, showing the menus, toolbars,

tabs, workspace view and the status bar can be found.

File Edit Yiew Project Simulate Debug Programmer Analysis Tools Help

(2[n[e] > ¢/a[e] sfon]uwe u]>]B]

Workspace | [FileLasm | file2.asm |

5/ale

../Projects asdasd
D ..fProjects fHex Files

o= [../Projects/source Files
[y .. sProjectsTest Bench Files
D .Clas=zpath
[.project

[il [»

[Console |

warning - a nuclear missile has been Iaunchedl

e __||
Figure 4.1

Figure 4.1 shows the case with an opened project, and two opened asm files. The
workspace view is also present on the left hand side. The program is able to

handle multiple opened files using a tabbed view.

In Figure 4.2, the menu bar of the PIDE is shown. The menu items will be

explained in detail in the following sections.

File Edit Yiew Project Simulate Debug Programmer Analysis Tools Help

i

Figure 4.2

SimSys Corporation 51

In Figure 4.3, the toolbar of the PIDE is shown. Here exist shortcuts of the

frequently used operations in the menu bar.

. @ﬂ 3 = : *,gb = Tonmal we [r D,"

Figure 4.3

MENUS
There are File, Edit, View, Project, Simulate, Debug, Programmer, Analysis, Tools
and Help menus in the PIDE program. The operation of each menu item is

described below.

EILE MENU
New | Project Create a new project. File | Edit View Project Simulat
ASM File Create a new ASM file. e | Eroject
: : Open... ASM File
ASM++ File Create a new ASM PlusPlus file. Flase ;
A5M4++ File
Test File Create a new Test file for simulation. o Test Filn
Open... Open an existing file. Save As..
Close Close the current file. b
Save Save the current file. :
Save As... Save the current file with a different Falk
name or save to a different place.
Recent Files Shows the most recently used files,
Recent Projects Shows the most recently used projects,
Exit Quit from the program.
EDIT MENU
Edit | View
Undo Undo the last action.
Undo
Redo Redo the last undo action. Redo
Cut Cut the selected item. Cut
Copy Copy the selected item. Copy
Paste Paste the last cut or copied item. Lasie
Find
Find Find a given word in the current file.
Replace
Replace Replace the given word with another word.

52

VIEW MENU

Tools

Show/Hide the toolbars of File, Edit,

Build and Debug menus.

Status Bar
Console
Debug

Workspace

PROJECT MENU

Open Project
Save Project
Close Project
Build

Build Options

Add File to Project

Remove File from Project

Properties

SIMULATE MENU

Start
Pause
Continue
Stop
Settings

DEBUG MENU

Show/Hide the status bar.
Show/Hide the console view.
Show/Hide the debug windows.

Show/Hide the workspace view.

Open an existing project.

Save the current project.

Close the current project.

Build the current project.

Change the build options.

Add a new file to the current
project.

Remove a file from the current
project.

Change the project properties.

Start the simulation.
Pause the simulation.
Continue the simulation.
Stop the simulation.

Change the simulation settings.

Tluf-i|!1:ﬂ.:r| Project Simulate D

Tools

¥ Status Bar
¥ Console

0 Debug

0 Workspace

B ¥ File

¥ Edit

¥ Build
¥ Debug

S

Project | Simulate Debug Pro

Save Project

Open Project

Close Project

Build

Build Options

Add Fileds) to Project
Remove File(s) from Project »

Properties

Simulate | D¢
Start
Pause
Continue
Stop

Settings

Dehug! Programmer Anal

Breakpoint
Watchpoint
Start

Step

Step Into
Step Out

Add or Remove breakpoints.
Add or Remove watchpoints.
Start the debugging process.
Execute one step.

Step into the next block.

Step out of the current block.

Ereakpoint »
Watchpoint #

Add
Remove

Start
Step
Step Into
Step Out
Step Over
Stop

Settings

53

Step Over
Stop
Settings

Step over the next block.
Stop the debugging process.
Change the debug settings.

PROGRAMMER MENU

Write
Read
Verify
Erase

Settings

ANALYSIS MENU

Add
Display
Hide

TOOLS MENU

Customize

Options

HELP MENU

About PIDE...

Contents
Index

Search

Write the current program onto the PIC.

Read the program in the PIC.

Verify if the program is written correctly onto the PIC.

Erase the program written in the PIC.

Change the programmer settings.

Add a new analysis tool.
Display the analysis results.

Hide the analysis results.

Customize the program settings.

Change the program options.

Show brief information about the program.

Show the help contents.
Show the help index.

Search a help topic in the help contents.

Write
Read
Yerify
Erase

Settings

Analysis |

Add
Display
Hide

Tools | Help

Customize
Options

Help

About PIDE
Contents
Index
Search

54

PIDE Final Design Report

The settings for different components and operations such as Editor, Debugger,
Simulator, Compile or Programmer are grouped in a separate frame which is the
“Settings” frame. Below the Programmer settings is shown in Figure 4.4 as an

example.

r Editor rSimulatiun rCumpiIE rDehug Programimer

BaudRate (9600 | v
port

Bit per Data w7 o8
Parity Bit) yes @ no
Stop Bit

Figure 4.4

SimSys Corporation 55

5. Components to be Simulated

In this section, the internal structures and implementation details of the board

components are described and design strategy of the simulator is given.
5.1. PIC MCU

The PIC microcontroller instruction set contains 35 basic instructions. All of those
basic instructions are single word, i.e. 14 bits. They last finite durations, read
from some specific registers and update some other specific registers. Therefore,

simulations of all 35 instructions are independent and atomic.

It should be emphasized that the accuracy of the simulation is very important in
the design. The responses obtained on the actual hardware and the virtual board
must be consistent throughout the operation. In order to simulate the hardware
which has actually an edge-triggered behavior, the sequential simulator should
employ special mechanisms. This is due to the fact that various resources such as
registers are shared by multiple modules. Therefore, these shared resources will
be implemented within the simulator with local copies inserted into all those
sharing modules. Firstly, the input devices will first modify their local registers
and then updating the globals. Afterwards, the PIC will simulate itself, updating
the local and then global registers. Finally, the output peripherals will be

simulated, latching in the global register contents and displaying outputs.

5.1.1. Memory

The memory system of the MCU is composed of FLASH program memory, the
RAM Data Memory and the EEPROM Data Memory.

FLASH Program Memory
The program to be uploaded is stored in the Flash Program memory, which has
8KB storage. Each instruction is 14 bits wide. Since the program counter is 13

bits wide, 2!* = 8K-words can be addressed in the Flash program memory.
Paging

The FLASH program memory consists of four pages. The address ranges of those

four pages are given below.

56

Page Number | Start Address | End Address
Page 0 0005h 07FFh
Page 1 0800h OFFFh
Page 2 1000h 17FFh
Page 3 1800h 1FFFh

As a result of the paging system of the program memory, the operations of the
jump instructions require special attention. The CALL/GOTO instructions take
11bit arguments, addressing only 2KB of the memory. Actually, the MSB 2 bits of
the address are taken from PCLATH<4:3>. Therefore, when a subroutine in
another page is to be called, first the PCLATH<4:3> bits should be set
accordingly, and then the low order 11 bits should be given to the CALL

instruction.

Registers

Register Usage

EEDATA Data

EEDATH Data

EEADR Address LSBs

EEADRH Address MSBs (0000h-1FFFh)

EECON1 controls

EECON2 controls

Read and Write Operations
Data read operation from the FLASH memory is performed as single word read

and data write operation is performed as four word block write.

Read

Write address to EEADRH and EEADR

Set EEPGD

Set RD

Wait for 2 cycles idle (those statements are ignored)
Read from EEDATH and EEDAT

i AW

Write

A write operation to the FLASH program memory can only be performed if not
write-protected mode is selected, as defined in device configuration word bits
WRT<1:0>

57

Data is written in four word blocks, where a block is four words with sequential

addresses. These four words are identified by EEADR<1:0> bits.

Load ALL 4 buffer registers with order 00-01-10-11:
1. Write address to EEADRH and EEADR

Write data to EEDATH and EEDATA

Set EEPGD

Write 55h to EECON2

Write AAh to EECON2

Set WR

Wait for 2 cycles

® N O vk wWwN

When last one is written, data is transferred from buffers to FLASH.
9. Then, processor waits for 4ms for the write to be completed.
RAM Data Memory

The RAM data memory is 512B, containing the special purpose registers and

general purpose registers (368B).

Bank System

The RAM Data memory is comprised of 4 banks. Bank selection is performed by
means of RP1 (Status<5>) and RP2 (Status<6>) bits. Data memory registers can
be divided into two groups. First group is the special purpose registers. They are
used to control the inputs, outputs and other PIC functionalities. The other group
is the general purpose registers. They are simply used as data storage. Data
memory size is 128 Bytes/Bank (128 = 0x7F).

An important note should be added here. Since the central processing unit of the
PIC microcontroller has a very limited RISC architecture core, it has no special
registers in it. Also the memory read/write speed is the same as the registers
inside the CPU. As a result, the memory of the PIC is used just as registers.
Therefore, Microchip refers the memory words as registers and in this report from

this point forward, the data memory words will be referred as registers.
The distribution of the data memory space is given in the figure. As can be seen

from the above distribution of the registers, the first portions of all four banks are

reserved for special purpose registers and the rest for general purpose registers.

58

The bitwise explanation of the special purpose registers are given in the PIC
16F877 datasheet by Microchip.

A careful examination of the above data memory address space gives us why
Microchip defines the data memory “up to 368 Bytes”. The General Purpose
Registers are totally 96+80+16+80+16+80 = 368 Bytes.

Among the special purpose registers, the some registers are of special interest.
Those registers are STATUS, OPTION, and INTCON. STATUS register is controlled
to switch between the banks, Time-out, Power-down modes and carry/borrow
control of arithmetic operations. OPTION register is used to enable PORTB internal
weak pull ups, Interrupt enabling, timer source and edge and prescale selections.
INTCON register is used to configure the interrupts in the system. Global,
peripheral, timer, external, portB interrupts are enabled and the flags are
read/cleared from this register. There are also PIE1, PIR1, PIE2, PIR2 registers

for enabling peripheral interrupts and their flags.

The PCON register contains the flags for different types of reset operations such

as power-on reset, watchdog reset external reset and brown-out reset.

59

FIGURE 2-3: PIC16F876A/877A REGISTER FILE MAP

File File File File
Address Address Address Address
Indirect addr."! | 0on Indirect addr!™? | gon Indirect addr.'}| 100h Indirect addr, | 180k
TMRO 0ih OFTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCL Q2h PCL 82h PCL 102h PFCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSE 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTE D5h TRISB 85h PORTE 106h TRISB 186h
PORTC O7h TRISC 87h 107h 187h
PORTD! | 08h TRISD"N | &8h 108h 188h
PORTE!" | 0%h TRISE™ | 8an 108h 188h
PCLATH 0Ah PCLATH Bih PCLATH 104h PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PIR1 0ch PIE1 BCh EEDATA 10Ch EECON1 18Ch
PIR2 0Dh PIE2 80h EEADR 10Dh EECON2 180h
TMRAL 0Eh PCON 8EN EEDATH 10Eh Reserved® | 18Eh
TMR1H OFh BFh EEADRH 10Fh Reserved® | 18Fh
TACON 10h 80h 110h 190h
TMR2 11h SSPCONZ | 91h 11h 191h
T2CON 12h PR2 g2h 112h 192h
SSPBUF 13h SSPADD 93h 113h 193h
SSPCON 14h SSPSTAT | 94h 114h 184h
CCPRIL | 15h a5h 115h 185h
CCPR1H 16h 98h 116h 198h
CCPICON 17h a7h Genaral 17h general 197h
" Purpose A Furpose
RCSTA 18h TXSTA a8h Registar 118h Registar 198h
TXREG 19h SPBRG 9ah 16 Bytes 11gh 16 Bytes 198h
RCREG 1Ah B4R 1A 194h
CCPR2L 1Bh 9Bh 1Bh 19Bh
CCPR2H | 1Ch CMCOM ach 1Ch 19Ch
CCP2CON_| 1Dh CVRCON | aph 110h 190N
ADRESH 1Eh ADRESL aEh 1Eh 19Eh
ADCOND | TFh ADCON1 4Fh 1Fh 19Fh
20h AOh 120h 1A0Nh
General General General
Purpose Purpose Purpose
General Ragister Register Register
Purpose
Register 80 Bytes 80 Bytes 80 Bytes
90 Bytes EFh 16Fh 1EFh
ACCESSEs FOh ACCesses 1700 accesses 1Fh
70h-7Fh 70h-7Fh 70nh - 7FN
7Fh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3
[Unimplemented data memory locations, read as ‘0.
* Mot a physical register,
Note 1: These registars are not implemented on the PIC16FBTEA.
2: These registers are resarved; maintain these registers dear.

Indirect Addressing

Indirect addressing is accomplished by means of INDF virtual register name.
When INDF is used as the target address, actually the address pointed by the FSR
(File Select Register) register is accessed. 8 bits in FSR register and 1 IRP bit give
9 bits to address the overall 2KByte data memory (000h - 1FFh).

EEPROM Data Memory

The EEPROM data memory has 256Bytes of storage and is the non-volatile data

storage system.

60

Register Data Memory
EEDATA 8 bit data

EEADR Address (00h-FFh)
EECON1 Controls

EECON2 Controls

PIR2 flags

Data read operation from the EEPROM memory is performed as single byte read

and data write operation is performed as single byte write. The EEPROM data

memory is not directly addressed, but is accessed indirectly via special registers.

EECON1 Register Contents
EEPGD=0 Data
EEPGD=1 Program

RD read , can only be set by user; reset by hardware
WR write , can only be set by user; reset by hardware
WREN write enable

WRERR write error when there’s a MCLR or WDT reset

PIR2 Register Contents

EEIF

Write complete interrupt flag

Read Operation

w N =

Write address to EEADR
Clear EEPGD
Set RD

4. Next cycle, data is ready at EEDATA, so next instruction can read it

Write

WR inhibited from being set if WREN is cleared

Disable interrupts (if enabled).

1. Write address to EEADR.
2. Write 8-bit data EEDATA
3. Clear EEPGD

4. Set WREN

5.

6.

Execute the special five instruction sequence:

Write 55h to EECON2 in two steps (first to W, then to EECON2)

61

ii. Write AAh to EECON2 in two steps (first to W, then to EECON2)
iii. Setthe WR bit
Enable interrupts (if using interrupts).

Clear the WREN.
9. At the completion of the write cycle, the WR bit is cleared and the EEIF

interrupt flag bit is set. (EEIF must be cleared by firmware.)

Program Counter

The program counter (PC) of the Microcontroller is a part of the data memory.
The value inside the PC shows the next instruction to be executed in the program
memory. The PC 13 bits, and is held in two registers.
e 8 LSBs (<7:0>) are in PCL register, readable and writable.
e MSB 5 bits (<12:8>) are copied from PCLATH register (<4:0>) on a “write
to PC” instruction such as "ADDWF PCL".

PCH PCL

13 8 7 0
PC
‘l\ |
7 4 0
PCLATH
PC Stack

Related to the PC, the stack is of primary importance. Stack is used to store the
current value of the PC in case of a subroutine/function call, to be able to proceed
with normal operation upon return. The user cannot access (i.e. read or modify)
the stack.

e Stack is 8 PC words (13 bits) deep.

e Stack pointer is not readable / writable

e Stack is circular, i.e. a 9™ write overwrites stack address O.

62

5.1.2. PORTS

There are five ports on the microcontroller. These ports are used for various
purposes, but mostly for digital I/0. The names of the ports and the number of
pins on each are PORTA (6), PORTB (8), PORTC (8), PORTD (8) and PORTE (3).

Port Name Pins Connected Modules

PORTA 5 Digital Input/Output
A/D Converter(default)
Comparator

SPI

Timer0

PORTB 8 Digital Input/Output
External Interrupt
Weak internal pull-up

Interrupt on Change

PORTC 8 Digital Input/Output
Timerl
PWM 1-2
SPI
I2C
USART
PORTD 8 Digital Input/Output
Parallel Slave Port
PORTE 3 Digital I/O

A/D Converter

Parallel Slave Port

Interrupts

There are 15 sources of interrupts in the system. Therefore, that number of
interrupt vectors will be used to select the address to be jumped onto in case of
an interrupt. Among the most important interrupt vectors, the reset vector of the

system resides in the address 0000h and the external interrupt vector in 0004h.

63

5.1.3. Parallel Slave Port

Parallel Slave Port registers and usage:

Set TRISE<2:0> for inputs

ADCON1<3:0> for digital I/O not analog I/O

Write with WR low and CS low, when any one becomes high, IBF flag is
set, and PSPIF interrupt flag is set

Read PORTD to clear IBF

If a second write before read, IBOV is set

Read with RD low and CS low, OBF is cleared, when any one becomes

high, PSPIF interrupt flag is set, OBF low until data is written

5.1.4. Analog to Digital Converter

The conversion of an analog input signal results in a corresponding 10-bit digital
number. The A/D module has high and low-voltage reference input that is

software selectable to some combination of VDD, VSS, RA2 or RA3.

The ADRESH and ADRESL registers contain the 10-bit result of the A/D
conversion. When the A/D conversion is complete, the result is loaded into this
A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D
interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in
Figure 11-1.

Clearing the GO/DONE bit during a conversion will abort the current conversion.
The A/D input pins must be configured as input pins via the TRIS register to be
used as analog inputs.

INTCON Interrupt Enable

PIR1 Interrupt flag

PIE1 Interrupt enable

ADRESH Conversion Result MSBs (or LSBs)
ADRESL Conversion Result LSBs (or MSBs)
ADCONO Analog input channel selection

Conversion clock selection
Conversion flag

A/D enable
ADCON1 AD port configuration
Result format selection
TRISA Pin directions
PORTA Analog input port
TRISE Pin directions
PORTE Analog input port

64

5.1.5. Other Features of the MCU

Timer0, 8Bit timer/counter with 8Bit prescaler
Timerl, 16Bit timer/counter with prescaler
Timer2

Capture-Compare-PWM Modules

SSP, Synchronous Serial Port

SPI, serial Peripheral Interface

I2C

USART, Universal Synchronous / Asynchronous Receiver Transmitter (9-bit)
BOR, Brown Out Reset

Analog Comparator Module

WDT, Watchdog Timer

Sleep Mode

5.2. Peripherals

The CEng 336 board is a complete evaluation board that contains various devices
on it. These devices can be classified into two with respect to their usage, input
devices and output devices. The list of the peripherals on the board are given

below with their brief explanations.

5.2.1. Input Peripherals

Parallel Port

Parallel port (LPT) is the port that is used for programming the microcontroller on
the evaluation board. This port can be used for parallel communication, such as
PSP mode, or for serial communication, either synchronous or asynchronous.

Serial Port

Serial port connection, i.e. RS232, is used for asynchronous serial data transfer

between other devices and the microcontroller.
USB Port

The USB port is a high speed serial communications interface. For PIC

applications, in fact the speed of the USB port is very high, however since in the

65

recent PCs, the serial communications port is being replaced with the USB ports,

the controller should be able to communicate using this protocol.

Smart Card Reader

Smart card reader provides extra storage capability to the system. Since the
storage capacity of the EEPROM on the MCU is limited, some extra storage may
be necessary. The addressing and read/write operation of the reader should be
modeled in the system.

Infrared Transmitter and Receiver

Infrared communication is included on the board to be used for special purpose

applications. The system is internally analog and requires special modelling.

Keypad

There are 16 pushbuttons on the evaluation board. The pushbuttons are active

high buttons, pulled low during normal operation.

Reset Pushbutton

The reset pushbutton, being active low, is directly connected to the reset of the

microcontroller. An MCLR signal is asserted with this input.

5.2.2. Output Peripherals

Led Array

A light emmiting diode (LED) is nothing but a semiconductor device that emits

light when given logic high value.
Seven Segment Display Array
A collection of LEDs, arranged in a format that will enable the display of

alphanumeric characters is called a seven segment display. On the CEng336

board, there are three of those devices, forming an array.

66

LCD

Using light emmiting diodes for displaying data is clearly not the best method.
Seven segment displays improve the user interface a little but still, it is very old
fashioned. Newest systems always include some LCD components as the
interface. These devices latch in the data entered, decode the characters and
display them on their screen. Moving the cursor on the LCD and deleting are

some special operations available on most of the off-the-shelf LCD modules.

Speaker

A speaker is a source of accoustic waves. The input signal is analog and the

frequency/intensity of the accoustiv waves is determined by the input waveform

characteristics.

67

6. Language Specifications

6.1. ASM++ Language Format

A Simple Language: ASM++

We have decided to define a new language, which is simply an improvement on
assembly language, including some new keyword definitions and introducing
some high level language concepts such as function calls and variable definitions.
The name of the language is ASM++ (ASM plus plus), and the file extension is

“.asmpp”.

GENERAL SPECIFICATIONS

e ASM++ is not case sensitive. Upper-case letters and lower-case letters are
not considered to be distinct in any token, including reserved words.

e White spaces (space character, tab character and end-of-line) serve to
separate tokens; otherwise, they are ignored.

e No token can extend past end-of-line.

e Spaces may not appear inside any token except character and string
literals.

e A comment begins with two forward slashes (as in C++) or with a
semicolon (as in assembly language) and extends to end of line.

e There cannot be more than one statement in a line.

e No semicolons exist at the end of statements. (In fact, that does not
matter since, after a semicolon, the rest of the line is considered as

comment.)

IDENTIFIERS

Identifiers start with a letter or an underscore and contain letters, underscores
and digits. An identifier must fit on a single line and its first 20 characters are

significant.

68

RESERVED WORDS

The following keywords are reserved in ASM++:

addff subff addwff subwff swapff

iorwff andwff xorwff movff

if else for while do continue
break function return define var array

OTHER TOKENS (DELIMITERS AND OPERATORS)

One-character delimiters: :; , () EOF
One-character operators: I < = >
Two-character delimiters: //

Two-character operators: == l= >= <= && ||
MACROS

Macros are introduced by declarations of the form:

define name number

VARIABLES

Variables are introduced by declarations of the form:

var var_name
or

var var_name var_address

The first declaration reserves one of the predefined addresses from the data
memory of the PIC for that variable. The exact locations will be provided to the
user in the user manual. While using the first declaration method, it is the user’s
responsibility to ensure that the correct bank is selected, before using that

variable. The second declaration reserves the given address for that variable.

69

Examples:
var abc
var def 0x121

ARRAYS

Arrays are introduced by declarations of the form:

array array_name(array_length)
or

array array_name(array_length, start_address)

Similar to the variable declaration, arrays can be declared by specifying a starting
address or by using the predefined constant starting addresses. Using the second
declaration method, an array of length array_length will be reserved starting from

the address start_address from the data memory of the PIC.

For example:
array abc(10, 0x5510)

LITERALS

A literal consists of a sequence of one or more digits in decimal, binary or
hexadecimal format.

A character literal is a single character enclosed by a pair of apostrophes
(sometimes called "single quotes".) Examples include 'A’, 'x', and "'. A character
literal is distinct from a string literal of length one.

There is nothing like string literal.

70

EXPRESSIONS

In ASM++4, expressions are defined as below:

<expr> : <exprl> && <exprl> | <exprl> || <exprl>

<exprl> : <label> == <label> | <label> I= <label> |
<label> > <label> | <label> < <label> |
<label> >= <label> | <label> <= <label>

<label> : <address> | <const>

<const> : <variable> | <number>

<address> is the memory addresses in the PIC, with the form 0x045,

<variable> is the variable declared using var or define keywords,

<number> is the number represented in binary, decimal or hexadecimal format.
For binary operations including the assignment operation, both operands must be

of the same type for consistency.

SHORT CIRCUITING

Logical operators AND and OR use short-circuit evaluation. This means that, as
soon as the truth value can be determined, evaluation stops. For example, if the
first operand of an AND evaluates to false, the expression will evaluate to false,
no matter what the second operand is; i.e. the second operand is not even
evaluated. Similarly, if the first operand of an OR evaluates to true, the second is

not evaluated.

STATEMENTS

e Assignment statement
"="is the assignment operator.
For example:

var a 0x121
a = '0x1c4’

e If statement
An if-statement can be used alone or together with an else-statement. The
curly braces are compulsory regardless of the number of statements inside

the if-block. The syntax of an if-else statement is as follows:

71

define MAX 100

define MIN O
if (x > MAX)
{

goto hede
b
else if(x < MIN)
{

goto hodo
b

Loop Statements

The compiler will support while, do-while and for loops. The curly braces
are compulsory regardless of the number of statements inside the loop.
continue and break instructions are also available with the same effects as

in C language. The syntaxes of the loop statements are as follows:

while (hede)

for (exprl; expr2; expr3)

while (hede)

72

FUNCTION DEFINITIONS

The ASM++ language will provide function calls. Function calls can be limitedly

nested. A sample function definition is as follows:

function func_name(parameterl, parameter2)

return varl

Predefined memory addresses will be reserved for parameter passing and for
function return values. User will be informed about the memory address usage

scheme by means of the user manual.

COMMENTS

The comments are specified by a semicolon or two forward slashes. It will

comment out the characters until the end of line.

EXTENDED INSTRUCTION SET

PIDE program will provide a bunch of new instructions together with the basic PIC
instruction set. Using these new instructions, it will be possible to do arithmetic
operations between two file registers without using the working register WREG.

These instructions are:

addff v1v2 : (V1 <— V1 +V2)

Adds the value of v2 to v1, and writes the result back to v1.

subff v1 v2 : (V1 <— V1 -V2)

Subtracts the value of v2 from v1, and writes the result back to vi.

addwff : (W <— V1 +V2)
Adds the value of v2 to v1, and writes the result to WREG.

73

subwff : (W<— V1-V2)

Subtracts the value of v2 from v1, and writes the result to WREG.

swapff : (Temp <— V1, V1 <— V2, V2 <— Temp)

Swaps the values of vl and v2.

iorwff : (V1 <— V1orV2)
Takes the OR of vl and v2, and writes the result to WREG.

andwff : (V1 <— V1 anp V2)
Takes the AND of vl and v2, and writes the result to WREG.

xorwff : (V1 <— V1 xor V2)
Takes the XOR of vl and v2, and writes the result to WREG.

movff : (V2 <— V1)

Copies the value of v1 to v2.

6.2. Test Bench File Language Format

During the simulation of a source file, the user will want to enter various inputs to
the system. The input devices on the board are communication ports, keypad,
pushbuttons and pots. Using a test bench file, the user can state the exact time
instants that the inputs from these devices will be modified, e.g. a reset signal
may be asserted for a period. Test bench files will release the burden of entering
the inputs to peripherals at correct instants. This is especially useful in the case of

high frequency input requirements.

Test bench file can control the system inputs in two different modes. In the
Peripheral mode, the user may control the timing of the inputs to the peripheral
devices. Alternatively, in the PIC mode, the user may choose to directly access
the pins of the microcontroller. The mode selection is performed by <ModeName>

tag. A test file may contain only one mode selection tag.

The format of the test bench files is given below. The file should have “.test”

extension.

timescale <time unit>
<PIC>

#<time> PORT<Port Name>.PIN< Pin No> = <Expression1>
#<time> PORT<Port Name> = <expression2>

always #<time> PORT<Port Name>.PIN<Pin No> = <expression1>
always #<time> PORT<Port Name> = <expression2>

#<time> $finish

timescale <time unit>

<PERIPHERAL>
#<time> <DeviceName>.PIN<Pin No> = <expression3>
#<time> <DeviceName> = <Expression4>

always #<time> <DeviceName>.PIN<Pin No> = <expression3>
always #<time> <DeviceName> = <Expression4>

#<time> $finish

75

Indentation is not important, since the parser ignores white spaces.

instructions are not case-sensitive.

The language for the Peripheral and PIC modes are defined below.

For Peripheral Mode:

The

<Expression3> = 0| 1 | <DeviceName>.PIN<Pin No>
| ~<DeviceName>.PIN<Pin No>

<Expression4> = <word> | <DeviceName> + <CONST>
| <DeviceName> - <CONST>

<Device Name> = LPT | RS232 | USB | Keypad | Reset

PIC Mode:

<Expression1>=0| 1| PORT<Port Name>.PIN<Pin No>
| ~PORT<Port Name>.PIN<Pin No>

<Expression2> = <byte> | PORT<Port Name> + <CONST>
| PORT<Port Name> - <CONST>
| PORT<Port Name>

Port Name = PORTA | PORTB | PORTC | PORTD | PORTE

Example Files

For PIC Mode:

timescale <1ms>

<PIC>
#0 PORTA=0
#0 PORTB =0

always #10 PORTA.2 = ~PORTA.2
always #100 PORTB = PORTB + 1

#<1000> $finish

76

For Peripheral Mode:

<PERIPHERAL>
#0 Keypad =0
#0 Reset =1
#5 Reset =0

#10 Keypad.PIN5 =0
#10 Keypad.PIN2 = ~Keypad.PIN2
always #100 Keypad.PIN3 = ~Keypad.PIN3

#<1000> $finish

77

7. File Formats

7.1. System File Format

PIDE is designed to be customizable and intelligent in the sense that user is able
to work with the last saved configuration. PIDE saves all configuration data into a
system file "pide.sys". System file holds data of users' preferences and default
settings about the overall program execution such as coloring schemas, font type
and size of the editor, record of recent files and projects. Access to system file

will be restricted and the file will be hidden.

System file consists of informative comments (comment token is '#') followed by
default settings of the system and user defined settings. If somehow some user
information is missing, program handles it by loading the default setting.
However, if both user setting and default setting of the same preference is
missing, user may add a line into the file defining a default value for the
preference. Users can refer to the system manual for system file specifications,
but user is discouraged to change the system file. Below is an example system

file.

#PIDE vers. 1.0

#Install date: 18.9.2007 12:33:48

#You are discouraged to change the values in this file since

#it may cause unexpected program behavior. For an emergency case,
#please refer to system manual.

#Default System Settings

#Default Editor Settings
text_color: 000
background_color: 255 255 255

text_size: 12

78

#Latest System Settings

#set on 26.9.2007

#Recent files
recent_documents:
>./source/heat_sensor.asmpp
>./mylLib/a2dcalculate.ah
>./testcase.test
recent_projects:
>./projects/heat sensor/
#Editor Settings

text_color: 00 5
background_color: 255 255 250

text_size: 14

7.2. Project File Format

PIDE is designed to be able to create projects and save workspaces for a better
IDE experience. PIDE saves all necessary information in a file
<project_name>.pde to recreate a previously used workspace. "pde" is the PIDE
project save file extension. Each project has a pde file under its project folder.

Below are the specifications and format of the project file.
Project Description in Project File

Project files include a project description section at the beginning. It includes
version of PIDE, name of the project, user/corporate name, creation and last
modification dates of the project and description of the project if available. Each
description is leaded by a keyword and followed by a new line. Project description
can span several lines with project description token (#) at the beginning of each

line. Below is an example of the project description section.

79

#PIDE 1.0- PIC Integrated Development Enviroment with ASM++
#Project_Name= Heat Sensor

#Creator= €1347061

#Created@ 2/12/2006 13:29:06

#Modified@ 2/12/2006 13:45:33

#Description= Ceng336 odevi icin yazdigimiz bir isi sensoru

Other Files in Project File

Project file holds trace of all files included in the project. These files may be
ASM++ source files, ASM files, HEX files, debug files and test files. Each file is
defined with its type and path name. The lines preceding types of the files begin
with file type token (>) and file paths are saved after "FILE=" keyword. Below is

an example of files.

>ASM++

FILE= ./source/heat sensor.asmpp
>ASMHEADER

FILE= ./myLib/a2dcalculate.ah
>ASMHEADER

FILE= ./d2acalculate.ah
>TESTFILE

FILE= ./testcasel.test
>DEBUGFILE

FILE= ./heat sensor.dbg

Workspace in ProjectFiles

Project file saves last snapshot of the workspace. When user opens an existing
project, GUI will be modified according to these settings. This section begins with
WORKSPACE_BEGIN keyword and ends with WORKSPACE_END keyword.
Between the keywords states of all the views and windows are saved. View

properties, i.e. visibility of toolbars, shortcuts, etc. are leaded with "VIEW_" tag
and window properties, i.e. subwindows which were open just before leaving
workspace, are leaded with "WINDOW_" tag. Editor windows are special cases

since they require additional information like the file they are editing. There is an

80

editors section in the workspace between "WINDOW_EDITOR_LIST_BEGIN"
keyword and "WINDOW_EDITOR_LIST_END" keyword. In this section a mode tag

is followed by a file path. Below is an example of workspace.

WORKSPACE_BEGIN
VIEW_TOOLBAR_DEBUG= OFF
VIEW_BUTTON_DEBUG_STEP= ON

(removed)

WINDOW_EDITOR_LIST_BEGIN

FULL= NONE

FLOATING= ./source/heat sensor.asmpp
MINIMIZED= ./testcasel.test
WINDOW_EDITOR_LIST_END

removed

WINDOW_BUTTOM_CONSOLE= TABBED
WINDOW_BUTTOM_LOG= ON
WINDOW_SIDE_WATCHPOINT= TABBED
WINDOW_SIDE_REGISTERS= ON
WORKSPACE_END

81

7.3. Debug File Format

Debug files hold data of the source and binary executable files that will be used in
debugging process. Debugger needs watchpoints and breakpoints to halt
execution. Watchpoints are held as register addresses and breakpoints as line
number of some source file. Debug file holds existing watchpoint and breakpoint
locations in a file <project_name>.dbg. Below are the specifications and format
of the debug file.

Cross Mappings of the Line Numbers for Breakpoints

Breakpoints are defined using source files. These lines should be mapped to
corresponding lower level file lines. Breakpoints may be lying in different files so
each files line number is separated from another. Breakpoint section begins with
BREAKPOINT_BEGIN keyword and ends with BREAKPOINT_END keyword. After
BREAKPOINT_BEGIN keyword, the path of the file to which source file line
numbers are mapped is saved. This file is usually a generated asm file with file
name <project_name>_g.asm. Each source file's breakpoint data is listed under
its path name leaded with its source type. After each file, END_OF_BP_LIST
keyword is used to indicate the source file has no other breakpoints. Each
breakpoint is indicated with a >BP tag followed by line humber of the associated
source file and mapped line number. Other mappings simply don't have any tags.

Below is an example of breakpoint section.

82

BREAKPOINT_BEGIN DEST= ./heat sensor_g.asm
ASMFILE= ./source/heat sensor.asmpp

41

52

11 11
>BP 12 14
13 16

45 50
>BP 46 55

81 90

END_OF_BP_LIST

ASMHEADER= ./myLib/a2dcalculate.ah
191

2 94

395

>BP 4 98

>BP 19 122

>BP 24 130

END_OF_BP_LIST
BREAKPOINT END

Register Adresses for Watchpoints
Watchpoints are defined using registers of the microcontroller. They are mapped

to a real address value in the PIC and debugger halts whenever a register

referenced by a watchpoint is altered. Debugger receives line humber information

83

to continue debugging process from simulator. Watchpoint section begins with
WATCHPOINT_BEGIN keyword and ends with WATCHPOINT_END keyword. Each
watchpoint is indicated with a >WP tag followed by register address of PIC in
hexadecimal format. Some special registers are indicated with descriptive labels

such as stack registers. Below is an example of watchpoint section.

WATCHPOINT_BEGIN
>WP 0x0101

>WP STACK1

>WP W

>WP STATUS
WATCHPOINT_END

7.4. ASM Header File Format

ASM header files (<file_name>.ah) are used to include predefined functions,
procedures or macros. Content of an ASM header file is almost the same with a
regular ASM++ file. User can include other ASM header files, define variables,
functions and macros in an ASM header file. It is user's responsibility not to use
the names used in header files he/she includes. Also user shouldn't include
declarations for PIC's internal setup, i.e. setting watchdog off, which should be in
an ASM++ file that contains the main program. PIDE supplies a set of header files

that includes many procedures frequently used in embedded programming.

84

8. Coding Standarts

To increase maintainability of the source code, all project members will obey the

coding standarts described below.
8.1. Coding Conventions

Inside the class scope, attributes and method declarations should be followed
with method definitions. Attributes and method declarations shall be logically
grouped using appropriate comments.

Class attributes should be private. All attributes must have its own getter and

setter methods implemented.
8.2. Naming Conventions

Naming conventions will be as Java naming conventions.
Class names will be as descriptive as possible and initial letters of each word and
abrreviation letters will be capitalized.

Example: Class, ClassName, CClass, ClassC etc.

For the class names we extended from Java libraries, class name will be
preserved except that the ']’ letter at the beginnig is replaced with *P’.

Example: class PMenuBar extends JMenuBar.

Method names and Class attributes always start with small letters. Each word or
abrreviation letter after the first word or abbreviation letter will be start with
capital letters.

Example: var, varP, varPoint, iPoint, varFirstSecond, varFS, method(),

methodName(), mName(), methodN() etc.
Instances of classes have the same name with the class name, but the first letter

will be lowercase.

Example: BreakPointHandler breakPointHandler = null;

85

8.3. Comments

Comment conventions will be as Java commenting conventions.
At the beginning of each file, there will be a descriptive comment which must

include file name, creator, creation time, last edit date.

Classes, attributes and methods should be leaded with descriptive comments.

e Class comments should describe functionality of the class and may include
special notes if any. The comment should have @author <author name> line in
the end.

e Attribute comments should be brief as much as possible.

e Method comments should describe behavior and aim of the method. All
parameters should be described using @param tag and return values should be
described with @return. The comment should have @author <author name> line

in the end. Local variables should be described inside the method.

8.4. Indentation

Indentation conventions will be as Eclipse Java Indentation conventions.

Scope defining curly braces should be put in a new line and indented to the same

vertical line. Example:

Class Class1
{
void method ()
{
if (varl ==var2)
{
if (var2 ==var3)
{
b
b
b
¥

To increase readibility, there should be white spaces before and after any names,
operators, etc. Example:
var = 3 + (varl + var2 * var3 / method());

86

10. System Testing Considerations

To supply a faultless product, enough time should be given for testing. Before the
demonstration of the project, one week will fully be dedicated for the testing of
PIDE.

Since PIDE is being developed in an object oriented approach, object oriented

testing strategies should be applied.

e Each class will be tested during the development time, to observe whether
it operates correctly. White box testing will be applied at this level.

e Interclass tests will be applied to check the interactions between the
classes.

e After completing each subsystem of the program, scenario based tests will
be applied. For example, to compile an .asm file to test the compiler
module, etc.

e After the completion of coding, the program will be tested to see whether

it works correctly with full functionality.

87

11. Gantt Chart

37
38
39
40
4
42
43
44
45
46
47
45
49
50
51
52
53
54
55
56
57
55
59
&
&1
62
63
fid
£5
B
67
63

al

HEER OEEE DEREE B BER

Gl EE

FIEIEIFEE

=] Prototype

Prototype Preparation
Presentation Preparstion
Demonstration Descdline
-1 Project
Creatingfzaving project
=| Editor
File Openizavelcloze
Handling muttiple files
Editor-parser
Highlighting
Project and Editor Integration
=l Compiler
ASM++ F ASM Mapping
Language Definition with Anitle
Syritax Checking ASM
Synitax checking A5+
=l Simulator

[=] Simulation of PIC's components

Tue 16.01.07
Tue 16.01.07
ton 22.01.07
Tue 23.01.07
Tue 20.02.07
Tue 20.02.07
Tue 27.02.07
Tue 27.02.07
Tue 27.02.07
Tue 06.03.07
Tue 06.03.07
Wed 04.04 07
Tue 03.04.07
Tue 03.04.07
Tue 10.04.07
Tue 10.04.07
Tue 10.04 .07
Wed 21.02.07
Wed 21.02.07

Simulation of Memory and registers Wed 21.02.07

Simulation of Digital 110

Wed 21.02.07

Simulation of Cther PIC compaonents Wed 21.02.07

=| Simulation of peripherals

Wed 21.02.07

Simulation of LED's and 7Segments | Wed 21.02.07

Simulation of LCD

Simulation of PushButtons

=l Debugger
Execution Caontroller
Handling Breakpoints
Handling watchpoints
Testing
Preparation of User Manuals

e 21 .02 » || Wed 21 03.07

Wed 21.02.07
Sun 15.04.07
Sun 15.04.07
Tue 01.05.07
Tue 01.05.07
Wed 23.05.07
Wed 23.05.07

January February March April May

Tue 23.01.07 pr—
Maon 22.01 .07

tdan 22.01.07
Tue 23.01.07
Tue 27.02.07
Tue 27.02.07
Tue 03.04.07
Tue 06.03.07
Tue 06.03.07
Tue 03.04.07
Tue 03.04.07
Wed 04.04.07
Thu 10.05.07
Tue 10.04.07
Thu 10.05.07
Thu 10.05.07
Thu 10.05.07
Wed 21.03.07
Wed 21.03.07T
Wigd 21.03.07
Wigd 21.03.07
Wigd 21.03.07
Wed 21.03.07
Wied 21.03.07

Wied 21.03.07
Sun 20.05.07
Tue 01.05.07
Sun 20.05.07
Sun 20.05.07
Wied 30.05.07
Wigd 30.05.07

ol b

88

	1. Introduction
	1.1 Purpose of the Document
	1.2. Project Description

	2. System Architecture
	3. Modeling
	3.1. Scenario Based Modeling
	3.1.1. Manage Project Files
	3.1.2. Manage Files
	3.1.3. Change Settings
	3.1.4. Compile Project
	3.1.5. Simulate Project
	3.1.6. Debug Project
	3.1.7. Manage File Transfer

	3.2. Object and Data Structure Modeling
	3.2.1. Classes of gui Package
	3.2.2. Classes of projectManager Package
	3.2.3. Classes of editor and compiler Packages
	3.2.4. Classes of simulator Package
	3.2.5. Classes of debugger Package
	3.2.6. Classes of programmer Package

	3.3. Flow-Oriented Modeling
	3.3.1. Editor Module
	3.3.2. Compile Module
	3.3.3. Simulate Module
	3.3.4. Debugger Module
	3.3.5. PIC Programmer Module

	4. Graphical User Interface Design
	5. Components to be Simulated
	5.1. PIC MCU
	5.1.1. Memory
	5.1.2. PORTS
	5.1.3. Parallel Slave Port
	5.1.4. Analog to Digital Converter
	5.1.5. Other Features of the MCU

	5.2. Peripherals
	5.2.1. Input Peripherals
	5.2.2. Output Peripherals

	6. Language Specifications
	6.1. ASM++ Language Format
	6.2. Test Bench File Language Format

	7. File Formats
	7.1. System File Format
	7.2. Project File Format
	7.3. Debug File Format
	7.4. ASM Header File Format

	8. Coding Standarts
	8.1. Coding Conventions
	8.2. Naming Conventions
	8.3. Comments
	8.4. Indentation

	10. System Testing Considerations
	11. Gantt Chart

