
 a

Middle East Technical University
Department of Computer Engineering

CENG 491

Computer Engineering Design I

2006-2007

SimSys Corporation

 Final Design Report

PIDE
Emulator and Development Environment for

CEng Embedded System Card

18.01.2007

PIDE Final Design Report

Table of Contents

1. Introduction...4

1.1 Purpose of the Document...4
1.2. Project Description..4

2. System Architecture ...6
3. Modeling ..8

3.1. Scenario Based Modeling ...8
3.1.1. Manage Project Files..8
3.1.2. Manage Files..9
3.1.3. Change Settings ...9
3.1.4. Compile Project ...10
3.1.5. Simulate Project ...11
3.1.6. Debug Project...12
3.1.7. Manage File Transfer ...13

3.2. Object and Data Structure Modeling ..14
3.2.1. Classes of gui Package..14
3.2.2. Classes of projectManager Package...18
3.2.3. Classes of editor and compiler Packages..22
3.2.4. Classes of simulator Package..24
3.2.5. Classes of debugger Package..40
3.2.6. Classes of programmer Package...42

3.3. Flow-Oriented Modeling ..43
3.3.1. Editor Module ..43
3.3.2. Compile Module ..45
3.3.3. Simulate Module..46
3.3.4. Debugger Module ..47
3.3.5. PIC Programmer Module...49

4. Graphical User Interface Design...51
5. Components to be Simulated ...56

5.1. PIC MCU ..56
5.1.1. Memory..56
5.1.2. PORTS ...63
5.1.3. Parallel Slave Port..64
5.1.4. Analog to Digital Converter...64
5.1.5. Other Features of the MCU..65

5.2. Peripherals...65
5.2.1. Input Peripherals ..65
5.2.2. Output Peripherals ...66

6. Language Specifications ...68
6.1. ASM++ Language Format ..68
6.2. Test Bench File Language Format..75

7. File Formats...78
7.1. System File Format ...78
7.2. Project File Format ...79
7.3. Debug File Format ..82
7.4. ASM Header File Format..84

8. Coding Standarts ..85
8.1. Coding Conventions..85

SimSys Corporation 2

PIDE Final Design Report

8.2. Naming Conventions ..85
8.3. Comments ...86
8.4. Indentation ..86

10. System Testing Considerations..87
11. Gantt Chart ...88

SimSys Corporation 3

PIDE Final Design Report

1. Introduction

1.1 Purpose of the Document

This document is prepared to supply the final design of the PIDE Project.

This report should be considered as final outcome of the design process. The work

done and results are included in this document in a formal way. Since design

process consists of modeling the system, the report contains diagrams and

models of the current system. All the diagrams, design issues and models are

meant to be final.

The report consists of three parts. In the “Modeling of the System” part, static

and dynamic components of the system are represented. In the System and

Project Specifications part, standards related to project implementation and

various system components are introduced. In the Testing the System part,

issues related to the final product testing are addressed and methods to be used

are proposed.

1.2. Project Description

As the technology evolves, the embedded systems start to find wide area of

usage. In most of the devices that people use daily, there exists a core logic

which is mostly an embedded microcontroller or microprocessor with some

external storage. Besides, those integrated devices also let the implementation

and testing of various new controller ideas very easily. This popularity of

embedded systems is a little overshadowed by the difficulty in developing

embedded software due to the lack of a well fitted development environment and

pre-testing it on a special independent system prepared just for testing purposes.

An example to the above discussion exists for the CEng336 Embedded Systems

course. Among the course contents, development of embedded software and

testing on a test board is of primary importance. However, obviously a standalone

testing environment that will simulate exactly the same features with high

accuracy would greatly simplify the testing procedure.

As a solution to the problem stated above, SimSys Corporation will develop an

emulator and development environment, called PIDE (PIC Integrated

SimSys Corporation 4

PIDE Final Design Report

Development Environment), for the card used in Ceng336 Embedded Systems

course. Considering such a development and simulation environment, the system

will fully support the CENG336 board, i.e. support 16F877 PIC microcontroller and

the other components on the board, communicate through various interface

standards such as parallel, serial or USB and accommodate some display

interfaces such as LCD or LED driving structures. Users will have the chance of

compiling their programs and they can test and debug it on the virtual card

emulated by the software. The virtual card will look the same as the CENG336

board.

PIDE is a real-time interactive and event-driven program. Among all of the

interactions, the ones with the simulator is very important since the system

should simulate the CENG336 Board with full functionality and give very similar

responses to the user. Of course, it is not possible to give the same responses

and simulate real-time behavior in a virtual environment because of reasons such

as difference between the computational power of the PIC and the current

computers, loss of data due to representing real time data, etc. But with careful

estimations and assumptions, behavior of the board can be mimicked.

For such a development and simulation environment design project, the

implementation areas are unlimited just as the fact that the implementation areas

of the embedded systems are unlimited. As a result, such a system, which will

simplify the development and testing process, will find great interest from the

embedded systems developers. Together with the Ceng336 Card, this software

will be useful for computer engineers, electrical engineers, high school students

and everyone interested in PIC programming.

SimSys Corporation 5

PIDE Final Design Report

2. System Architecture

PIDE system is composed of several subsystems. The logical subsystem view of

these components is represented below. The communication between the user

and the system and among other components is managed by the GUI. GUI acts

as the core of the system and each subsystem provides an interface to the core

to make communication among each other. Other than the basic dependencies

between subsystems and GUI, debugger depends on simulator. Debugger

simulates the board using ExecutionController class which is inherited from

Simulator class.

The main strategy for implementing subsystems is to initiate a main thread for

each subsystem, divide their tasks into processes, handle each process by a

thread and manage sub-threads by the main subsystem threads. Choosing a

multi-threaded system architecture is inevitable for systems that requires high

processing power and have frequent interactivity like PIDE.

SimSys Corporation 6

PIDE Final Design Report

Since GUI is designed as the core of the program, it should be working all the

time. GUI itself initiates several threads some of which are handled by Java

classes and the others by PIDE classes. One thread of importance handled by

PIDE classes is the BreakPointHandler thread. This thread loads breakpoint data

from project file, passes the data to corresponding editor, compiler and debugger

threads. Another important thread is for managing project-related operations and

handled by Project Manager Subsystem. Editor module works as a separate

thread and manages threads fired for each file opened in editor. The other

modules initiate new threads as needed and their threads are killed after

requested processing is finished. Having each subsystem handled by seperate a

thread, the system can supply functionality without the user loosing the

interaction with the system.

SimSys Corporation 7

PIDE Final Design Report

3. Modeling

3.1. Scenario Based Modeling

The use cases of the system describe the interaction between the system and the

user from the user’s point of view. This schematic is important to define the

capabilities that are given to the user and his/her possible choices. There is no

timing relationship existing in this diagram; however that information is given in

the sequence diagrams, since these use cases are only to present the alternative

paths that can be followed.

3.1.1. Manage Project Files

Managing a project is in fact handling of files within a project. Creation of new

files, adding existing files to the project, removing files from the project are the

possible tasks that can be performed in this use case. The files that are

mentioned here may be of various types. The alternatives for file types are

ASM++ source files, ASM source files and test bench files. Any change in the

configuration of the projet is saved in corresponding project file.

SimSys Corporation 8

PIDE Final Design Report

3.1.2. Manage Files

The user may select to manage the files using PIDE. Here, files may be created,

saved, opened and edited. These files are the source files and test bench files.

The source files are the ASM++ files or ASM files. The test bench file contains the

input timing information for the peripherals.

3.1.3. Change Settings

SimSys Corporation 9

PIDE Final Design Report

This use case defines the interaction of the user with the system to manage the

settings of various internal modules of the software. Here, by means of graphical

dialog windows, the user will be able to modify the system settings. This use case

is in fact composed of a number of independent use cases. These are setting the

project settings, compiler settings, simulator settings, debugger settings, analysis

settings and finally the programmer settings. The first ones are self explanatory;

however the last two require some elaboration.

Analysis settings are the specification of signals that are to be saved for later

investigation. Here, some probes are inserted to the system, where the logic

levels or voltages on those nodes are saved. Those saved waveform graphics can

later be viewed via the analysis tool.

Programmer settings are about the programming interface of the board. Here, the

parallel port selection can be performed and other choices about device

programming can be made.

3.1.4. Compile Project

The use case with the compile system is very straightforward. The user just

requests a compile operation from the system. All syntax checking, parsing,

linking and conversions are performed transparently to the user. The results are

displayed in the output pane of the user interface.

SimSys Corporation 10

PIDE Final Design Report

3.1.5. Simulate Project

In the simulation use case, the user will ask the system to run according to the

specified inputs. The inputs may be provided by the user either in real time by

means of the graphical user interface which is exactly the same as the layout of

the board, or by some files that specifies some sequence of data to the input

devices. These special files are called test bench files and have their special file

format.

Simulation system has some special features. One of them is the enable/disable

mechanism of the peripherals on the evaluation board. Another one is the

selectable run speed. This feature will make the user much more comfortable in

simulation of high frequency systems. For instance, in order to observe a signal

toggling at 100 KHz, the system may be configured to run in 5us steps.

SimSys Corporation 11

PIDE Final Design Report

3.1.6. Debug Project

Debugging a project is to concentrate on the flow of the program on some specific

parts of the source code. Debugging a project internally requires the project to be

compiled and if current system is in not compiled state, then automatically the

compile routine is invoked. Critical concepts for the debugger are the breakpoints

and watch points.

Breakpoints are identifiers on some source code lines that state that the

execution of the program will continue until that point and will halt there. The

internal state of the system will be completely visible to the user, together with

the contents of the registers. The execution flow will continue with some special

events from the user such as a “step” command.

Watch points are identifiers attached to registers. These watch points are

triggered when the value in the register is modified. The execution of the

program halts at this point. Resuming is based on the same procedure as the one

in breakpoints.

SimSys Corporation 12

PIDE Final Design Report

3.1.7. Manage File Transfer

Once the simulation is performed and the required results observed in the

system, the user will upload the hex file to the microcontroller on the board to

verify the operation physically. The user may also request to see the source of

the program in currently residing in the microcontroller or may request a

verification to check whether the uploaded program is consistent with the one in

hand. The user may also want to clear the contents of the memory in the

controller to be on the safe side and to start everything from scratch.

SimSys Corporation 13

PIDE Final Design Report

3.2. Object and Data Structure Modeling

3.2.1. Classes of gui Package

SimSys Corporation 14

PIDE Final Design Report

PFrame :: JFrame
This class defines the main outline of the PIDE GUI. It contains toolbar, menubar, statusbar as well as the

console, debug, workspace and editor panes. It supplies methods to change the outline of the panes and

other components.

Attribute Name Type Description

jPanel JPanel The main panel of GUI

rootSplitPane JSplitPane
JSplitPane instance that divides the
main panel into top and bottom panels.
Bottom split panel is the console panel.

topRootSplitPane JSplitPane

JSplitPane instance that divides the top
panel of rootSplitPane into left and right
panels. Right console panel is the
debugger panel.

leftTopSplitPane JSplitPane

JSplitPane instance that divides the top
panel of rootSplitPane into left and right
panels. Left split panel is the workspace
panel and right is the editor panel.

pToolBar PToolBar The toolbar.

pMenuBar PMenuBar The menubar.

consolePane ConsolePane The console Pane.

workspacePane WorkspacePane The workspace Pane.

editorPane editorPane The editor Pane.

statusBar JToolBar The status bar.

Attributes

statusBarLabel JLabel The label of the status bar.

Method Name Return Arguments Description

initialize() void void Initializes the PFrame.

getJPanel() JPanel void Returns the jPanel item.

getRootSplitPane () JSplitPane void Returns the rootSplitPane item.

getTopRootSplitPane () JSplitPane void Returns the topRootSplitPane item.

getLeftTopSplitPane () JSplitPane void Returns the leftTopSplitPane item.

Methods

getStatusBarLabel () JLabel void Returns the statusBarLabel.

PMenuBar :: JMenuBar
This class holds all menu items and related methods of the PIDE menubar. Most functionality of the system

can be carried using PIDE menubar.

Attribute Name Type Description

toolBar PToolBar
Reference to he toolbar instance. Used to
change view of the pToolBar.

fileMenu JMenu The File menu item.

editMenu JMenu The Edit menu item.

viewMenu JMenu The View menu item.

projectMenu JMenu The Project menu item.

simulateMenu JMenu The Simulate menu item.

debugMenu JMenu The Debug menu item.

programmerMenu JMenu The Programmer menu item.

analysisMenu JMenu The Analysis menu item.

Attributes

toolsMenu JMenu The Tools menu item.

SimSys Corporation 15

PIDE Final Design Report

helpMenu JMenu The Help menu item.

Method Name Return Arguments Description

initialize() void void Initializes the menu bar.

getFileMenu() JMenu void Returns the File menu item.

getEditMenu() JMenu void Returns the Edit menu item.

getViewMenu() JMenu void Returns the View menu item.

getProjectMenu() JMenu void Returns the Project menu item.

getSimulateMenu() JMenu void Returns the Simulate menu item.

getDebugMenu() JMenu void Returns the Debug menu item.

getProgrammerMenu() JMenu void Returns the Programmer menu item.

getAnalysisMenu() JMenu void Returns the Analysis menu item.

getToolsMenu() JMenu void Returns the Tools menu item.

Methods

getHelpMenu() JMenu void Returns the Help menu item.

PToolBar :: JToolBar
This class holds all toolbar buttons of PIDE. Some functionalities of PIDE are shortcutted via toolbar buttons.

Attribute Name Type Description

newButton JButton The New button of the toolbar.

openButton JButton The Open button of the toolbar.

saveButton JButton The Save button of the toolbar.

saveAllButton JButton The Save All button of the toolbar.

cutButton JButton The Cut button of the toolbar.

copyButton JButton The Copy button of the toolbar.

pasteButton JButton The Paste button of the toolbar.

undoButton JButton The Undo button of the toolbar.

redoButton JButton The Redo button of the toolbar.

findButton JButton The Find button of the toolbar.

replaceButton JButton The Replace button of the toolbar.

workspaceToggleButton JButton
The Workspace Toggle button of the
toolbar.

consoleToggleButton JButton
The Console Toggle button of the
toolbar.

registerToggleButton JButton
The Register Toggle button of the
toolbar.

watchpointToggleButton JButton
The Watchpoint Toggle button of the
toolbar.

buildButton JButton The Build button of the toolbar.

startSimulateButton JButton
The Start Simulate button of the
toolbar.

Attributes

stopSimulateButton JButton
The Stop Simulate button of the
toolbar.

Method Name Return Arguments Description

initialize() void void Initializes the tool bar.

getNewButton() JButton void Returns the New Button.

getOpenButton() JButton void Returns the Open Button.

Methods

 getSaveButton() JButton void Returns the Save Button.

SimSys Corporation 16

PIDE Final Design Report

getSaveAllButton() JButton void Returns the Save All Button.

getCutButton() JButton void Returns the Cut Button.

getCopyButton() JButton void Returns the Copy Button.

getPasteButton() JButton void Returns the Paste Button.

getUndoButton() JButton void Returns the Undo Button.

getRedoButton() JButton void Returns the Redo Button.

getFindButton() JButton void Returns the Find Button.

getReplaceButton() JButton void Returns the Replace Button.

getWorkspaceToggleButton() JButton void
Returns the Workspace Toggle
Button.

getConsoleToggleButton() JButton void Returns the Console Toggle Button.

getRegisterToggleButton() JButton void Returns the Register Toggle Button.

getWatchpointToggleButton() JButton void
Returns the Watchpoint Toggle
Button.

getBuildButton() JButton void Returns the Build Button.

getStartSimulateButton() JButton void Returns the Start Simulate Button.

Methods

getStopSimulateButton() JButton void Returns the Stop Simulate Button.

ConsolePane :: JPane
This class is responsible for the management of the console panel of PIDE. Console panel is used to output

some system messages to the user.

Method Name Return Arguments Description

initialize() void void Initializes the Console Pane.

printOutput() void string Prints the output to the console.
Methods

printError() void string Prints the error message to the console.

WorkspacePane :: JPane
This class is responsible for the management of workspace panel of PIDE. Workspace panel shows the file

and folder outline of the existing projects and supplies quick access to any file in a project.

Attribute Name Type Description

workspaceTree JTree The workspace tree structure. Attributes

directory File
The path name of the folder where
project file is located.

Method Name Return Arguments Description

initialize() void void Initializes the Workspace Pane.

addNodes() void
DeafultMutableTreeNode,
file

Adds new nodes to the Workspace
Tree.

Methods

getWorkspaceTree() JTree void Returns the Workspace Tree.

SimSys Corporation 17

PIDE Final Design Report

3.2.2. Classes of projectManager Package

SimSys Corporation 18

PIDE Final Design Report

Project
This class is responsible for the management of a project. It links the project files with editor, simulator,

compiler and debugger modules. Any change in the project is performed by this class.

Attribute Name Type Description

projectName string The name of the project.

projectPath string The path of the project on the disk.

projectFile ProjectFile
The preferences of the project that are
kept in file.

pEditorPane PEditorPane Editor pane of the project.

compiler Compiler The compiler module.

debugger Debugger The debugger module.

breakPointHandler BreakPointHandler The breakpoint handler.

watchPointHandler WatchPointHandler The watchpoint handler.

Attributes

simulator Simulator The simulator module.

Method Name Return Arguments Description

save() void void Saves the project.

load() void
projectName,
projectPath

Loads the project.

newFile() void
fileType, fileName,
filePath

Creates a new file and adds it to the
project.

addFile() void
fileType, fileName,
filePath

Adds an existing file to the project.

Methods

removeFile() void fileType, fileName, Removes a file from the project.

PIDEFile
This class is an abstract class. It is the base class which encapsulates basic functionalities of different

types of files used by PIDE. PIDEFile classes represent the actual files stored on hard disc.
Attribute Name Type Description

fileType int The type of the file: asm, hex, test, etc.

fileName string The name of the file.

filePath string The path of the file on the disk.

fileBuffer string The buffer to hold the content of the file.

Attributes

dirty bool
It will be true, when the file content has
been changed after the last save.

Method Name Return Arguments Description

save() void void Saves the file.

load() void fileName, filePath Loads the file.

close() void void Closes the file.

Methods

isDirty() bool void Returns the value of dirty variable.

SystemSettingsFile :: PIDEFile
This class is responsible for managing “pide.sys” file. SystemSettingsFile holds general information and

preferences which affects overall program execution.
Attribute Name Type Description

Attributes
systemPreferences SystemPreferences The program preferences of the user.

SimSys Corporation 19

PIDE Final Design Report

Method Name Return Arguments Description

save() void void Saves the file.

load() void fileName, filePath Loads the file.
Methods

resetToDefault() void void
Resets the program preferences to
default values.

ProjectFile :: PIDEFile
This class is responsible for managing files with “.pde” file extension. ProjectFile holds general information

and preferences which affects only the corresponding project.
Attribute Name Type Description

userInfo userID
Information about the user of the
project. Attributes

projectPreferences ProjectPreferences The project preferences of the user.

Method Name Return Arguments Description

save() void void Saves the file.

load() void fileName, filePath Loads the file.
Methods

resetToDefault() void void
Resets the project preferences to default
values.

ASMPlusFile :: PIDEFile
This class is responsible for managing files with “.asmpp” file extension. ASMPlusFile is the main source

file of PIDE. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the

buffer is saved into actual buffer using one of the save methods.
Method Name Return Arguments Description

save() void void Saves the file.

saveAs() void fileName, filePath
Saves the file with a different name
and/or to a different location.

load() void fileName, filePath Loads the file.

Methods

updateBuffer () void void
Updates the file with the current
changes.

AsmFile :: PIDEFile
This class is responsible for managing files with “.asm” file extension. ASMFile is the basic source file of

PIC microcontrollers. Any ASMPlusFile is first converted into this file type and then further process is

performed on this file type during compilation. The actual file is loaded into buffer and editing is

performed on this buffer. Changes in the buffer is saved into actual buffer using one of the save methods.
Method Name Return Arguments Description

save() void void Saves the file.

saveAs() void fileName, filePath
Saves the file with a different name
and/or to a different location.

load() void fileName, filePath Loads the file.

Methods

updateBuffer () void void
Updates the file with the current
changes.

SimSys Corporation 20

PIDE Final Design Report

HexFile :: PIDEFile
This class is responsible for managing files with “.hex” file extension. HexFile is the basic executable file of

PIC microcontrollers. Any ASMFile is converted into this file type and then further process is performed on

this file type. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the

buffer is saved into actual buffer using the save method.
Method Name Return Arguments Description

save() void void Saves the file. Methods

load() void fileName, filePath Loads the file.

HeaderFile :: PIDEFile
This class is responsible for managing files with “.ah” file extension. ASM header files are simply a reduced

version of ASM source files. They include only procedure and macro definitions and can be included in the

source files. The actual file is loaded into buffer and editing is performed on this buffer. Changes in the

buffer is saved into actual buffer using one of the save methods.
Method Name Return Arguments Description

save() void void Saves the file.

saveAs() void fileName, filePath
Saves the file with a different name
and/or to a different location.

load() void fileName, filePath Loads the file.

Methods

updateBuffer () void void
Updates the file with the current
changes.

DebugFile :: PIDEFile
This class is responsible for managing files with “.dbg” file extension. Debug files store the information

required for the debug process. They are outcome of compilation process. The actual file is loaded into

buffer and editing is performed on this buffer. Changes in the buffer is saved into actual buffer using one

of the save methods.
Method Name Return Arguments Description

save() void void Saves the file. Methods

load() void fileName, filePath Loads the file.

TestFile :: PIDEFile
This class is responsible for managing files with “.test” file extension. Test files input and timing data for

automated simulations. They are user defined. The actual file is loaded into buffer and editing is

performed on this buffer. Changes in the buffer is saved into actual buffer using one of the save methods.
Method Name Return Arguments Description

save() void void Saves the file.

saveAs() void fileName, filePath
Saves the file with a different name
and/or to a different location.

load() void fileName, filePath Loads the file.

updateBuffer() void void
Updates the file with the current
changes.

Methods

getInputs() void cycle
Gives the input values that should be
applied at the given cycle.

SimSys Corporation 21

PIDE Final Design Report

3.2.3. Classes of editor and compiler Packages

SimSys Corporation 22

PIDE Final Design Report

PeditorPane :: JEditorPane
This class is responsible for editing files that user has edit permission. PeditorPane is actually a multi-file

editor but it is designed so that it can be plugged into other systems. Additional functionality such as code

highlighting is supplied with PEditorKit.
Attribute Name Type Description

fileBufferArray BufferArray
The contents of the currently
opened files.

fileArray fileArray The files those are currently open.

breakPointHandler BreakPointHandler The breakpoint handler.

Attributes

cursorPos CursorPosition Current position of the cursor

Method Name Return Arguments Description

getActiveFile() File void Returns the currently active file.

closeActiveFile() void void Closes the currently active file.

displayText() void textBuffer Displays the text in the buffer.

readFileIntoBuf() void
fileName, filePath,
bufferSize,
fileBufferArrayIndex

Reads the file into the specified
buffer.

select() void
cursorStartPosition,
numOfCharacters,
fileBufferArrayIndex

Selects numOfCharacters
characters starting from the
cursorStartPosition.

find() void
text, cursorStartPosition,
fileBufferArrayIndex

Find text in the file.

Methods

Methods
replace() void

text, newText,
cursorStartPosition,
fileBufferArrayIndex

Find text in the file and replace
with newText.

PeditorKit :: DefaultEditorKit
This class is responsible for supplying both basic and advanced functionalities required for an editor.

Attribute Name Type Description
Attributes

buffer string The buffer of editor kit.

Method Name Return Arguments Description

read() void void
Reads a portion of the file into the
buffer.

write() void void Writes the buffer into the file.

cut() void
cursorStartPosition,
numOfCharacters,
clipboardBuffer,

Puts the selected item into the clipboard
buffer.

copy() void
cursorStartPosition,
numOfCharacters,
clipboardBuffer,

Copies the selected item into the
clipboard buffer.

paste() void

cursorStartPosition,
numberOfCharacters,
clipBoardBuffer,
fileBufferArrayIndex

Pastes the last item in the clipboard
buffer.

highlightWord() void word Highlights the word.

Methods

showLineNums() void fileBufferArrayIndex Shows the line numbers.

Parser
This class is responsible for parsing ASM and ASM++ source files and generating meaningful tokens for

further evaluation during compilation.
Method Name Return Arguments Description

parse() void AsmPlusFile Parses the file. Methods

parseLine() TokenList Line Parses the given line.

SimSys Corporation 23

PIDE Final Design Report

Compiler
This class is responsible for compiling ASM++ source files. It supports both ASM and ASM++ files. An

ASM++ file compilation generates an ASM file. The final product of the compile operation is a PIC-

executable HEX file.
Attribute Name Type Description

Attributes crossFileReference-
Table

Hash Table
The mapping between the source file
and the hex file.

Method Name Return Arguments Description

compile() void AsmPlusFile Starts the compilation process.

syntaxCheck() void AsmPlusFile Checks the syntax of the AsmPlusFile.

syntaxCheckAsm() void AsmFile Checks the syntax of the AsmFile.

generateAsm() void AsmPlusFile
Generates an AsmFile from the
AsmPlusFile.

generateHex() void AsmFile
Generates a HexFile from the
AsmFile.

Methods

addToCrossFile-
ReferenceTable()

void CrossFileReference
Adds the CrossFileReference entry to
the CrossFileReferenceTable.

3.2.4. Classes of simulator Package

SimSys Corporation 24

PIDE Final Design Report

Simulator
This class manages the simulation operation and communicates virtual PIC with other peripherals and

analysis tools. It provides methods to control simulation progress.
Attribute Name Type Description

pic PIC PIC microcontroller.

ledArray LEDArray LED array on the board.

sevenSegmentDisplayArray SevenSegmentDisplayArray
7segment display array on the
board.

keyPad KeyPad Keypad on the board.

resetButton ResetButton Reset button on the board.

lcd LCD LCD display on the board.

parallelPort ParallelPort Parallel port on the board.

serialPort SerialPort Serial port on the board.

usart USART USART module on the board.

speaker Speaker Speaker on the board.

usbPort USBPort USB port on the board.

smartCardReader SmartCardReader Smart card reader on the board.

potentiometer Potentiometer
The analog input POT on the
board.

infraredTransmitter InfraredTransmitter
Infrared-transmitter on the
board.

infraredReceiver InfraredReceiver Infrared-receiver on the board.

testFile TestFile Test bench data for simulation.

stopwatch Stopwatch
Stopwatch to keep the time
during simulation.

pinListenerList Vector<PinListener>
Pin listener to keep the logic
values of the pins.

Attributes

Attributes

simulationMode int The mode of the simulation.

Method Name Return Arguments Description

simulate() void HexFile Makes the simulation.

runTestSimulation() void HexFile, TestFile Makes the test bench simulation.

stopSimulation() void void Stop the simulation.

stopTestSimulation() void void Stop the test bench simulation.

enablePeripheral() void PeripheralID
Enables the peripheral in the
simulation

Methods

disablePeripheral() void PeripheralID
Disables the peripheral in the
simulation

SimSys Corporation 25

PIDE Final Design Report

3.2.4.1. Classes of picmicrocontroller Package

PIC
This class simulates a PIC16F877 microcontroller. It simulates one instruction at a time and does

necessary changes in its components.

Attribute Name Type Description

flashProgMemory FlashProgramMemory Flash program memory

eepromDataMemory EEPROMDataMemory EEPROM data memory

dataMemory DataMemory Data memory

pc ProgramCounter Program Counter

portA PORTA PORT A of the PIC

portB PORTB PORT B of the PIC

portC PORTC PORT C of the PIC

portD PORTD PORT D of the PIC

portE PORTE PORT E of the PIC

interrupt Interrupt Interrupt module of the PIC

adConverter ADConverter Analog-to-Digital Converter

psp ParallelSlavePort Parallel Slave Port

timer0 Timer0 Timer 0 of the PIC

timer1 Timer1 Timer 1 of the PIC

Attributes

Attributes

comparator Comparator Comparator of the PIC

Method Name Return Arguments Description

decodeInstruction() void void Decodes the next instruction.

simulateInstruction() void void Simulates the next instruction.

latchInRegs() void void
Latch in the register values before
the execution of a step.

Methods

writeRegs() void void
Write the updated values of the
registers after a step.

SimSys Corporation 26

PIDE Final Design Report

Register
This class represents a simple register of the data memory of PIC16F877 microcontroller.

Attribute Name Type Description

data byte The content of the register Attributes

prevData byte Previous content of the register

Method Name Return Arguments Description

read() byte void Reads the data in the register.

write() void byte Writes the byte into the register. Methods

isChanged() bool void
Returns true if the content of the
register has been changed,
returns false otherwise.

FlashProgramMemory
This class represents the flash program memory of PIC16F877 microcontroller.

Attribute Name Type Description

data word[]
The content array of the memory
(each element is 14 bits)

EEDATA Register EEDATA register

EEDATH Register EEDATH register

EEADR Register EEADR register

Attributes

EEADRH Register EEADRH register

Method Name Return Arguments Description

initialize() void Buffer Initializes the memory. Methods

read() 14bit-data Address Read the data at the Adress.

DataMemory

This class represents data memory of PIC16F877 microcontroller.

Attribute Name Type Description

specialRegisters Register[]
The special registers in Data
Memory. Attributes

generalRegisters Register[]
The general registers in Data
Memory.

Method Name Return Arguments Description

read() byte Bank, Address
Reads the byte at the Adress on
Bank.

Methods

write() void Bank, Address, byte
Writes the byte to the Adress on
Bank.

ProgramCounter
This class encapsulates related data and methods for the program counter of PIC16F877 microcontroller.

Attribute Name Type Description

PCL Register PCL Register in the PIC Attributes

PCLATH Register
PCLATH Register in the PIC
(only 5 bits are meaningful)

Method Name Return Arguments Description Methods

get() 13bit void Gets the current value of the PC.

SimSys Corporation 27

PIDE Final Design Report

increment() 13bit void
Increments the value of the
program counter.

incrementBy2() 13bit void
Increments the value of the
program counter by 2.

EEPROMDataMemory
This class represents EEPROM data memory of PIC16F877 microcontroller.

Attribute Name Type Description

data byte[]
The content array of the memory
(each element is 8 bits)

EEDATA Register EEDATA register

EEDATH Register EEDATH register

EEADR Register EEADR register

Attributes

EEADRH Register EEADRH register

Method Name Return Arguments Description

read() byte Address Reads the byte at the Adress. Methods

write() void Address, byte Writes the byte to the Adress.

ADConverter
This class represents the analog-to-digital converter of the PIC16F877 microcontroller.

Attribute Name Type Description

cycle byte AD conversion cycle

Attributes

enabled bool If AD conversion is enabled

SimSys Corporation 28

PIDE Final Design Report

ADCON0 Register ADCON0 Register

ADCON1 Register ADCON1 Register

ADRESL Register ADRESL Register

ADRESH Register ADRESH Register

INTCON Register INTCON Register

PIR1 Register PIR1 Register

PIE1 Register PIE1 Register

PORTA Register Local copy of PORTA

PORTE Register Local copy of PORTE

TRISA Register Local copy of TRISA

TRISE Register Local copy of TRISE

Method Name Return Arguments Description

startConversion() void double
Starts the AD conversion of the
given analog voltage.

Methods

simulate() void void Simulates the AD conversion.

Interrupt
This class handles the interrupt routines of PIC16F877 microcontroller.

Method Name Return Arguments Description
Methods

checkInterrupts() Void Void Checks if there are interrupts.

ParallelSlavePort
This class represents the Parallel Slave Port of PIC16F877 microcontroller.

Attribute Name Type Description

PORTD Register Local copy of PORTD

PORTE Register Local copy of PORTE

TRISD Register Local copy of TRISD

TRISE Register Local copy of TRISE

ADCON1 Register Local copy of ADCON1

PIR1 Register Local copy of PIR1

Attributes

PIE1 Register Local copy of PIE1

Method Name Return Arguments Description

pspRead() void Void Read the data. Methods

pspWrite() void Void Write the data.

Timer0
This class represents Timer0 of PIC16F877 microcontroller.

Attribute Name Type Description

TIMER0 Register Local copy of TIMER0

INTCON Register Local copy of INTCON
Attributes

OPTION_REG Register Local copy of OPTION_REG

SimSys Corporation 29

PIDE Final Design Report

Timer1
This class represents Timer1 of PIC16F877 microcontroller.

Attribute Name Type Description

INTCON Register Local copy of INTCON

PIR1 Register Local copy of PIR1

PIE1 Register Local copy of PIE1

TMR1L Register Local copy of TMR1L

TMR1H Register Local copy of TMR1H

Attributes

T1CON Register Local copy of T1CON

Comparator
This class represents the registers related with the compare mode of PIC16F877 microcontroller.

Attribute Name Type Description

CMCON Register Local copy of CMCON

CVRCON Register Local copy of CVRCON

INTCON Register Local copy of INTCON

PIR2 Register Local copy of PIR2

PIE2 Register Local copy of PIE2

PORTA Register Local copy of PORTA

Attributes

TRISA Register Local copy of TRISA

SimSys Corporation 30

PIDE Final Design Report

Port
This class represents the ports of PIC16F877 microcontroller. Specific ports are inherited from this class.

Method Name Return Arguments Description

readInput() byte Void Reads the input data in the port. Methods

write() void Byte Writes the data into the port.

PORTA :: Port
This class represents PortA.

Attribute Name Type Description

PORTA Register
The content of the Port register
(only 6 bits are meaningful) Attributes

TRISA Register The data direction Register

Method Name Return Arguments Description

readInput() byte Void Reads the input data in the port. Methods

write() void Byte Writes the data into the port.

PORTB :: Port
This class represents PortB.

Attribute Name Type Description

PORTB Register The content of the Port register

TRISB Register The data direction Register
Attributes

OPTION_REG Register OPTION_REG Register

Method Name Return Arguments Description

readInput() byte Void Reads the input data in the port. Methods

write() void Byte Writes the byte into the port.

PORTC :: Port
This class represents PortC.

Attribute Name Type Description

PORTC Register The content of the Port register Attributes

TRISC Register The data direction Register

Method Name Return Arguments Description

readInput() byte Void Reads the input data in the port. Methods

write() void Byte Writes the byte into the port.

PORTD :: Port
This class represents PortD.

Attribute Name Type Description

PORTD Register The content of the Port register Attributes

TRISD Register The data direction Register

Method Name Return Arguments Description Methods

readInput() byte Void Reads the input data in the port.

SimSys Corporation 31

PIDE Final Design Report

write() void Byte Writes the byte into the port.

PORTE :: Port
This class represents PortE.

Attribute Name Type Description

PORTE Register The content of the Port register Attributes

TRISE Register The data direction Register

Method Name Return Arguments Description

readInput() byte Void Reads the input data in the port. Methods

write() void Byte Writes the byte into the port.

3.2.4.2. Classes of instructions Package

Instruction
This class is an abstract base class for the simulation of PIC mcu instructions.

Attribute Name Type Description
Attributes

type int
The type of the instruction. (From
1 to 35).

Method Name Return Arguments Description

Methods
simulateYourself() void parameterList

Simulates the instruction with the
given parameters. Will be
overwriten in the derived classes.

PIC microcontroller has 35 instructions and we have a class for each of these

instructions, which are all derived from the class Instruction. The .hex file to be

simulated will first be converted to a list of instructions, then simulateYourself()

function of each element of the list will be called. Each instruction class is

responsible for simulating itself, i.e. performing the required operation, updating

the required registers, etc.

SimSys Corporation 32

PIDE Final Design Report

3.2.4.3. Classes of peripherals Package

Peripheral
This is a general class representing the peripherals on the CENG336 Board. Specific peripherals are

inherited from this class.
Attribute Name Type Description

id int ID of the peripheral Attributes

isEnabled Bool if the peripheral is enabled

Method Name Return Arguments Description
Methods

draw() void Void Draws the peripheral

SimSys Corporation 33

PIDE Final Design Report

LEDArray :: Peripheral
This class is created in order to keep the information of 8 LEDs. The class is inherited from the Peripheral

class.
Attribute Name Type Description

Attributes
ledVector Vector<LED> The vector of 8 LEDs

Method Name Return Arguments Description

sendData() void ledID Sends data to the LED with ledID.

readInput() void Void Reads the input.
Methods

draw() void Void Draws this peripheral.

LED
This class represents a single LED on the CENG336 Board.

Attribute Name Type Description

ledId int The ID of this LED

ledData Byte The data of this LED
Attributes

isEnabled Bool if this LED is enabled

Method Name Return Arguments Description

writeData() void Byte Writes the data to this LED.

readData() byte Void Reads the input.
Methods

draw() void Void Draws this LED.

SevenSegmentDisplayArray :: Peripheral
This class is created in order to keep the information of three “7-Segment Display”s. The class is inherited

from the Peripheral class.
Attribute Name Type Description

Attributes sevenSegment-
DisplayVector

Vector<SevenSegmentDisplay>
The vector of 3 seven segment
displays.

Method Name Return Arguments Description

sendData() void ssdID Sends data to the SSD with ssdID.

readInput() void Void Reads the input.
Methods

draw() void Void Draws this peripheral.

SevenSegmentDisplay
This class represents a single 7-segment display of the CENG336 Board.

Attribute Name Type Description

ssdId int The ID of this SSD.

ssdData Byte The data of this SSD.
Attributes

isEnabled Bool if this SSD is enabled

Method Name Return Arguments Description

writeData() void Byte Writes the data to this SSD.

readData() byte Void Reads the input.
Methods

draw() void Void Draws this SSD.

SimSys Corporation 34

PIDE Final Design Report

KeyPad :: Peripheral
This class represents the Keypad display of the CENG336 Board. The class is inherited from the Peripheral
class.

Attribute Name Type Description
Attributes

pushButtonVector Vector<PushButton> The vector of 16 push buttons.

Method Name Return Arguments Description

sendData() void buttonID
Sends data to the push button
with buttonID.

readInput() void void Reads the input.

writeInput() void Data, portID
Sends the input data to the port
with portID.

Methods

draw() void void Draws this peripheral.

PushButton
This class represents a single “push button” display of the CENG336 Board.

Attribute Name Type Description

buttonId buttonID The ID of this push button.

buttonData Int The data of this button.

isEnabled Bool if this button is enabled

Attributes

State Int The state of this button

Method Name Return Arguments Description

readData() Int Void Reads the input. Methods

draw() Void Void Draws this push button.

ResetButton :: PushButton
This class represents the “reset button” display of the CENG336 Board.

Method Name Return Arguments Description
Methods

sendResetSignalToPIC() Void Void Sends RESET signal to the PIC.

SimSys Corporation 35

PIDE Final Design Report

LCD :: Peripheral
This class represents the LCD display of the CENG336 Board. The class is inherited from the Peripheral
class.

Attribute Name Type Description

Data LCDData The data of the LCD. Attributes

lcdString String The string on the LCD.

Method Name Return Arguments Description

sendData() void String Sends data to the LCD.

readInput() void Void Reads the input.

setContrast() void Float
Changes the contrast of the LCD
to the given value.

Methods

draw() void Void Draws this peripheral.

SimSys Corporation 36

PIDE Final Design Report

ParallelPort :: BoardPort
This class represents the Parallel Port of the CENG336 Board. The class is inherited from the BoardPort
class.

Attribute Name Type Description
Attributes

Data ParallelPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() Void Void Draws this peripheral.

SerialPort :: BoardPort
This class represents the Serial Port of the CENG336 Board. The class is inherited from the BoardPort
class.

Attribute Name Type Description
Attributes

Data SerialPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() Void Void Draws this peripheral.

USBPort :: BoardPort
This class represents the USB Port of the CENG336 Board. The class is inherited from the BoardPort class.

Attribute Name Type Description
Attributes

Data USBPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() Void Void Draws this peripheral.

USART :: Peripheral
This class represents “USART(Universal Synchronous Asynchronous Receiver Transmitter)” of the
CENG336 Board. The class is inherited from the Peripheral class.

Method Name Return Arguments Description

writeInput() void Void Writes data.

readInput() void Void Reads the input.
Methods

draw() void Void Draws this peripheral.

Speaker :: Peripheral
This class represents the “Speaker” of the CENG336 Board. The class is inherited from the Peripheral
class.

Method Name Return Arguments Description

readInput() void Void Reads the input.

generateSound() void Data
Generates sound according to the
given input.

Methods

draw() void Void Draws this peripheral.

SimSys Corporation 37

PIDE Final Design Report

Potentiometer :: Peripheral
This class represents the “Potentiometer” of the CENG336 Board. The class is inherited from the
Peripheral class.

Attribute Name Type Description
Attributes

analogData float
The analog voltage value of the
potentiometer.

Method Name Return Arguments Description

writeInput() void Data, PortID
Writes data to the Port with
PortID.

readInput() float void Reads the input.
Methods

draw() void void Draws this peripheral.

InfraredTransmitter :: Peripheral
This class represents the “Infrared Transmitter” of the CENG336 Board. The class is inherited from the
Peripheral class.

Attribute Name Type Description
Attributes

data InfraredData
The data of the infrared
transmitter.

Method Name Return Arguments Description

transmit() Void void Transmits the data. Methods

draw() Void void Draws this peripheral.

InfraredReceiver :: Peripheral
This class represents the “Infrared Receiver” of the CENG336 Board. The class is inherited from the
Peripheral class.

Attribute Name Type Description
Attributes

data InfraredData The data of the infrared receiver.

Method Name Return Arguments Description

receive() void void Receives the data. Methods

draw() void void Draws this peripheral.

SimSys Corporation 38

PIDE Final Design Report

3.2.4.4. Classes of analysis Package

AnalysisTool
This is a general class representing the analysis tools we defined. Specific analysis tools are inherited from
this class.

Attribute Name Type Description

id Int The ID of the analysis tool. Attributes

isEnabled bool If the analysis tool is enabled.

Method Name Return Arguments Description

enable() void void Enables the analysis tool.

disable() void void Disables the analysis tool.

display() void void Displays the analysis tool.

Methods

collectStatistics() void void Collects the anaysis results.

StopWatch :: AnalysisTool
This class represents the “stop watch” property of the analysis tools. The class is inherited from the
AnalysisTool class.

Attribute Name Type Description

status Int The stop watch status Attributes

time Long The time passed during execution

Method Name Return Arguments Description

startTimer() void Void Starts the timer.

increment() void Void Increments the timer value.

stopTimer() void Void Stops the timer.

clear() void void Resets the timer.

Methods

display() void void Displays the analysis tool.

SimSys Corporation 39

PIDE Final Design Report

PinListener :: AnalysisTool
This class represents the “pin listener” property of the analysis tools. The class is inherited from the
AnalysisTool class.

Attribute Name Type Description

Port Port The Port that the pin belongs to.

pinNumber int The pin number on the Port.

Status int Current status of the pin.
Attributes

timeChart int[]
The array to display the pin value
(0 or 5) with respect to time.
(Starts from time = 0)

Method Name Return Arguments Description

addStatusToTimeChart() void int
Adds the given status of the pin (0
or 5) to the timeChart.

drawGraph() void void Draws the timeChart graph.

reset() void void Resets the pin listener.

Methods

display() void void Displays the analysis tool.

3.2.5. Classes of debugger Package

SimSys Corporation 40

PIDE Final Design Report

Debugger
This class involves the general attributes and related methods of the debugger.

Attribute Name Type Description

breakPointHandler BreakPointHandler The breakpoint handler.

watchPointHandler WatchPointHandler The watchpoint handler.

debugFile DebugFile
The file used during debugging
process.

Attributes

executionController ExecutionController
The simulator used during
debugging process.

Method Name Return Arguments Description

debug() void void Starts the debugging process.

step() void LineReference Executes one step.

stepInto() void LineReference Steps into the next block.

stepOut() void LineReference Steps out of the current block.

stepOver() void LineReference Steps over the next block.

gotoCursor() void cursorPosition Executes upto the cursor position.

Methods

displayData() void void Displays the debug data.

ExecutionController :: Simulator
This class involves the methods to control the execution of a program. The class is inherited from the
Simulator class.

Method Name Return Arguments Description

executeSingleInstruction() void Instruction
Executes the the given single
instruction. Methods

executeLine() void LineReference
Executes one line in the
AsmPlusFile.

BreakPointHandler
This class involves the necessary attributes and methods related with the breakpoints specified in the
debug procedure.

Attribute Name Type Description
Attributes

BreakPointList List<BreakPoint> The list of the breakpoints.

Method Name Return Arguments Description

addBreakPoint() Void LineNumber
Adds a break point to the given
line.

disableBreakPoint() Void breakPointID
Disables the break point with
breakPointID.

removeBreakPoint() Void breakPointID
Removes the break point with
breakPointID.

displayBreakPoints() Void Void
Displays the breakpoints on the
editor.

isAtBreakPoint() Bool LineNumber
Returns true if there exists a
breakpoint on the line with
lineNumber.

Methods

isValidBreakPoint() Bool LineNumber
Returns true if there exists a valid
breakpoint on the line with
lineNumber.

WatchPointHandler
This class involves the necessary attributes and methods related with the breakpoints specified in the
debug procedure.

SimSys Corporation 41

PIDE Final Design Report

Attribute Name Type Description
Attributes

watchPointList List <WatchPoint> The list of the watchpoints.

Method Name Return Arguments Description

addWatchPoint() void Variable
Adds a watch point to the given
variable.

disableBreakPoint() void watchPointID
Disables the watch point with
watchPointID.

removeWatchPoint() void watchPointID
Removes the watch point with
watchPointID.

displayWatchPoints() void Void Displays the watch points.

isValidWatchPoint() bool registerAddress
Returns true if there exists a
watch point associated with the
given registerAddress.

Methods

isWatchPointChanged() bool watchPointID
Returns true if the variable
associated with watchPointID is
changed.

3.2.6. Classes of programmer Package

Programmer
This class involves the necessary attributes and methods to program the microcontroller.

Attribute Name Type Description

Attributes
port CompParallelPort

The parallel port of the computer
to be used for reading/writing
programs to the PIC.

Method Name Return Arguments Description

write() void HexFile Writes the hex file to the PIC.

read() void HexFileBuffer Reads the program on the PIC.

verify() void
HexFile,
HexFileBuffer

Compares the program on the PIC
with the one on the buffer and
verifies.

Methods

erase() void Void Erases the program on the PIC.

CompParallelPort
This class drives the parallel port of the computer which is going to program the board.

Attribute Name Type Description
Attributes

portBuffer Buffer
The buffer to be used for the parallel port
of the computer.

Method Name Return Arguments Description

initialize() void void Initializes the port.

sendData() void void Sends the data in the buffer to the port.
Methods

receiveData() void void
Receives the data from the port into the
buffer.

SimSys Corporation 42

PIDE Final Design Report

3.3. Flow-Oriented Modeling

3.3.1. Editor Module

Open File

When the user selects "Open File" from the menu, a file selection dialog is shown.

As soon as user picks a valid file, it invokes the readFileIntoBuffer() method of

the PEditorPane object which reads the text data of the file into its buffer array.

For this purpose, this function invokes the loadFile() method of the related source

file object. After the actual source file is loaded into memory, it is parsed and

tokenized and these tokens are sent to PEditorKit to be colored. After highlighting

the source code, it is displayed on the screen.

SimSys Corporation 43

PIDE Final Design Report

Save File

When the user selects "Save File" from the menu, the system determines the

active file in the current editor panel with the getActiveFile() method of

PEditorPane object. Then saveFile() method of the related File object is invoked

so that content of the fileBuffer is written into specified file.

Close File

When the user selects "Close File" from the menu, the system determines the

active file with the getActiveFile() method of PEditorPane object and check if the

SimSys Corporation 44

PIDE Final Design Report

file is dirty, i.e. any change has been made since the last save operation. If the

file is not dirty, the related editor tab of the active file closed. If the file was dirty,

then system would warn the user and ask if he would like to save the changes

before closing the file.

3.3.2. Compile Module

When the user presses "Compile" button on the toolbar, the system invokes the

compile() method of the Compiler object. If the file is an ASM++ file, it calls the

syntaxCheck() method, which checks if there is an error or not syntactically or

not. If there are any errors it prints an error message on the PConsolePane. If

there are no errors, it creates an ASMFile object for the intermediate ASM file.

The generated ASM file is added to the project workspace.

SimSys Corporation 45

PIDE Final Design Report

After generating an ASM file, Compiler object generates the executable file from

the ASM file. This file is added into project workspace, too.

3.3.3. Simulate Module

When user selects “Simulate” from the menu, the system invokes the simulate()

method of the Simulator module. simulate() method runs until simulation is

stopped. In the sequence diagram, operations after simulate() method simulates

one clock cycle of the board. In other words, simulation runs in discrete time

intervals. During simulation, simulate() keeps simulating the clock cycles.

Simulator module can be run in two different modes. First of them is the direct

interaction with the user and the other is using a test file. In either case

Simulator sends readInput message to all enabled input peripherals to see if

there is an input from a source. Peripherals update their data accordingly and

SimSys Corporation 46

PIDE Final Design Report

return. Simulator then sends simulateInstruction() message to PIC which first

calls latchInRegs function to take a snapshot of the current registers before

simulating a cycle of the PIC. After saving registers, PIC simulates its modules

and saves last data with writeRegs() function. After simulating the PIC, Simulator

now passes PIC's last state to output peripherals and simulates them. At the end

of the cycle, analysis tools such as pin listeners update data with

collectStatistics() method. Simulation is stopped by user's request.

3.3.4. Debugger Module

When the user presses the "Debug" button on the toolbar, the system calls the

debug() function of the Debugger object. The Debugger object calls the

nextInstruction() method immediately of the ExecutionController object.

ExecutionController object calls two functions:

 1. isBreakpoint() method of the BreakpointHandler object to see if the

current line has any breakpoints. It returns “true" or "false".

 2. isWatchpoint() method of the WatchPointHandler object to see if data

elements in the current line have any watchpoint. It returns “true" or "false".

It takes three branches into execution according to the return values of these

functions.
Debug at Breakpoint

SimSys Corporation 47

PIDE Final Design Report

If isBreakpoint() returns true, Execution Control returns the breakpoint

information to the Debugger and it informs the system that a breakpoint is

reached. So debugger stops simulating and waits for the user interaction. When

user steps into the next instruction, the stepCallBack() method is invoked and the

Debugger continues with the next instruction.

Debug at Watchpoint

If isBreakpoint() returns false and isWatchpoint() returns true, the Execution

Controller returns the watchpoint information to the Debugger and it informs the

system that some data that has watchpoint on it has been changed. So debugger

stops simulating and waits for the user interaction. When user steps into the next

instruction, the stepCallBack() method is invoked and the Debugger continues

with the next instruction.

SimSys Corporation 48

PIDE Final Design Report

Debug without Breakpoint and Watchpoint

If isBreakpoint() and isWatchpoint() return false, the Debugger steps into the

next instruction without any prompt.

3.3.5. PIC Programmer Module

Write

When the user selects "Write" from the menu, the system controls if the active

file in the editor is an executable file which is directly passed on to Programmer

module. If not, a file browser window pops up so that user can select an

SimSys Corporation 49

PIDE Final Design Report

executable file to download to the PIC. Then the module establishes a connection

with the board and programs the PIC using parallel port.

Read

When the user selects "Read" from the menu, system invokes readFile method of

the Programmer module. Programmer establishes a connection with the board

and flash program memory is read by the Programmer. The retrieved file is read

to the editor buffer by calling the loadFileIntoBuffer() method of the PEditorPane

object.

Verify

When the user selects "Verify" from the menu, the system controls if the active

file in the editor is an executable file. If not, a file browser window pops up so

that user can select an executable file to compare with the one currently on the

PIC. Then the module establishes a connection with the board and compares two

files.

SimSys Corporation 50

PIDE Final Design Report

4. Graphical User Interface Design

Below in Figure 4.1, the GUI of the PIDE program, showing the menus, toolbars,

tabs, workspace view and the status bar can be found.

Figure 4.1

Figure 4.1 shows the case with an opened project, and two opened asm files. The

workspace view is also present on the left hand side. The program is able to

handle multiple opened files using a tabbed view.

In Figure 4.2, the menu bar of the PIDE is shown. The menu items will be

explained in detail in the following sections.

Figure 4.2

SimSys Corporation 51

PIDE Final Design Report

In Figure 4.3, the toolbar of the PIDE is shown. Here exist shortcuts of the

frequently used operations in the menu bar.

Figure 4.3

MENUS

There are File, Edit, View, Project, Simulate, Debug, Programmer, Analysis, Tools

and Help menus in the PIDE program. The operation of each menu item is

described below.

FILE MENU

New Project Create a new project.

 ASM File Create a new ASM file.

 ASM++ File Create a new ASM PlusPlus file.

 Test File Create a new Test file for simulation.

Open… Open an existing file.

Close Close the current file.

Save Save the current file.

Save As… Save the current file with a different

name or save to a different place.

Recent Files Shows the most recently used files,

Recent Projects Shows the most recently used projects,

Exit Quit from the program.

EDIT MENU

Undo Undo the last action.

Redo Redo the last undo action.

Cut Cut the selected item.

Copy Copy the selected item.

Paste Paste the last cut or copied item.

Find Find a given word in the current file.

Replace Replace the given word with another word.

SimSys Corporation 52

PIDE Final Design Report

VIEW MENU

Tools Show/Hide the toolbars of File, Edit,

Build and Debug menus.

Status Bar Show/Hide the status bar.

Console Show/Hide the console view.

Debug Show/Hide the debug windows.

Workspace Show/Hide the workspace view.

PROJECT MENU

Open Project Open an existing project.

Save Project Save the current project.

Close Project Close the current project.

Build Build the current project.

Build Options Change the build options.

Add File to Project Add a new file to the current

project.

Remove File from Project Remove a file from the current

project.

Properties Change the project properties.

SIMULATE MENU

Start Start the simulation.

Pause Pause the simulation.

Continue Continue the simulation.

Stop Stop the simulation.

Settings Change the simulation settings.

DEBUG MENU

Breakpoint Add or Remove breakpoints.

Watchpoint Add or Remove watchpoints.

Start Start the debugging process.

Step Execute one step.

Step Into Step into the next block.

Step Out Step out of the current block.

SimSys Corporation 53

PIDE Final Design Report

Step Over Step over the next block.

Stop Stop the debugging process.

Settings Change the debug settings.

PROGRAMMER MENU

Write Write the current program onto the PIC.

Read Read the program in the PIC.

Verify Verify if the program is written correctly onto the PIC.

Erase Erase the program written in the PIC.

Settings Change the programmer settings.

ANALYSIS MENU

Add Add a new analysis tool.

Display Display the analysis results.

Hide Hide the analysis results.

TOOLS MENU

Customize Customize the program settings.

Options Change the program options.

HELP MENU

About PIDE… Show brief information about the program.

Contents Show the help contents.

Index Show the help index.

Search Search a help topic in the help contents.

SimSys Corporation 54

PIDE Final Design Report

The settings for different components and operations such as Editor, Debugger,

Simulator, Compile or Programmer are grouped in a separate frame which is the

“Settings” frame. Below the Programmer settings is shown in Figure 4.4 as an

example.

Figure 4.4

SimSys Corporation 55

PIDE Final Design Report

5. Components to be Simulated

In this section, the internal structures and implementation details of the board

components are described and design strategy of the simulator is given.

5.1. PIC MCU

The PIC microcontroller instruction set contains 35 basic instructions. All of those

basic instructions are single word, i.e. 14 bits. They last finite durations, read

from some specific registers and update some other specific registers. Therefore,

simulations of all 35 instructions are independent and atomic.

It should be emphasized that the accuracy of the simulation is very important in

the design. The responses obtained on the actual hardware and the virtual board

must be consistent throughout the operation. In order to simulate the hardware

which has actually an edge-triggered behavior, the sequential simulator should

employ special mechanisms. This is due to the fact that various resources such as

registers are shared by multiple modules. Therefore, these shared resources will

be implemented within the simulator with local copies inserted into all those

sharing modules. Firstly, the input devices will first modify their local registers

and then updating the globals. Afterwards, the PIC will simulate itself, updating

the local and then global registers. Finally, the output peripherals will be

simulated, latching in the global register contents and displaying outputs.

5.1.1. Memory

The memory system of the MCU is composed of FLASH program memory, the

RAM Data Memory and the EEPROM Data Memory.

FLASH Program Memory

The program to be uploaded is stored in the Flash Program memory, which has

8KB storage. Each instruction is 14 bits wide. Since the program counter is 13

bits wide, 213 = 8K-words can be addressed in the Flash program memory.

Paging

The FLASH program memory consists of four pages. The address ranges of those

four pages are given below.

SimSys Corporation 56

PIDE Final Design Report

Page Number Start Address End Address

Page 0 0005h 07FFh

Page 1 0800h 0FFFh

Page 2 1000h 17FFh

Page 3 1800h 1FFFh

As a result of the paging system of the program memory, the operations of the

jump instructions require special attention. The CALL/GOTO instructions take

11bit arguments, addressing only 2KB of the memory. Actually, the MSB 2 bits of

the address are taken from PCLATH<4:3>. Therefore, when a subroutine in

another page is to be called, first the PCLATH<4:3> bits should be set

accordingly, and then the low order 11 bits should be given to the CALL

instruction.

Registers

Register Usage

EEDATA Data

EEDATH Data

EEADR Address LSBs

EEADRH Address MSBs (0000h-1FFFh)

EECON1 controls

EECON2 controls

Read and Write Operations

Data read operation from the FLASH memory is performed as single word read

and data write operation is performed as four word block write.

Read

1. Write address to EEADRH and EEADR

2. Set EEPGD

3. Set RD

4. Wait for 2 cycles idle (those statements are ignored)

5. Read from EEDATH and EEDAT

Write

A write operation to the FLASH program memory can only be performed if not

write-protected mode is selected, as defined in device configuration word bits

WRT<1:0>

SimSys Corporation 57

PIDE Final Design Report

Data is written in four word blocks, where a block is four words with sequential

addresses. These four words are identified by EEADR<1:0> bits.

Load ALL 4 buffer registers with order 00-01-10-11:

1. Write address to EEADRH and EEADR

2. Write data to EEDATH and EEDATA

3. Set EEPGD

4. Write 55h to EECON2

5. Write AAh to EECON2

6. Set WR

7. Wait for 2 cycles

8. When last one is written, data is transferred from buffers to FLASH.

9. Then, processor waits for 4ms for the write to be completed.

RAM Data Memory

The RAM data memory is 512B, containing the special purpose registers and

general purpose registers (368B).

Bank System

The RAM Data memory is comprised of 4 banks. Bank selection is performed by

means of RP1 (Status<5>) and RP2 (Status<6>) bits. Data memory registers can

be divided into two groups. First group is the special purpose registers. They are

used to control the inputs, outputs and other PIC functionalities. The other group

is the general purpose registers. They are simply used as data storage. Data

memory size is 128 Bytes/Bank (128 = 0x7F).

An important note should be added here. Since the central processing unit of the

PIC microcontroller has a very limited RISC architecture core, it has no special

registers in it. Also the memory read/write speed is the same as the registers

inside the CPU. As a result, the memory of the PIC is used just as registers.

Therefore, Microchip refers the memory words as registers and in this report from

this point forward, the data memory words will be referred as registers.

The distribution of the data memory space is given in the figure. As can be seen

from the above distribution of the registers, the first portions of all four banks are

reserved for special purpose registers and the rest for general purpose registers.

SimSys Corporation 58

PIDE Final Design Report

The bitwise explanation of the special purpose registers are given in the PIC

16F877 datasheet by Microchip.

A careful examination of the above data memory address space gives us why

Microchip defines the data memory “up to 368 Bytes”. The General Purpose

Registers are totally 96+80+16+80+16+80 = 368 Bytes.

Among the special purpose registers, the some registers are of special interest.

Those registers are STATUS, OPTION, and INTCON. STATUS register is controlled

to switch between the banks, Time-out, Power-down modes and carry/borrow

control of arithmetic operations. OPTION register is used to enable PORTB internal

weak pull ups, Interrupt enabling, timer source and edge and prescale selections.

INTCON register is used to configure the interrupts in the system. Global,

peripheral, timer, external, portB interrupts are enabled and the flags are

read/cleared from this register. There are also PIE1, PIR1, PIE2, PIR2 registers

for enabling peripheral interrupts and their flags.

The PCON register contains the flags for different types of reset operations such

as power-on reset, watchdog reset external reset and brown-out reset.

SimSys Corporation 59

PIDE Final Design Report

Indirect Addressing

Indirect addressing is accomplished by means of INDF virtual register name.

When INDF is used as the target address, actually the address pointed by the FSR

(File Select Register) register is accessed. 8 bits in FSR register and 1 IRP bit give

9 bits to address the overall 2KByte data memory (000h – 1FFh).

EEPROM Data Memory

The EEPROM data memory has 256Bytes of storage and is the non-volatile data

storage system.

SimSys Corporation 60

PIDE Final Design Report

Register Data Memory

EEDATA 8 bit data

EEADR Address (00h-FFh)

EECON1 Controls

EECON2 Controls

PIR2 flags

Data read operation from the EEPROM memory is performed as single byte read

and data write operation is performed as single byte write. The EEPROM data

memory is not directly addressed, but is accessed indirectly via special registers.

EECON1 Register Contents

 EEPGD=0 Data

 EEPGD=1 Program

 RD read , can only be set by user; reset by hardware

 WR write , can only be set by user; reset by hardware

 WREN write enable

 WRERR write error when there’s a MCLR or WDT reset

PIR2 Register Contents

 EEIF Write complete interrupt flag

Read Operation

1. Write address to EEADR

2. Clear EEPGD

3. Set RD

4. Next cycle, data is ready at EEDATA, so next instruction can read it

Write

 WR inhibited from being set if WREN is cleared

1. Write address to EEADR.

2. Write 8-bit data EEDATA

3. Clear EEPGD

4. Set WREN

5. Disable interrupts (if enabled).

6. Execute the special five instruction sequence:

i. Write 55h to EECON2 in two steps (first to W, then to EECON2)

SimSys Corporation 61

PIDE Final Design Report

ii. Write AAh to EECON2 in two steps (first to W, then to EECON2)

iii. Set the WR bit

7. Enable interrupts (if using interrupts).

8. Clear the WREN.

9. At the completion of the write cycle, the WR bit is cleared and the EEIF

interrupt flag bit is set. (EEIF must be cleared by firmware.)

Program Counter

The program counter (PC) of the Microcontroller is a part of the data memory.

The value inside the PC shows the next instruction to be executed in the program

memory. The PC 13 bits, and is held in two registers.

• 8 LSBs (<7:0>) are in PCL register, readable and writable.

• MSB 5 bits (<12:8>) are copied from PCLATH register (<4:0>) on a “write

to PC” instruction such as “ADDWF PCL”.

PC Stack

Related to the PC, the stack is of primary importance. Stack is used to store the

current value of the PC in case of a subroutine/function call, to be able to proceed

with normal operation upon return. The user cannot access (i.e. read or modify)

the stack.

• Stack is 8 PC words (13 bits) deep.

• Stack pointer is not readable / writable

• Stack is circular, i.e. a 9th write overwrites stack address 0.

SimSys Corporation 62

PIDE Final Design Report

5.1.2. PORTS
There are five ports on the microcontroller. These ports are used for various

purposes, but mostly for digital I/O. The names of the ports and the number of

pins on each are PORTA (6), PORTB (8), PORTC (8), PORTD (8) and PORTE (3).

Port Name Pins Connected Modules

PORTA 5 Digital Input/Output

A/D Converter(default)

Comparator

SPI

Timer0

PORTB 8 Digital Input/Output

External Interrupt

Weak internal pull-up

Interrupt on Change

PORTC 8 Digital Input/Output

Timer1

PWM 1-2

SPI

I2C

USART

PORTD 8 Digital Input/Output

Parallel Slave Port

PORTE 3 Digital I/O

A/D Converter

Parallel Slave Port

Interrupts

There are 15 sources of interrupts in the system. Therefore, that number of

interrupt vectors will be used to select the address to be jumped onto in case of

an interrupt. Among the most important interrupt vectors, the reset vector of the

system resides in the address 0000h and the external interrupt vector in 0004h.

SimSys Corporation 63

PIDE Final Design Report

5.1.3. Parallel Slave Port

Parallel Slave Port registers and usage:

 Set TRISE<2:0> for inputs

 ADCON1<3:0> for digital I/O not analog I/O

 Write with WR low and CS low, when any one becomes high, IBF flag is

set, and PSPIF interrupt flag is set

 Read PORTD to clear IBF

 If a second write before read, IBOV is set

 Read with RD low and CS low, OBF is cleared, when any one becomes

high, PSPIF interrupt flag is set, OBF low until data is written

5.1.4. Analog to Digital Converter

The conversion of an analog input signal results in a corresponding 10-bit digital

number. The A/D module has high and low-voltage reference input that is

software selectable to some combination of VDD, VSS, RA2 or RA3.

The ADRESH and ADRESL registers contain the 10-bit result of the A/D

conversion. When the A/D conversion is complete, the result is loaded into this

A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D

interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in

Figure 11-1.

Clearing the GO/DONE bit during a conversion will abort the current conversion.
The A/D input pins must be configured as input pins via the TRIS register to be
used as analog inputs.

INTCON Interrupt Enable
PIR1 Interrupt flag
PIE1 Interrupt enable
ADRESH Conversion Result MSBs (or LSBs)
ADRESL Conversion Result LSBs (or MSBs)
ADCON0 Analog input channel selection

Conversion clock selection
Conversion flag
A/D enable

ADCON1 AD port configuration
Result format selection

TRISA Pin directions
PORTA Analog input port
TRISE Pin directions
PORTE Analog input port

SimSys Corporation 64

PIDE Final Design Report

5.1.5. Other Features of the MCU

Timer0, 8Bit timer/counter with 8Bit prescaler

Timer1, 16Bit timer/counter with prescaler

Timer2

Capture-Compare-PWM Modules

SSP, Synchronous Serial Port

SPI, serial Peripheral Interface

I2C

USART, Universal Synchronous / Asynchronous Receiver Transmitter (9-bit)

BOR, Brown Out Reset

Analog Comparator Module

WDT, Watchdog Timer

Sleep Mode

5.2. Peripherals

The CEng 336 board is a complete evaluation board that contains various devices

on it. These devices can be classified into two with respect to their usage, input

devices and output devices. The list of the peripherals on the board are given

below with their brief explanations.

5.2.1. Input Peripherals

Parallel Port

Parallel port (LPT) is the port that is used for programming the microcontroller on

the evaluation board. This port can be used for parallel communication, such as

PSP mode, or for serial communication, either synchronous or asynchronous.

Serial Port

Serial port connection, i.e. RS232, is used for asynchronous serial data transfer

between other devices and the microcontroller.

USB Port

The USB port is a high speed serial communications interface. For PIC

applications, in fact the speed of the USB port is very high, however since in the

SimSys Corporation 65

PIDE Final Design Report

recent PCs, the serial communications port is being replaced with the USB ports,

the controller should be able to communicate using this protocol.

Smart Card Reader

Smart card reader provides extra storage capability to the system. Since the

storage capacity of the EEPROM on the MCU is limited, some extra storage may

be necessary. The addressing and read/write operation of the reader should be

modeled in the system.

Infrared Transmitter and Receiver

Infrared communication is included on the board to be used for special purpose

applications. The system is internally analog and requires special modelling.

Keypad

There are 16 pushbuttons on the evaluation board. The pushbuttons are active

high buttons, pulled low during normal operation.

Reset Pushbutton

The reset pushbutton, being active low, is directly connected to the reset of the

microcontroller. An MCLR signal is asserted with this input.

5.2.2. Output Peripherals

Led Array

A light emmiting diode (LED) is nothing but a semiconductor device that emits

light when given logic high value.

Seven Segment Display Array

A collection of LEDs, arranged in a format that will enable the display of

alphanumeric characters is called a seven segment display. On the CEng336

board, there are three of those devices, forming an array.

SimSys Corporation 66

PIDE Final Design Report

LCD

Using light emmiting diodes for displaying data is clearly not the best method.

Seven segment displays improve the user interface a little but still, it is very old

fashioned. Newest systems always include some LCD components as the

interface. These devices latch in the data entered, decode the characters and

display them on their screen. Moving the cursor on the LCD and deleting are

some special operations available on most of the off-the-shelf LCD modules.

Speaker

A speaker is a source of accoustic waves. The input signal is analog and the

frequency/intensity of the accoustiv waves is determined by the input waveform

characteristics.

SimSys Corporation 67

PIDE Final Design Report

6. Language Specifications

6.1. ASM++ Language Format

A Simple Language: ASM++

We have decided to define a new language, which is simply an improvement on

assembly language, including some new keyword definitions and introducing

some high level language concepts such as function calls and variable definitions.

The name of the language is ASM++ (ASM plus plus), and the file extension is

“.asmpp”.

GENERAL SPECIFICATIONS

• ASM++ is not case sensitive. Upper-case letters and lower-case letters are

not considered to be distinct in any token, including reserved words.

• White spaces (space character, tab character and end-of-line) serve to

separate tokens; otherwise, they are ignored.

• No token can extend past end-of-line.

• Spaces may not appear inside any token except character and string

literals.

• A comment begins with two forward slashes (as in C++) or with a

semicolon (as in assembly language) and extends to end of line.

• There cannot be more than one statement in a line.

• No semicolons exist at the end of statements. (In fact, that does not

matter since, after a semicolon, the rest of the line is considered as

comment.)

IDENTIFIERS

Identifiers start with a letter or an underscore and contain letters, underscores

and digits. An identifier must fit on a single line and its first 20 characters are

significant.

SimSys Corporation 68

PIDE Final Design Report

RESERVED WORDS

The following keywords are reserved in ASM++:

addff subff addwff subwff swapff

iorwff andwff xorwff movff

if else for while do continue

break function return define var array

OTHER TOKENS (DELIMITERS AND OPERATORS)

One-character delimiters: : ; , () EOF

One-character operators: ! < = > '

Two-character delimiters: //

Two-character operators: == != >= <= && ||

MACROS

Macros are introduced by declarations of the form:

define name number

VARIABLES

Variables are introduced by declarations of the form:

var var_name

or

var var_name var_address

The first declaration reserves one of the predefined addresses from the data

memory of the PIC for that variable. The exact locations will be provided to the

user in the user manual. While using the first declaration method, it is the user’s

responsibility to ensure that the correct bank is selected, before using that

variable. The second declaration reserves the given address for that variable.

SimSys Corporation 69

PIDE Final Design Report

Examples:

var abc

var def 0x121

ARRAYS

Arrays are introduced by declarations of the form:

array array_name(array_length)

or

array array_name(array_length, start_address)

Similar to the variable declaration, arrays can be declared by specifying a starting

address or by using the predefined constant starting addresses. Using the second

declaration method, an array of length array_length will be reserved starting from

the address start_address from the data memory of the PIC.

For example:

array abc(10, 0x5510)

LITERALS

A literal consists of a sequence of one or more digits in decimal, binary or

hexadecimal format.

A character literal is a single character enclosed by a pair of apostrophes

(sometimes called "single quotes".) Examples include 'A', 'x', and '''. A character

literal is distinct from a string literal of length one.

There is nothing like string literal.

SimSys Corporation 70

PIDE Final Design Report

EXPRESSIONS

In ASM++, expressions are defined as below:

<expr> : <expr1> && <expr1> | <expr1> || <expr1>

<expr1> : <label> == <label> | <label> != <label> |

 <label> > <label> | <label> < <label> |

 <label> >= <label> | <label> <= <label>

<label> : <address> | <const>

<const> : <variable> | <number>

<address> is the memory addresses in the PIC, with the form 0x045,

<variable> is the variable declared using var or define keywords,

<number> is the number represented in binary, decimal or hexadecimal format.

For binary operations including the assignment operation, both operands must be

of the same type for consistency.

SHORT CIRCUITING

Logical operators AND and OR use short-circuit evaluation. This means that, as

soon as the truth value can be determined, evaluation stops. For example, if the

first operand of an AND evaluates to false, the expression will evaluate to false,

no matter what the second operand is; i.e. the second operand is not even

evaluated. Similarly, if the first operand of an OR evaluates to true, the second is

not evaluated.

STATEMENTS

• Assignment statement

"=" is the assignment operator.

For example:

var a 0x121

a = ‘0x1C4’

• If statement

An if-statement can be used alone or together with an else-statement. The

curly braces are compulsory regardless of the number of statements inside

the if-block. The syntax of an if-else statement is as follows:

SimSys Corporation 71

PIDE Final Design Report

define MAX 100

define MIN 0

...............

if (x > MAX)

{

goto hede

}

else if(x < MIN)

{

goto hodo

}

• Loop Statements

The compiler will support while, do-while and for loops. The curly braces

are compulsory regardless of the number of statements inside the loop.

continue and break instructions are also available with the same effects as

in C language. The syntaxes of the loop statements are as follows:

while (hede)

{

.................

.................

}

for (expr1; expr2; expr3)

{

.................

}

do

{

.................

}

while (hede)

SimSys Corporation 72

PIDE Final Design Report

FUNCTION DEFINITIONS

The ASM++ language will provide function calls. Function calls can be limitedly

nested. A sample function definition is as follows:

function func_name(parameter1, parameter2)

{

 return var1

}

Predefined memory addresses will be reserved for parameter passing and for

function return values. User will be informed about the memory address usage

scheme by means of the user manual.

COMMENTS

The comments are specified by a semicolon or two forward slashes. It will

comment out the characters until the end of line.

EXTENDED INSTRUCTION SET

PIDE program will provide a bunch of new instructions together with the basic PIC

instruction set. Using these new instructions, it will be possible to do arithmetic

operations between two file registers without using the working register WREG.

These instructions are:

addff v1 v2 : (V1 <― V1 + V2)

Adds the value of v2 to v1, and writes the result back to v1.

subff v1 v2 : (V1 <― V1 - V2)

Subtracts the value of v2 from v1, and writes the result back to v1.

addwff : (W <― V1 + V2)

Adds the value of v2 to v1, and writes the result to WREG.

SimSys Corporation 73

PIDE Final Design Report

subwff : (W <― V1 - V2)

Subtracts the value of v2 from v1, and writes the result to WREG.

swapff : (Temp <― V1, V1 <― V2, V2 <― Temp)

Swaps the values of v1 and v2.

iorwff : (V1 <― V1 OR V2)

Takes the OR of v1 and v2, and writes the result to WREG.

andwff : (V1 <― V1 AND V2)

Takes the AND of v1 and v2, and writes the result to WREG.

xorwff : (V1 <― V1 XOR V2)

Takes the XOR of v1 and v2, and writes the result to WREG.

movff : (V2 <― V1)

Copies the value of v1 to v2.

SimSys Corporation 74

PIDE Final Design Report

6.2. Test Bench File Language Format

During the simulation of a source file, the user will want to enter various inputs to

the system. The input devices on the board are communication ports, keypad,

pushbuttons and pots. Using a test bench file, the user can state the exact time

instants that the inputs from these devices will be modified, e.g. a reset signal

may be asserted for a period. Test bench files will release the burden of entering

the inputs to peripherals at correct instants. This is especially useful in the case of

high frequency input requirements.

Test bench file can control the system inputs in two different modes. In the

Peripheral mode, the user may control the timing of the inputs to the peripheral

devices. Alternatively, in the PIC mode, the user may choose to directly access

the pins of the microcontroller. The mode selection is performed by <ModeName>

tag. A test file may contain only one mode selection tag.

The format of the test bench files is given below. The file should have “.test”

extension.

timescale <time unit>

<PERIPHERAL>
 #<time> <DeviceName>.PIN<Pin No> = <expression3>
 #<time> <DeviceName> = <Expression4>

 always #<time> <DeviceName>.PIN<Pin No> = <expression3>
 always #<time> <DeviceName> = <Expression4>

 #<time> $finish
timescale <time unit>

<PIC>
 #<time> PORT<Port Name>.PIN< Pin No> = <Expression1>
 #<time> PORT<Port Name> = <expression2>

 always #<time> PORT<Port Name>.PIN<Pin No> = <expression1>
 always #<time> PORT<Port Name> = <expression2>

 #<time> $finish
SimSys Corporation 75

PIDE Final Design Report

Indentation is not important, since the parser ignores white spaces. The

instructions are not case-sensitive.

The language for the Peripheral and PIC modes are defined below.

For Peripheral Mode:

PIC Mode:

<Expression1> = 0 | 1 | PORT<Port Name>.PIN<Pin No>
 | ~PORT<Port Name>.PIN<Pin No>

<Expression2> = <byte> | PORT<Port Name> + <CONST>
 | PORT<Port Name> - <CONST>
 | PORT<Port Name>

Port Name = PORTA | PORTB | PORTC | PORTD | PORTE

Example Files

For PIC Mode:

timescale <1ms>

<PIC>
 #0 PORTA = 0
 #0 PORTB = 0

 always #10 PORTA.2 = ~PORTA.2
 always #100 PORTB = PORTB + 1

#<1000> $finish
<Expression3> = 0 | 1 | <DeviceName>.PIN<Pin No>
 | ~<DeviceName>.PIN<Pin No>

<Expression4> = <word> | <DeviceName> + <CONST>
 | <DeviceName> - <CONST>

<Device Name> = LPT | RS232 | USB | Keypad | Reset

SimSys Corporation 76

PIDE Final Design Report

For Peripheral Mode:

<PERIPHERAL>
 #0 Keypad = 0
 #0 Reset = 1
 #5 Reset = 0

 #10 Keypad.PIN5 = 0
 #10 Keypad.PIN2 = ~Keypad.PIN2
 always #100 Keypad.PIN3 = ~Keypad.PIN3

#<1000> $finish
SimSys Corporation 77

PIDE Final Design Report

7. File Formats

7.1. System File Format

PIDE is designed to be customizable and intelligent in the sense that user is able

to work with the last saved configuration. PIDE saves all configuration data into a

system file "pide.sys". System file holds data of users' preferences and default

settings about the overall program execution such as coloring schemas, font type

and size of the editor, record of recent files and projects. Access to system file

will be restricted and the file will be hidden.

System file consists of informative comments (comment token is '#') followed by

default settings of the system and user defined settings. If somehow some user

information is missing, program handles it by loading the default setting.

However, if both user setting and default setting of the same preference is

missing, user may add a line into the file defining a default value for the

preference. Users can refer to the system manual for system file specifications,

but user is discouraged to change the system file. Below is an example system

file.

#PIDE vers. 1.0

#Install date: 18.9.2007 12:33:48

#You are discouraged to change the values in this file since

#it may cause unexpected program behavior. For an emergency case,

#please refer to system manual.

#Default System Settings

...

...

#Default Editor Settings

text_color: 0 0 0

background_color: 255 255 255

text_size: 12

...

SimSys Corporation 78

PIDE Final Design Report

7

P

I

<

p

B

P

P

v

m

d

c

l

...

#Latest System Settings

#set on 26.9.2007

#Recent files

recent_documents:

>./source/heat_sensor.asmpp

>./myLib/a2dcalculate.ah

>./testcase.test

recent_projects:

>./projects/heat sensor/

#Editor Settings

text_color: 0 0 5

background_color: 255 255 250

text_size: 14

...
.2. Project File Format

IDE is designed to be able to create projects and save workspaces for a better

DE experience. PIDE saves all necessary information in a file

project_name>.pde to recreate a previously used workspace. "pde" is the PIDE

roject save file extension. Each project has a pde file under its project folder.

elow are the specifications and format of the project file.

roject Description in Project File

roject files include a project description section at the beginning. It includes

ersion of PIDE, name of the project, user/corporate name, creation and last

odification dates of the project and description of the project if available. Each

escription is leaded by a keyword and followed by a new line. Project description

an span several lines with project description token (#) at the beginning of each

ine. Below is an example of the project description section.

SimSys Corporation 79

PIDE Final Design Report

#PIDE 1.0- PIC Integrated Development Enviroment with ASM++

#Project_Name= Heat Sensor

#Creator= e1347061

#Created@ 2/12/2006 13:29:06

#Modified@ 2/12/2006 13:45:33

#Description= Ceng336 odevi icin yazdigimiz bir isi sensoru

Other Files in Project File

Project file holds trace of all files included in the project. These files may be

ASM++ source files, ASM files, HEX files, debug files and test files. Each file is

defined with its type and path name. The lines preceding types of the files begin

with file type token (>) and file paths are saved after "FILE=" keyword. Below is

an example of files.

>ASM++

FILE= ./source/heat sensor.asmpp

>ASMHEADER

FILE= ./myLib/a2dcalculate.ah

>ASMHEADER

FILE= ./d2acalculate.ah

>TESTFILE

FILE= ./testcase1.test

>DEBUGFILE

FILE= ./heat sensor.dbg

Workspace in ProjectFiles

Project file saves last snapshot of the workspace. When user opens an existing

project, GUI will be modified according to these settings. This section begins with

WORKSPACE_BEGIN keyword and ends with WORKSPACE_END keyword.

Between the keywords states of all the views and windows are saved. View

properties, i.e. visibility of toolbars, shortcuts, etc. are leaded with "VIEW_" tag

and window properties, i.e. subwindows which were open just before leaving

workspace, are leaded with "WINDOW_" tag. Editor windows are special cases

since they require additional information like the file they are editing. There is an

SimSys Corporation 80

PIDE Final Design Report

editors section in the workspace between "WINDOW_EDITOR_LIST_BEGIN"

keyword and "WINDOW_EDITOR_LIST_END" keyword. In this section a mode tag

is followed by a file path. Below is an example of workspace.

WORKSPACE_BEGIN

VIEW_TOOLBAR_DEBUG= OFF

VIEW_BUTTON_DEBUG_STEP= ON

...

(removed)

...

WINDOW_EDITOR_LIST_BEGIN

FULL= NONE

FLOATING= ./source/heat sensor.asmpp

MINIMIZED= ./testcase1.test

WINDOW_EDITOR_LIST_END

...

removed

...

WINDOW_BUTTOM_CONSOLE= TABBED

WINDOW_BUTTOM_LOG= ON

WINDOW_SIDE_WATCHPOINT= TABBED

WINDOW_SIDE_REGISTERS= ON

WORKSPACE_END

SimSys Corporation 81

PIDE Final Design Report

7.3. Debug File Format

Debug files hold data of the source and binary executable files that will be used in

debugging process. Debugger needs watchpoints and breakpoints to halt

execution. Watchpoints are held as register addresses and breakpoints as line

number of some source file. Debug file holds existing watchpoint and breakpoint

locations in a file <project_name>.dbg. Below are the specifications and format

of the debug file.

Cross Mappings of the Line Numbers for Breakpoints

Breakpoints are defined using source files. These lines should be mapped to

corresponding lower level file lines. Breakpoints may be lying in different files so

each files line number is separated from another. Breakpoint section begins with

BREAKPOINT_BEGIN keyword and ends with BREAKPOINT_END keyword. After

BREAKPOINT_BEGIN keyword, the path of the file to which source file line

numbers are mapped is saved. This file is usually a generated asm file with file

name <project_name>_g.asm. Each source file's breakpoint data is listed under

its path name leaded with its source type. After each file, END_OF_BP_LIST

keyword is used to indicate the source file has no other breakpoints. Each

breakpoint is indicated with a >BP tag followed by line number of the associated

source file and mapped line number. Other mappings simply don't have any tags.

Below is an example of breakpoint section.

SimSys Corporation 82

PIDE Final Design Report

BREAKPOINT_BEGIN DEST= ./heat sensor_g.asm

ASMFILE= ./source/heat sensor.asmpp

4 1

5 2

...

...

11 11

>BP 12 14

13 16

...

...

45 50

>BP 46 55

...

...

81 90

END_OF_BP_LIST

ASMHEADER= ./myLib/a2dcalculate.ah

1 91

2 94

3 95

>BP 4 98

...

...

>BP 19 122

...

...

>BP 24 130

...

...

END_OF_BP_LIST

BREAKPOINT END

Register Adresses for Watchpoints

Watchpoints are defined using registers of the microcontroller. They are mapped

to a real address value in the PIC and debugger halts whenever a register

referenced by a watchpoint is altered. Debugger receives line number information

SimSys Corporation 83

PIDE Final Design Report

to continue debugging process from simulator. Watchpoint section begins with

WATCHPOINT_BEGIN keyword and ends with WATCHPOINT_END keyword. Each

watchpoint is indicated with a >WP tag followed by register address of PIC in

hexadecimal format. Some special registers are indicated with descriptive labels

such as stack registers. Below is an example of watchpoint section.

WATCHPOINT_BEGIN

>WP 0x0101

>WP STACK1

>WP W

>WP STATUS

WATCHPOINT_END

7.4. ASM Header File Format

ASM header files (<file_name>.ah) are used to include predefined functions,

procedures or macros. Content of an ASM header file is almost the same with a

regular ASM++ file. User can include other ASM header files, define variables,

functions and macros in an ASM header file. It is user's responsibility not to use

the names used in header files he/she includes. Also user shouldn't include

declarations for PIC's internal setup, i.e. setting watchdog off, which should be in

an ASM++ file that contains the main program. PIDE supplies a set of header files

that includes many procedures frequently used in embedded programming.

SimSys Corporation 84

PIDE Final Design Report

8. Coding Standarts

To increase maintainability of the source code, all project members will obey the

coding standarts described below.

8.1. Coding Conventions

Inside the class scope, attributes and method declarations should be followed

with method definitions. Attributes and method declarations shall be logically

grouped using appropriate comments.

Class attributes should be private. All attributes must have its own getter and

setter methods implemented.

8.2. Naming Conventions

Naming conventions will be as Java naming conventions.

Class names will be as descriptive as possible and initial letters of each word and

abrreviation letters will be capitalized.

Example: Class, ClassName, CClass, ClassC etc.

For the class names we extended from Java libraries, class name will be

preserved except that the ‘J’ letter at the beginnig is replaced with ‘P’.

Example: class PMenuBar extends JMenuBar.

Method names and Class attributes always start with small letters. Each word or

abrreviation letter after the first word or abbreviation letter will be start with

capital letters.

Example: var, varP, varPoint, iPoint, varFirstSecond, varFS, method(),

methodName(), mName(), methodN() etc.

Instances of classes have the same name with the class name, but the first letter

will be lowercase.

Example: BreakPointHandler breakPointHandler = null;

SimSys Corporation 85

PIDE Final Design Report

8.3. Comments

Comment conventions will be as Java commenting conventions.

At the beginning of each file, there will be a descriptive comment which must

include file name, creator, creation time, last edit date.

Classes, attributes and methods should be leaded with descriptive comments.

• Class comments should describe functionality of the class and may include

special notes if any. The comment should have @author <author name> line in

the end.

• Attribute comments should be brief as much as possible.

• Method comments should describe behavior and aim of the method. All

parameters should be described using @param tag and return values should be

described with @return. The comment should have @author <author name> line

in the end. Local variables should be described inside the method.

8.4. Indentation

Indentation conventions will be as Eclipse Java Indentation conventions.

Scope defining curly braces should be put in a new line and indented to the same

vertical line. Example:

Class Class1

{

 void method ()

 {

 if (var1 == var2)

 {

 if (var2 == var3)

 {

 ...

 }

 }

 }

}

To increase readibility, there should be white spaces before and after any names,

operators, etc. Example:

var = 3 + (var1 + var2 * var3 / method());

SimSys Corporation 86

PIDE Final Design Report

SimSys Corporation 87

10. System Testing Considerations

To supply a faultless product, enough time should be given for testing. Before the

demonstration of the project, one week will fully be dedicated for the testing of

PIDE.

Since PIDE is being developed in an object oriented approach, object oriented

testing strategies should be applied.

• Each class will be tested during the development time, to observe whether

it operates correctly. White box testing will be applied at this level.

• Interclass tests will be applied to check the interactions between the

classes.

• After completing each subsystem of the program, scenario based tests will

be applied. For example, to compile an .asm file to test the compiler

module, etc.

• After the completion of coding, the program will be tested to see whether

it works correctly with full functionality.

PIDE Final Design Report

11. Gantt Chart

May April March February January

SimSys Corporation 88

	1. Introduction
	1.1 Purpose of the Document
	1.2. Project Description

	2. System Architecture
	3. Modeling
	3.1. Scenario Based Modeling
	3.1.1. Manage Project Files
	3.1.2. Manage Files
	3.1.3. Change Settings
	3.1.4. Compile Project
	3.1.5. Simulate Project
	3.1.6. Debug Project
	3.1.7. Manage File Transfer

	3.2. Object and Data Structure Modeling
	3.2.1. Classes of gui Package
	3.2.2. Classes of projectManager Package
	3.2.3. Classes of editor and compiler Packages
	3.2.4. Classes of simulator Package
	3.2.5. Classes of debugger Package
	3.2.6. Classes of programmer Package

	3.3. Flow-Oriented Modeling
	3.3.1. Editor Module
	3.3.2. Compile Module
	3.3.3. Simulate Module
	3.3.4. Debugger Module
	3.3.5. PIC Programmer Module

	4. Graphical User Interface Design
	5. Components to be Simulated
	5.1. PIC MCU
	5.1.1. Memory
	5.1.2. PORTS
	5.1.3. Parallel Slave Port
	5.1.4. Analog to Digital Converter
	5.1.5. Other Features of the MCU

	5.2. Peripherals
	5.2.1. Input Peripherals
	5.2.2. Output Peripherals

	6. Language Specifications
	6.1. ASM++ Language Format
	6.2. Test Bench File Language Format

	7. File Formats
	7.1. System File Format
	7.2. Project File Format
	7.3. Debug File Format
	7.4. ASM Header File Format

	8. Coding Standarts
	8.1. Coding Conventions
	8.2. Naming Conventions
	8.3. Comments
	8.4. Indentation

	10. System Testing Considerations
	11. Gantt Chart

