

Middle East Technical University
Department of Computer Engineering

CENG 491

Computer Engineering Design I

2006-2007

SimSys Corporation

 Initial Design Report

PIDE

Emulator and Development Environment for

CEng Embedded System Card

04.12.2006

PIDE Initial Design Report

SimSys Corporation 2

Table of Contents

1. Introduction...3

1.1 Purpose of the Document...3
1.2. Project Description..3

2. System Architecture ...5
3. Modeling ..6

3.1. Scenario Based Model – Use Case Diagrams...6
3.1.1. Manage Project ..6
3.1.2. Manage Files ..7
3.1.3. Manage Settings...7
3.1.4. Compile Project ...8
3.1.5. Simulate Project ...9
3.1.6. Debug Project...10
3.1.7. Manage File Transfer ...11

3.2. Class diagrams ..12
3.3. Sequence diagrams..37

3.3.1. Editor Module ..37
3.3.2. Compile Module ..41
3.3.3. Simulate Module..42
3.3.4. Debugger Module ..43
3.3.5. PIC Programmer Module ...47

4. Graphical User Interface Design...50
5. Components to be Simulated ...54

5.1. PIC MCU ..54
5.1.1. Memory..54
5.1.2. PORTS ...59
5.1.3. Parallel Slave Port..60
5.1.4. Analog to Digital Converter...61
5.1.5. Other Features of the MCU..61

5.2. Peripherals...62
5.2.1. Input Peripherals ..62
5.2.2. Output Peripherals ...63

6. Language Specifications ...64
6.1. ASM++ Language Format ..64
6.2. Test Bench (.test) File Format ..68

7. File Formats...70
7.1. Project File Format ...70
7.2. Debug File Format ..72

8. Coding Standarts ..75
8.1. Coding Conventions..75
8.2. Naming Conventions ..75
8.3. Comments ...75
8.4. Indentation ..76

9. Gantt Chart ...77

PIDE Initial Design Report

SimSys Corporation 3

1. Introduction

1.1 Purpose of the Document
This document is prepared to supply an initial design for the PIDE Project.

This report should be considered as an intermediate outcome of the design

process. The work done and results are included in this document in a formal

way. Since design process consists of modelling the system, the report contains

diagrams and models of the current system. Design process is still going

on.Hence,all the diagrams and models are subject to change.

The report consist of two parts. In the Modelling of the System part, static and

dynamic components of the system are represented. In the System and Project

Specifications part, standards related to project implementation and various

system components are introduced.

1.2. Project Description

 As the technology evolves, the embedded systems start to find wide area

of usage. In most of the devices that people use daily, there exists a core logic

which is mostly an embedded microcontroller or microprocessor with some

external storage. Besides, those integrated devices also let the implementation

and testing of various new controller ideas very easily. This popularity of

Embedded Systems is a little overshadowed by the difficulty in developing

embedded software due to the lack of a well fitted development environment and

pre-testing it on a special independent system prepared just for testing purposes.

 An example to the above discussion exists for the CEng336 Embedded

Systems course. Among the course contents, development of embedded software

and testing on a test board is of primary importance. However, obviously a

standalone testing environment that will simulate exactly the same features with

high accuracy would greatly simplify the testing procedure.

 As a solution to the problem stated above, SimSys Corporation will

develop an emulator and development environment for the card used in Ceng336

Embedded Systems course. Considering such a development and simulation

environment, the system will support various types of microcontrollers,

PIDE Initial Design Report

SimSys Corporation 4

communicate through various interface standards such as parallel, serial or USB

and accommodate some display interfaces such as LCD or LED driving structures.

Users will have the chance of compiling their programs and they can test and

debug it on the virtual card emulated by the software.

 For such a development and simulation environment design project, the

implementation areas are unlimited just as the fact that the implementation areas

of the embedded systems are unlimited. As a result, such a system, which will

simplify the development and testing process, will find great interest from the

embedded systems developers. Together with the Ceng336 Card, this software

will be useful for computer engineers, electrical engineers, high school students

and everyone interested in PIC programming.

PIDE Initial Design Report

SimSys Corporation 5

2. System Architecture

In the figure below, the major components of the PIDE is given.

PIDE Initial Design Report

SimSys Corporation 6

3. Modeling

3.1. Scenario Based Model – Use Case Diagrams

The use cases of the system describe the interaction between the system and the

user from the user’s point of view. This schematic is important to define the

capabilities that are given to the user and his/her possible choices. There is no

timing relationship existing in this diagram; however that information is given in

the sequence diagrams, since these use cases are only to present the alternative

paths that can be followed.

3.1.1. Manage Project
Managing a project is in fact handling of files within a project. Creation of new

files, adding existing files to the project, removing files from the project are the

possible tasks that can be performed in this use case. The files that are

mentioned here may be of various types. The alternatives for file types are

ASM++ source files, ASM source files and test bench files.

PIDE Initial Design Report

SimSys Corporation 7

3.1.2. Manage Files

The user may select to manage the files using PIDE. Here, files may be created,

saved, opened. These files are the source files and test bench files. The source

files are the ASM++ files or ASM files. The test bench file contains the input

timing information for the peripherals.

3.1.3. Manage Settings

PIDE Initial Design Report

SimSys Corporation 8

This use case defines the interaction of the user with the system to manage the

settings of various internal modules of the software. Here, by means of graphical

dialog windows, the user will be able to modify the system settings. This use case

is in fact composed of a number of independent use cases. These are setting the

project settings, compiler settings, simulator settings, debugger settings, analysis

settings and finally the programmer settings. The first ones are self explanatory;

however the last two require some elaboration.

Analysis settings are the specification of signals that are to be saved for later

investigation. Here, some probes are inserted to the system, where the logic

levels or voltages on those nodes are saved. Those saved waveform graphics can

later be viewed via the analysis tool.

Programmer settings are about the programming interface of the board. Here, the

parallel port selection can be performed and other choices about device

programming can be made.

3.1.4. Compile Project

The use case with the compile system is very straightforward. The user just

requests a compile operation from the system. All syntax checking, parsing,

linking and conversions are performed transparently to the user. The results are

displayed in the output pane of the user interface.

PIDE Initial Design Report

SimSys Corporation 9

3.1.5. Simulate Project

In the simulation use case, the user will ask the system to run according to the

specified inputs. The inputs may be provided by the user either real time by

means of the graphical user interface which is exactly the same as the layout of

the board, or some files that specifies some sequence of data to the input

devices. These special files are called test bench files and have their special file

format.

Simulation system has some special features. One of them is the enable/disable

mechanism of the peripherals on the evaluation board. Another one is the

selectable run speed. This feature will make the user much more comfortable in

simulation of high frequency systems. For instance, in order to observe a signal

toggling at 100 KHz, the system may be configured to run in 5us steps.

PIDE Initial Design Report

SimSys Corporation 10

3.1.6. Debug Project

Debugging a project is to concentrate on the flow of the program on some specific

parts of the source code. Debugging a project internally requires the project to be

compiled and if current system is in not compiled state, then automatically the

compile routine is invoked. Critical concepts for the debugger are the breakpoints

and watch points.

Breakpoints are identifiers on some source code lines that state that the

execution of the program will continue until that point and will halt there. The

internal state of the system will be completely visible to the user, together with

the contents of the registers. The execution flow will continue with some special

events from the user such as a “step” command.

Watch points are identifiers attached to registers. These watch points are

triggered when the value in the register is modified. The execution of the

program halts at this point. Resuming is based on the same procedure as the one

in breakpoints.

PIDE Initial Design Report

SimSys Corporation 11

3.1.7. Manage File Transfer

Once the simulation is performed and the required results observed in the

system, the user will upload the hex file to the microcontroller on the board to

verify the operation physically. The user may also request to see the source of

the program in currently residing in the microcontroller or may request a

verification to check whether the uploaded program is consistent with the one in

hand. The user may also want to clear the contents of the memory in the

controller to be on the safe side and to start everything from scratch.

PIDE Initial Design Report

SimSys Corporation 12

3.2. Class diagrams

Project

Attribute Name Type Description

projectName string The name of the project.

projectPath string
The path of the project on the
disk.

specifications ProjectFile The specifications of the project.

compiler Compiler The compiler module.

debugger Debugger The debugger module.

bpHandler BreakPointHandler The breakpoint handler.

wpHandler WatchPointHandler The watchpoint handler.

Attributes

simulator SimulationEngine The simulator module.

Method Name Return Arguments Description

saveProject() void void Saves the project.

loadProject() void
projectName,
projectPath

Loads the project.

Methods

newFile() void fileType, Creates a new file and adds it to

PIDE Initial Design Report

SimSys Corporation 13

fileName,
filePath

the project.

addFile() void
fileType,
fileName,
filePath

Adds an existing file to the
project.

removeFile() void
fileType,
fileName,

Removes a file from the project.

File

Attribute Name Type Description

fileType int
The type of the file, i.e. asm,

hex, test, etc.

fileName string The name of the file.

Attributes

filePath string The path of the file on the disk.

Method Name Return Arguments Description

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file.
Methods

close() void void Closes the file.

SystemFile :: File

Attribute Name Type Description

systemInfo systemID Information about the system.

operatingSystem OSID
The type of the operating
system.

userInfo userID Information about the user.

Attributes

preferences Preference The preferences of the user.

Method Name Return Arguments Description

save() void void Saves the file. Methods

load() void
fileName,
filePath

Loads the file.

ProjectFile :: File

Attribute Name Type Description

userInfo userID Information about the user. Attributes

properties Property The properties of the project.

Methods Method Name Return Arguments Description

PIDE Initial Design Report

SimSys Corporation 14

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file.

AsmPlusFile :: File

Method Name Return Arguments Description

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file. Methods

update() void void
Updates the file with the current

changes.

AsmFile :: File

Method Name Return Arguments Description

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file. Methods

update() void void
Updates the file with the current

changes.

HexFile :: File

Method Name Return Arguments Description

save() void void Saves the file. Methods

load() void
fileName,
filePath

Loads the file.

HeaderFile :: File

Method Name Return Arguments Description

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file. Methods

update() void void
Updates the file with the current

changes.

PIDE Initial Design Report

SimSys Corporation 15

DebugFile :: File

Method Name Return Arguments Description

save() void void Saves the file. Methods

load() void
fileName,
filePath

Loads the file.

TestFile :: File

Method Name Return Arguments Description

save() void void Saves the file.

load() void
fileName,
filePath

Loads the file. Methods

update() void void
Updates the file with the current

changes.

PIDE Initial Design Report

SimSys Corporation 16

Editor

Attribute Name Type Description

fileBufferArray BufferArray
The contents of the
currently opened files.

fileArray fileArray
The files those are currently
open.

bpHandler BreakPointHandler The breakpoint handler.

Attributes

cursorPos CursorPosition
Current position of the
cursor

Method Name Return Arguments Description

displayText() void textBuffer
Displays the text in the
buffer.

readFileIntoBuf() void
fileName, filePath,

bufferSize,

fileBufferArrayIndex

Reads the file into the
specified buffer.

getActiveFile() fileName void
Returns the name of the
active file.

insert() void char
Inserts the given char to
the Buffer.

delete() void void
Deletes the selected items
from the Buffer.

backspace() void void
Deletes the last character in
the Buffer.

select() void
cursorStartPosition,

numOfCharacters,

fileBufferArrayIndex

Selects numOfCharacters
characters starting from the
cursorStartPosition.

cut() void

cursorStartPosition,

numOfCharacters,

clipboardBuffer,

fileBufferArrayIndex

Puts the selected item into
the clipboard buffer.

copy() void

cursorStartPosition,

numOfCharacters,

clipboardBuffer,

fileBufferArrayIndex

Copies the selected item
into the clipboard buffer.

paste() void

cursorStartPosition,

numberOfCharacters,

clipBoardBuffer,

fileBufferArrayIndex

Pastes the last item in the
clipboard buffer.

find() void
text,
cursorStartPosition,
fileBufferArrayIndex

Find text in the file.

replace() void
text, newText,
cursorStartPosition,
fileBufferArrayIndex

Find text in the file and
replace with newText.

Methods

highlight() void word Highlights the word.

PIDE Initial Design Report

SimSys Corporation 17

showLineNums() void void Shows the line numbers.

Compiler

Attribute Name Type Description
Attributes crossFileReference-

Table
Hash Table

The mapping between the
source file and the hex file.

Method Name Return Arguments Description

compile() void AsmPlusFile
Starts the compilation
process.

syntaxCheck() void AsmPlusFile
Checks the syntax of the
AsmPlusFile.

syntaxCheckAsm() void AsmFile
Checks the syntax of the
AsmFile.

generateAsm() void AsmPlusFile
Generates an AsmFile from
the AsmPlusFile.

generateHex() void AsmFile
Generates a HexFile from the
AsmFile.

Methods

addToCrossFile-
ReferenceTable()

void CrossFileReference
Adds the CrossFileReference
entry to the
CrossFileReferenceTable.

PIDE Initial Design Report

SimSys Corporation 18

Simulation Engine

Attribute Name Type Description

microcontroller PIC PIC microcontroller.

ledArray LEDArray LED array on the board.

sevenSegDispArray SevenSegmentDisplayArray
7segment display array on
the board.

keyPad KeyPad Keypad on the board.

resetButton ResetButton Reset button on the board.

lcd LCD LCD display on the board.

parallelPort ParallelPort Parallel port on the board.

serialPort SerialPort Serial port on the board.

usart USART
USART module on the
board.

speaker Speaker Speaker on the board.

usbPort USBPort USB port on the board.

smartCard SmartCard
Smart card reader on the
board.

potentiometer Potentiometer
The analog input POT on
the board.

infraredTransmitter InfraredTransmitter
Infrared-transmitter on the
board.

infraredReceiver InfraredReceiver
Infrared-receiver on the
board.

testData TestFile
Test bench data for
simulation.

stopwatch Stopwatch
Stopwatch to keep the time
during simulation.

pinListenerList Vector<PinListener>
Pin listener to keep the
logic values of the pins.

Attributes

simulationMode int The mode of the simulation.

Method Name Return Arguments Description

simulate() void void Makes the simulation.

runTestSimulation() void TestFile
Makes the test bench
simulation.

stopSimulation() void void Stop the simulation.

stopTestSimulation() void void
Stop the test bench
simulation.

Methods

enablePeripheral() void PeripheralID
Enables the peripheral in
the simulation

PIDE Initial Design Report

SimSys Corporation 19

disablePeripheral() void PeripheralID
Disables the peripheral in
the simulation

PIDE Initial Design Report

SimSys Corporation 20

PIC

Attribute Name Type Description

flashProgMemory FlashProgramMemory Flash program memory

eepromDataMemory EEPROMDataMemory EEPROM data memory

dataMemory DataMemory Data memory

pc ProgramCounter Program Counter

portA PORTA PORT A of the PIC

portB PORTB PORT B of the PIC

portC PORTC PORT C of the PIC

portD PORTD PORT D of the PIC

portE PORTE PORT E of the PIC

interrupt Interrupt Interrupt module of the PIC

adConverter ADConverter Analog-to-Digital Converter

psp ParallelSlavePort Parallel Slave Port

timer0 Timer0 Timer 0 of the PIC

timer1 Timer1 Timer 1 of the PIC

Attributes

comparator Comparator Comparator of the PIC

Method Name Return Arguments Description

decodeInstruction() void void
Decodes the next
instruction.

simulateInstruction() void void
Simulates the next
instruction.

latchInRegs() void void
Latch in the register values
before the execution of a
step.

Methods

writeRegs() void void
Write the updated values of
the registers after the
execution of a step.

FlashProgramMemory

Attribute Name Type Description

data word[]
The content array of the
memory.

EEDATA Register EEDATA register

EEDATH Register EEDATH register

Attributes

EEADR Register EEADR register

PIDE Initial Design Report

SimSys Corporation 21

EEADRH Register EEADRH register

Method Name Return Arguments Description

initialize() void Buffer Initializes the memory. Methods

read() 14bit-data Address
Read the data at the
Adress.

EEPROMDataMemory

Attribute Name Type Description

data byte[]
The content array of the
memory.

EEDATA Register EEDATA register

EEDATH Register EEDATH register

EEADR Register EEADR register

Attributes

EEADRH Register EEADRH register

Method Name Return Arguments Description

read() byte Address
Reads the byte at the
Adress. Methods

write() void Address, byte
Writes the byte to the
Adress.

DataMemory

Attribute Name Type Description

specialRegisters Register
The special registers in
Data Memory. Attributes

generalRegisters Register
The general registers in
Data Memory.

Method Name Return Arguments Description

read() byte Bank, Address
Reads the byte at the
Adress on Bank. Methods

write() void
Bank, Address,

byte
Writes the byte to the
Adress on Bank.

ProgramCounter

Attribute Name Type Description

PCL Register PCL Register in the PIC Attributes

PCLATH 5bit-Register PCLATH Register in the PIC

PIDE Initial Design Report

SimSys Corporation 22

Method Name Return Arguments Description

get() 13bit void
Gets the current value of
the program counter.

increment() 13bit void
Increments the value of the
program counter.

Methods

increment2() 13bit void
Increments the value of the
program counter by 2.

Register

Attribute Name Type Description

data byte The content of the register Attributes

prevData byte
Previous content of the
register

Method Name Return Arguments Description

read() byte void
Reads the data in the
register.

write() void byte
Writes the byte into the
register. Methods

isChanged() bool void

Returns true if the content
of the register has been
changed, returns false
otherwise.

PORTA

Attribute Name Type Description

PORTA 6-bit data
The content of the Port
register Attributes

TRISA 6-bit data The data direction Register

Method Name Return Arguments Description

readInput() 6-bit data void
Reads the input data in the
port. Methods

write() void 6-bit data
Writes the 6-bit data into
the port.

PORTB

Attribute Name Type Description

PORTB Register
The content of the Port
register Attributes

TRISB Register The data direction Register

PIDE Initial Design Report

SimSys Corporation 23

Method Name Return Arguments Description

readInput() byte void
Reads the input data in the
port. Methods

write() void byte
Writes the byte into the
port.

PORTC

Attribute Name Type Description

PORTC Register
The content of the Port
register Attributes

TRISC Register The data direction Register

Method Name Return Arguments Description

readInput() byte void
Reads the input data in the
port. Methods

write() void byte
Writes the byte into the
port.

PORTD

Attribute Name Type Description

PORTD Register
The content of the Port
register Attributes

TRISD Register The data direction Register

Method Name Return Arguments Description

readInput() byte void
Reads the input data in the
port. Methods

write() void byte
Writes the byte into the
port.

PORTE

Attribute Name Type Description

PORTE Register
The content of the Port
register Attributes

TRISE Register The data direction Register

Method Name Return Arguments Description

readInput() byte void
Reads the input data in the
port. Methods

write() void byte
Writes the byte into the
port.

PIDE Initial Design Report

SimSys Corporation 24

ADConverter

Attribute Name Type Description

cycle byte AD conversion cycle

enabled bool If AD conversion is enabled

ADCON0 Register ADCON0 Register

ADCON1 Register ADCON1 Register

ADRESL Register ADRESL Register

ADRESH Register ADRESH Register

INTCON Register INTCON Register

PIR1 Register PIR1 Register

PIE1 Register PIE1 Register

PORTA Register Local copy of PORTA

PORTE Register Local copy of PORTE

TRISA Register Local copy of TRISA

Attributes

TRISE Register Local copy of TRISE

Method Name Return Arguments Description

startConversion() void double
Starts the AD conversion of
the given analog voltage. Methods

simulate() void void
Simulates the AD
conversion.

Interrupt

Method Name Return Arguments Description
Methods

checkInterrupts() void void
Checks if there are
interrupts.

ParallelSlavePort

Attribute Name Type Description

PORTD Register Local copy of PORTD

PORTE Register Local copy of PORTE

TRISD Register Local copy of TRISD

Attributes

TRISE Register Local copy of TRISE

PIDE Initial Design Report

SimSys Corporation 25

ADCON1 Register Local copy of ADCON1

PIR1 Register Local copy of PIR1

PIE1 Register Local copy of PIE1

Method Name Return Arguments Description

pspRead() void void Read the data. Methods

pspWrite() void void Write the data.

Timer0

Attribute Name Type Description

TIMER0 Register Local copy of TIMER0

INTCON Register Local copy of INTCON
Attributes

OPTION_REG Register Local copy of OPTION_REG

Timer1

Attribute Name Type Description

INTCON Register Local copy of INTCON

PIR1 Register Local copy of PIR1

PIE1 Register Local copy of PIE1

TMR1L Register Local copy of TMR1L

TMR1H Register Local copy of TMR1H

Attributes

T1CON Register Local copy of T1CON

Comparator

Attribute Name Type Description

CMCON Register Local copy of CMCON

CVRCON Register Local copy of CVRCON

INTCON Register Local copy of INTCON

PIR2 Register Local copy of PIR2

PIE2 Register Local copy of PIE2

Attributes

PORTA Register Local copy of PORTA

PIDE Initial Design Report

SimSys Corporation 26

TRISA Register Local copy of TRISA

Peripheral

Attribute Name Type Description Attributes

id PeripheralID ID of the peripheral

PIDE Initial Design Report

SimSys Corporation 27

isEnabled bool if the peripheral is enabled

Method Name Return Arguments Description
Methods

draw() void void Draws the peripheral

LEDArray :: Peripheral

Attribute Name Type Description
Attributes

ledVector Vector<LED> The vector of 8 LEDs

Method Name Return Arguments Description

sendData() void ledID
Sends data to the LED with
ledID.

readInput() void void Reads the input.
Methods

draw() void void Draws this peripheral.

LED

Attribute Name Type Description

id ledID The ID of this LED

ledData byte The data of this LED
Attributes

isEnabled bool if this LED is enabled

Method Name Return Arguments Description

writeData() void byte Writes the data to this LED.

readData() byte void Reads the input.
Methods

draw() void void Draws this LED.

SevenSegmentDisplayArray :: Peripheral

Attribute Name Type Description
Attributes sevenSegment-

DisplayVector
Vector<SevenSegmentDisplay>

The vector of 3 seven
segment displays.

Method Name Return Arguments Description

sendData() void ssdID
Sends data to the SSD
with ssdID.

Methods

readInput() void void Reads the input.

PIDE Initial Design Report

SimSys Corporation 28

draw() void void Draws this peripheral.

SevenSegmentDisplay

Attribute Name Type Description

id ssdID The ID of this SSD.

ssdData byte The data of this SSD.
Attributes

isEnabled bool if this SSD is enabled

Method Name Return Arguments Description

writeData() void byte
Writes the data to this
SSD.

readData() byte void Reads the input.
Methods

draw() void void Draws this SSD.

KeyPad :: Peripheral

Attribute Name Type Description
Attributes

pushButtonVector Vector<PushButton>
The vector of 16 push
buttons.

Method Name Return Arguments Description

sendData() void buttonID
Sends data to the push
button with buttonID.

readInput() void void Reads the input.

writeInput() void Data, portID
Sends the input data to the
port with portID.

Methods

draw() void void Draws this peripheral.

PushButton

Attribute Name Type Description

id buttonID The ID of this push button.

buttonData int The data of this button.

isEnabled bool if this button is enabled

Attributes

state int The state of this button

Methods Method Name Return Arguments Description

PIDE Initial Design Report

SimSys Corporation 29

readData() int void Reads the input.

draw() void void Draws this push button.

ResetButton :: PushButton

Method Name Return Arguments Description
Methods

sendResetSignalToPIC() void void
Sends RESET signal to
the PIC.

LCD :: Peripheral

Attribute Name Type Description

data LCDData The data of the LCD. Attributes

lcdString string The string on the LCD.

Method Name Return Arguments Description

sendData() void string Sends data to the LCD.

readInput() void void Reads the input.

setContrast() void float
Changes the contrast of the
LCD to the given value.

Methods

draw() void void Draws this peripheral.

BoardPort :: Peripheral

Method Name Return Arguments Description

writeInput() void Data Writes data to the Port.

readInput() void void Reads the input.
Methods

initialize() void void Initializes the Port.

ParallelPort :: BoardPort

Attribute Name Type Description
Attributes

data ParallelPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

PIDE Initial Design Report

SimSys Corporation 30

SerialPort :: BoardPort

Attribute Name Type Description
Attributes

data SerialPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

USBPort :: BoardPort

Attribute Name Type Description
Attributes

data USBPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

USART :: Peripheral

Method Name Return Arguments Description

writeInput() void void Writes data.

readInput() void void Reads the input.
Methods

draw() void void Draws this peripheral.

Speaker :: Peripheral

Method Name Return Arguments Description

readInput() void void Reads the input.

generateSound() void Data
Generates sound according
to the given input.

Methods

draw() void void Draws this peripheral.

SmartCardReader :: Peripheral

Attribute Name Type Description
Attributes

data SmartCardData The data of the smart card.

Method Name Return Arguments Description

readInput() void void Reads the input. Methods

draw() void void Draws this peripheral.

PIDE Initial Design Report

SimSys Corporation 31

Potentiometer :: Peripheral

Attribute Name Type Description
Attributes

analogData float
The analog voltage value of
the potentiometer.

Method Name Return Arguments Description

writeInput() void Data, PortID
Writes data to the Port with
PortID.

readInput() float void Reads the input.
Methods

draw() void void Draws this peripheral.

InfraredTransmitter :: Peripheral

Attribute Name Type Description
Attributes

data InfraredData
The data of the infrared
transmitter.

Method Name Return Arguments Description

transmit() void void Transmits the data. Methods

draw() void void Draws this peripheral.

InfraredReceiver :: Peripheral

Attribute Name Type Description
Attributes

data InfraredData
The data of the infrared
receiver.

Method Name Return Arguments Description

receive() void void Receives the data. Methods

draw() void void Draws this peripheral.

PIDE Initial Design Report

SimSys Corporation 32

AnalysisTool

Attribute Name Type Description

id int The ID of the analysis tool. Attributes

isEnabled bool
If the analysis tool is
enabled.

Method Name Return Arguments Description

enable() void void Enables the analysis tool.

disable() void void Disables the analysis tool.
Methods

display() void void Displays the analysis tool.

StopWatch :: AnalysisTool

Attribute Name Type Description

status int The stop watch status Attributes

time long
The time passed during
execution

Methods Method Name Return Arguments Description

PIDE Initial Design Report

SimSys Corporation 33

startTimer() void void Starts the timer.

stopTimer() void void Stops the timer.

clear() void void Resets the timer.

PinListener :: AnalysisTool

Attribute Name Type Description

port Port
The Port that the pin
belongs to.

pinNumber int
The pin number on the
Port.

status int Current status of the pin.

Attributes

timeChart TimeChart
The time chart to display
the pin value with respect
to time.

Method Name Return Arguments Description

addStatusToTime-
Chart()

void int
Adds the given status to
the timeChart.

drawGraph() void void Draws the timeChart graph.
Methods

reset() void void Resets the pin listener.

PIDE Initial Design Report

SimSys Corporation 34

Debugger

Attribute Name Type Description

bpHandler BreakPointHandler The breakpoint handler.

wpHandler WatchPointHandler The watchpoint handler.

bpList Vector<BreakPoint> The list of the breakpoints.

wpList Vector<WatchPoint> The list of the watchpoints.

debugFile DebugFile
The file used during
debugging process.

Attributes

executionController ExecutionController
The simulator used during
debugging process.

Method Name Return Arguments Description

debug() void void
Starts the debugging
process.

step() void LineReference Executes one step.

stepInto() void LineReference Steps into the next block.

stepOut() void LineReference
Steps out of the current
block.

stepOver() void LineReference Steps over the next block.

gotoCursor() void cursorPosition
Executes upto the cursor
position.

Methods

displayData() void void Displays the debug data.

ExecutionController :: SimulationEngine

Method Name Return Arguments Description

nextInstruction() void void
Executes the next
instruction. Methods

executeLine() void LineReference
Executes one line in the
AsmPlusFile.

BreakPointHandler

Attribute Name Type Description
Attributes

bpList Vector<BreakPoint> The list of the breakpoints.

Method Name Return Arguments Description

addBreakPoint() void LineNumber
Adds a break point to the
given line.

Methods

removeBreakPoint() void bpID
Removes the break point
with bpID.

PIDE Initial Design Report

SimSys Corporation 35

displayBreakPoints() void void
Displays the breakpoints on
the editor.

isBreakPoint() bool LineNumber
Returns true if there exists
a breakpoint on the line
with lineNumber.

WatchPointHandler

Attribute Name Type Description
Attributes

wpList Vector<WatchPoint> The list of the watchpoints.

Method Name Return Arguments Description

addWatchPoint() void variable
Adds a watch point to the
given variable.

removeWatchPoint() void wpID
Removes the watch point
with wpID.

displayWatchPoints() void void Displays the watch points.

isWatchPoint() bool variable
Returns true if there exists
a watch point associated
with the variable.

Methods

isWatchPoint-
Changed()

bool wpID
Returns true if the variable
associated with wpID is
changed.

Programmer

Attribute Name Type Description

Attributes
port CompParallelPort

The parallel port of the
computer to be used for
reading/writing programs
to the PIC.

Method Name Return Arguments Description

write() void HexFile
Writes the hex file to the
PIC.

read() void HexFileBuffer
Reads the program on the
PIC.

Methods

verify() void
HexFile,

HexFileBuffer

Compares the program on
the PIC with the one on the
buffer and verifies.

PIDE Initial Design Report

SimSys Corporation 36

erase() void void
Erases the program on the
PIC.

CompParallelPort

Attribute Name Type Description

Attributes
portBuffer Buffer

The buffer to be used for
the parallel port of the
computer.

Method Name Return Arguments Description

initialize() void void Initializes the port.

sendData() void void
Sends the data in the
buffer to the port.

Methods

receiveData() void void
Receives the data from the
port into the buffer.

PIDE Initial Design Report

SimSys Corporation 37

3.3. Sequence diagrams

3.3.1. Editor Module

 The Editor Module consists of several sub-modules.

Open File Module

 When the user selects "Open File" from the menu or from the screen, the

fileOpenCallBack () function of GUI is called and this calls the clickedFile ()

method of Project object which returns the fileName of the clicked file. As soon as

GUI gets the name of the file, it invokes the readFileIntoBuffer () method of the

Editor object which reads the text data of the file into its buffer array. For this

purpose, this function invokes the loadFile () method of the SourceFile object,

which was created back in the GUI initialization. Once the file is read into the

buffer the editor calls the displayText () function and it prints the buffer content

into the monitor.

PIDE Initial Design Report

SimSys Corporation 38

Save File Module

 When the user selects "Save File" from the menu or from the screen, the

fileSaveCallBack() function of GUI is called and this calls the getActiveFile()

method of Editor object which returns the activeFileName of the current file. As

soon as GUI gets the name of the file, it invokes the saveFile() method of the File

object which saves the text.

PIDE Initial Design Report

SimSys Corporation 39

Close File Module

 When the user selects "Close File" from the menu or from the screen, the

fileCloseCallBack() function of GUI is called and this calls the getActiveFile()

method of Editor object which returns the activeFileName of the current file. As

soon as GUI gets the name of the file, it invokes the closeFile() method of the File

object which saves the text.

PIDE Initial Design Report

SimSys Corporation 40

Edit File Module

 When the user presses a key from the keyboard, the keyboardCallBack()

method of GUI is called and it checks the parameter.

 a. If the entered key is a special key combination it handles in itself and

returns to the user without entering the Editor class.

 b. If the entered key is not a special combination the getActiveFileName()

method of the Editor. If the Editor returns a valid value i.e. if there exist a

current active file open, GUI calls three different methods of the Editor object:

 1. If the entered key is a single letter the insert(key) method,

 2. If the entered key is the "Delete" key the delete() method,

 3. If the entered key is the "Backspace" key the backSpace() method

 If the Editor returns a null value, the GUI goes into idle state.

PIDE Initial Design Report

SimSys Corporation 41

3.3.2. Compile Module

When the user presses the "Compile" button in the main window, the Project

class, which is running in the background since the invocation of the program,

calls the compileCallBack() function. This function calls the compile() function of

the GUI object and creates a Compiler object, by using its constructor. The

Compiler object checks the type of the file which is requested to be compiled:

 1. If the file is an ASM++ file, it calls the syntaxCheckASM++() method,

which checks if there is an error or not syntactically or not. If there are any errors

it reports the error to its caller GUI and terminates immediately. If there are no

errors, it generates an ASM file.

 2. If the file is an ASM file, it invokes generateHEX() method which creates

the HEX file correspondent of the ASM file.

Finally the Compiler object returns a successful termination to the GUI object.

PIDE Initial Design Report

SimSys Corporation 42

3.3.3. Simulate Module

When user starts a simulation using GUI of PIDE, a message is sent to GUI class

which calls simulate() function of the Simulator module. simulate() function runs

until simulation is stopped. In the sequence diagram, operations after simulate()

method simulates one clock cycle of the board. In other words, simulation runs in

descrete time intervals. During simulation, simulate() keeps simulating the clock

cycles.

PIDE Initial Design Report

SimSys Corporation 43

Simulator module can be run in two different modes. First of them is the direct

interaction with the user and the other is using a test file. In either case

Simulator send Read message to all enabled input peripherals to see if there is an

input from a source. Peripherals update their data accordingly and return.

Simulator then sends simulate() message to PIC which first calls latchInRegs

function to take a snapshot of the current registers before simulating a cycle of

the PIC. After saving registers, PIC simulates its modules and saves last data with

write() function. After simulating the PIC, Simulator now passes PIC's last state to

output peripherals and simulates them. At the end of the cycle, analysis tools

such as pin listeners update data with collectStatistics() method. Simulation is

stopped by user's request.

3.3.4. Debugger Module

When the user presses the "Debug" button in the main window, the Project class,

which is running in the background since the invocation of the program, calls the

debugCallBack() function. This function calls the debug() function of the GUI

object and creates a Debugger object, by using its constructor. The Debugger

object calls the nextInstruction() method immediately which creates an

ExecutionControl object. ExecutionControl object calls two functions:

 1. isBreakpoint() method of the BreakpointHandler object which was

created by the Project object before. It returns "true" or "false".

 2. isWatchpoint() method of the WatchPointHandler object which was

created by the Project object before. It returns "true" or "false".

 It takes three branches into execution according to the return values of

these functions:

PIDE Initial Design Report

SimSys Corporation 44

Debug:Breakpoint

If isBreakpoint() returns true, Execution Control returns the breakpoint

information to the Debugger and it returns debugHaltBreakpoint to the GUI and

at the end, GUI prompts the user to step into the next instruction. When user

steps into the next instruction, the stepCallBack() method is invoked and the

Debugger continues with the next instruction

PIDE Initial Design Report

SimSys Corporation 45

Debug:No Breakpoint but Watchpoint

If isBreakpoint() returns false and isWatchpoint() returns true, the Execution

Control returns the watchpoint information to the Debugger and it returns

debugHaltWatchpoint to the GUI and at the end, GUI prompts the user to step

into the next instruction. When user steps into the next instruction, the

stepCallBack() method is invoked and the Debugger continues with the next

instruction.

PIDE Initial Design Report

SimSys Corporation 46

Debug: No breakpoint and no watchpoint

If isBreakpoint() returns false and isWatchpoint() returns, the Debugger steps

into the next instruction without any prompt.

 .

PIDE Initial Design Report

SimSys Corporation 47

3.3.5. PIC Programmer Module

 The Programmer Module consists of three sub-modules.

Write

When the user selects "Write File" from the menu, the writeCallBack() function of

the GUI is called and it prompts the user to choose the file to be downloaded.

The user specifies the file path. Then the module programs the PIC using parallel

port.

PIDE Initial Design Report

SimSys Corporation 48

Read

When the user selects "Read File" from the menu, the readCallBack() function of

the GUI is called. Then the file is uploaded by calling the uploadFile() method of

the Programmer module. The uploaded file is read to the editor buffer by calling

the loadFileIntoBuffer() method of the Editor object.

PIDE Initial Design Report

SimSys Corporation 49

Verify

When the user selects "Verify File" from the menu, the verifyFileCallBack()
function of the GUI is called and it prompts the user to select the file to be
verified. The user specifies the path. Then the module compares the files by
calling the verifyFile() function of the Editor module.

PIDE Initial Design Report

SimSys Corporation 50

4. Graphical User Interface Design

Below in Figure 4.1, the GUI of the PIDE program, showing the menus, toolbars

and the status bar can be found.

Figure 4.1

Figure 4.1 shows the case when there is no active project. When the user

creates/opens a project, the workspace view will also be present on the left hand

side. The program will be able to handle multiple opened files.

In Figure 4.2, the menu bar of the PIDE is shown. The menu items will be

explained in detail in the following sections.

Figure 4.2

In Figure 4.3, the toolbar of the PIDE is shown. Here exist shortcuts of the

frequently used operations in the menu bar.

Figure 4.3

PIDE Initial Design Report

SimSys Corporation 51

MENUS

There are File, Edit, View, Project, Simulate, Debug, Programmer, Analysis, Tools

and Help menus in the PIDE program. The operation of each menu item is

described below.

FILE MENU

New Project Create a new project.

Open Project Open an existing project.

Save Project Save the current project.

Close Project Close the current project.

New Create a new file.

Open… Open an existing file.

Close Close the current file.

Save Save the current file.

Save As… Save the current file with a different

name or save to a different place.

Recent Files Shows the most recently used files,

Recent Projects Shows the most recently used projects,

Exit Quit from the program.

EDIT MENU

Undo Undo the last action.

Redo Redo the last undo action.

Cut Cut the selected item.

Copy Copy the selected item.

Paste Paste the last cut or copied item.

Find Find a given word in the current file.

Replace Replace the given word with another word.

VIEW MENU

Toolbar Show/Hide the toolbar.

Status Bar Show/Hide the status bar.

Output Show/Hide the output view.

Debug Show/Hide the debug windows.

PIDE Initial Design Report

SimSys Corporation 52

Workspace Show/Hide the workspace view.

PROJECT MENU

Build Build the current project.

Build Options Change the build options.

Add File to Project Add a new file to the current

project.

Remove File from Project Remove a file from the current

project.

Properties Change the project properties.

SIMULATE MENU

Start Start the simulation.

Pause Pause the simulation.

Continue Continue the simulation.

Stop Stop the simulation.

Settings Change the simulation settings.

DEBUG MENU

Breakpoint Add or Remove breakpoints.

Watchpoint Add or Remove watchpoints.

Start Start the debugging process.

Step Execute one step.

Step Into Step into the next block.

Step Out Step out of the current block.

Step Over Step over the next block.

Stop Stop the debugging process.

Settings Change the debug settings.

PROGRAMMER MENU

Write Write the current program onto the PIC.

Read Read the program in the PIC.

Verify Verify if the program is written correctly onto the PIC.

Erase Erase the program written in the PIC.

Settings Change the programmer settings.

PIDE Initial Design Report

SimSys Corporation 53

ANALYSIS MENU

Add Add a new analysis tool.

Display Display the analysis results.

Hide Hide the analysis results.

TOOLS MENU

Customize Customize the program settings.

Options Change the program options.

HELP MENU

About PIDE… Show brief information about the program.

Contents Show the help contents.

Index Show the help index.

Search Search a help topic in the help contents.

PIDE Initial Design Report

SimSys Corporation 54

5. Components to be Simulated

5.1. PIC MCU

The PIC microcontroller instruction set contains 35 basic instructions. All of those

basic instructions are single word, i.e. 14 bits. They last finite durations, read

from some specific registers and update some other specific registers. Therefore,

simulations of all 35 instructions are independent and atomic.

5.1.1. Memory
The memory system of the MCU is composed of FLASH program memory, the

RAM Data Memory and the EEPROM Data Memory.

FLASH Program Memory

The program to be uploaded is stored in the Flash Program memory, which has

8KB storage. Each instruction is 14 bits wide. Since the program counter is 13

bits wide, 213 = 8K-words can be addressed in the Flash program memory.

Paging

The FLASH program memory consists of four pages. The address ranges of those

four pages are given below.

Page Number Start Address End Address

Page 0 0005h 07FFh

Page 1 0800h 0FFFh

Page 2 1000h 17FFh

Page 3 1800h 1FFFh

As a result of the paging system of the program memory, the operations of the

jump instructions require special attention. The CALL/GOTO instructions take

11bit arguments, addressing only 2KB of the memory. Actually, the MSB 2 bits of

the address are taken from PCLATH<4:3>. Therefore, when a subroutine in

another page is to be called, first the PCLATH<4:3> bits should be set

accordingly, and then the low order 11 bits should be given to the CALL

instruction.

Registers

PIDE Initial Design Report

SimSys Corporation 55

Register Usage

EEDATA Data

EEDATH Data

EEADR Address LSBs

EEADRH Address MSBs (0000h-1FFFh)

EECON1 controls

EECON2 controls

Read and Write Operations

Data read operation from the FLASH memory is performed as single word read

and data write operation is performed as four word block write.

Read

1. Write address to EEADRH and EEADR

2. Set EEPGD

3. Set RD

4. Wait for 2 cycles idle (those statements are ignored)

5. Read from EEDATH and EEDAT

Write

A write operation to the FLASH program memory can only be performed if not

write-protected mode is selected, as defined in device configuration word bits

WRT<1:0>

Data is written in four word blocks, where a block is four words with sequential

addresses. These four words are identified by EEADR<1:0> bits.

Load ALL 4 buffer registers with order 00-01-10-11:

1. Write address to EEADRH and EEADR

2. Write data to EEDATH and EEDATA

3. Set EEPGD

4. Write 55h to EECON2

5. Write AAh to EECON2

6. Set WR

7. Wait for 2 cycles

8. When last one is written, data is transferred from buffers to FLASH.

9. Then, processor waits for 4ms for the write to be completed.

PIDE Initial Design Report

SimSys Corporation 56

RAM Data Memory

The RAM data memory is 512B, containing the special purpose registers and

general purpose registers (368B).

Bank System

The RAM Data memory is comprised of 4 banks. Bank selection is performed by

means of RP1 (Status<5>) and RP2 (Status<6>) bits.

 128 Bytes/Bank (128 = 0x7F)

 General Purpose Registers

 Special Purpose Registers

An important note should be added here. Since the central processing unit of the

PIC microcontroller has a very limited RISC architecture core, it has no special

registers in it. Also the memory read/write speed is the same as the registers

inside the CPU. As a result, the memory of the PIC is used just as registers.

Therefore, Microchip refers the memory words as registers and in this report from

this point forward, the data memory words will be referred as registers.

The distribution of the data memory space is given in the figure. As can be seen

from the above distribution of the registers, the first portions of all four banks are

reserved for special purpose registers and the rest for general purpose registers.

The bitwise explanation of the special purpose registers are given in the PIC

16F877 datasheet by Microchip.

 A careful examination of the above data memory address space gives us

why Microchip defines the data memory “up to 368 Bytes”. The General Purpose

Registers are totally 96+80+16+80+16+80 = 368 Bytes.

Among the special purpose registers, the some registers are of special interest.

Those registers are STATUS, OPTION, and INTCON. STATUS register is controlled

to switch between the banks, Time-out, Power-down modes and carry/borrow

control of arithmetic operations. OPTION register is used to enable PORTB internal

weak pull ups, Interrupt enabling, timer source and edge and prescale selections.

INTCON register is used to configure the interrupts in the system. Global,

peripheral, timer, external, portB interrupts are enabled and the flags are

PIDE Initial Design Report

SimSys Corporation 57

read/cleared from this register. There are also PIE1, PIR1, PIE2, PIR2 registers

for enabling peripheral interrupts and their flags.

The PCON register contains the flags for different types of reset operations such

as power-on reset, watchdog reset external reset and brown-out reset.

Indirect Addressing

Indirect addressing is accomplished by means of INDF virtual register name.

When INDF is used as the target address, actually the address pointed by the FSR

PIDE Initial Design Report

SimSys Corporation 58

(File Select Register) register is accessed. 8 bits in FSR register and 1 IRP bit give

9 bits to address the overall 2KByte data memory (000h – 1FFh).

EEPROM Data Memory

The EEPROM data memory has 256Bytes of storage and is the non-volatile data

storage system.

Register Data Memory

EEDATA 8 bit data

EEADR Address (00h-FFh)

EECON1 Controls

EECON2 Controls

PIR2 flags

Data read operation from the EEPROM memory is performed as single byte read

and data write operation is performed as single byte write. The EEPROM data

memory is not directly addressed, but is accessed indirectly via special registers.

EECON1 Register Contents

 EEPGD=0 Data

 EEPGD=1 Program

 RD read , can only be set by user; reset by hardware

 WR write , can only be set by user; reset by hardware

 WREN write enable

 WRERR write error when there’s a MCLR or WDT reset

PIR2 Register Contents

 EEIF Write complete interrupt flag

Read Operation

1. Write address to EEADR

2. Clear EEPGD

3. Set RD

4. Next cycle, data is ready at EEDATA, so next instruction can read it

Write

 WR inhibited from being set if WREN is cleared

1. Write address to EEADR.

2. Write 8-bit data EEDATA

3. Clear EEPGD

4. Set WREN

PIDE Initial Design Report

SimSys Corporation 59

5. Disable interrupts (if enabled).

6. Execute the special five instruction sequence:

i. Write 55h to EECON2 in two steps (first to W, then to EECON2)

ii. Write AAh to EECON2 in two steps (first to W, then to EECON2)

iii. Set the WR bit

7. Enable interrupts (if using interrupts).

8. Clear the WREN.

9. At the completion of the write cycle, the WR bit is cleared and the EEIF

interrupt flag bit is set. (EEIF must be cleared by firmware.)

Program Counter

The program counter (PC) of the Microcontroller is a part of the data memory.

The value inside the PC shows the next instruction to be executed in the program

memory. The PC 13 bits, and is held in two registers.

• 8 LSBs (<7:0>) are in PCL register, readable and writable.

• MSB 5 bits (<12:8>) are copied from PCLATH register (<4:0>) on a “write

to PC” instruction such as “ADDWF PCL”.

PC Stack

Related to the PC, the stack is of primary importance. Stack is used to store the

current value of the PC in case of a subroutine/function call, to be able to proceed

with normal operation upon return. The user cannot access (i.e. read or modify)

the stack.

• Stack is 8 PC words (13 bits) deep.

• Stack pointer is not readable / writable

• Stack is circular, i.e. a 9th write overwrites stack address 0.

5.1.2. PORTS
There are five ports on the microcontroller. These ports are used for various

purposes, but mostly for digital I/O. The names of the ports and the number of

pins on each are PORTA (6), PORTB (8), PORTC (8), PORTD (8) and PORTE (3).

Port Name Pins Connected Modules

PIDE Initial Design Report

SimSys Corporation 60

Interrupts

There are 15 sources of interrupts in the system. Therefore, that number of

interrupt vectors will be used to select the address to be jumped onto in case of

an interrupt. Among the most important interrupt vectors, the reset vector of the

system resides in the address 0000h and the external interrupt vector in 0004h.

5.1.3. Parallel Slave Port
Parallel Slave Port registers and usage

 Set TRISE<2:0> for inputs

 ADCON1<3:0> for digital I/O not analog I/O

 Write with WR low and CS low, when any one becomes high, IBF flag is

set, and PSPIF interrupt flag is set

 Read PORTD to clear IBF

 If a second write before read, IBOV is set

 Read with RD low and CS low, OBF is cleared, when any one becomes

high, PSPIF interrupt flag is set, OBF low until data is written

PORTA 5 Digital Input/Output

A/D Converter(default)

Comparator

SPI

Timer0

PORTB 8 Digital Input/Output

External Interrupt

Weak internal pull-up

Interrupt on Change

PORTC 8 Digital Input/Output

Timer1

PWM 1-2

SPI

I2C

USART

PORTD 8 Digital Input/Output

Parallel Slave Port

PORTE 3 Digital I/O

A/D Converter

Parallel Slave Port

PIDE Initial Design Report

SimSys Corporation 61

5.1.4. Analog to Digital Converter
The conversion of an analog input signal results in a corresponding 10-bit digital

number. The A/D module has high and low-voltage reference input that is

software selectable to some combination of VDD, VSS, RA2 or RA3.

The ADRESH and ADRESL registers contain the 10-bit result of the A/D

conversion. When the A/D conversion is complete, the result is loaded into this

A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D

interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in

Figure 11-1.

Clearing the GO/DONE bit during a conversion will abort the current conversion.
The A/D input pins must be configured as input pins via the TRIS register to be
used as analog inputs.

INTCON Interrupt Enable
PIR1 Interrupt flag
PIE1 Interrupt enable
ADRESH Conversion Result MSBs (or LSBs)
ADRESL Conversion Result LSBs (or MSBs)
ADCON0 Analog input channel selection

Conversion clock selection
Conversion flag
A/D enable

ADCON1 AD port configuration
Result format selection

TRISA Pin directions
PORTA Analog input port
TRISE Pin directions
PORTE Analog input port

5.1.5. Other Features of the MCU
Timer0, 8Bit timer/counter with 8Bit prescaler

Timer1, 16Bit timer/counter with prescaler

Timer2

Capture-Compare-PWM Modules

SSP, Synchronous Serial Port

SPI, serial Peripheral Interface

I2C

USART, Universal Synchronous / Asynchronous Receiver Transmitter (9-bit)

BOR, Brown Out Reset

Analog Comparator Module

WDT, Watchdog Timer

Sleep Mode

PIDE Initial Design Report

SimSys Corporation 62

5.2. Peripherals

The CEng 336 board is a complete evaluation board that contains various devices

on it. These devices can be classified into two with respect to their usage, input

devices and output devices. The list of the peripherals on the board are given

below with their brief explanations.

5.2.1. Input Peripherals

Parallel Port

 Parallel port (LPT) is the port that is used for programming the

microcontroller on the evaluation board. This port can be used for parallel

communication, such as PSP mode, or for serial communication, either

synchronous or asynchronous.

Serial Port

 Serial port connection, i.e. RS232, is used for asynchronous serial data

transfer between other devices and the microcontroller.

USB Port

 The USB port is a high speed serial communications interface. For PIC

applications, in fact the speed of the USB port is very high, however since in the

recent PCs, the serial communications port is being replaced with the USB ports, the

controller should be able to communicate using this protocol.

Smart Card Reader

 Smart card reader provides extra storage capability to the system. Since

the storage capacity of the EEPROM on the MCU is limited, some extra storage

may be necessary. The addressing and read/write operation of the reader should

be modeled in the system.

Infrared Transmitter and Receiver

PIDE Initial Design Report

SimSys Corporation 63

 Infrared communication is included on the board to be used for special

purpose applications. The system is internally analog and requires special

modelling.

Keypad

 There are 16 pushbuttons on the evaluation board. The pushbuttons are

active high buttons, pulled low during normal operation.

Reset Pushbutton

 The reset pushbutton, being active low, is directly connected to the reset

of the microcontroller. An MCLR signal is asserted with this input.

5.2.2. Output Peripherals

Led Array

 A light emmiting diode (LED) is nothing but a semiconductor device that

emits light when given logic high value.

Seven Segment Display Array

 A collection of LEDs, arranged in a format that will enable the display of

alphanumeric characters is called a seven segment display. On the CEng336

board, there are three of those devices, forming an array.

LCD

 Using light emmiting diodes for displaying data is clearly not the best

method. Seven segment displays improve the user interface a little but still, it is

very old fashioned. Newest systems always include some LCD components as the

interface. These devices latch in the data entered, decode the characters and

display them on their screen. Moving the cursor on the LCD and deleting are

some special operations available on most of the off-the-shelf LCD modules.

Speaker

 A speaker is a source of accoustic waves. The input signal is analog and

the frequency/intensity of the accoustiv waves is determined by the input

waveform characteristics.

PIDE Initial Design Report

SimSys Corporation 64

6. Language Specifications

6.1. ASM++ Language Format

A Simple Language

 We have decided to define a new language which is simply an

improvement on assembly language, including some new keyword definitions or

introducing some high definition language concepts such as function calls or

variable definitions. The name of the language is ASM++ (ASM plus plus).

General

ASM++ is not case sensitive. Upper-case letters and lower-case letters are not

considered to be distinct in all tokens, including reserved words.

White space (space character, tab character and end-of-line) serves to separate

tokens; otherwise, it is ignored. No token can extend past end-of-line. Spaces

may not appear inside any token except character and string literals.

A comment begins with two forward slashes or a semicolon as it is default for

assembly language and extends to end of line, as in C++.

Identifiers

Identifiers start with a letter and contain letters and digits. An identifier must fit

on a single line and its first 20 characters are significant.

Reserved Words

The following keywords are reserved in ASM++:

adda1a2 suba1a2 addwa1a2 suba1a2 swapa1a2

iorwa1a2 andwa1a2 xorwa1a2 mova1a2 if

else then for function begin

end define var array

PIDE Initial Design Report

SimSys Corporation 65

Literals

An integer literal consists of a sequence of one or more digits in decimal or

hexadecimal format.

A character literal is a single character enclosed by a pair of apostrophes

(sometimes called "single quotes".) Examples include 'A', 'x', and '''. A character

literal is distinct from a string literal of length one.

There is nothing like string literal.

Other Tokens (delimiters and operators)

: ; , () & | as one character

! < = > '

!= >= <= // as two characters

and the end-of-file character

Macros

Macros are introduced by declarations of the form

define ID number

Variables

Variables are introduced by declarations of the form

var ID, ID, ..., ID

For example:

var a 0x121

Arrays

Arrays are introduced by declarations of the form

PIDE Initial Design Report

SimSys Corporation 66

array name(address, length)

For example:

array a(0x5510,10)

Expressions

For binary operators, both operands must be the same type. Similarly, for

assignment compatibility, both the left and right sides must have the same type.

Short Circuiting

Logical operators and and or use short-circuit evaluation.

This means that as soon as the truth value can be determined, evaluation stops.

For example, if the first operand of an and evaluates false, the expression will

evaluate false no matter what the second operand is, so the second operand is

not even evaluated. If the first operand of an or evaluates true, the second isn't

evaluated either.

Statements

Assignment statement

("=" is the assignment operator). For example

var a 0x121

a = 0x1C4

If statement

define MAX 100

define MIN 0

...............

...............

if x > MAX then

 goto hede

PIDE Initial Design Report

SimSys Corporation 67

else if x < MIN then

 goto hodo

Loop Statement

 The compiler will support while and for loops.

Example:

while(hede)

begin

.................

.................

end

Function Definitions

 The compiler will be supplying the function calls. They can be limitedly

nested which are defined as follows:

function func_name(parameter1, parameter2)

{

}

The user will be provided a bunch of library functions for use.

Comments

 The comments are specified by a semicolon or two forward slashes. It will

be covering the whole line it is put at.

PIDE Initial Design Report

SimSys Corporation 68

6.2. Test Bench (.test) File Format

During the simulation of a source file, the user will want to enter various inputs to the
system. The input devices on the board are communication ports, keypad, pushbuttons
and pots. Using a test bench file, the user can state the exact time instants that the
inputs from these devices will be modified, e.g. a reset signal may be asserted for a
period. Test bench files will release the burden of entering the inputs to peripherals at
correct instants. This is especially useful in the case of high frequency input
requirements.

Test bench file can control the system inputs in two different modes. In the Peripheral
mode, the user may control the timing of the inputs to the peripheral devices.
Alternatively, in the PIC mode, the user may choose to directly access the pins of the
microcontroller. The mode selection is performed by <ModeName> tag. A test file
may contain only one mode selection tag.

The format of the test bench files is given below.

Indentation is not important, since the parser ignores white spaces. The instructions
are not case-sensitive.

The language for the Peripheral and PIC modes are defined below.
For Peripheral Mode:

timescale <time unit>

<PERIPHERAL>
 #<time> <DeviceName>.PIN<Pin No> = <expression3>
 #<time> <DeviceName> = <Expression4>

 always #<time> <DeviceName>.PIN<Pin No> = <expression3>
 always #<time> <DeviceName> = <Expression4>

 #<time> $finish

timescale <time unit>

<PIC>
 #<time> PORT<Port Name>.PIN< Pin No> = <Expression1>
 #<time> PORT<Port Name> = <expression2>

 always #<time> PORT<Port Name>.PIN<Pin No> = <expression1>
 always #<time> PORT<Port Name> = <expression2>

 #<time> $finish

PIDE Initial Design Report

SimSys Corporation 69

PIC Mode:

Example Files

For PIC Mode:

For Peripheral Mode:

<PERIPHERAL>
 #0 Keypad = 0
 #0 Reset = 1
 #5 Reset = 0

 #10 Keypad.PIN5 = 0
 #10 Keypad.PIN2 = ~Keypad.PIN2
 always #100 Keypad.PIN3 = ~Keypad.PIN3

#<1000> $finish

timescale <1ms>

<PIC>
 #0 PORTA = 0
 #0 PORTB = 0

 always #10 PORTA.2 = ~PORTA.2
 always #100 PORTB = PORTB + 1

#<1000> $finish

<Expression3> = 0 | 1 | <DeviceName>.PIN<Pin No>
 | ~<DeviceName>.PIN<Pin No>

<Expression4> = <word> | <DeviceName> + <CONST>
 | <DeviceName> - <CONST>

<Device Name> = LPT | RS232 | USB | Keypad | Reset

<Expression1> = 0 | 1 | PORT<Port Name>.PIN<Pin No>
 | ~PORT<Port Name>.PIN<Pin No>

<Expression2> = <byte> | PORT<Port Name> + <CONST>
 | PORT<Port Name> - <CONST>
 | PORT<Port Name>

Port Name = PORTA | PORTB | PORTC | PORTD | PORTE

PIDE Initial Design Report

SimSys Corporation 70

7. File Formats

7.1. Project File Format

PIDE is desgined to be able to create projects and save workspaces for a better

IDE experience. PIDE saves all necessary information in a file

<project_name>.pde to recreate a previously used workspace. "pde" is the PIDE

project save file extension. Each project has a pde file under its project folder.

Below are the specifications and format of the project file. Since not all the desgin

specifications are final, the file specifications and format is subject to change with

high possibility.

Project Description in Project File

Project files include a project description section at the begining. It includes

version of PIDE, name of the project, user/corporate name, creation and last

modification dates of the project and description of the project if available. Each

description is leaded by a keyword and followed by a new line. Project description

can span several lines with project description token (#) at the beginning of each

line. Below is an example of the project description section.

Other Files in Project File

Project file holds trace of all files included in the project. These files may be

ASM++ source files, ASM files, HEX files, debug files and test files. Each file is

defined with its type and path name. The lines preceeding types of the files begin

with file type token (>) and file paths are saved after "FILE=" keyword. Below is

an example of files.

#PIDE 1.0- PIC Integrated Development Enviroment with ASM++

#Project_Name= Heat Sensor

#Creator= e1347061

#Created@ 2/12/2006 13:29:06

#Modified@ 2/12/2006 13:45:33

#Description= Ceng336 odevi icin yazdigimiz bir isi sensoru

PIDE Initial Design Report

SimSys Corporation 71

Workspace in ProjectFiles

Project file saves last snapshot of the workspace. When user opens an existing

project, GUI will be modified according to these settings. This section begins with

WORKSPACE_BEGIN keyword and ends with WORKSPACE_END keyword.

Between the keywords states of all the views and windows are saved.View

properties, i.e. visibility of toolbars, shortcuts, etc. are leaded with "VIEW_" tag

and window properties, i.e. subwindows which were open just before leaving

workspace, are leaded with "WINDOW_" tag. Editor windows are special cases

since they require additional information like the file they are editing. There is an

editors section in the workspace between "WINDOW_EDITOR_LIST_BEGIN"

keyword and "WINDOW_EDITOR_LIST_END" keyword. In this section a mode tag

is followed by a file path.Below is an example of workspace.

>ASM++

FILE= ./source/heat sensor.asm++

>ASMHEADER

FILE= ./myLib/a2dcalculate.ah

>ASMHEADER

FILE= ./d2acalculate.ah

>TESTFILE

FILE= ./testcase1.test

>DEBUGFILE

FILE= ./heat sensor.dbg

PIDE Initial Design Report

SimSys Corporation 72

7.2. Debug File Format

Debug files hold data of the source and binary executable files that will be used in

debugging process. Debugger needs watchpoints and breakpoints to halt

execution. Watchpoints are held as register adresses and breakpoints as line

number of some source file. Debug file holds existing watchpoint and breakpoint

locations in a file <project_name>.dbg. Below are the specifications and format

of the debug file.

Cross Mappings of the Line Numbers for Breakpoints
Breakpoints are defined using source files. These lines should be mapped to

corresponding lower level file lines.Breakpoints may be lying in different files so

each files line number is seperated from another. Breakpoint section begins with

BREAKPOINT_BEGIN keyword and ends with BREAKPOINT_END keyword. After

BREAKPOINT_BEGIN keyword, the path of the file to which source file line

numbers are mapped is saved. This file is usually a generated asm file with file

name <project_name>_g.asm. Each source file's breakpoint data is listed under

WORKSPACE_BEGIN

VIEW_TOOLBAR_DEBUG= OFF

VIEW_BUTTON_DEBUG_STEP= ON

...

(removed)

...

WINDOW_EDITOR_LIST_BEGIN

FULL= NONE

FLOATING= ./source/heat sensor.asm++

MINIMIZED= ./testcase1.test

WINDOW_EDITOR_LIST_END

...

removed

...

WINDOW_BUTTOM_CONSOLE= TABBED

WINDOW_BUTTOM_LOG= ON

WINDOW_SIDE_WATCHPOINT= TABBED

WINDOW_SIDE_REGISTERS= ON

WORKSPACE_END

PIDE Initial Design Report

SimSys Corporation 73

its path name leaded with its source type. After each file, END_OF_BP_LIST

keyword is used to indicate the source file has no other breakpoints. Each

breakpoint is indicated with a >BP tag followed by line number of the associated

source file and mapped line number.Other mappings simply don't have any tags.

Below is an example of breakpoint section.

BREAKPOINT_BEGIN DEST= ./heat sensor_g.asm

ASMFILE= ./source/heat sensor.asm++

4 1

5 2

...

...

11 11

>BP 12 14

13 16

...

...

45 50

>BP 46 55

...

...

81 90

END_OF_BP_LIST

ASMHEADER= ./myLib/a2dcalculate.ah

1 91

2 94

3 95

>BP 4 98

...

...

>BP 19 122

...

...

>BP 24 130

...

...

END_OF_BP_LIST

BREAKPOINT END

PIDE Initial Design Report

SimSys Corporation 74

Register Adresses for Watchpoints

Watchpoints are defined using registers of the microcontroller. They are mapped

to a real address value in the PIC and debugger halts whenever a register

referenced by a watchpoint is altered. Debugger receive line number information

to continue debugging process from simulator. Watchpoint section begins with

WATCHPOINT_BEGIN keyword and ends with WATCHPOINT_END keyword. Each

watchpoint is indicated with a >WP tag followed by register address of PIC in

hexadecimal format. Some special registers are indicated with descriptive labels

such as stack registers. Below is an example of watchpoint section.

WATCHPOINT_BEGIN

>WP 0x0101

>WP STACK1

>WP W

>WP STATUS

WATCHPOINT_END

PIDE Initial Design Report

SimSys Corporation 75

8. Coding Standarts

8.1. Coding Conventions

To increase maintainability of the source code, all project members will obey the

coding standarts described below

Inside the class scope, attributes and method declarations should be followed

with method definitions. Attributes and method declarations shall be logically

grouped using appropriate comments.

Class attributes should be private. All attributes must have its own getter and

setter methods implemented.

8.2. Naming Conventions

Naming conventions will be as Java naming conventions.

Class names will be as descriptive as possible and initial letters of each word and

abrreviation letters will be capitalized. Example: Class, ClassName, CClass,

ClassC etc.

Method names and Class attributes always start with small letters. Each word or

abrreviation letter after the first word or abbreviation letter will be start with

capital letters. Example: var, varP, varPoint, iPoint, varFirstSecond, varFS,

method(), methodName(), mName(), methodN() etc.

8.3. Comments

Comment conventions will be as Java commenting conventions.

At the beginning of each file, there will be a descriptive comment which must

include file name, creator, creation time, last edit date.

Classes, attributes and methods should be leaded with descriptive comments.

Class comments should describe functionality of the class and may include special

notes if any. The comment should have @author <author name> line in the end.

Attribute comments should be brief as much as possible.

Method comments should describe behavior and aim of the method. All

parameters should be described using @param tag and return values should be

described with @return. The comment should have @author <author name> line

in the end. Local variables should be described inside the method.

PIDE Initial Design Report

SimSys Corporation 76

8.4. Indentation

Indentation conventions will be as Eclipse Java Indentation conventions.

Scope defining curly braces should be put in a new line and indented to the same

vertical line. Example:

To increase readibility, there should be white spaces before and after any names,

operators, etc. Example:

var = 3 + (var1 + var2 * var3 / method());

Class Class1

{

 void method ()

 {

 if (var1 == var2)

 {

 if (var2 == var3)

 {

 ...

 }

 }

 }

}

PIDE Initial Design Report

SimSys Corporation 77

9. Gantt Chart

	1. Introduction
	2. System Architecture
	3. Modeling
	3.1. Scenario Based Model
	3.2. Class Diagrams
	3.3. Sequence Diagrams
	4. Graphical User Interface Design
	5. Components to be Simulated
	6. Language Specifications
	7. File Formats
	8. Coding Standards
	9. Gantt Chart

