\g

Middle East Technical University
Department of Computer Engineering

CENG 491

Computer Engineering Design |
2006-2007

SimSys Corporation

Initial Design Report

PIDE
Emulator and Development Environment for

CEng Embedded System Card

04.12.2006

Table of Contents

1. INTrOTUCTION ..t 3
1.1 Purpose Of the DOCUMENT........cciiiiiiiiieiesiee e 3
1.2, PrOjJECt DESCIIPLION. .. .ccuiiiiiiiiiiiiiite sttt 3

2. SYStem AFCHITECTUIEc.eieiiiiiie e 5

3. MOAEIING et 6
3.1. Scenario Based Model — Use Case Diagrams............ccccvvveeieiieneieeseseesieenes 6

3.1.1. MANAQE PrOJECT ..ot 6
3.1.2. MANAGE FIIES ...t s 7
3.1.3. MANAGE SEIINGS....eivierieriieie sttt 7
3.1.4. COMPIIE PrOJECT ..ottt 8
3.1.5. SIMUIALE PrOJECT.......iitiieiieiitiieeeee et 9
3.1.6. DEDUQ PrOJECL......ueiiiiieiieiecieee e 10
3.1.7. Manage File Transfer........c.ccoeiiiiiiene s 11
3.2, ClaSS QIAGIAIMS ...ttt sttt sttt eneas 12
3.3, SEQUENCE TIAGIAMS.....eiiieiieiieiieiieeeie sttt st 37
33,1 EdItOr MOGUIE ..o 37
3.3.2. COoMPIIE MOAUIE ... 41
3.3.3. SIMUlate MOAUIE..........coeiiiiicc s 42
3.3.4. Debugger MOQUIEccoviiiiiii e 43
3.3.5. PIC Programmer MOdUIE ..o 47

4. Graphical User Interface Design.........ccccoovevieiiiiiieeviie e 50

5. Components to be Simulated ... 54
T80 I o [1/ U TSR 54

01,1 MBIMONY ..t 94
5.1.2. PORTS oottt et st e st e et st nte e nre e naeees 59
5.1.3. Parallel SIaVe POI.........ccociiiiee et 60
5.1.4. Analog to Digital CONVEIEN.........cccoueiieiieiecie e 61
5.1.5. Other Features of the MCU..........cccoeiiiiiiiiie e 61
5.2, PEIPNEIAlS. ... e e 62
5.2.1. INPUL PEriPNEralsSc.ooiiiiiiiie e 62
5.2.2. OUtpUL Peripherals ... s 63

6. Language SPeCifiCationS..........ccevveiiie i st 64
6.1. ASM++ Language FOrMALcccovieiiiieiiiiee e 64
6.2. Test Bench (.test) File FOrmatccooooiiiiiiiiiiii e, 68

7. FIlE FOIMALS. ..ottt 70
7.1. Project File FOIMALccooiiiiiiiieiei e 70
7.2. Debug File FOrMAL........c.oooviiiiiiiecc e 72

8. CodiNg STANAANTSocveiieriiiiiie e s 75
8.1. CodiNG CONVENTIONS.ccuieiiiiieie ittt ereesreans 75
8.2. NamiNg CONVENTIONS ...c.veeviiieiiiie ittt sns 75
8.3 COMMEBNLS ...t 75
ST T [=T g1 =14 o] o SRS 76

9. GANTE CRAIT ... 77

SimSys Corporation 2

1. Introduction

1.1 Purpose of the Document
This document is prepared to supply an initial design for the PIDE Project.

This report should be considered as an intermediate outcome of the design
process. The work done and results are included in this document in a formal
way. Since design process consists of modelling the system, the report contains
diagrams and models of the current system. Design process is still going

on.Hence,all the diagrams and models are subject to change.

The report consist of two parts. In the Modelling of the System part, static and
dynamic components of the system are represented. In the System and Project
Specifications part, standards related to project implementation and various

system components are introduced.

1.2. Project Description

As the technology evolves, the embedded systems start to find wide area
of usage. In most of the devices that people use daily, there exists a core logic
which is mostly an embedded microcontroller or microprocessor with some
external storage. Besides, those integrated devices also let the implementation
and testing of various new controller ideas very easily. This popularity of
Embedded Systems is a little overshadowed by the difficulty in developing
embedded software due to the lack of a well fitted development environment and

pre-testing it on a special independent system prepared just for testing purposes.

An example to the above discussion exists for the CEng336 Embedded
Systems course. Among the course contents, development of embedded software
and testing on a test board is of primary importance. However, obviously a
standalone testing environment that will simulate exactly the same features with

high accuracy would greatly simplify the testing procedure.

As a solution to the problem stated above, SimSys Corporation will
develop an emulator and development environment for the card used in Ceng336
Embedded Systems course. Considering such a development and simulation

environment, the system will support various types of microcontrollers,

SimSys Corporation 3

communicate through various interface standards such as parallel, serial or USB
and accommodate some display interfaces such as LCD or LED driving structures.
Users will have the chance of compiling their programs and they can test and

debug it on the virtual card emulated by the software.

For such a development and simulation environment design project, the
implementation areas are unlimited just as the fact that the implementation areas
of the embedded systems are unlimited. As a result, such a system, which will
simplify the development and testing process, will find great interest from the
embedded systems developers. Together with the Ceng336 Card, this software
will be useful for computer engineers, electrical engineers, high school students

and everyone interested in PIC programming.

SimSys Corporation 4

2. System Architecture

In the figure below, the major components of the PIDE is given.

ExecutableGenerator

PICProgrammer

—0 O Editor
14
i’ LS
'
£ 4
L
£ '
1,
L |
oy
4
Eb |
‘
GUI e Projecthanager
bl
i A
P, s
I y N
. ' \\
’
A
i \ E :
. A v
s] 1
s ‘ x ;)
A} N
y y N
—0 Smulator —10 [Debugger
<.
A
1
1
I
1
1
1
1
I

CENG336
BOARD

SimSys Corporation

3. Modeling

3.1. Scenario Based Model — Use Case Diagrams

The use cases of the system describe the interaction between the system and the
user from the user’s point of view. This schematic is important to define the
capabilities that are given to the user and his/her possible choices. There is no
timing relationship existing in this diagram; however that information is given in
the sequence diagrams, since these use cases are only to present the alternative

paths that can be followed.

3.1.1. Manage Project

Managing a project is in fact handling of files within a project. Creation of new
files, adding existing files to the project, removing files from the project are the
possible tasks that can be performed in this use case. The files that are
mentioned here may be of various types. The alternatives for file types are

ASM++ source files, ASM source files and test bench files.

MANAGE
PROJECT FILES:

wextgndss

Q wLSess

amove Files from
Project

wextends»

Manage Project
Files

waxtendss

Lsar

held Files to
Project

SimSys Corporation 6

3.1.2. Manage Files
MANAGE FILES:

aextends»

HLEBER

=

Manage Source Files wextendss

User

The user may select to manage the files using PIDE. Here, files may be created,
saved, opened. These files are the source files and test bench files. The source

files are the ASM++ files or ASM files. The test bench file contains the input
timing information for the peripherals.

3.1.3. Manage Settings

Froject Settings
CHANGE SETTINGS:

wextendsy

Compiler Settings

o
Change System
Settings

KUSESH waxtandss

Simulator Settings

Settings

Debugger Settings

Programmer Settings

SimSys Corporation 7

This use case defines the interaction of the user with the system to manage the
settings of various internal modules of the software. Here, by means of graphical
dialog windows, the user will be able to modify the system settings. This use case
is in fact composed of a number of independent use cases. These are setting the
project settings, compiler settings, simulator settings, debugger settings, analysis
settings and finally the programmer settings. The first ones are self explanatory;

however the last two require some elaboration.

Analysis settings are the specification of signals that are to be saved for later
investigation. Here, some probes are inserted to the system, where the logic
levels or voltages on those nodes are saved. Those saved waveform graphics can

later be viewed via the analysis tool.

Programmer settings are about the programming interface of the board. Here, the
parallel port selection can be performed and other choices about device

programming can be made.

3.1.4. Compile Project
COMPILER:

i Compile Files

Usar
The use case with the compile system is very straightforward. The user just
requests a compile operation from the system. All syntax checking, parsing,
linking and conversions are performed transparently to the user. The results are

displayed in the output pane of the user interface.

SimSys Corporation 8

3.1.5. Simulate Project

SIMULATE

il als 4
PROJECT : @‘,
waxtentse @

wExtengds:

L= [< ocex‘tend

Contral Simulation ™/

yextendss
aexlandss \
seglendss
O alisasy £X
e <
)
User welends

Set Simulation
Settings N et Simulation
7 [P Speed
nable/Disable
Periherals

Interacts with

Display Analysis
Results
Virtual Ceng336 Board
nable/Disable
Analysis Tools
Inputs Data

Run with Test Banch

In the simulation use case, the user will ask the system to run according to the

specified inputs. The inputs may be provided by the user either real time by

means of the graphical user interface which is exactly the same as the layout of

the board, or some files that specifies some sequence of data to the

input

devices. These special files are called test bench files and have their special file

format.

Simulation system has some special features. One of them is the enable/disable

mechanism of the peripherals on the evaluation board. Another one is the

selectable run speed. This feature will make the user much more comfortable in

simulation of high frequency systems. For instance, in order to observe a signal

toggling at 100 KHz, the system may be configured to run in 5us steps.

SimSys Corporation

3.1.6. Debug Project

Set/Remove
Watchpoint on/from registers

nsert Breakpoint
to Source File

Remove Breakpoint
from File

HUSESH
9 A Debug Project

User

nput Redirection
from File

Control Execution

Flow Run until

Breakpoint

Run until
Watchpaint

Debugging a project is to concentrate on the flow of the program on some specific
parts of the source code. Debugging a project internally requires the project to be
compiled and if current system is in not compiled state, then automatically the
compile routine is invoked. Critical concepts for the debugger are the breakpoints

and watch points.

Breakpoints are identifiers on some source code lines that state that the
execution of the program will continue until that point and will halt there. The
internal state of the system will be completely visible to the user, together with
the contents of the registers. The execution flow will continue with some special

events from the user such as a “step” command.

Watch points are identifiers attached to registers. These watch points are
triggered when the value in the register is modified. The execution of the
program halts at this point. Resuming is based on the same procedure as the one

in breakpoints.

SimSys Corporation 10

3.1.7. Manage File Transfer

aaxlendsy

wextendsy

Manage File -
Transfer

Q HUSESH

User

Downloads/Uploads
fromito Board

Once the simulation is performed and the required results observed in the
system, the user will upload the hex file to the microcontroller on the board to
verify the operation physically. The user may also request to see the source of
the program in currently residing in the microcontroller or may request a
verification to check whether the uploaded program is consistent with the one in
hand. The user may also want to clear the contents of the memory in the

controller to be on the safe side and to start everything from scratch.

SimSys Corporation 11

3.2. Class diagrams

System File

systeminfo:systemlDy
operating SytemOSID
userlnfo userlD

programPreferences Preference

+ saveFile(}

+oadFilz(fileName. fil:Path}

Project

projeetSpecifications: ProjctFile
ser

ggerDebugger
bpHandler BrzakPointHandler
wpHandler:WatchPointHandler
sinmilator: SinmlationEngine

+saveProject()
loadProjectiprojgctMame. projctPath)
snewFile(fila Ty pe.filsMName filzPath}
+addFile(fil: Tvpe fileMName fil:Path)
+removeFile(fileType filaName}

A\
i

|

File

fil=Name: Stiing

fil=Path: Sting

+saveFile()
HoadFile(filsMName filsPath}
+eloseFile()

§

TestFile

+ saveFile(}
+HoadFilz{fileMame fil=Path}
+updateFilz(}

DebugFile

+ saveFils()
HoadFile(filsMame filsPath)

ProjectFile

ASM++
AsmPlusFile

nserinfornsaID

progectPropaitias Propaity

ASM
AsmFile

HeaderFile

-+ saveFile()

+saveFile()
+HeadF
+aetPrefs

ame filePatl}
1ces{Praference)

+ saveFile(}
+oadFilefileMame filePath)
updateFilz()

+ saveaFils
+ saveFila() saveFlel)

+oadFile(fileMame filzPath}

+HoadFile(filsName filsPath)

+oadFilzi file Mame filzPath)
-rupdateFile()

supdateFile()

Project
Attribute Name | Type Description
projectName string The name of the project.
projectPath string '(Ij’ihstle(-path of the project on the
specifications ProjectFile The specifications of the project.
Attributes | compiler Compiler The compiler module.
debugger Debugger The debugger module.
bpHandler BreakPointHandler The breakpoint handler.
wpHandler WatchPointHandler The watchpoint handler.
simulator SimulationEngine The simulator module.
Methods Method Name Return | Arguments Description
saveProject() void void Saves the project.
loadProject() void S:g}gg:ggme’ Loads the project.
newFile() void fileType, Creates a new file and adds it to

SimSys Corporation

12

fileName, the project.
filePath
fileType, L .
addFile() void fileName, A:i(;j_zgn existing file to the
filePath project.
removeFile() void f!IeType, Removes a file from the project.
fileName,
File
Attribute Name | Type Description
The type of the file, i.e. asm,
fileType int yp
Attributes hex, test, etc.
fileName string The name of the file.
filePath string The path of the file on the disk.
Method Name Return | Arguments Description
save() void void Saves the file.
Methods "
) fileName, .
load() void filePath Loads the file.
close() void void Closes the file.
SystemrFile :: File
Attribute Name | Type Description
systemInfo systemID Information about the system.
. . The type of the operating
Attributes | operatingSystem | OSID system.
userlinfo userlD Information about the user.
preferences Preference The preferences of the user.
Method Name Return | Arguments Description
Methods save() void void Saves the file.
. fileName, .
load() void filePath Loads the file.
ProjectFile :: File
Attribute Name | Type Description
Attributes | userinfo userlD Information about the user.
properties Property The properties of the project.
Methods Method Name Return | Arguments Description

SimSys Corporation

13

save() void void Saves the file.
. fileName, .
load() void filePath Loads the file.
AsmPlusFile :: File
Method Name Return | Arguments Description
save() void void Saves the file.
Methods . fileName, .
load() void filePath Loads the file.
update() void void Updates the file with the current
changes.
AsmFile :: File
Method Name Return | Arguments Description
save() void void Saves the file.
Methods . fileName, .
load() void filePath Loads the file.
update() void void Updates the file with the current
changes.
HexFile :: File
Method Name Return | Arguments Description
Methods save() void void Saves the file.
. fileName, .
load() void filePath Loads the file.
HeaderFile :: File
Method Name Return | Arguments Description
save() void void Saves the file.
Methods . fileName, .
load() void filePath Loads the file.
update() void void Updates the file with the current
changes.

SimSys Corporation

14

DebugrFile :: File

Method Name Return | Arguments Description

Methods save() void void Saves the file.
. fileName, .

load() void filePath Loads the file.
TestFile :: File

Method Name Return | Arguments Description

save() void void Saves the file.
Methods . fileName, .

load() void filePath Loads the file.

update() void void Updates the file with the current

changes.
Compiler

crossFileRefzrenceTable HashTable

+ compile{AsmPlus Filz)
tavntanCheck{AsmPlusFile)

tavntasCheckAsnd AsmFile)

+enerate Asmi AsmPlusFilz)

+gensrateHex AsniFilz)
-addToCrossFileReferenceTable(Cross FileReferece)

1

File

Project

Editor

filaBuffer Aray: BufferAmav
fil= Aaraw File Arav
bpHandler: BreakPomtHandlzr

cursorPos CorsoPosition

+displavText{text Buffar)

+readFilelntoBuffar(fileMName . file Path bufferSize file Buffer A mavIndex)
+getActiveFile(}

+insertichark

+delete()

+backSpace()

+eut{cursorStart PositionannmberCfCharacters clipboard Buffer. fil Buffer AmavIndex)
+eopyvicusorstart PosihonamberCharactes chip board Buffer il Buffer Amay Index)
+aelacticurs ordtart Position numberCfCharacters fileBufferAravind=x)
+paste{cursorstart Position.umberOfCharacters chip Board Bufter file Buffzr Arrav Ind=x)
+Hand(text file BufferAmavindzx)

+replace(test.newText cursorsStart Position file Buffer ArravIndexi

+highlight{word}

+showLineMumbers{}

SimSys Corporation

15

Editor

Attribute Name | Type Description
fileBufferArray BufferArray The contents of th?
currently opened files.
Attributes | fileArray fileArray The files those are currently
open.
bpHandler BreakPointHandler The breakpoint handler.
cursorPos CursorPosition Current position of the
cursor
Methods Method Name Return | Arguments Description

displayText()

void textBuffer

Displays the text in the
buffer.

readFilelntoBuf()

fileName, filePath,
void bufferSize,
fileBufferArraylndex

Reads the file into the
specified buffer.

getActiveFile()

fileName | void

Returns the name of the
active file.

Inserts the given char to

insert() void char the Buffer.
. . Deletes the selected items
delete() void void from the Buffer.
. . Deletes the last character in
backspace() void void the Buffer.
cursorStartPosition, | selects numOfCharacters
select() void numOfCharacters, characters starting from the
fileBufferArraylndex cursorStartPosition.
cursorStartPosition,
. numOfCharacters, Puts the selected item into
cut() void .
clipboardBuffer, the clipboard buffer.
fileBufferArraylndex
cursorStartPosition,
. numOfCharacters, Copies the selected item
copy() void . :
clipboardBuffer, into the clipboard buffer.
fileBufferArraylndex
cursorStartPosition,
. numberOfCharacters, | Pastes the last item in the
paste() void] .
CllpBoardBuffer’ Cllpboal’d buffer
fileBufferArraylndex
text,
find() void cursorStartPosition, Find text in the file.
fileBufferArraylndex
text, newText, . . .
replace() void cursorStartPosition, | Find textin the file and
. replace with newText.
fileBufferArraylndex
highlight() void word Highlights the word.

SimSys Corporation

16

showLineNums() | void void Shows the line numbers.
Compiler
Attribute Name Type Description
Attributes crossFileReference- The mapping between the
Hash Table . .
Table source file and the hex file.
Method Name Return | Arguments Description
. . ' Starts the compilation
compile() void AsmPlusFile P
process.
. Checks the syntax of the
syntaxCheck void i :
Y 0 AsmPlusFile AsmPluskFile.
. Checks the syntax of the
syntaxCheckAsm void i -
Methods Y 0 AsmFile AsmFile.
) Generates an AsmFile from
enerateAsm void i .
9 0 AsmPlusFile the AsmPlusFile.
. Generates a HexFile from the
enerateHex void i -
9 0 AsmFile AsmfFile.
. Adds the CrossFileReference
addToCrossFile- : .
ReferenceTable() void CrossFileReference | entry to the
CrossFileReferenceTable.
SimulationEngine
microcontroller PIC
led Amay LED Array
sevenSegDispAmnay: SevenSegmentDisplav Aray
Project kevPad KevPad
_ _ _ =rzsetButton:Res=tButton
led: LD
parallzlPort:ParallelPort
senalPort:SenalPort
usart:USART
speakerSpeaker
ushPort:USEPort
smartCard: SmartCardReader
potentiometer: Potentiometer
mfraredTransnutter: Infrared Trans nmtter
infraredReceiver InfraredReceiver
testData:TestFile
stopwatch: Stopwatch
pinlistensrlist: Vector< PinListener
smmlationMode : int
+ammilate(}
+rumTestSumlation(TestFile)
satopSmlationd}
+atopTestSmmlation(}
+enablePeripheral{Penipherallly
+disablePeripheral(PeriphearllD)
e
A g 5
i
e i ",
E -~ Y

Peripherals

PIC Microcontroller

Analvsis Tools

SimSys Corporation

17

Simulation Engine

Attribute Name Type Description
microcontroller PIC PIC microcontroller.
ledArray LEDArray LED array on the board.

sevenSegDispArray

SevenSegmentDisplayArray

7segment display array on
the board.

keyPad KeyPad Keypad on the board.

resetButton ResetButton Reset button on the board.

lcd LCD LCD display on the board.

parallelPort ParallelPort Parallel port on the board.

serialPort SerialPort Serial port on the board.

usart USART USART module on the
board.

Attributes

speaker Speaker Speaker on the board.

usbPort USBPort USB port on the board.

smartCard SmartCard Smart card reader on the
board.

potentiometer Potentiometer The analog input POT on
the board.

infraredTransmitter InfraredTransmitter Lr;f;?(;ed—transmltter on the

infraredReceiver InfraredReceiver Infrared-receiver on the
board.

testData TestFile T_est be_nch data for
simulation.

stopwatch Stopwatch Sto_pwat_ch to Ifeep the time
during simulation.

pinListenerList Vector<PinListener= Pln_llstener to keep Fhe
logic values of the pins.

simulationMode int The mode of the simulation.

Methods Method Name Return | Arguments Description

simulate() void void Makes the simulation.

. . . . Makes the test bench
runTestSimulation() | void TestFile simulation.
stopSimulation() void void Stop the simulation.

. . . . Stop the test bench
stopTestSimulation() | void void simulation.

. . . Enables the peripheral in
enablePeripheral() void PeripherallD the simulation

SimSys Corporation

18

disablePeripheral()

void

PeripherallD

Disables the peripheral in

the simulation

FashProgramMemory

dataword]
FEDATA Register
FEDATH Register
EEADR Register
EEADRH Register

Program Counter

PCLRegister
PCLATH:5-bitRegister

+ mitializz(Butter) void
+ read(address) [4-bitdata

+ get() | 3-bits
+ merement(y 1 it
+ merzment () 13-bits

FEPROMDatalMemory

databyte]]
EEDATA Register
EEDATH:Register
EEADRRegister
EEADRH:Rsgister

Register

databyte
prevDatabyte

+ tead{address byl
-+ wite(adduzss byte) void

+ read()byte
+ wite(byte wateDatajvoid

+ 15Changed(fbool

PIC

fashProgMemory:FlashPrograniemory
ezpronDatabznnry: EEPROMDataMemory
datal ey Datahemory
PCProgramCounter

portA:PORTA

portBPORTR

poit(:PORTC

portDPORTD

portEPORTE

unfzpt Intermpt

adconverter ADConverter

PSP ParallelSlavePort

fimer) Tanenl

it | Tiaer|

compaatorComparator

+ decodelnstuction()
+ sumilatelnstnction()

DatalMemory

SpecnlRegisters Registar
GenenalRegisters Register

-+ read(bank; addiess pbyte
+wite(bank addizss byt pvod

SimSys Corporation

+ latchinRzgs()
+wiileRegs()
PORTA [nterrupt
PORTA 6-bits
TRISA G-his + checklntampts(yvoud
+ readInputi) 6-0nts
+wife(6-bits) voud ADConverter
cyclebyte Timer(
PORTB enablzd bool MR Recist
- ADCONOTegister ety
PORTB Register \DCON st INTCON Register
TRISE Regiter -J\DLRE v :;:::[' OPTION REGRegister
OPTION_REGRegist gty
= it ADRESHregister
+ readInputirbyte INTCON Register
+ wita(bytz)voud PIRI: Register .
: PIEI Register Timer
PORTC PORTA Register . z
TRISA Resist INTCON Reguster
PORTC Regite b PIRI Registr
TRISC Register TLI.{)I B gI:I: PIEL Register
readlput) byte = TMRIL Registe
saite(byie) void + statConversion(double voltage voud TMRIH Register
- + simmlate() TICON Reguster
PORTD ParallelSlave Port
PORTD Reguster TRISD Register (fo||||'nral0r
TRISD Register TRISE Register e
‘ ‘ PORTD Register CMEON Register
+ teadlnput() byt R ‘
: ADCONL Register INTCON Register
PIRI Registar PIRY Register
PORTE PIEI Rgglslel PIE? Register
PORTA Regist
TRISE Registet + PiPread(yvoud TLRJJS}\ Rggf: :
PORTE Reguster + PSPwnte(void -
+readInpt(s byte
+ wiite(byte)voud

19

PIC

Attribute Name Type Description
flashProgMemory FlashProgramMemory Flash program memory
eepromDataMemory | EEPROMDataMemory EEPROM data memory
dataMemory DataMemory Data memory
pc ProgramCounter Program Counter
portA PORTA PORT A of the PIC
portB PORTB PORT B of the PIC
portC PORTC PORT C of the PIC
Attributes
portD PORTD PORT D of the PIC
portE PORTE PORT E of the PIC
interrupt Interrupt Interrupt module of the PIC
adConverter ADConverter Analog-to-Digital Converter
psp ParallelSlavePort Parallel Slave Port
timerO TimerO Timer O of the PIC
timerl Timerl Timer 1 of the PIC
comparator Comparator Comparator of the PIC
Method Name Return | Arguments Description
decodelnstruction() | void void !Decode_s the next
instruction.
simulatelnstruction() | void void _Slmulatgs the next
Methods instruction.
Latch in the register values
latchIlnRegs() void void before the execution of a
step.
Write the updated values of
writeRegs() void void the registers after the
execution of a step.
FlashProgramMemory
Attributes | Attribute Name Type Description
data word[] The content array of the
memory.
EEDATA Register EEDATA register
EEDATH Register EEDATH register
EEADR Register EEADR register

SimSys Corporation

20

EEADRH Register EEADRH register
Method Name Return Arguments Description
Methods initialize() void Buffer Initializes the memory.
. Read the data at the
read() 1l4bit-data | Address Adress.
EEPROMDataMemory
Attribute Name Type Description
data byte[] The content array of the
memory.
EEDATA Register EEDATA register
Attributes
EEDATH Register EEDATH register
EEADR Register EEADR register
EEADRH Register EEADRH register
Method Name Return Arguments Description
Reads the byte at the
Methods read() byte Address Adress.
. . Writes the byte to the
write() void Address, byte Adress.
DataMemory
Attribute Name Type Description
. - . . The special registers in
Attributes | specialRegisters Register Data Memory.
. . The general registers in
generalRegisters Register Data Memory.
Method Name Return Arguments Description
Reads the byte at the
Methods | "€ad0 byte Bank, Address | »ross on B)e:nk.
. . Bank, Address, | Writes the byte to the
write() void
byte Adress on Bank.
ProgramCounter
Attribute Name Type Description
Attributes | PCL Register PCL Register in the PIC
PCLATH 5bit-Register PCLATH Register in the PIC

SimSys Corporation

21

Method Name Return Arguments Description
get() 13bit void Gets the current value of
the program counter.
Methods
. . . Increments the value of the
increment() 13bit void
program counter.
. . . Increments the value of the
increment2() 13bit void program counter by 2.
Register
Attribute Name Type Description
Attributes | data byte The content of the register
prevData byte Preylous content of the
register
Method Name Return Arguments Description
. Reads the data in the
read() byte void register.
. . Writes the byte into the
Methods write() void byte register.
Returns true if the content
. . of the register has been
isChanged() bool void changed, returns false
otherwise.
PORTA
Attribute Name Type Description
. . The content of the Port
Attributes | PORTA 6-bit data register
TRISA 6-bit data The data direction Register
Method Name Return Arguments Description
Methods | readlnput() 6-bit data | void ng‘tds the input data in the
. . . Writes the 6-bit data into
write() void 6-bit data the port.
PORTB
Attribute Name Type Description
Attributes | PORTB Register The_ content of the Port
register
TRISB Register The data direction Register

SimSys Corporation

22

Method Name Return Arguments Description

Methods readlnput() byte void Ece);attljs the input data in the
write() void byte \F/)\:)r;:fas the byte into the

PORTC
Attribute Name Type Description

Attributes | PORTC Register 'rl':;sctz?tent of the Port
TRISC Register The data direction Register
Method Name Return Arguments Description

Methods readlnput() byte void Eg?gs the input data in the
write() void byte \F/)\i)r::fas the byte into the

PORTD
Attribute Name Type Description

Attributes | PORTD Register Ig;si(;':tent of the Port
TRISD Register The data direction Register
Method Name Return Arguments Description

Methods | readinput() byte void ng‘fs the input data in the
write() void byte \F/)\gr::fas the byte into the

PORTE
Attribute Name Type Description

Attributes | PORTE Register I:;Si‘;?te”t of the Port
TRISE Register The data direction Register
Method Name Return Arguments Description

Methods readlnput() byte void Esfgs the input data in the
write() void byte \F/)\érri:fas the byte into the

SimSys Corporation

23

ADConverter

Attribute Name Type Description
cycle byte AD conversion cycle
enabled bool If AD conversion is enabled
ADCONO Register ADCONO Register
ADCON1 Register ADCONL1 Register
ADRESL Register ADRESL Register
ADRESH Register ADRESH Register
Attributes
INTCON Register INTCON Register
PIR1 Register PIR1 Register
PIE1 Register PIE1 Register
PORTA Register Local copy of PORTA
PORTE Register Local copy of PORTE
TRISA Register Local copy of TRISA
TRISE Register Local copy of TRISE
Method Name Return Arguments Description
Methods startConversion() void double f;:r;?\lghne ;1[;|ggn\\,/ oelggg. of
simulate() void void fcl)r:\l;l ;?;?:nt_he AD
Interrupt
Method Name Return Arguments Description
Methods checkinterruptsO void void Checks if there are
interrupts.
ParallelSlavePort
Attributes | Attribute Name Type Description
PORTD Register Local copy of PORTD
PORTE Register Local copy of PORTE
TRISD Register Local copy of TRISD
TRISE Register Local copy of TRISE

SimSys Corporation

24

ADCON1 Register Local copy of ADCON1

PIR1 Register Local copy of PIR1

PIE1 Register Local copy of PIEL

Method Name Return Arguments Description
Methods pspRead() void void Read the data.

pspWrite() void void Write the data.
TimerO

Attribute Name Type Description

TIMERO Register Local copy of TIMERO
Attributes

INTCON Register Local copy of INTCON

OPTION_REG Register Local copy of OPTION_REG
Timerl

Attribute Name Type Description

INTCON Register Local copy of INTCON

PIR1 Register Local copy of PIR1
Attributes | PIE1 Register Local copy of PIE1

TMR1L Register Local copy of TMR1L

TMR1H Register Local copy of TMR1H

T1CON Register Local copy of TLCON
Comparator
Attributes | Attribute Name Type Description

CMCON Register Local copy of CMCON

CVRCON Register Local copy of CVRCON

INTCON Register Local copy of INTCON

PIR2 Register Local copy of PIR2

PIE2 Register Local copy of PIE2

PORTA Register Local copy of PORTA

SimSys Corporation 25

BoardPort

USART

id: Peripheralll
isEnabled:bool

Hwrtelnpmt{Input ot ID}
HeadInput()
+HutializzPort()

itz Input{Input. PortID)
+readnput(}
+drawi}

isEnabled bool

ParallelPort | TRISA SerialPort Regjister Speaker | ocalseapyaefed RISA
datr ParatstPortiat Tt ST datr o SBPoTEatT i Peripheralll ‘Tata SuartCardData
isEnabled:bool id:PenpherallD

+rzadInput(}
+generate Sound() FreadInput()
+draw(} Fdraw(}
7 A
Potentiometer

+itaw(} /
~~ 'r"
s
. /
LD ™
b Y g
data:LCDData
ledStung Stang il A
l Penpheralll —_|id PeripherallD
isEnabled bool 15 Enablad bool
+sendDatalStiing)
Headlput(} o)
et Contiast(} 57 1}
+law() : T
LEDArray SevenSegmentDisplayArray

analogData float
1d:Peripheallly
- |isEnabled bool

SwiteIngmt{Inpuwt Port 1D}
+zadIngmt(}
+draw(}

InfravedTransmitter

dataInfiaredData
_{idPeripherallD
isEnabled bool

Ftransnut()
Fdrawi(}

InfraredReceiver

dataInfiaredData
~{id:PeripherallD
isEnabled bool

+receivel}
+drawi(}

KeyPad

led Vector Vector<LED:
1l Penpheralll
1sEnabled bool

+sendData{LEDID)

+diawi)

sevenSegmentDisplay Veetor Veetor SevenSegmentDisplay -
1 Penipheralll
tsEnabled bool

HieadIngmt()
+iliaw()

+eadInput{)
)1

+sendDatalssdID)

)

pushButtonVactor Vector- FushButton
id:PeripherallD
is Enabled:bool

+sendData(ButtonlD}
+rzadnput()
+wnitelnput{Input Port (D}

+draw(}
)

8 3
16
LED SevenSegmentDisplay
PushButton
databyte data byte -
id LEDID id:ssdID datacint
isEnablad bool 15 Enablad bool id:ButtonlD
15 Enabled bool
+witeDatalbyte) +wiiteData(byte) pushButtonstate:Buttonstate
HeadDatal) HeadDatal)
+diaw) o — +rzadData}
+draw(}
ResetPushButton
+8endResetSignal ToMictocontrollen PICY
Peripheral
Attributes | Attribute Name Type Description

id

PeripherallD

ID of the peripheral

SimSys Corporation

26

isEnabled bool if the peripheral is enabled

Method Name Return Arguments Description
Methods

draw() void void Draws the peripheral
LEDArray :: Peripheral

Attribute Name Type Description
Attributes

ledVector Vector<LED=> The vector of 8 LEDs

Method Name Return Arguments Description

sendData() void ledID ISzr:gs data to the LED with
Methods e -

readinput() void void Reads the input.

draw() void void Draws this peripheral.
LED

Attribute Name Type Description

id ledID The ID of this LED
Attributes

ledData byte The data of this LED

isEnabled bool if this LED is enabled

Method Name Return Arguments Description

writeData() void byte Writes the data to this LED.
Methods

readData() byte void Reads the input.

draw() void void Draws this LED.
SevenSegmentDisplayArray :: Peripheral

Attribute Name Type Description
Attributes sevenSegment- . The vector of 3 seven

- Vector<SevenSegmentDisplay> .

DisplayVector segment displays.

Methods Method Name Return Arguments Description
. Sends data to the SSD
sendData() void ssdID with ssdiD.
readlnput() void void Reads the input.

SimSys Corporation

27

draw() void void Draws this peripheral.
SevenSegmentDisplay

Attribute Name Type Description

id ssdID The ID of this SSD.
Attributes

ssdData byte The data of this SSD.

isEnabled bool if this SSD is enabled

Method Name Return Arguments Description

writeData() void byte \évsrges the data to this
Methods .

readData() byte void Reads the input.

draw() void void Draws this SSD.
KeyPad :: Peripheral

Attribute Name Type Description
Attributes

pushButtonVector Vector<PushButton> The vector of 16 push

buttons.
Method Name Return Arguments Description
. Sends data to the push

sendData() void buttonlD button with buttonID.
Methods readlnput() void void Reads the input.

. . Sends the input data to the
writelnput() void Data, portlD port with portiD.
draw() void void Draws this peripheral.

PushButton
Attribute Name Type Description
id buttonID The ID of this push button.
Attributes | buttonData int The data of this button.
isEnabled bool if this button is enabled
state int The state of this button
Methods Method Name Return Arguments Description

SimSys Corporation

28

readData() int void Reads the input.

draw() void void Draws this push button.
ResetButton :: PushButton

Method Name Return Arguments Description
Methods -

. . . Sends RESET signal to

sendResetSignalToPIC() | void void the PIC.
LCD :: Peripheral

Attribute Name Type Description
Attributes | data LCDData The data of the LCD.

ledString string The string on the LCD.

Method Name Return Arguments Description

sendData() void string Sends data to the LCD.
Methods readInput() void void Reads the input.
. Changes the contrast of the
setContrast() void float LCD to the given value.
draw() void void Draws this peripheral.
BoardPort :: Peripheral

Method Name Return Arguments Description

writelnput() void Data Writes data to the Port.
Methods

readlnput() void void Reads the input.

initialize() void void Initializes the Port.
ParallelPort :: BoardPort

Attribute Name Type Description
Attributes

data ParallelPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

SimSys Corporation

29

SerialPort :: BoardPort

Attribute Name Type Description
Attributes

data SerialPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

USBPort :: BoardPort

Attribute Name Type Description
Attributes

data USBPortData The data of the port.

Method Name Return Arguments Description
Methods

draw() void void Draws this peripheral.

USART :: Peripheral

Method Name Return Arguments Description

writelnput() void void Writes data.
Methods

readlnput() void void Reads the input.

draw() void void Draws this peripheral.

Speaker :: Peripheral

Method Name Return Arguments Description
readlnput() void void Reads the input.
Methods i
. Generates sound according
generateSound() void Data to the given input.
draw() void void Draws this peripheral.

SmartCardReader :: Peripheral

Attribute Name Type Description
Attributes
data SmartCardData The data of the smart card.
Method Name Return Arguments Description
Methods readlnput() void void Reads the input.
draw() void void Draws this peripheral.

SimSys Corporation

30

Potentiometer :: Peripheral

Attribute Name Type Description
Attributes
analogData float The analog voltage value of
the potentiometer.
Method Name Return Arguments Description
writelnput() void Data, PortID \F/)Vn::as data to the Port with
Methods ortD.
readlnput() float void Reads the input.
draw() void void Draws this peripheral.
InfraredTransmitter :: Peripheral
Attribute Name Type Description
Attributes :
data InfraredData The dat_a of the infrared
transmitter.
Method Name Return Arguments Description
Methods transmit() void void Transmits the data.
draw() void void Draws this peripheral.
InfraredReceiver :: Peripheral
Attribute Name Type Description
Attributes :
data InfraredData The plata of the infrared
receiver.
Method Name Return Arguments Description
Methods receive() void void Receives the data.
draw() void void Draws this peripheral.

SimSys Corporation

31

AnalysisTool

wlinteger

1EEnabled:bool

+displand}
+enablz(}
+dizablei}

]

Stopwatch

fune Lo

watchStatus WatchStatus

+diEplavi)
+atart Tz}
+atopTune)

FPinListener

port:Port
pinMNumbermnt
cument&Status PmStatus
tune Chart

+eisplay()
+adStatusToTune Chart(PmStatus)

+leai) +l.'|ll'l't‘."::iﬂ|.'r|1|)
+reseti)
AnalysisTool
Attribute Name Type Description
Attributes | id int The ID of the analysis tool.
isEnabled bool If the analysis tool is
enabled.
Method Name Return Arguments Description
enable() void void Enables the analysis tool.
Methods
disable() void void Disables the analysis tool.
display() void void Displays the analysis tool.
StopWatch :: AnalysisTool
Attribute Name Type Description
Attributes | status int The stop watch status
. The time passed during
time long .
execution
Methods Method Name Return Arguments Description

SimSys Corporation

32

startTimer() void void Starts the timer.
stopTimer() void void Stops the timer.
clear() void void Resets the timer.

PinListener :: AnalysisTool

Attribute Name Type Description
The Port that the pin
port Port P
belongs to.
. . The pin number on the
. inNumber int
Attributes P Port.
status int Current status of the pin.
The time chart to display
timeChart TimeChart the pin value with respect
to time.
Method Name Return Arguments Description
addStatusToTime- void int Adds the given status to
Methods Chart() the timeChart.
drawGraph() void void Draws the timeChart graph.
reset() void void Resets the pin listener.
BreakPointHandler WatchPointHandler
bpList Vector- BreakPomnt wpList: Vector=WatchPount
+addBrzakPomnt(Lins) +addWatchPomnt(variable)
+removeBreakPoint{breakPomtID) +ramoveWatchPomt{watchPomtIDN}
+displavBreakPoints{} +displayWatchPoints(}
+1s BreakPoint{ LineMumber} +15WatchPointChanged{WatchPoint}
E"-\-\. +is WatchPomt(varablz}

Debugger

bpHandler BreakPomtHandler
wipHandler WatchpointHandler

bpList: Vactor-BrealPoumt

wpList Vactor=WatchPoiunt

debmgFile DebugFile
cxpeutionControllar ExscutionController

+atepOverLinsRef:
+eoToCmson CmsorLineReterence)
+displavDratai}

This class extends
SimulationEngine Class. It
adds capabilites to execute

ExecutionController

-nextInstmetiond)
-exgenteLmne(LineReference)

SimSys Corporation

several instructions,to stop at
certain instructions, etc.

33

Debugger

Attribute Name

Type

Description

bpHandler BreakPointHandler The breakpoint handler.
wpHandler WatchPointHandler The watchpoint handler.
Attributes | bpList Vector<BreakPoint> The list of the breakpoints.
wplList Vector<WatchPoint> The list of the watchpoints.
debugFile DebugFile Thefne.used during
debugging process.
executionController ExecutionController The smulator used during
debugging process.
Method Name Return Arguments Description
. . Starts the debugging
debug() void void process.
step() void LineReference Executes one step.
steplInto() void LineReference Steps into the next block.
Methods
. f th
stepOut() void LineReference Steps out of the current
block.
stepOver() void LineReference Steps over the next block.
. . Executes upto the cursor
gotoCursor() void cursorPosition position.
displayData() void void Displays the debug data.
ExecutionController :: SimulationEngine
Method Name Return Arguments Description
. . . Executes the next
Methods nextlnstruction() void void instruction.
. . . Executes one line in the
executeLine() void LineReference AsmPlusFile.
BreakPointHandler
Attribute Name Type Description
Attributes
bpList Vector<BreakPoint> The list of the breakpoints.
Methods Method Name Return Arguments Description
. . . Adds a break point to the
addBreakPoint() void LineNumber given line.
. . Removes the break point
removeBreakPoint() | void bpID with bplD.

SimSys Corporation

34

. . . . Displays the breakpoints on
displayBreakPoints() | void void the editor.
Returns true if there exists
isBreakPoint() bool LineNumber a breakpoint on the line
with lineNumber.
WatchPointHandler
Attribute Name Type Description
Attributes
wplList Vector<WatchPoint> The list of the watchpoints.
Method Name Return Arguments Description
. . . Adds a watch point to the
addWatchPoint() void variable given variable.
. . Removes the watch point
removeWatchPoint() | void wplD with wplD.
Methods displayWatchPoints() | void void Displays the watch points.
Returns true if there exists
isWatchPoint() bool variable a watch point associated
with the variable.
isWatchPoint- Retur_ns true_lf the var_lable
bool wplD associated with wplD is
Changed()
changed.
: : t
CompParallelPor Programmer
sont Butfzr Buffs
pottBuffzr Buffzy port:CotpPasallelPoit
(e ol + wiite(HEXFile)
+Ir-ec-=ivc: [;ﬂ'u . +read(HEXFil=Buffzr)
“ i +verify(HEXFile HEXFilz Buffer)
+arased)
Programmer
Attribute Name Type Description

The parallel port of the

Attributes
port CompParallelPort computer t_o_be used for
reading/writing programs
to the PIC.
Methods Method Name Return Arguments Description
write() void HexFile \;\:gtes the hex file to the
. . Reads the program on the
read() void HexFileBuffer PIC prog
_ _ HexFile, Compares_ the program on
verify() void) the PIC with the one on the
HexFileBuffer buffer and verifies.

SimSys Corporation

35

erase() void void Erases the program on the
PIC.
CompParallelPort
Attribute Name Type Description
Attributes The buffer to be used for
portBuffer Buffer the parallel port of the
computer.
Method Name Return Arguments Description
initialize() void void Initializes the port.
Methods :
. . Sends the data in the
sendData() void void buffer to the port.
. . . Receives the data from the
receiveData() void void port into the buffer.

SimSys Corporation

36

3.3. Sequence diagrams

3.3.1. Editor Module

The Editor Module consists of several sub-modules.

Open File Module

GUIL

User
|

T Editor

fileCpenC allBack()

| §

Soutce File

readFilelntoBuffer)

| loadFile()

When the user selects "Open File"” from the menu or from the screen, the
fileOpenCallBack () function of GUI is called and this calls the clickedFile ()
method of Project object which returns the fileName of the clicked file. As soon as
GUI gets the name of the file, it invokes the readFilelntoBuffer () method of the
Editor object which reads the text data of the file into its buffer array. For this
purpose, this function invokes the loadFile () method of the SourceFile object,
which was created back in the GUI initialization. Once the file is read into the
buffer the editor calls the displayText () function and it prints the buffer content

into the monitor.

SimSys Corporation 37

Save File Module

GTIT
I
User
I I
Editor
saveFileCBD o :
getd ctiveFile() -
g - ... activeFilellame
I
T
I
' Fite
Fit '
saveFile() -

[
When the user selects "Save File" from the menu or from the screen, the

fileSaveCallBack() function of GUI is called and this calls the getActiveFile()
method of Editor object which returns the activeFileName of the current file. As
soon as GUI gets the name of the file, it invokes the saveFile() method of the File

object which saves the text.

SimSys Corporation 38

Close File Module

Gl
I
User
| I
Editor
fileCloseCallBack) :
getdctiveFile() -
g - ctivebielame
|
T
|
File
foseFil '
clogeFile() -

When the user selects "Close File" from the menu or from the screen, the
fileCloseCallBack() function of GUI is called and this calls the getActiveFile()
method of Editor object which returns the activeFileName of the current file. As
soon as GUI gets the name of the file, it invokes the closeFile() method of the File

object which saves the text.

SimSys Corporation 39

Edit File Module

GUI

Editor

User S R
|

kevboardCallBackkey) |

[0t Special Combination] gets etiveFileM atne() -

.. HULLL

[hot NULL && key=="etter] inzert(ke)

|
[fuot NULL && key==delete] deletal)

-
[tiot NOLL && key==hackspace] backSpace) -

When the user presses a key from the keyboard, the keyboardCallBack()

method of GUI is called and it checks the parameter.

a. If the entered key is a special key combination it handles in itself and

returns to the user without entering the Editor class.

b. If the entered key is not a special combination the getActiveFileName()
method of the Editor. If the Editor returns a valid value i.e. if there exist a
current active file open, GUI calls three different methods of the Editor object:

1. If the entered key is a single letter the insert(key) method,

2. If the entered key is the "Delete" key the delete() method,

3. If the entered key is the "Backspace" key the backSpace() method

If the Editor returns a null value, the GUI goes into idle state.

SimSys Corporation 40

3.3.2. Compile Module

GUI Compiler
[[
User | I
! | |
CDmEileCBgi
Compile [A5MI+H]
L - SyntaxChe ckASM+H
ool ASMSyntaBuer | [
"""""""""" [otError& & ARR]
CGenerate A2
[
I ol
[fotASh+H]
SyntaCheckd B
|
ot] &30S yntaxError
'JE“ Lt YRR [fotError)
Cenerate HEZ
-}
.*
|

When the user presses the "Compile" button in the main window, the Project
class, which is running in the background since the invocation of the program,
calls the compileCallBack() function. This function calls the compile() function of
the GUI object and creates a Compiler object, by using its constructor. The
Compiler object checks the type of the file which is requested to be compiled:

1. If the file is an ASM++ file, it calls the syntaxCheckASM++() method,
which checks if there is an error or not syntactically or not. If there are any errors
it reports the error to its caller GUI and terminates immediately. If there are no
errors, it generates an ASM file.

2. If the file is an ASM file, it invokes generateHEX() method which creates
the HEX file correspondent of the ASM file.

Finally the Compiler object returns a successful termination to the GUI object.

SimSys Corporation 41

3.3.3. Simulate Module

GTT Sirmulator

Input

Peripherals Test Bench

|

[

[

SimulateCH '
Sitrrlate) |

| T User
|

Read))

GetInputs() - |

))

[y

i
|

I
[]

Simulate) :r.atchlnRe za()
PP
R

Cutput
Peripherals
T
Write() _; Analylsis
Tools
il I
|
CollectStatistics)

) J

[if situlation completed]
_ SimulationT erminated

f

When user starts a simulation using GUI of PIDE, a message is sent to GUI class
which calls simulate() function of the Simulator module. simulate() function runs
until simulation is stopped. In the sequence diagram, operations after simulate()
method simulates one clock cycle of the board. In other words, simulation runs in
descrete time intervals. During simulation, simulate() keeps simulating the clock

cycles.

SimSys Corporation 42

Simulator module can be run in two different modes. First of them is the direct
interaction with the user and the other is using a test file. In either case
Simulator send Read message to all enabled input peripherals to see if there is an
input from a source. Peripherals update their data accordingly and return.
Simulator then sends simulate() message to PIC which first calls latchlnRegs
function to take a snapshot of the current registers before simulating a cycle of
the PIC. After saving registers, PIC simulates its modules and saves last data with
write() function. After simulating the PIC, Simulator now passes PIC's last state to
output peripherals and simulates them. At the end of the cycle, analysis tools
such as pin listeners update data with collectStatistics() method. Simulation is

stopped by user's request.

3.3.4. Debugger Module

When the user presses the "Debug" button in the main window, the Project class,
which is running in the background since the invocation of the program, calls the
debugCallBack() function. This function calls the debug() function of the GUI
object and creates a Debugger object, by using its constructor. The Debugger
object calls the nextinstruction() method immediately which creates an

ExecutionControl object. ExecutionControl object calls two functions:

1. isBreakpoint() method of the BreakpointHandler object which was

created by the Project object before. It returns "true" or "false".

2. isWatchpoint() method of the WatchPointHandler object which was

created by the Project object before. It returns "true" or "false".

It takes three branches into execution according to the return values of

these functions:

SimSys Corporation 43

Debug:Breakpoint

If isBreakpoint() returns true, Execution Control returns the breakpoint
information to the Debugger and it returns debugHaltBreakpoint to the GUI and
at the end, GUI prompts the user to step into the next instruction. When user
steps into the next instruction, the stepCallBack() method is invoked and the

Debugger continues with the next instruction

Execution
GUI Debugger Sirol
l I T
User

| | |

| | | |
| | Ereakpoint
| Handler
ebugCallBa
Debugy L NextInstruction) |
il |
| i &Brreakpuﬁ:to 2o
| et oo fwe .
|
| e 12 I
' [EF]
I | DebugHalt breakpt
Ste
StepCallBack)
*NextInstruction) |

| L |

SimSys Corporation 44

Debug:No Breakpoint but Watchpoint

If isBreakpoint() returns false and isWatchpoint() returns true, the Execution
Control returns the watchpoint information to the Debugger and it returns
debugHaltWatchpoint to the GUI and at the end, GUI prompts the user to step
into the next instruction. When user steps into the next instruction, the

stepCallBack() method is invoked and the Debugger continues with the next

instruction.
GUI Debugger Ernane
User ! ! |
| I | |
i _l | Breakpoint
| Hatudl ex
ehzCalBa]
Drebugy) | |
o Hathetnuction)
I EEreabpodtl)
[k= mle
l I
I
| YWatch P oint
Handler
I
| fo EP] l
isWatchPoka() |
| e
I
| O RLRRLEE T |
| [*TE]
| D TEERE mtchgt |
Step
Step CallBack)
- *Hetstruction])
T ———

SimSys Corporation

Debug: No breakpoint and no watchpoint

If isBreakpoint() returns false and isWatchpoint() returns, the Debugger steps

into the next instruction without any prompt.

UL Debugger E&;‘ﬁﬁ“
| | |
| | |
] | | Breakyoint
Handler
CalE & —L I
Do) Hethetractin]
EEreabpoid |
s
i
| .
Watch Point
Handler
o] !
EWatchTowtl)
I I
. BOWE
—
L .

SimSys Corporation

46

3.3.5. PIC Programmer Module

The Programmer Module consists of three sub-modules.

Write

UL

User

writeFileC allBack)) -

Programimer

------------------------ - write(filel] ame)

When the user selects "Write File" from the menu, the writeCallBack() function of

the GUI is called and it prompts the user to choose the file to be downloaded.

The user specifies the file path. Then the module programs the PIC using parallel

port.

SimSys Corporation 47

Read

301
|
User
I |
readFileCallBack] Programmer
Logai
I
teadFilel) -
Editor
I
I
I I
loadFilelntoBuffen) -

When the user selects "Read File" from the menu, the readCallBack() function of
the GUI is called. Then the file is uploaded by calling the uploadFile() method of
the Programmer module. The uploaded file is read to the editor buffer by calling
the loadFilelntoBuffer() method of the Editor object.

SimSys Corporation 48

Verify

Ul

User

verifyFileCallBacks) -

e Frogrammer

I verifyFile() -

When the user selects "Verify File" from the menu, the verifyFileCallBack()
function of the GUI is called and it prompts the user to select the file to be
verified. The user specifies the path. Then the module compares the files by
calling the verifyFile() function of the Editor module.

SimSys Corporation 49

4. Graphical User Interface Design

Below in Figure 4.1, the GUI of the PIDE program, showing the menus, toolbars

and the status bar can be found.

- PIDE - Guil CEX
File Edit Yiew Project Simulate Debug Programmer Analysis Tools Help

0O =

Figure 4.1
Figure 4.1 shows the case when there is no active project. When the user
creates/opens a project, the workspace view will also be present on the left hand

side. The program will be able to handle multiple opened files.

In Figure 4.2, the menu bar of the PIDE is shown. The menu items will be

explained in detail in the following sections.

IFiIe Edit Miew Project Simulate Debug Programmer Analysis Tools Help

Figure 4.2
In Figure 4.3, the toolbar of the PIDE is shown. Here exist shortcuts of the

frequently used operations in the menu bar.

D@ |2 2R «|@|» Q0BT

Figure 4.3

SimSys Corporation 50

MENUS

There are File, Edit, View, Project, Simulate, Debug, Programmer, Analysis, Tools

and Help menus in the PIDE program. The operation of each menu item is

described below.

FILE MENU

New Project

Open Project
Save Project
Close Project
New

Open...

Close

Save

Save As...

Recent Files
Recent Projects

Exit

EDIT MENU

Undo
Redo
Cut
Copy
Paste
Find

Replace

VIEW MENU

Toolbar
Status Bar
Output
Debug

Create a new project.

Open an existing project.

Save the current project.

Close the current project.

Create a new file.

Open an existing file.

Close the current file.

Save the current file.

Save the current file with a different
name or save to a different place.

Shows the most recently used files,

Shows the most recently used projects,

Quit from the program.

Undo the last action.

Redo the last undo action.

Cut the selected item.

Copy the selected item.

Paste the last cut or copied item.
Find a given word in the current file.

Replace the given word with another word.

Show/Hide the toolbar.
Show/Hide the status bar.
Show/Hide the output view.
Show/Hide the debug windows.

SimSys Corporation

#+ PIDE - Gui1

File

Edit Wiew Project
MNew Project
Open Project

Save Project

SirmnL

Plew Chrl4+M

CIpen. .. Chrl4+O

Close

Save Chel4+5

Save As, ..

Exit

|l Yiew Project =

Fedo Zhrl+Y

Replace Ctrl4+-R

m Project Sir

i v Toolbar

v Status Bar
Cukput
Debug
Workspace

o1

Workspace
PROJECT MENU

Show/Hide the workspace view.

Build
Build Options
Add File to Project

Build the current project.

Change the build options.

Add a new file to the current
project.

Remove File from Project Remove a file from the current
project.

Properties Change the project properties.

SIMULATE MENU

Start Start the simulation.

Pause Pause the simulation.
Continue Continue the simulation.

Stop Stop the simulation.

Settings Change the simulation settings.

DEBUG MENU

Breakpoint Add or Remove breakpoints.
Watchpoint Add or Remove watchpoints.
Start Start the debugging process.
Step Execute one step.

Step Into Step into the next block.
Step Out Step out of the current block.
Step Over Step over the next block.
Stop Stop the debugging process.
Settings Change the debug settings.

PROGRAMMER MENU

Simulate Debug Pro

Praoject

I Add File ko Projeck »
Remove File From Project ¥

Properties

Settings

Programmer Analysis T

Breakpoint k

Wy atchpoint k

Settings

Programmer

Settings

Write Write the current program onto the PIC.

Read Read the program in the PIC.

Verify Verify if the program is written correctly onto the PIC.
Erase Erase the program written in the PIC.

Settings Change the programmer settings.

SimSys Corporation

52

ANALYSIS MENU

Add
Display
Hide

TOOLS MENU

Customize

Options

HELP MENU

About PIDE...
Contents
Index

Search

Add a new analysis tool.
Display the analysis results.

Hide the analysis results.

Customize the program settings.

Change the program options.

Show brief information about the program.

Show the help contents.
Show the help index.

Search a help topic in the help contents.

SimSys Corporation

Help

110 A

! Abouk PIDE. ..

53

5. Components to be Simulated

5.1. PIC MCU

The PIC microcontroller instruction set contains 35 basic instructions. All of those
basic instructions are single word, i.e. 14 bits. They last finite durations, read
from some specific registers and update some other specific registers. Therefore,

simulations of all 35 instructions are independent and atomic.

5.1.1. Memory

The memory system of the MCU is composed of FLASH program memory, the

RAM Data Memory and the EEPROM Data Memory.

FLASH Program Memory

The program to be uploaded is stored in the Flash Program memory, which has
8KB storage. Each instruction is 14 bits wide. Since the program counter is 13
bits wide, 2'* = 8K-words can be addressed in the Flash program memory.
Paging

The FLASH program memory consists of four pages. The address ranges of those

four pages are given below.

Page Number | Start Address | End Address
Page O 0005h 07FFh
Page 1 0800h OFFFh
Page 2 1000h 17FFh
Page 3 1800h 1FFFh

As a result of the paging system of the program memory, the operations of the
jump instructions require special attention. The CALL/GOTO instructions take
11bit arguments, addressing only 2KB of the memory. Actually, the MSB 2 bits of
the address are taken from PCLATH<4:3>. Therefore, when a subroutine in
another page is to be called, first the PCLATH<4:3> bits should be set
accordingly, and then the low order 11 bits should be given to the CALL

instruction.

Registers

SimSys Corporation 54

Register | Usage

EEDATA Data

EEDATH Data

EEADR

Address LSBs

EEADRH Address MSBs (0000h-1FFFh)

EECON1 controls

EECON2 controls

Read and Write Operations

Data read operation from the FLASH memory is performed as single word read

and data write operation is performed as four word block write.

Read

Write

N

Write address to EEADRH and EEADR

Set EEPGD

Set RD

Wait for 2 cycles idle (those statements are ignored)

Read from EEDATH and EEDAT

A write operation to the FLASH program memory can only be performed if not

write-protected mode is selected, as defined in device configuration word bits

WRT<1:0>

Data is written in four word blocks, where a block is four words with sequential

addresses. These four words are identified by EEADR<1:0> bits.

Load ALL 4 buffer registers with order 00-01-10-11:

© ® No A~ WD

Write address to EEADRH and EEADR

Write data to EEDATH and EEDATA

Set EEPGD

Write 55h to EECON2

Write AAh to EECON2

Set WR

Wait for 2 cycles

When last one is written, data is transferred from buffers to FLASH.

Then, processor waits for 4ms for the write to be completed.

SimSys Corporation 55

RAM Data Memory
The RAM data memory is 512B, containing the special purpose registers and

general purpose registers (368B).

Bank System
The RAM Data memory is comprised of 4 banks. Bank selection is performed by
means of RP1 (Status<5>) and RP2 (Status<6>) bits.

128 Bytes/Bank (128 = Ox7F)

General Purpose Registers

Special Purpose Registers

An important note should be added here. Since the central processing unit of the
PIC microcontroller has a very limited RISC architecture core, it has no special
registers in it. Also the memory read/write speed is the same as the registers
inside the CPU. As a result, the memory of the PIC is used just as registers.
Therefore, Microchip refers the memory words as registers and in this report from

this point forward, the data memory words will be referred as registers.

The distribution of the data memory space is given in the figure. As can be seen
from the above distribution of the registers, the first portions of all four banks are
reserved for special purpose registers and the rest for general purpose registers.
The bitwise explanation of the special purpose registers are given in the PIC
16F877 datasheet by Microchip.

A careful examination of the above data memory address space gives us
why Microchip defines the data memory “up to 368 Bytes”. The General Purpose
Registers are totally 96+80+16+80+16+80 = 368 Bytes.

Among the special purpose registers, the some registers are of special interest.
Those registers are STATUS, OPTION, and INTCON. STATUS register is controlled
to switch between the banks, Time-out, Power-down modes and carry/borrow
control of arithmetic operations. OPTION register is used to enable PORTB internal
weak pull ups, Interrupt enabling, timer source and edge and prescale selections.
INTCON register is used to configure the interrupts in the system. Global,

peripheral, timer, external, portB interrupts are enabled and the flags are

SimSys Corporation 56

read/cleared from this register. There are also PIE1, PIR1, PIE2, PIR2 registers

for enabling peripheral interrupts and their flags.

The PCON register contains the flags for different types of reset operations such

as power-on reset, watchdog reset external reset and brown-out reset.

FIGURE 2-3: PIC16FB76A/877A REGISTER FILE MAP
File File File File
Address Address Address Address
Indirect addr | 00n Indirect addr!” | goh Indirect addr.""! | 100R Indirect addr | 180n
TMRO 01h OPTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCI 02h PCL 82h PCL 102h PCL 182h
STATLS 03h STATUS B3h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTE 08h TRISE 86h FORTE 106h TRISE 186h
PORTC orh TRISC 87h 107h 187h
PORTDIM 08h TRISDIM B8h 108h 188h
PORTE!" | 08h TRISE® | ggh 108h 169h
PCLATH 0Ah FCLATH BAh PCLATH 10Ah PCLATH 184h
INTCON 0Bh INTCON 8Bh INTCONM 10Bh INTCON 1BEh
PIR1 0ch PIE1 BCh EEDATA 10Ch EECON1 18Ch
PIRZ 0Dh PIEZ 80h EEADR 10Dh EECON2 180h
TMRAL 0Eh PCON BEh EEDATH 10ER Reserved® | 18Eh
TMR1H OFh 8Fh EEADRH 10Fh Reserved® | 18Fh
T1CON 10h 90h 110h 190h
TMR2 11h SSPCONZ | 91h Tith 191h
T2CON 12h PR2 92h 112h 192k
55PBUF 13h SSEPADD 93h 113h 193h
SSPCON | 14h SSPSTAT | 94h 114h 194h
CCPR1L 15h a5k 115h 196h
CCPR1H 18h 96h 116h 198h
om | Gmed |nmo | gmes | tem
RCSTA 18h TXSTA 98h Register 118h Registar 188h
TXREG 18h SPBRG 9gh 16 Bytes 119h 16 Bytes 1849h
RCREG 1Ah g4h 114h 19AH
CCPR2L 1Bh 9Bh TBh 19Bh
CCPR2H iCh CMCON 9Ch 11Ch 19Ch
CCP2CON | 1Dh CVRCON aDh 11Dh 190N
ADRESH 1Eh ADRESL aEh 11Eh 18Eh
ADCONO 1Fh ADCON1 9Fh 1IFh 19Fh
20h AOh 120h 1A0h
General General General
PUFQOSE Purpose PUFQCISE
General Register Register Register
Furpose
Register 80 Bytes 80 Bytes 80 Bytes
% Byles EFh 16Fh 1EFh
accesses | ON accesses | 170N accesses 1FOn
70h-TFh 70h-TFh 70n - 7Fh
7Fh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3
D Unimplemented data memary locations, read as ‘0’
* Mot a physical register,
Mote 1: These registers are not implemented on the PIC1G6FETEA.
2: These registers are reserved, maintain these registers dear

Indirect Addressing

Indirect addressing is accomplished by means of INDF virtual register name.

When INDF is used as the target address, actually the address pointed by the FSR

SimSys Corporation

57

(File Select Register) register is accessed. 8 bits in FSR register and 1 IRP bit give
9 bits to address the overall 2KByte data memory (000h — 1FFh).

EEPROM Data Memory
The EEPROM data memory has 256Bytes of storage and is the non-volatile data

storage system.

Register | Data Memory

EEDATA 8 bit data

EEADR Address (00h-FFh)

EECON1 Controls

EECON2 Controls

PIR2 flags

Data read operation from the EEPROM memory is performed as single byte read
and data write operation is performed as single byte write. The EEPROM data

memory is not directly addressed, but is accessed indirectly via special registers.

EECONL1 Register Contents
EEPGD=0 Data
EEPGD=1 Program

RD read , can only be set by user; reset by hardware
WR write , can only be set by user; reset by hardware
WREN write enable

WRERR write error when there’s a MCLR or WDT reset

PIR2 Register Contents
EEIF Write complete interrupt flag

Read Operation
1. Write address to EEADR
2. Clear EEPGD
3. SetRD
4. Next cycle, data is ready at EEDATA, so next instruction can read it
Write
WR inhibited from being set if WREN is cleared
Write address to EEADR.
Write 8-bit data EEDATA
Clear EEPGD
Set WREN

P NR

SimSys Corporation 58

Disable interrupts (if enabled).
Execute the special five instruction sequence:
i Write 55h to EECON2 in two steps (first to W, then to EECON2)
ii.. Write AAh to EECON2 in two steps (first to W, then to EECON2)
iii. Set the WR bit
Enable interrupts (if using interrupts).
Clear the WREN.
At the completion of the write cycle, the WR bit is cleared and the EEIF
interrupt flag bit is set. (EEIF must be cleared by firmware.)
Program Counter
The program counter (PC) of the Microcontroller is a part of the data memory.
The value inside the PC shows the next instruction to be executed in the program
memory. The PC 13 bits, and is held in two registers.
e 8 LSBs (<7:0>) are in PCL register, readable and writable.
e MSB 5 bits (<12:8>) are copied from PCLATH register (<4:0>) on a “write
to PC” instruction such as “ADDWF PCL”.

PCL
13 el 8 7 0
PC
‘I\ |
7 4 0
PCLATH
PC Stack

Related to the PC, the stack is of primary importance. Stack is used to store the
current value of the PC in case of a subroutine/function call, to be able to proceed
with normal operation upon return. The user cannot access (i.e. read or modify)
the stack.

e Stack is 8 PC words (13 bits) deep.

e Stack pointer is not readable / writable

e Stack is circular, i.e. a 9™ write overwrites stack address 0.

5.1.2. PORTS

There are five ports on the microcontroller. These ports are used for various
purposes, but mostly for digital 1/0. The names of the ports and the number of
pins on each are PORTA (6), PORTB (8), PORTC (8), PORTD (8) and PORTE (3).

Port Name Pins Connected Modules

SimSys Corporation 59

PORTA 5 Digital Input/Output
A/D Converter(default)
Comparator

SPI

TimerO

PORTB 8 Digital Input/Output
External Interrupt
Weak internal pull-up

Interrupt on Change

PORTC 8 Digital Input/Output
Timerl

PWM 1-2

SPI

12C

USART

PORTD 8 Digital Input/Output

Parallel Slave Port

PORTE 3 Digital 1/0
A/D Converter

Parallel Slave Port

Interrupts

There are 15 sources of interrupts in the system. Therefore, that number of
interrupt vectors will be used to select the address to be jumped onto in case of
an interrupt. Among the most important interrupt vectors, the reset vector of the

system resides in the address 0000h and the external interrupt vector in 0004h.

5.1.3. Parallel Slave Port
Parallel Slave Port registers and usage

Set TRISE<2:0> for inputs

ADCON1<3:0=> for digital 1/0 not analog 1/0

Write with WR low and CS low, when any one becomes high, IBF flag is
set, and PSPIF interrupt flag is set

Read PORTD to clear IBF

If a second write before read, IBOV is set

Read with RD low and CS low, OBF is cleared, when any one becomes

high, PSPIF interrupt flag is set, OBF low until data is written

SimSys Corporation 60

5.1.4. Analog to Digital Converter

The conversion of an analog input signal results in a corresponding 10-bit digital
number. The A/D module has high and low-voltage reference input that is

software selectable to some combination of VDD, VSS, RA2 or RA3.

The ADRESH and ADRESL registers contain the 10-bit result of the A/D
conversion. When the A/D conversion is complete, the result is loaded into this
A/D Result register pair, the GO/DONE bit (ADCONO<2>) is cleared and the A/D
interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in
Figure 11-1.

Clearing the GO/DONE bit during a conversion will abort the current conversion.
The A/D input pins must be configured as input pins via the TRIS register to be
used as analog inputs.

INTCON Interrupt Enable

PIR1 Interrupt flag

PIEL1 Interrupt enable

ADRESH Conversion Result MSBs (or LSBs)
ADRESL Conversion Result LSBs (or MSBs)
ADCONO Analog input channel selection

Conversion clock selection
Conversion flag

A/D enable
ADCON1 AD port configuration
Result format selection
TRISA Pin directions
PORTA Analog input port
TRISE Pin directions
PORTE Analog input port

5.1.5. Other Features of the MCU

TimerO, 8Bit timer/counter with 8Bit prescaler
Timerl, 16Bit timer/counter with prescaler
Timer2

Capture-Compare-PWM Modules

SSP, Synchronous Serial Port

SPI, serial Peripheral Interface

12C

USART, Universal Synchronous / Asynchronous Receiver Transmitter (9-bit)
BOR, Brown Out Reset

Analog Comparator Module

WDT, Watchdog Timer

Sleep Mode

SimSys Corporation 61

5.2. Peripherals

The CEng 336 board is a complete evaluation board that contains various devices
on it. These devices can be classified into two with respect to their usage, input
devices and output devices. The list of the peripherals on the board are given

below with their brief explanations.

5.2.1. Input Peripherals

Parallel Port

Parallel port (LPT) is the port that is used for programming the
microcontroller on the evaluation board. This port can be used for parallel
communication, such as PSP mode, or for serial communication, either

synchronous or asynchronous.

Serial Port
Serial port connection, i.e. RS232, is used for asynchronous serial data

transfer between other devices and the microcontroller.

USB Port

The USB port is a high speed serial communications interface. For PIC
applications, in fact the speed of the USB port is very high, however since in the
recent PCs, the serial communications port is being replaced with the USB ports, the

controller should be able to communicate using this protocol.

Smart Card Reader

Smart card reader provides extra storage capability to the system. Since
the storage capacity of the EEPROM on the MCU is limited, some extra storage
may be necessary. The addressing and read/write operation of the reader should

be modeled in the system.

Infrared Transmitter and Receiver

SimSys Corporation 62

Infrared communication is included on the board to be used for special
purpose applications. The system is internally analog and requires special

modelling.

Keypad
There are 16 pushbuttons on the evaluation board. The pushbuttons are

active high buttons, pulled low during normal operation.

Reset Pushbutton
The reset pushbutton, being active low, is directly connected to the reset

of the microcontroller. An MCLR signal is asserted with this input.

5.2.2. Output Peripherals

Led Array
A light emmiting diode (LED) is nothing but a semiconductor device that

emits light when given logic high value.

Seven Segment Display Array
A collection of LEDs, arranged in a format that will enable the display of
alphanumeric characters is called a seven segment display. On the CEng336

board, there are three of those devices, forming an array.

LCD

Using light emmiting diodes for displaying data is clearly not the best
method. Seven segment displays improve the user interface a little but still, it is
very old fashioned. Newest systems always include some LCD components as the
interface. These devices latch in the data entered, decode the characters and
display them on their screen. Moving the cursor on the LCD and deleting are

some special operations available on most of the off-the-shelf LCD modules.

Speaker
A speaker is a source of accoustic waves. The input signal is analog and
the frequency/intensity of the accoustiv waves is determined by the input

waveform characteristics.

SimSys Corporation 63

6. Language Specifications

6.1. ASM++ Language Format

A Simple Language

We have decided to define a new language which is simply an
improvement on assembly language, including some new keyword definitions or
introducing some high definition language concepts such as function calls or

variable definitions. The name of the language is ASM++ (ASM plus plus).

General

ASM++ is not case sensitive. Upper-case letters and lower-case letters are not
considered to be distinct in all tokens, including reserved words.
White space (space character, tab character and end-of-line) serves to separate
tokens; otherwise, it is ignored. No token can extend past end-of-line. Spaces
may not appear inside any token except character and string literals.
A comment begins with two forward slashes or a semicolon as it is default for

assembly language and extends to end of line, as in C++.

Identifiers

Identifiers start with a letter and contain letters and digits. An identifier must fit

on a single line and its first 20 characters are significant.

Reserved Words

The following keywords are reserved in ASM++:

addala2 subala2 addwala? subala2 swapala2
iorwala2 andwala? xorwala2 movala2 if

else then for function begin
end define var array

SimSys Corporation 64

Literals

An integer literal consists of a sequence of one or more digits in decimal or
hexadecimal format.
A character literal is a single character enclosed by a pair of apostrophes

(sometimes called "single quotes".) Examples include 'A’, 'x', and "'. A character
literal is distinct from a string literal of length one.

There is nothing like string literal.

Other Tokens (delimiters and operators)

L0 & as one character
Il<=>"

I=>=<=// as two characters

and the end-of-file character

Macros

Macros are introduced by declarations of the form

define ID number

Variables

Variables are introduced by declarations of the form

var ID, ID, ..., ID

For example:
var a 0x121

Arrays

Arrays are introduced by declarations of the form

SimSys Corporation 65

array name(address, length)

For example:
array a(0x5510,10)

Expressions

For binary operators, both operands must be the same type. Similarly, for

assignment compatibility, both the left and right sides must have the same type.

Short Circuiting

Logical operators and and or use short-circuit evaluation.

This means that as soon as the truth value can be determined, evaluation stops.
For example, if the first operand of an and evaluates false, the expression will
evaluate false no matter what the second operand is, so the second operand is
not even evaluated. If the first operand of an or evaluates true, the second isn't

evaluated either.

Statements

Assignment statement

("="is the assignment operator). For example
var a 0x121
a = 0x1C4

If statement

define MAX 100
define MIN O

if x > MAX then
goto hede

SimSys Corporation 66

else if x < MIN then

goto hodo

Loop Statement

The compiler will support while and for loops.

Example:

while(hede)
begin

Function Definitions

The compiler will be supplying the function calls. They can be limitedly

nested which are defined as follows:

function func_name(parameterl, parameter2)

The user will be provided a bunch of library functions for use.

Comments

The comments are specified by a semicolon or two forward slashes. It will

be covering the whole line it is put at.

SimSys Corporation 67

6.2. Test Bench (.test) File Format

During the simulation of a source file, the user will want to enter various inputs to the
system. The input devices on the board are communication ports, keypad, pushbuttons
and pots. Using a test bench file, the user can state the exact time instants that the
inputs from these devices will be modified, e.g. a reset signal may be asserted for a
period. Test bench files will release the burden of entering the inputs to peripherals at
correct instants. This is especially useful in the case of high frequency input
requirements.

Test bench file can control the system inputs in two different modes. In the Peripheral
mode, the user may control the timing of the inputs to the peripheral devices.
Alternatively, in the PIC mode, the user may choose to directly access the pins of the
microcontroller. The mode selection is performed by <ModeName> tag. A test file
may contain only one mode selection tag.

The format of the test bench files is given below.

timescale <time unit>
<PIC>

#<time> PORT<Port Name>.PIN< Pin No> = <Expression1>
#<time> PORT<Port Name> = <expression2>

always #<time> PORT<Port Name>.PIN<Pin No> = <expression1>
always #<time> PORT<Port Name> = <expression2>

#<time> $finish

timescale <time unit>

<PERIPHERAL>
#<time> <DeviceName>.PIN<Pin No> = <expression3>
#<time> <DeviceName> = <Expression4>

always #<time> <DeviceName>.PIN<Pin No> = <expression3>
always #<time> <DeviceName> = <Expression4>

#<time> $finish

Indentation is not important, since the parser ignores white spaces. The instructions
are not case-sensitive.

The language for the Peripheral and PIC modes are defined below.
For Peripheral Mode:

SimSys Corporation 68

<Expression3> =0 | 1 | <DeviceName>.PIN<Pin No>
| ~<DeviceName>.PIN<Pin No>

<Expression4> = <word> | <DeviceName> + <CONST>
| <DeviceName> - <CONST>

<Device Name> = LPT | RS232 | USB | Keypad | Reset

PIC Mode:

<Expression1>=0| 1 | PORT<Port Name>.PIN<Pin No>
| ~PORT<Port Name>.PIN<Pin No>

<Expression2> = <byte> | PORT<Port Name> + <CONST>
| PORT<Port Name> - <CONST>
| PORT<Port Name>

Port Name = PORTA | PORTB | PORTC | PORTD | PORTE

Example Files

For PIC Mode:

timescale <1ms>
<PIC>
#0 PORTA =0
#0 PORTB =0

always #10 PORTA.2 = ~PORTA.2
always #100 PORTB = PORTB + 1

#<1000> $finish

For Peripheral Mode:

<PERIPHERAL>
#0 Keypad =0
#0 Reset =1
#5 Reset =0

#10 Keypad.PIN5 =0
#10 Keypad.PIN2 = ~Keypad.PIN2
always #100 Keypad.PIN3 = ~Keypad.PIN3

#<1000> $finish

SimSys Corporation

69

7. File Formats

7.1. Project File Format

PIDE is desgined to be able to create projects and save workspaces for a better
IDE experience. PIDE saves all necessary information in a file
<project_name=>.pde to recreate a previously used workspace. "pde" is the PIDE
project save file extension. Each project has a pde file under its project folder.
Below are the specifications and format of the project file. Since not all the desgin
specifications are final, the file specifications and format is subject to change with

high possibility.
Project Description in Project File

Project files include a project description section at the begining. It includes
version of PIDE, name of the project, user/corporate name, creation and last
modification dates of the project and description of the project if available. Each
description is leaded by a keyword and followed by a new line. Project description
can span several lines with project description token (#) at the beginning of each

line. Below is an example of the project description section.

#PIDE 1.0- PIC Integrated Development Enviroment with ASM++
#Project_Name= Heat Sensor

#Creator= e1347061

#Created@ 2/12/2006 13:29:06

#Modified@ 2/12/2006 13:45:33

#Description= Ceng336 odevi icin yazdigimiz bir isi sensoru

Other Files in Project File

Project file holds trace of all files included in the project. These files may be
ASM++ source files, ASM files, HEX files, debug files and test files. Each file is
defined with its type and path name. The lines preceeding types of the files begin
with file type token (=) and file paths are saved after "FILE=" keyword. Below is

an example of files.

SimSys Corporation 70

>ASM++

FILE= ./source/heat sensor.asm-++
>ASMHEADER

FILE= ./myLib/a2dcalculate.ah
>ASMHEADER

FILE= ./d2acalculate.ah
>TESTFILE

FILE= ./testcasel.test
>DEBUGFILE

FILE= ./heat sensor.dbg

Workspace in ProjectFiles

Project file saves last snapshot of the workspace. When user opens an existing
project, GUI will be modified according to these settings. This section begins with
WORKSPACE_BEGIN keyword and ends with WORKSPACE_END keyword.
Between the keywords states of all the views and windows are saved.View

properties, i.e. visibility of toolbars, shortcuts, etc. are leaded with "VIEW_" tag
and window properties, i.e. subwindows which were open just before leaving
workspace, are leaded with "WINDOW_" tag. Editor windows are special cases
since they require additional information like the file they are editing. There is an
editors section in the workspace between "WINDOW_EDITOR_LIST_BEGIN"
keyword and "WINDOW_EDITOR_LIST_END" keyword. In this section a mode tag

is followed by a file path.Below is an example of workspace.

SimSys Corporation 71

WORKSPACE_BEGIN
VIEW_TOOLBAR_DEBUG= OFF
VIEW_BUTTON_DEBUG_STEP= ON

(removed)

WINDOW_EDITOR_LIST_BEGIN

FULL= NONE

FLOATING= ./source/heat sensor.asm++
MINIMIZED= ./testcasel.test
WINDOW_EDITOR_LIST_END

removed

WINDOW_BUTTOM_CONSOLE= TABBED
WINDOW_BUTTOM_LOG= ON
WINDOW_SIDE_WATCHPOINT= TABBED
WINDOW_SIDE_REGISTERS= ON
WORKSPACE_END

7.2. Debug File Format

Debug files hold data of the source and binary executable files that will be used in
debugging process. Debugger needs watchpoints and breakpoints to halt
execution. Watchpoints are held as register adresses and breakpoints as line
number of some source file. Debug file holds existing watchpoint and breakpoint
locations in a file <project_name>.dbg. Below are the specifications and format

of the debug file.

Cross Mappings of the Line Numbers for Breakpoints

Breakpoints are defined using source files. These lines should be mapped to
corresponding lower level file lines.Breakpoints may be lying in different files so
each files line number is seperated from another. Breakpoint section begins with
BREAKPOINT_BEGIN keyword and ends with BREAKPOINT_END keyword. After
BREAKPOINT_BEGIN keyword, the path of the file to which source file line
numbers are mapped is saved. This file is usually a generated asm file with file

name <project_name>_g.asm. Each source file's breakpoint data is listed under

SimSys Corporation 72

its path name leaded with its source type. After each file, END_OF_BP_LIST
keyword is used to indicate the source file has no other breakpoints. Each
breakpoint is indicated with a =BP tag followed by line number of the associated
source file and mapped line number.Other mappings simply don't have any tags.

Below is an example of breakpoint section.

BREAKPOINT_BEGIN DEST= ./heat sensor_g.asm
ASMFILE= ./source/heat sensor.asm++

41

52

1111
>BP 12 14
13 16

45 50
>BP 46 55

81 90

END_OF_BP_LIST

ASMHEADER= ./myLib/a2dcalculate.ah
191

294

395

>BP 4 98

>BP 19 122

>BP 24 130

END_OF_BP_LIST
BREAKPOINT END

SimSys Corporation 73

Register Adresses for Watchpoints

Watchpoints are defined using registers of the microcontroller. They are mapped
to a real address value in the PIC and debugger halts whenever a register
referenced by a watchpoint is altered. Debugger receive line number information
to continue debugging process from simulator. Watchpoint section begins with
WATCHPOINT_BEGIN keyword and ends with WATCHPOINT_END keyword. Each
watchpoint is indicated with a >WP tag followed by register address of PIC in
hexadecimal format. Some special registers are indicated with descriptive labels

such as stack registers. Below is an example of watchpoint section.

WATCHPOINT_BEGIN
>WP 0x0101

>WP STACK1

>WP W

>WP STATUS
WATCHPOINT_END

SimSys Corporation 74

8. Coding Standarts

8.1. Coding Conventions

To increase maintainability of the source code, all project members will obey the
coding standarts described below

Inside the class scope, attributes and method declarations should be followed
with method definitions. Attributes and method declarations shall be logically
grouped using appropriate comments.

Class attributes should be private. All attributes must have its own getter and

setter methods implemented.
8.2. Naming Conventions

Naming conventions will be as Java naming conventions.

Class names will be as descriptive as possible and initial letters of each word and
abrreviation letters will be capitalized. Example: Class, ClassName, CClass,
ClassC etc.

Method names and Class attributes always start with small letters. Each word or
abrreviation letter after the first word or abbreviation letter will be start with
capital letters. Example: var, varP, varPoint, iPoint, varFirstSecond, varFS,

method(), methodName(), mName(), methodN() etc.

8.3. Comments

Comment conventions will be as Java commenting conventions.

At the beginning of each file, there will be a descriptive comment which must
include file name, creator, creation time, last edit date.

Classes, attributes and methods should be leaded with descriptive comments.
Class comments should describe functionality of the class and may include special
notes if any. The comment should have @author <author name=> line in the end.
Attribute comments should be brief as much as possible.

Method comments should describe behavior and aim of the method. All
parameters should be described using @param tag and return values should be
described with @return. The comment should have @author <author name= line

in the end. Local variables should be described inside the method.

SimSys Corporation 75

8.4. Indentation

Indentation conventions will be as Eclipse Java Indentation conventions.

Scope defining curly braces should be put in a new line and indented to the same

vertical line. Example:

Class Class1
{
void method ()
{
if (varl ==var2)
{
if (var2 ==var3)
{
}
3
¥
¥

To increase readibility, there should be white spaces before and after any names,

operators, etc. Example:

var = 3 + (varl + var2 * var3 / method());

SimSys Corporation

76

9. Gantt Chart

li] Taszk Mame Start Finish \'06 | 09 Oct '06 |23 0ot 05 06 Mov '06 | 20 Mo '06 04 Dec '06 [16 Dec 08 01 Jan '07 |15 Jan'07
| 01 (05 [09 [13[17 [21 [25 [29 [o02 [o6 [10 14 [15 [22 [26 [30 [o4 [o8 [12 [16 [20 [24 [25 |1 [o05 (o9 [13[17 [21 [25
Project Proposal Fri 06.10.06 Wed 11.10.06 p—
Literature Survey Wed 11.10.06 Mon 30.10.06 - T
Requirement Analysis Tue 31.10.06 Mon 06.11.06 P—
- Initial Design Report Thu 09.11.06 Mon 04.12.06
.v/' U=ze cazes Thu 09.11.06 Wed 1511 .08
'v/' Defining Structures and Hierarchies Mon 13.11.06 Sun19.11.06
.v/' Preparstion of Class Relationship Diagra | Mon 201108 Thu 2311 .06
'v/' Preparstion of State Transition Disgrams) Fri 2411 .06 Mon 27 11 06
.v/' System Design Mon 271106 Sat 021206
lv" Ohject Desion Mon 27 1106 Sat 021206
.v/' Human Inter face Design hion 27 1106 Sat 021206
'v/' Data Managemert Design Mon 27 4106 Sat 021206
.v/' Task Management Design Mon 271106 Sat 021206
E Initial Design Report Preparation Sun 034206 Sun0312.06
| Initial Design Repaort Deadline hon 04.12.06 | Mon 041206
[=] Final Design Report Tue 05.12.06 Mon 15.01.07
E Revising Use cazes Tug 051206 Thu 211206
= Preparation of Class Diagrams Wed 131206 Thu 2812 06
E Architectural Design hion 251206 Sun 07.01.07
E Graphical User Irterface Design Mon 251206 Sun 070107
: E Sequence Diagrams and Timing Relation:) Thu 2512068 Sun 07.01.07
E FinalDeszign Report Preparation Mon 05.04 07 | Sun 140107
E Final Design Report Deadline Mon 15.01 .07 | Mon 15.01.07
| [=l Prototype Tue 16.01.07 Tue 23.01.07
E Praotatype Preparation Tue 16.01 .07 Mon 22.01.07
= Presentation Preparation Mon 22.01 07 | Man 22.01 07
E Demonstration Deadline Tue 23.01.07 Tue 23.01.07

SimSys Corporation 77

	1. Introduction
	2. System Architecture
	3. Modeling
	3.1. Scenario Based Model
	3.2. Class Diagrams
	3.3. Sequence Diagrams
	4. Graphical User Interface Design
	5. Components to be Simulated
	6. Language Specifications
	7. File Formats
	8. Coding Standards
	9. Gantt Chart

