

Middle East Technical University
Department of Computer Engineering

CENG 491

Computer Engineering Design I

2006-2007

SimSys Corporation

 Requirements Analysis Report

PIDE

Emulator and Development Environment for

CEng Embedded System Card

05.11.2006

PIDE Requirement Analysis Report

SimSys Corporation

2

TABLE OF CONTENTS

1. INTRODUCTION ...3
1. 1. Purpose of the Document..3
1. 2. Project Description..4
1. 3. Survey and Results..5
1. 4. Market Research ...7
1. 5. Hardware and Software Requirements ...11

1. 5. 1. Development Phase..11
1. 5. 2. End User...11

1. 6. Company Organization ...12
2. REQUIREMENTS...13

2. 1. Functional requirements..13
2. 1. 1. Programming the PIC Microcontroller ..13
2. 1. 2. Create/Open/Save Project and Files...13
2. 1. 3. Text Editor ...14
2. 1. 4. Extension to Assembly Language - Macro Source Files14
2. 1. 5. Test Bench Files to Control Development Board Input Devices.............14
2. 1. 6. Simulation ..15
2. 1. 7. Debugger..15

2. 2. Non-Functional Requirements ..16
2. 2. 1. User Friendliness ...16
2. 2. 2. Easy to Learn ...16
2. 2. 3. Reliability...16
2. 2. 4. Compatibility ...17
2. 2. 5. Performance ...17

3. SCENARIO BASED MODEL ..18
4. FLOW ORIENTED MODEL..21

4. 1. DFD Level 0 - Top View of the Project ...21
4. 2. DFD Level 1 - PIDE (0.0)...22
4. 3. DFD Level 2 ...23

4. 3. 1. Editor Process (1.0)..23
4. 3. 2. Compile Process (2.0)..24
4. 3. 3. Simulate Process (3.0) ...25
4. 3. 4. Debug Process (4.0) ...26
4. 3. 5. Upload-Download Process (5.0)..27

5. BEHAVIORAL MODEL ..28
5. 1. State Transition Diagram ...28
5. 2. States ..29
5. 3. Events...32

6. SCHEDULE...35
7. REFERENCES ..36

PIDE Requirement Analysis Report

SimSys Corporation

3

1. INTRODUCTION

1. 1. Purpose of the Document

In this report, the requirement analysis of the PIDE (PIC Integrated

Development Environment) Project is presented.

PIDE project involves implementation of a complete IDE compatible with

the CENG Embedded Systems Board that is being used in CENG 336 course. The

project will be carried out by the SimSys Corporation during the eight-month

period starting in October 2006 and ending in May 2007.

In the first part of this report, the general project description is given.

Furthermore, the results of the surveys and interviews that are performed by the

group to gather information are presented. In the second part, the functional and

non-functional requirements are explained to have a complete description of the

project. In the third, fourth and fifth parts, the PIDE project is analyzed in detail

and scenario-based model, behavioral model and flow-oriented model of the

project are given. In the sixth and last part, the Gantt chart is included to present

the project plan.

PIDE Requirement Analysis Report

SimSys Corporation

4

1. 2. Project Description

 As the technology evolves, the embedded systems start to find wide area

of usage. In most of the devices that people use daily, there exists a core logic

which is mostly an embedded microcontroller or microprocessor with some

external storage. Besides, those integrated devices also let the implementation

and testing of various new controller ideas very easily. This popularity of

Embedded Systems is a little overshadowed by the difficulty in developing

embedded software due to the lack of a well fitted development environment and

pre-testing it on a special independent system prepared just for testing purposes.

 An example to the above discussion exists for the CEng336 Embedded

Systems course. Among the course contents, development of embedded software

and testing on a test board is of primary importance. However, obviously a

standalone testing environment that will simulate exactly the same features with

high accuracy would greatly simplify the testing procedure.

 As a solution to the problem stated above, SimSys Corporation will

develop an emulator and development environment for the card used in Ceng336

Embedded Systems course. Considering such a development and simulation

environment, the system will support various types of microcontrollers,

communicate through various interface standards such as parallel, serial or USB

and accommodate some display interfaces such as LCD or LED driving structures.

Users will have the chance of compiling their programs and they can test and

debug it on the virtual card emulated by the software.

 For such a development and simulation environment design project, the

implementation areas are unlimited just as the fact that the implementation areas

of the embedded systems are unlimited. As a result, such a system, which will

simplify the development and testing process, will find great interest from the

embedded systems developers. Together with the Ceng336 Card, this software

will be useful for computer engineers, electrical engineers, high school students

and everyone interested in PIC programming.

PIDE Requirement Analysis Report

SimSys Corporation

5

1. 3. Survey and Results

To better understand the needs, requirements and expectations of the

customers, SimSys Corp. made interviews with the assistants of Ceng336 course,

Alper Kılıç and Fatih Gökçe. During the interview, we asked several questions to

the assistants and they shared their ideas and expectations from the project.

Below are the main topics that are discussed during the interviews and questions

we asked in the interviews.

• Widely used embedded systems development software, their useful features

and their shortcomings

o Which software do you use for PIC programming?

o Which properties do you frequently use? Are there any features

they lack?

• Expectations from a software to be called as “a complete PIC programming

IDE”

o What do you expect more from complete PIC programming

software?

• Restrictions and program specific features that should be implemented in PIDE

o Are there any specific requirements of this project regarding the

Ceng336 course?

o Should there be any limitations of the software concerning the

assignments of Ceng336 course?

• Feasibility and necessity of the features that are proposed in Project Proposal

Report

o Do you prefer this project to involve a high level (i.e. C) compiler?

Or, do you think that assembly will be adequate?

o What are your opinions about the analysis tools we have stated in

the proposal report?

o Would it be useful to develop software that is OS independent?

o Will it be possible to implement hardware debugging property? Will

it be useful?

Conclusions derived from the interviews can be summarized as below:

In Ceng336 course, the programming tools mainly used are MPLAB IDE

[1], PIC Simulator IDE [2] and ISIS [3]. The most used features of these

programs are their simulation capabilities, macro definitions that simplify coding.

PIDE Requirement Analysis Report

SimSys Corporation

6

However they lack a high-level language compiler support that satisfies our

customers. Moreover they are OS dependent.

These programs are useful for general PIC programming purposes;

however, they do not have one-to-one correspondence with the Ceng336 course.

It would be useful to have software that is specifically designed for Ceng336

Embedded Systems Card. Furthermore I2C protocol support is proposed to be a

possible feature.

It would be useful to provide a high-level language compiler, which is also

capable of doing optimizations and applying code restrictions. It would be

preferable that the software is Linux compatible since this is the most common

OS in the department. The PIC family used on the board has hardware debugging

support, thus further research is conducted on on-board debugging feature and it

would be a useful addition to the software.

The survey has provided valuable ideas and helped us determining the

topics for further research.

PIDE Requirement Analysis Report

SimSys Corporation

7

1. 4. Market Research

 According to SimSys Corp. market research, there exist software for

purposes like development, simulation, etc. but none of them contains everything

necessary for a complete IDE for embedded system programming and simulation.

Also there are no specific software solutions for the CEng336 Embedded Systems.

Hence SimSys Corporation decided to offer a solution to this problem. The

company starts off a new project which brings all necessary components for

embedded systems development together in single software. The software is

supposed to support all the features of CEng336 Embedded Systems board and

simulate all of its functionality. Besides, it provides a complete IDE for embedded

system programming.

One of the essential features of PIDE is the support for a high-level

programming language. Hence, a module, namely a compiler, is needed for the

software to handle the process of converting this high-level language into

machine code for PIC microprocessor family. So a market research is performed

and widely-used compiler packages for PIC family are examined. Below are short

descriptions of these compilers and some of their features that could be

implemented in Project PIDE.

Hi-TECH C compilers for embedded chipsets

Hi-TECH [4] software provides a variety of compilers for different

integrated circuit families. The company has 4 solutions for Microchip PIC family.

These are PICC Enterprise, PICC-18, PICC-18 Pro and dsPICC. PICC Enterprise

edition gives the widest PIC support and includes all the features that are

included in the other three compilers. PICC Enterprise is a C compiler, supports all

standard C language. It works under Linux and windows environment and the

compiler may be integrated into other software via plug-ins (i.e, MPLab IDE has a

plug-in for integrating PICC compiler). It produces optimized code. It allows

compiler to be run through command line. Although Hi-TECH PICC C compilers

optimized code, they don’t support I2C protocol.

CCS C Windows IDEs

CCS software [5] has several C compilers. PCWH is one of them which

support Microchip PIC family. PCWH has a Windows IDE but also can be used with

command line. It supports all standard C language and provides other built-in

functions. With the powerful IDE, the user can easily write code in C and produce

PIDE Requirement Analysis Report

SimSys Corporation

8

optimized output to use in PIC. The compiler provides an interface for MPLab IDE,

too.

IAR Systems C/C++ compilers:

IAR [6] provides a variety of C/C++ compilers for embedded system

programming. Several compilers support a subfamily of Microchip PIC family. One

of these compilers is IAR Embedded Workbench for PIC18 which is an integrated

development environment for building and debugging embedded applications. An

interface common to the assembler, compiler, project manager, editor, builder

and debugger tool ensures ease of use. The compiler for PIC18 uses C/C++ and

the C-SPY Debugger supports RTOS-aware debugging on hardware or in a

simulator. The compiler supports MPLab debugger.

Based on this research, it is a hard task to provide a fully featured and

high-quality compiler considering the time and experience constraints. So it is

wise to think of a compiler for a high-level programming language as an option

that can be implemented in the further steps of the project. An interpreter for a

well-defined and reduced macro family to help user in coding process would be

more convenient to be included in the project.

Apart from the above research, the sources present in GNU PIC [7] group

are examined to find out whether there are useful projects, sources, etc. for us.

GNU PIC website has PIC sources in the below categories:

• Assemblers

• Disassemblers

• Compilers

• Simulators

• Programmers

• Interpreters

• Libraries

• IDEs

Unfortunately, most of the projects under these categories are not open

source, but still they are useful for us to observe the implemented features of

them and to detect the missing features that would be useful for a PIC IDE.

PIDE Requirement Analysis Report

SimSys Corporation

9

Among various projects in GNU PIC site, below ones are the ones that would

be most useful for us:

miSim DE 2.1[8]: A development environment that is for writing and debugging

software for microcontrollers. It includes an editor, assembler and disassembler.

The impressive core of this package is a simulator that simulates not only the

microcontroller itself, but also devices connected to it in real time - from simple

switches and LEDs to video displays and stepper motors. What is nice with miSim

is that, its first version is open source and developed in Java. Since java is the

language that we are planning to use, e4xamining these sources would be

beneficial.

PP06 PIC Programmer Software [9]: Programming software for PICs that uses

parallel port. It is also open source and developed in C language. The

programmer supports 12 and 14 bit PICs (ie 16CXX, 16FXXX, 12CXXX), and has

windows and Linux versions.

PiKdev[10]: A simple graphic IDE for the development of PIC-based applications.

It currently supports assembly language. C language is also supported for PIC 18

devices. PiKdev is developed in C++ under Linux and is based on the KDE

environment. It has a full featured multiview editor, with lines numbering, blocks

folding, bookmarks, syntax highlighting and tabbed access to various buffers; a

project manager with standard functionalities; and a programming engine which

allow programming various flavors of PIC microcontrollers via classic

programming hardware connected to the parallel port or to the serial port.

GNU PIC LIBRARY PROJECT[11]: The interest of this project is to develop a set of

Libraries that are released in LGPL License to use to PIC microcontroller

programming. It has an LCD and a PC keyboard library for the present.

Gputils, tpasm, PTK4L are other development environments that are not

open source but free to download.

These projects will be examined in detail to state out the features

expected from a PIC IDE. And during the coding period in second semester, the

open source ones will be taken into account to find out whether they contain

anything useful for our project PIDE.

PIDE Requirement Analysis Report

SimSys Corporation

10

 Another idea to design a brand new compiler, whose specifications are

determined by our own requirements, rather than relying on the compilers

already developed for PIC microprocessor family. There are a bunch of projects

currently in the market. Most of these projects are open source. I have chosen

the ones that I thought we could benefit from as our tendency is to make PIDE

being able to compile codes written in an object-oriented language such as C++

or Java.

Yacc (Yet Another Compiler Compiler)

Yacc [12] is a computer program that serves as the standard parser

generator on Unix systems. It generates a parser (the part of a compiler that

tries to make sense of the input) based on an analytic grammar written in BNF

notation. Yacc generates the code for the parser in the C programming language.

Since the parser generated by Yacc requires a lexical analyzer, it is often used in

combination with a lexical analyzer generator, in most cases either Lex or the free

software alternative Flex. The IEEE POSIX P1003.2 standard defines the

functionality and requirements to both Lex and Yacc.

Sablecc

SableCC [13] is an object-oriented framework that generates compilers

(and interpreters) in the Java programming language. This framework is based on

two fundamental design decisions. Firstly, the framework uses object-oriented

techniques to automatically build a strictly-typed abstract syntax tree. Secondly,

the framework generates tree-walker classes using an extended version of the

visitor design pattern which enables the implementation of actions on the nodes

of the abstract syntax tree using inheritance. These two design decisions lead to a

tool that supports a shorter development cycle for constructing compilers. There

are many projects being developed using the main idea of sablecc which include

user-defined or co-developed languages as well as specific debuggers.

Javacc

JavaCC [14] (Java Compiler Compiler) is an open source parser generator

for the Java programming language. JavaCC is similar to Yacc in that it generates

a parser for a grammar provided in EBNF notation, except the output is Java

source code. Unlike Yacc, however, JavaCC generates top-down parsers, which

limits it to the LL(k) class of grammars (in particular, left recursion cannot be

used). The tree builder that accompanies it, JJTree, constructs its trees from the

bottom up.

PIDE Requirement Analysis Report

SimSys Corporation

11

ANTLR (ANother Tool for Language Recognition)

ANTLR [15] is a parser generator that uses LL (k) parsing. ANTLR's

predecessor is a parser generator known as PCCTS. ANTLR rules are expressed in

a format deliberately similar to EBNF instead of the regular expression syntax

employed by other parser generators. At the moment, ANTLR supports generating

code in the following languages: C++, Java, Python, C#. ANTLR 3 is under a 3-

clause BSD License.

1. 5. Hardware and Software Requirements

1. 5. 1. Development Phase

The PIDE program is supposed to have a platform independent structure.

This will allow users with various operating systems to be able to use the program

without encountering any problems. To achieve this goal, the project will be

developed in Java. Thus, we need Java Run Time Environment, Java SDK and

Eclipse.

To test the platform independence feature, we will use Windows and Linux

platforms. The application is intended to work on any platform having a

compatible Java Runtime Environment.

During the development, we will need CENG Embedded Systems Board

and a PC as hardware requirements. The PC should be able to support Java and

must have parallel and serial ports that will be used during programming the

card.

1. 5. 2. End User

Since the application is to be developed in Java, the end user will only

need a Java Runtime Environment. At the end of the project, PIDE distribution

package will not include the Java Runtime Environment.

User should also have the CENG Embedded Systems Board to upload and

test the program he/she has written.

PIDE Requirement Analysis Report

SimSys Corporation

12

1. 6. Company Organization

Company Name

SimSys Corporation

Contact

 simsysc@yahoogroups.com

Members of the Team

Mahmut Sami Aktaşoğlu mahmut.aktasoglu@gmail.com

Özgür Çakmak ozgurceng@yahoo.com

Emre Kültürsay kultur@mems.eee.metu.edu.tr

Gülhan Serhat gulhan.serhat@gmail.com

PIDE Requirement Analysis Report

SimSys Corporation

13

2. REQUIREMENTS

2. 1. Functional requirements

2. 1. 1. Programming the PIC Microcontroller

In order to program a PIC microcontroller product of Microchip Company

[16], there are two choices of programming modes. First one is programming the

device on an external programming system. Here the controller should be

removed from the application circuit and then placed on the programming

environment. This programming structure is not feasible for some cases such as

removing the controller from the application circuit is not possible. Therefore, a

special programming methodology is necessary. The solution to this problem is In

Circuit Serial Programming (ICSP), which is some extended version of the

standard programming routine.

ICSP [17] requires special modules to be included in the application board

design process, namely isolation structures. Isolation is compulsory since the

programmer should not be loaded by the application circuitry and the application

circuitry should be protected from the relatively higher programming voltages.

The 16C series PIC MCU’s [18] is the microcontroller family to be used in

the CEng336 board. Pins RB6 and RB7 are used by this micro controller family for

serial programming. RB6 is the clock line and RB7 is a bidirectional pin. This

bidirectional pin is used by the programmer during the programming process and

used by the microcontroller for verification. As a result, isolation of those pins are

very important.

2. 1. 2. Create/Open/Save Project and Files

 In order to have a mode compact view of the source files, the software

should enclose the source files aroud project files. The obvious benefit of having a

project file is the application of workspace concept which will allow directly

loading of the state of a previously saved environment. This loaded project will

launch with its assigned macro file(s) and test files.

 The software should be capable of adding or removing existing or new

source/test files to/from the project and saving opened files and project. The files

PIDE Requirement Analysis Report

SimSys Corporation

14

currently included in the project shall be displayed on the workspace pane of the

graphical user interface.

2. 1. 3. Text Editor

 A successful, operational text editor should include various basic but

necessary features such as undo-redo mechanisms, syntax coloring, smart

indentation, multiple pane support, bookmarking, find/search/replace commands,

matching brackets, and etc. Those features will be included with more possible

extensions.

2. 1. 4. Extension to Assembly Language - Macro Source Files

 The assembly language is the most powerful programming language

choice without any doubt. However, developing exclusive embedded software

with the assembly language requires extensive effort. This is because the

assembly language lacks various structures such as flow control statements,

loops, variables etc. In order to reduce the effort and time consumed by the

design process, extra instructions will be added to the standard instruction set.

Those statements, called macros, will be transformed into multiple assembly

instructions in the compilation process.

2. 1. 5. Test Bench Files to Control Development Board Input
Devices

The development board used in the CEng 336 course includes various

input devices such as pushbuttons, potentiometers, etc. Therefore, during the

real time simulation of the board, the user is responsible for giving the necessary

inputs via the user interface with specific timing. However, sometimes the user

will just want to concentrate on the outputs, and prefer the inputs be applied

automatically from some file, namely test bench file.

Furthermore, there will be cases where a test bench file will be

compulsory. Examples are simulation of serial/parallel/usb port connections,

smart card reader, high frequency (above maximum human response frequency)

input/output, etc.

This test bench file method is widely used in logic simulators (e.g. XILINX

WebPack [19]) and is already proved to be successful. In the PIDE software, the

PIDE Requirement Analysis Report

SimSys Corporation

15

test bench files will have a special format, which will let the user control all input

devices with appropriate timing.

2. 1. 6. Simulation

 The simulator will make I/O simulation as the name implies applying

manual inputs entered by the user. It is optional to make it apply a predefined

input waveform at specified time instants. The simulation may well be interrupted

at any time instant. Moreover there will also be an analog-to-digital converter

inside the simulator. The outputs of a simulation will be shown to the user either

by saving the files to the file manager or displaying the results on the screen. The

possible outputs are: Observing output waveforms, A/D conversion analysis such

as analog input waveform or digital converted representation of the analog input

vs. time, and timing analysis such as total time passed during execution or total

number of instructions executed.

2. 1. 7. Debugger

Embedded system debugging involves more conceptual layers of a target

system than debugging for time-sharing systems. Consider the case of debugging

a C program within a time-sharing system. User-debugger interaction occurs

almost entirely at a C language level of abstraction. Descent into assembly

language and machine code representations of a target program is rare.

Suspicions about a compiler bug may require inspection of generated assembly

code. In advertent stepping into an optimized library subroutine leads to display

of assembly mnemonics and binary numbers. Most programmers can debug their

programs exclusively from a source language perspective.

Embedded systems add several dimensions to debugging. Embedded

systems include programmable physical devices that have no direct language

counterparts at higher levels of abstraction. Their programming requires direct

manipulation of registers and state machines. Assembly language programming is

common for performance-critical modules. Temporal determinacy is fundamental

to a real time embedded system, eliminating the possibility of constraining

temporal awareness to a few, isolated regions of code [20].

PIDE Requirement Analysis Report

SimSys Corporation

16

Thus, implementing a debugger in PIDE will be one of the most effort

requiring tasks but still it is a fundamental component of a complete IDE for

embedded systems. All the basic functionalities of an embedded debugger, such

as setting, enabling and disabling breakpoints, control of the debug process with

several stepping options, monitoring contents of registers in different windows

and command line debugging utility will be provided in PIDE for different levels of

abstractions (namely MACRO and assembly). In addition to the features

mentioned, PIDE will be able to manage input operations instead of user, which

will save time and effort of the user when he has to type long sequences of input.

2. 2. Non-Functional Requirements

2. 2. 1. User Friendliness
One of the major goals of PIDE project is to implement a user-friendly and

easy-to-use IDE for PIC programming. With the help of the market search and

the interviews we have performed, it became obvious that there are many

development environments for PICs, however most of them have unordered and

confusing user interfaces. PIDE will have an uncomplicated and easy to use

interface with well-organized menus, toolbars and short cuts. The interface will

also be configurable according to user preferences.

2. 2. 2. Easy to Learn

Our market search has revealed that there are many development

environments for PICs and most of the embedded system developers use MPLAB

IDE, which is a product of Microchip Company. Since PIDE is a newly introduced

program, it should be easy to learn to attract the developers and to make them

change the program they use.

2. 2. 3. Reliability

As the PIDE program will be used to develop programs, it should be

reliable and should have recovery abilities to protect the codes in case of a crash.

Furthermore, the simulating tool of the program should be reliable, as it should

show the exact behavior of the PIC and the CENG 336 card.

PIDE Requirement Analysis Report

SimSys Corporation

17

2. 2. 4. Compatibility

The similar programs present in the market are mostly working on

Windows. Just a few of the PIC IDEs are Linux compatible but they do not have a

satisfying user interface. Consequently, a platform independent program with a

nice interface is needed in the market. PIDE project will be developed with Java

to accomplish platform independence. This will also be very meaningful

considering that PIDE will mainly be used in CENG 336 course and the most

common OS in the CENG department is Linux.

2. 2. 5. Performance

The resource usage of the PIDE program should be minimized in order to

increase the performance. To achieve this, complexity of the methods used will be

taken into account and memory leaks will be avoided.

PIDE Requirement Analysis Report

SimSys Corporation

18

3. SCENARIO BASED MODEL

This section describes expected features of PIDE from the perspective of

the user. Main functionalities of the software are defined through use cases. In

the system, two actors and six use cases associated with them are defined. The

use case diagram of the system is shown in Figure.

First actor in the system represents the user. It interacts with the system

using PIDE’s user interface. The second actor in the system represents CEng 336

Embedded System Board. It is the target of system as some outputs of the

system is supplied to this actor. Also it supplies the file loaded on the PIC

processor to the system and as a result, to the user.

In the next section, the use cases are explained in detail.

Change System Settings (Actor: User)

The user changes system settings. System settings include all kinds of

setting options that exists in existing IDEs. By opening a PIDE settings dialog,

user will be able to change its preferences, i.e. editor preferences, compilation

settings, debugging settings, simulation preferences, directory preferences,

communication with CEng 336 Embedded System Board settings and default

layout of interfaces.

Manage Files (Actor: User)

The user manages files used by the system. These files may be grouped in

three major categories. These are project files, test files and source files. Project

files keeps data of projects and workspaces. Test files are used to simulate the

CEng 336 Embedded System Board and to automate debugging. Source files are

compiled to produce machine code. The user may create, open, edit and save

files. The user may also add –possibly external- files to its projects.

Compile Project Files (Actor: User)

The user compiles project files. Project files should be of valid format, i.e.

with an extension accepted by the system. Compiling a valid file creates a

workspace where user can see compilation status. The user may compile the files

individually or together. As the result of compilation, intermediate files (like

object files), debug files and files executable by PIC processors are produced.

PIDE Requirement Analysis Report

SimSys Corporation

19

Debug Project (Actor: User)

The user debugs projects. To be able to start debugging, all files should be

compiled and linked with no error. While debugging, user interrupts execution of

the embedded program by adding breakpoints. The user may load auto-

debugging files that execute debugging operations and supplies predefined inputs

to debugger. The user is able to control the flow of the execution and can see any

data related to the embedded system program through PIDE’s user interface.

Simulate Project (Actor: User)

The user simulates embedded systems programs. The user may provide

files executable by the PIC processors to the system and simulates the real time

execution of the CEng 336 Embedded Systems Board. PIDE provides a virtual

representation of the board as an interface and runs the simulation by interacting

with the interface The user is able to start, pause and stop the simulations. The

user may provide simulation files which contain sequences of input data and

timing information so that it can simulate desired test cases. The user may

monitor useful data and analysis derived from the simulation such as execution

time, input/output waveform graphs of the PIC pin legs, etc.

Manage File Transfer (Actors: User, CEng 336 Embedded Systems Board)

The user manages file transfers between the board and the system. The

user may upload files executable by PIC processors to the board. After uploading

the file, the system rereads the uploaded file from the board and compares it with

the original file to verify that uploading was successful. The user may monitor the

machine code which was previously loaded to the board and may erase the

current data on the board.

PIDE Requirement Analysis Report

SimSys Corporation

20

PIDE Requirement Analysis Report

SimSys Corporation

21

4. FLOW ORIENTED MODEL

4. 1. DFD Level 0 - Top View of the Project

 In the topmost level of the data flow diagram, the interaction of the

software with the environment is shown.

 The software will be highly concentrated around files, that is why the

operating system file handling mechanism will be an external interactor. The

input data are to be taken from the user, either real time while simulation and

debugging, or by means of a test bench file created previously.

 The software will communicate with the Simulation Board by means of

serial interface.Thus, the software will be capable of programming the

microcontroller with the hex file produced after compilation and receiving the hex

file inside the microcontroller.

PIDE Requirement Analysis Report

SimSys Corporation

22

4. 2. DFD Level 1 - PIDE (0.0)

 If the top view of the DFD is expanded, the major components of the

system are revealed. Those sub-processes are:

Editor(1.0): The text input from the user will be handled by this process. The

editor is responsible from viewing the source files, making the corresponding

changes to the viewed files in case of user input and redirecting these files to the

operating system file handler for saving purposes. The debugging information

PIDE Requirement Analysis Report

SimSys Corporation

23

such as the breakpoints and memory watches will also be inserted via this

process.

Compile(2.0): By definition, compilation is the formation of low level ASM and

HEX files from a higher level Macro files. A Macro file is an extended version of an

ASM file which has some extra features such as program flow structures(e.g. if-

else, while, etc.). Another output of compile process will be a file, containing

information about the relation between the Macro and ASM files.

Simulate(3.0): In order to simulate the board, the HEX file need to be interpreted

line-by-line. Various inputs to the microcontroller will be given either real time via

the graphical user interface or by means of a special file, namely a test bench file.

This special file will have its own format, controlling the input devices existing on

the development board. The viewable results of the simulation will be displayed

via the GUI and special analysis results (e.g. number of instructions executed,

waveform on a node, etc.) will be saved to analysis result files.

Debug(4.0): Another feature of the software is the debugger. The debug process

will execute the hex file line by line, stopping at the breakpoints defined within

the debugging settings file. The execution will stop at those lines and ask for

user’s “continue” command, displaying the current position on the macro file.

Similar to the simulation, the results will be shown and/or saved.

Upload/Download(5.0): The software will also be capable of programming the

microcontroller existing on the development board and reading the existing file on

the device. This operation will be performed via either parallel or serial port. The

port information and channel settings will be entered by the user.

4. 3. DFD Level 2

4. 3. 1. Editor Process (1.0)

 The editor process is actually the process that handles the major

interaction between the user and the computer. Creating, opening, saving,

inserting files and inserting source code to those files are performed by the

editor. Besides, the settings related to the control information of other processes

are updated via the editor.

PIDE Requirement Analysis Report

SimSys Corporation

24

4. 3. 2. Compile Process (2.0)

There are two main processes in the second level of this process.

Macro to ASM (2.1) takes a Macro File from the File Manager and produces

two files after processing it. These are Table File and ASM file. Table file includes

the line numbers of the breakpoints corresponding to the lines in the ASM file.

This table file is directly sent to the File Manager. The ASM file is the ASM format

of the same Macro file which includes memory address numbers as well as

assembly words, and it is sent to the second main process, which is ASM to Hex

(2.2).

This process, as the name implies, takes an ASM File and a Look-up Table

provided by the file manager and converts it into a Hex File which consists only of

the pure numbers. The ASM File is also sent to the File Manager to be saved for

the possible future use.

PIDE Requirement Analysis Report

SimSys Corporation

25

4. 3. 3. Simulate Process (3.0)

This process includes three inner processes inside which are Main

Simulation Process (3.1), Input Handling Process (3.2) and Analysis Process

(3.3).

Input Handling Process takes a Test Bench File from the File Manager and

the Real-time Interaction Data provided by the user and after processing it

produces the Simulation Input Data which is directly sent to the Main Simulation

Process.

Main Simulation Process takes a HEX File from the File Manager and

produces three different results out of this single file. One of them is Simulation

Results which is directly sent to the display in order to provide the user an actual

output of the simulation. Another file produced by this process is the Log File

which is sent to the Analysis Process.

Analysis Process creates the Analysis Results File by processing the Log

File and sends it to the File Manager.

PIDE Requirement Analysis Report

SimSys Corporation

26

4. 3. 4. Debug Process (4.0)

 In order to debug a Macro input file, the user should first compile this file

and obtain the Macro-ASM cross table file. This file contains a table which maps

the instructions in Macro file with the instructions in the ASM file line-by-line in a

one-to-many fashion. Using this file, one can find the corresponding ASM

instructions to any instruction in the Macro file and vice versa.

 Debugging process checks the debugging control file for the next

breakpoint and checks if the “next macro line” is a line with a breakpoint. If it is

not a breakpoint, nothing happens and execution continues. If it is a breakpoint,

then it stops execution and starts waiting for a user “continue debugging” signal.

Meanwhile, the line number in the macro file is used to display the current

instruction location on the editor.

 Once execution starts, “Process Macro” calculates the current macro line

number (initialized to 1 at start-up) and sends it to the “Process ASM”. This

process finds the corresponding ASM instructions and executes them. After

execution, the Program Counter location is used to find the line number of the

PIDE Requirement Analysis Report

SimSys Corporation

27

next ASM instruction. This instruction line number is fed to the “process macro”

again. This line number is mapped to a Macro line number by means of “macro-

asm cross file” to calculate the next Macro line. This process continues until a

breakpoint is encountered.

4. 3. 5. Upload-Download Process (5.0)

Upload – Download Process is the one which deals with the read- write

operations with the board. It includes three processes in this level. These are

Download-to-Board (5.1), Serial Communication Settings (5.2) and Upload-from-

Board (5.3).

Serial Communication Settings Process takes an input from the user, which

specifies the port number of the board and the baud rate, and produces an output

which is sent to two other processes.

Download-to-Board takes the Hex File from the File Manager along with

the Port & Baud rate data created by the Serial Communication Settings Process,

creates the Serial Binary Data Stream and sends it to the board from its buffer.

Upload-from-Board Process takes the Hex File from the Board along with the Port &

Baud rate data created by the Serial Communication Settings Process, creates the

Serial Binary Data Stream and sends it to the File Manager from its buffer.

PIDE Requirement Analysis Report

SimSys Corporation

28

5. BEHAVIORAL MODEL

5. 1. State Transition Diagram

PIDE Requirement Analysis Report

SimSys Corporation

29

5. 2. States

START

When the user runs the PIDE program, it opens in the START state. In this state,

the program is running but no active project exists.

Behavior

• With create_project_request, the program passes to

CREATE_A_PROJECT state.

• With open_project_request, the program passes to

OPEN_A_PROJECT state.

• With program_closed, the program passes to END.

CREATE_A_PROJECT

Here, creating a new project process is performed.

Behavior

• With project_created, the program passes to ACTIVE state.

OPEN_A_PROJECT

Here, opening an existing project process is performed.

Behavior

• With project_opened, the program passes to ACTIVE state.

ACTIVE

This is the main state of the program where exists an active project. User can add

existing source/test files to the project, create a new source/test file, enter code

to these files, edit the code entered and save these files. User can also compile,

simulate and debug the project.

Behavior

• With compile_request, the program passes to

COMPILATION_CHECK state.

• With simulation_request, the program passes to

SIMULATION_CHECK state.

• With debug_request, the program passes to DEBUG_CHECK state.

• With save_request, the program passes to SAVE state.

• With add_file_request, the program passes to ADD state.

• With create_file_request, the program passes to CREATE state.

PIDE Requirement Analysis Report

SimSys Corporation

30

• With close_project_request, the program passes to

PROJECT_CLOSE_CHECK state.

• With close_program_request, the program passes to

PROGRAM_CLOSE_CHECK state.

COMPILATION_CHECK

This state checks whether there exists a macro file or an asm file, and gives an

error if not.

Behavior

• With compile_check_succesful, the program passes to COMPILE

state.

• With compile_check_unsuccesful, the program passes to ACTIVE

state.

COMPILATION

Here, compilation process begins, and an error message is generated if there

happens a compile time error.

 Behavior

• With compile_succesful, the program passes to ACTIVE state.

• With compile_error, the program passes to ACTIVE state.

SIMULATION_CHECK

This state first checks whether there exists a hex file, and invokes compilation if

not. If the hex file exists, user will select the simulation type: using a test file or

real time simulation.

Behavior

• With simulation_check_unsuccesful, the program passes to

COMPILE CHECK state.

• With test_file_request, the program passes to

TF_SIMULATION_CHECK state.

• With rt_request, the program passes to RT_SIMULATION state.

TF_SIMULATION_CHECK

This state checks whether there exists a test file and generates an error message

if not.

Behavior

PIDE Requirement Analysis Report

SimSys Corporation

31

• With tf_check_unsuccesful, the program passes to

SIMULATION_CHECK state.

• With tf_check_succesful, the program passes to TF_SIMULATION

state.

TF_SIMULATION

Here, the simulation is performed using the test file.

Behavior

• With tf_simulation_finished, the program passes to ACTIVE state.

RT_SIMULATION

Here, real time simulation is performed through the user inputs.

 Behavior

• With rt_simulation_finished, the program passes to ACTIVE state.

DEBUG_CHECK

This state checks whether there exists a hex file, and invokes compilation if not.

Behavior

• With debug_check_unsuccesful, the program passes to

COMPILE_CHECK state.

• With debug_check_succesful, the program passes to DEBUG state.

DEBUG

Here, the debugging process is performed.

Behavior

• With debug_finished, the program passes to ACTIVE state.

SAVE

This state saves the current file and generates an error message if it cannot be

saved.

Behavior

• With save_succesful, the program passes to ACTIVE state.

• With save_unsuccesful, the program passes to ACTIVE state.

ADD

In this state, an existing source/test file is added to the project.

Behavior

PIDE Requirement Analysis Report

SimSys Corporation

32

• With file_added, the program passes to ACTIVE state.

CREATE

In this state, a new source/test file is created and added to the project.

Behavior

• With file_created, the program passes to ACTIVE state.

PROJECT_CLOSE_CHECK

This state checks whether the active project is already saved, if not, asks the user

if he/she wants to save first. If yes, the project is saved and closed. If the user

does not want to save, the project is closed.

Behavior

• With project_closed, the program passes to START state.

PROGRAM_CLOSE_CHECK

This state checks whether the active project is already saved, if not, asks the user

if he/she wants to save first. If yes, the project is saved and the program is

closed. If the user does not want to save, the program is closed without saving.

Behavior

• With program_closed, the program passes to END.

5. 3. Events
The events that cause transitions in the State Transition Diagram are explained

below.

create_project_request User request to create a new project.

(Choosing the ‘New Project’ option from the

menu)

open_project_request User request to open an existing project.

(Choosing the ‘Open Project’ option from the

menu)

project_created Creating a new project process is completed.

project_opened Opening a project process is completed.

compile_request User request to compile the code. (Choosing

the ‘Compile’ option from the menu)

PIDE Requirement Analysis Report

SimSys Corporation

33

simulation_request User request to simulate the project.

(Choosing the ‘Simulate’ option from the

menu)

debug_request User request to compile the code. (Choosing

the ‘Debug’ option from the menu)

save_request User request to save the file. (Choosing the

‘Save’ option from the menu)

add_file_request User request to add an existing file to the

project. (Choosing the ‘Add File’ option from

the menu)

create_file_request User request to create a new file. (Choosing

the ‘New File’ option from the menu)

close_project_request User request to close the project. (Choosing

the ‘Close Project’ option from the menu)

close_program_request User request to close the program. (Choosing

the ‘Exit’ option from the menu)

compile_check_succesful Compile check is completed successfully. (A

macro file or an asm file is found.)

compile_check_unsuccesful Compile check is completed unsuccessfully. (A

macro file or an asm file cannot be found.)

compile_succesful Compilation process is completed successfully.

compile_error Compilation process had compile time errors.

simulation_check_unsuccesful Simulation check is completed unsuccessfully.

(A hex file cannot be found.)

test_file_request User request to make simulation using a test

file. (Choosing the ‘Use test file’ option from

the simulation menu)

PIDE Requirement Analysis Report

SimSys Corporation

34

rt_request User request to make real time simulation.

(Choosing the ‘Real Time Simulation’ option

from the simulation menu)

tf_check_unsuccesful Test file simulation check is completed

unsuccessfully. (A test file cannot be found.)

tf_check_succesful Test file simulation check is completed

successfully. (A test file is found.)

tf_simulation_finish Test file simulation process is completed.

rt_simulation_finish Real time simulation process is completed.

debug_check_unsuccesful Debug check is completed unsuccessfully. (A

hex file cannot be found.)

debug_check_succesful Debug check is completed successfully. (A hex

file is found.)

debug_finished Debug process is completed.

save_succesful Saving process is completed successfully.

save_unsuccesful Saving process is completed unsuccessfully.

file_added Adding an existing file to the project process

is completed.

file_created Creating a new file process is completed.

project_closed The project is closed.

program_closed The PIDE program is closed.

PIDE Requirement Analysis Report

SimSys Corporation

35

6. SCHEDULE

PIDE Requirement Analysis Report

SimSys Corporation

36

7. REFERENCES
[1] MPLAB IDE –

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&node

Id=1406&dDocName=en019469&part=SW007002
[2] PICSim IDE – www.oshonsoft.com/pic.html

[3] ISIS – http://www.labcenter.co.uk

[4] HITECH Software Official Web site http://www.htsoft.com/

[5] Computer Customer Services Inc. Official Web Site http://www.ccsinfo.com/

[6] IAR Embedded Workbench-C/C++ compiler and debugger tools

 IAR Systems Official web site http://www.iar.com/

[7] GNU PIC - Web page by GNU to share various free and open source PIC

programs. http://www.gnupic.org/

[8] miSim DE - A development environment that has both free and charged versions

http://www.feertech.com/misim/homepage.html

[9] PP06 - An open-source programmer for PIC micros developed by Simon Bridger

http://pp06.sourceforge.net/

[10] PiKdev - A KDE based PIC integrated development environment created by

Alain Gibaud http://pikdev.free.fr/

[11] GNUPIC LIB - An LCD library written in assembly by Antonio Todobom

http://sourceforge.net/projects/gpiclib
[12] YACC - Parser generator by AT&T for UNIX dinasour.compilertools.net/#yacc

[13] SableCC - an open source compiler generator in Java. www.sablecc.org

[14] Javacc(Java Compiler Compiler) - An open source parser generator

javacc.dev.java.net

[15] ANTLR (Another Tool for Language Recognition) - A parser generator

http://www.antlr.org

[16] Microchip Technology Inc. Official Web Site http://www.microchip.com

[17] ICSP - In Circuit Serial Programming Guide

ww1.microchip.com/downloads/en/DeviceDoc/3027701.pdf

[18] PIC 16 Series
http://www.microchip.com/ParamChartSearch/chart.aspx?branchID=1002&mi

d=10&lang=en&pageId=74
[19] XILINX WebPack www.xilinx.com/ise/logic_design_prod/webpack.htm

[20] Extension Language Automation of Embedded System Debugging - Parson,

Schlieder, Beatty DSP16000 LUxWORKS Debugger, Luxdbg Version 1.7.0, Lucent

Technologies, December, 1998.

	1. INTRODUCTION
	2. REQUIREMENTS
	3. SCENARIO BASED MODEL
	4. FLOW ORIENTED MODEL
	5. BEHAVIORAL MODEL
	6. SCHEDULE
	7. REFERENCES

