
 1

CENG 490

STARSOFT

Final Design Report

By;

Mehmet ALBAYRAK

Ömer ESER

Özer GÜMÜŞ

Özge YAMASAN

Fatih YILDIRIM

 2

INDEX

1. INTRODUCTION .. 3

1.1 PURPOSE OF THE DOCUMENT... 3
1.2 SCOPE .. 3
1.3 DESIGN CONSTRAINTS AND LIMITATIONS .. 4
1.3.1 Constraints .. 4
1.3.2 Limitations ... 4
1.4 GOALS AND OBJECTIVES .. 4

2. DATA DESIGN ... 5

2.1 DATA OBJECTS ... 5
2.2 ER DIAGRAMS... 10
2.3 SEQUENCE DIAGRAMS ... 11
2.4 DATA DICTIONARY .. 12
2.5 INTERNAL SOFTWARE DATA STRUCTURE .. 18
2.6 DATABASE DESCRIPTION ... 23
2.7 DATABASE NORMALIZATION ... 23

3. ARCHITECTURAL AND COMPONENT-LEVEL DESIGN... 24

3.1 STRUCTURE CHART... 24
3.2 EDITOR MODULE .. 24
3.3 PROJECT MODULE... 25
3.4 DEBUGGER MODULE ... 25
3.5 DATABASE MODULE ... 25

4. SYSTEM MODELING .. 26

4.1 DFD .. 26
4.1.2 DFD LEVEL 1 .. 27
4.2 USE CASE DIAGRAM ... 28
4.2.1 New/Load Project ... 28
4.2.2 Write Code.. 30
4.2.3 Design... 31
4.2.4 Debugging .. 32
4.2.5 Run.. 33

5. CLASS DIAGRAM ... 35

5.1. MAIN_MANAGER CLASS.. 36
5.2. FILE_OBJECT CLASS ... 36
5.3. EDIT_OBJECT CLASS... 37
5.4. INSERT_OBJECT CLASS.. 38
5.5. DATABASE_OBJECT CLASS .. 39
5.6. RUN_OBJECT CLASS ... 40

6. USER INTERFACE DESIGN... 41

6.1 MENUS .. 42
6.1.1 File Menu.. 42
6.1.2 Edit Menu ... 43
6.1.3 Insert Menu .. 44
6.1.4 Database Menu .. 46
6.1.5 Run Menu ... 46
6.1.6 Help Menu .. 46
6.2 TABS ... 47
6.2.1 File Tab .. 47
6.2.2 Code Tab .. 47
6.2.3 Inspector Tab ... 48
6.2.4 Properties Tab... 49
6.2.5 Events Tab.. 49
6.2.6 Database Tab... 50
6.3 MAIN PANEL ... 50

7. GANNT CHART ... 51

 3

1. INTRODUCTION

1.1 Purpose of the Document

This document is the Final Design Report for our project regarding the Ajax IDE software.

During the preparation of the report the main purpose is to realize and overcome design issues

and come up with appropriate solutions in more detail than the Initial Design Report. This

document aims to establish a basis for the implementation phases.

In the preparation of the document we found the inclusion of the following necessary :

 � Modular Specifications

� UML Diagrams

� Screenshots

� Updated Schedule

1.2 Scope

Ajax is mainly a web development technique for creating interactive web applications.

The components that made up Ajax were being used even before the naming took place. Due

to the convenience that Ajax brings to developers it has gained popularity quite quickly. In

this project we will design and implement a Graphical Development Environment for

webpages with Ajax which helps the developers further by putting many options and features

together.

The software is to include an editor to write and edit the neccesary codes. The text-

highlighting method will be used to increase readability. Predefined scripts and actions will be

available. Features such as adding, locating, editing, removing scripts and actions will be put

to use. Without using any other software, debugging the code when necessary will also be at

hand. The user will be able to see the effect of the changes made and run the code. The

advanced graphical interface is to be implemented as a way of easing the processes of the

user. Hence, the user of the software is to be satisfied with every need he/she has through one

complete package.

 4

1.3 Design Constraints and Limitations

1.3.1 Constraints

System: Our software should be secure as there will be database connections and editing with

transfers of username, password and potentially other critical data.

Different kinds of databases will be usable so the software should offer such adaptability.

There will be projects with many files and structures within to be used at the same time. This

should not be overlooked.

Interface: The interface should be user-friendly and easy to understand as well as to use.

Since the user’s main goal is to do the work more easily with tools and other components

available, the graphical user interface should be ready to face such demands.

1.3.2 Limitations

Time: Time is an important limitation as there are many other duties of the project members

and the time is strictly defined as 9 months. Scheduling and proper preparation is of the

essence.

Employee Skills: The skills of the project members are developing as the project continues.

While building the software the members are also occupied with learning the processes to be

involved.

Portability: The Windows XP will be used during implementation.

Programming Language: Java programming language has been chosen after the meetings

mentioned in the previous report. The libraries of Java Language and the skill level of the

members on Java contribute to some limitations.

1.4 Goals and Objectives

During the analysis of the software we have focused on the following goals and

objectives. These will be examined again as non-functional requirements in the following

sections of the report as they also constitute an important part of the requirements of our

project.

 5

Easy to Understand : The software package is bound to include many help options and

documentary to help the user understand how to use the software more efficiently with less

effort.

Easy to Use : One of the most important reasons for a developer to use such a software is to

make his life easier with the features presented through the software which are not

available in a regular editor. Consequently, a great deal of effort is to be made to make the

software satisfactory to these needs : Text-Highlighting, pre-defined scripts, etc...

Performance : Since such software should satisfy complex developing as well as simple

ones, the performance issue is rather an important one. The aimed-customer database is also

making the performance goals more important since it is clearly more obvious and critical to

someone who is a developer than a regular software user.

Update Readiness : The technology that the software will depend on in terms of scripts ,

actions, debugging and so on, makes the update issue an important one. One of the main goals of

the project is to make sure not to overlook this concept as with time and with the high

speed of the introduction of new features it should be easy to add new modules, remove old ones

which will not be necessary anymore.

2. DATA DESIGN

In database, project, project files, their codes and its members, files’ inspectors, their form

elements, properties and events of form elements and database which is used at project are

stored at database. In order to store the data in a structured form, the data objects will be used. In

this section, we will look at the data objects, their relationships, the ER-diagram and the data

dictionary to describe the data.

2.1 Data Objects

 6

Project

Project entity is stored the data of projects of the program. When the user opens a new project, the

data of project is stored. The attributes of entity are:

� Project_ID

� Project_Name

Project_ID will be integer and it will be unique for each project. Also Project_Name will be unique for each

project and it will be string.

 File

 File entity will stored the files of project which has relation with Inspector entity and Code

entity.

� File_ID

� File_Name

� Project_ID

File_ID will be integer and it will be primary key. The File_Name will be string and

Project_ID will be foreign key and it references the relation with File entity and Project entity.

Besides, File_Name and Project_ID together will be unique.

Inspector

Inspector entity will be investigate the File entity and also it has relation with Form_Elements

entity.

� Inspector_ID

� Form_Name

� File_ID

Inspector_ID will be integer and it will be primary key. Form_Name will be string and it will store

the name of forms in each inspector. File_ID will be foreign key and it reference the relation

with File Entity. Moreover, File_ID and Forn_Name together will be unique.

Form_Elements

Form_Elements entity will stored elements of each form. The attributes are:

� Form_Elements_ID

 7

� Inspector_ID

� Form_Elements_Name

� Line_Number

Form_Elements_ID will be integer and primary key. Inspector_ID will reference between

Form_Elements entity and Inspector_Elements entity. Form_Elements_Name will be string and

stored the name of elements. Line_Number will be integer and show the line number of each

element. Inspector_ID and Form_Elements_Name together will be unique.

Events

Events entity will store the event of form elements. The attributes are:

� Events_ID

� On_Abort

� On_Blur

� On_Change

� On_Clik

� On_Dbclick

� On_Error

� On_Focus

� On_Keydown

� On_Keypress

� On_Keyup

� On_Load

� On_Mousdown

� On_Mousemove

� On_Mouseup

� On_Mouseover

� On_Mouseout

� On_Reset

� On_Resiz

 8

Events_ID will be primary key. All the other attributes will be true-false.

Properties

Properties entity will store the properties of form elements. The attributes are:

� Property_ID

� Property_Name

� Border_Color

� Border_Style

� Color

� Font_Name

� Font_Color

� Font_Size

� Font_Style

Porperty_ID will be primary key.

Code

Code entity will store the code data of file. The attributes are:

� Code_ID

� Code_Name

� Code_Type

� Code_Line_Number

� File_ID

 Code_ID will be integer and will be primary key. Code_Name will be string. Code_Type is 1 or

2 which means that 1shows that code type is class and 2 shows that type is function.

 9

Code_Line_Number will be integer and stores the line number. File_ID is foreign key and

reference to File entity. File_ID, Code_Name and Code_Type together will be unique.

Members

Members entity will store the variables and the functions of the each class. The attributes are:

� Member_ID

� Code_ID

� Member_Name

� Member_Line_Number

Member_ID will be integer and it will be primary key. Code_ID is foreign key and refernce to

Code Entity. Member_Name will be string. Code_ID and Member_Name together will be

unique. Member_Line_Number will be string and store line number of member.

Database

Database entity will be stored the data of query which the user occur when they will connect to

server. The attributes are:

� Database_ID

� Database_Name

� Project_ID

Database_ID will be integer and it will be primary key. Database_Name is string and store the

name of database which the user connect. Porject_ID is foreign key and reference Project

entity.

Table

Table entity will stored the tables according to user query. The attributes are:

� Table_ID

� Tabale_Name

� Database_ID

Table_ID will be integer and primary key. Table_Name will be string and stored the name of

table. Database_ID will be foreign key and reference to Database entity.

 10

2.2 ER Diagrams

PROJECT

DATABASETABLE

HAS1

CODE

HAS4

HAS5 MEMEBERS

FILE

HAS2

INSPECTOR

HAS6

HAS7
FORM

ELEMENT

ISA

EVENTS
PROPERTIES

HAS3

 11

2.3 Sequence Diagrams

User

Main_Manager

File_Object

File_Op() New_File()

Save

Exit()

 12

2.4 Data Dictionary

Project
Name PROJECT

Alias -

Where / How used A new project which users open or load.

Description When the user opens a new project, the data of project is stored.

Project_ID
Name Project_ID

Alias -

Where / How used It is assigned all projects when they are created.

Description Each project has a unique Project_ID.

Project_Name
Name Project_Name

Alias -

Where / How used It is assigned all projects when they are created.

Description Each project has a unique Project_Name.

User

Database_
Object

Database

Connect()

Database_Op()

Conn_ Status Select_Db()

Def_Db_Type
isValid(Username, Passwd)

yes
GetTables()

 13

FILE
Name FILE

Alias -

Where / How used While creating new file or loading a file.

Description File entity will stored the files of project.

File_ID
Name File_ID

Alias -

Where / How used It is assigned all files when they are created.

Description Each file has a unique File_ID.

File_Name
Name File_Name

Alias -

Where / How used It is assigned all files when they are created.

Description Each file has a unique File_Name.

INSPECTOR
Name INSPECTOR

Alias -

Where / How used Every file entity has inspector.

Description Inspector entity is investigating the File entity.Form names saved in it.

Inspector_ID
Name Inspector_ID

Alias -

Where / How used Primary key of inspector.

Description Each inspector has a unique Inspector_ID.

Form_Name
Name Form_Name

Alias -

Where / How used It is saved in INSPECTOR entity.

Description Name of the form.

 14

FORM ELEMENT
Name FORM ELEMENT

Alias -

Where / How When INSPECTOR takes action.
used

Description Each form and their line number stored in it.It has also form elements
name

Form_Elements_ID
Name Form_Elements_ID

Alias -

Where / How used Primary key of FORM ELEMENT.

Description Each FORM ELEMENT has a unique Form_Elements_ID

Form_Elements_Name
Name Form_Elements_Name

Alias -

Where / How used Member of FORM ELEMENTS

Description It is string and stores the name of elements

Line_Number
Name Line_Number

Alias -

Where / How used Member of FORM ELEMENTS

Description It is integer and showa the line number of each element.

 15

EVENTS
Name EVENTS

Alias -

Where / How When FORM ELEMENTS takes action.
used

Description Events entity will store the event of form elements. These attributes are:

abort,blur,change,click,double,click,error,focus,keydown,keypress,keyup,

mouse down, mouse up, mouse over, mouse out, reset and resize.

Events_ID
Name Events_ID

Alias -

Where / How used Primary key of Events_ID.

Description Each EVENTS has a unique Events_ID

PROPERTIES
Name PROPERTIES

Alias -

Where / How used When FORM ELEMENTS takes action.

Description It stores the properties of form elements like name, border

color, border style, color, font name, font color, font size, font style

Porperty_ID
Name Porperty_ID

Alias -

Where / How used Primary key of PROPERTIES.

Description Each PROPERTIES has a unique Porperty_ID.

CODE
Name CODE

Alias -

Where / How used Every file entity has CODE entity.

 16

Description It stores the code data of file.

Code_ID
Name Code_ID

Alias -

Where / How used Primary key of CODE.

Description Each CODE has a unique Code_ID.

Code_Name
Name Code_Name

Alias -

Where / How used Member of CODE entity

Description It is name of the classes or functions in code. I is unique

Code_Type
Name Code_Type

Alias -

Where / How used Member of CODE entity

Description It is an integer:1 or 2.1 is used for classes 2 is used functions.I is
unique

Code_Line_Number
Name Code_Line_Number

Alias -

Where / How used Member of CODE entity

Description It is line number of code.

MEMBERS
Name MEMBERS

Alias -

Where / How used Every CODE entity has MEMBERS.

Description It stores the variables and the functions of the each class. It has

unique Code_ID

Member_ID
Name Member_ID

Alias -

Where / How used Primary key of MEMBERS.

Description Each MEMBERS has a unique Member_ID.

 17

Member_Name
Name Member_Name

Alias -

Where / How used Element of MEMBERS.

Description Name of elements.It is unique.

DATABASE
Name DATABASE

Alias -

Where / How used Creating when user will connect to server

Description It stores the data of query

Database_ID
Name Database_ID

Alias -

Where / How used Primary key of DATABASE.

Description Each DATABASE has a unique Database_ID.

Member_Line_Number
Name Member_Line_Number

Alias -

Where / How used Element of MEMBERS.

Description It shows the line number of member.

 18

Table_ID
Name Table_ID

Alias -

Where / How used Primary key of TABLE

Description Each TABLE has a unique Table_ID.

Table_Name
Name Table_Name

Alias -

Where / How used Element of TABLE

Description It is string and store the name of the table.

2.5 Internal Software Data Structure

Project

CREATE TABLE Project
(
Porject_ID INTEGER,
Project_Name VARCHAR(32),
PRIMARY KEY(Project_ID),
);

Data Type&Size Format
Porject_ID INTEGER Number
Project_Name VARCHAR Text

 19

File

CREATE TABLE File
(
File_ID INTEGER,
Porject_ID INTEGER,
File_Name VARCHAR(32),
PRIMARY KEY(File_ID),
FOREIGN KEY(Project_ID) REFERENCES Project,
UNIQUE (Project_ID, File_Name),
);

Data Type&Size Format
File_ID INTEGER Number
File_Name VARCHAR Text
Porject_ID INTEGER Number

Inspector

CREATE TABLE Inspector
(
Inspector_ID INTEGER,
Form_Name VARCHAR(32),
File_ID INTEGER,

PRIMARY KEY(Inspector_ID),
FOREIGN KEY(File_ID) REFERENCES File,
UNIQUE (File_ID, Form_Name),
);

Data Type&Size Format
Inspector_ID INTEGER Number
Form_Name VARCHAR Text
File_ID INTEGER Number

 20

Form_Elements

CREATE TABLE Form_Elements
(
Form_Elements_ID INTEGER,
Form_Elements _Name VARCHAR(32),
Line_Number INTEGER,
Inspector_ID INTEGER,
PRIMARY KEY(Form_Elements_ID),
FOREIGN KEY(Inspector_ID) REFERENCES Inspector,
UNIQUE (Inspector_ID, Form_Elements_Name),
);

Data Type&Size Format
Form_Elements_ID INTEGER Number
Form_Elements _Name VARCHAR Text
Line_Number INTEGER Number
Inspector_ID INTEGER Number

Events

CREATE TABLE Events
(
Events_ID INTEGER,
On_Abort INTEGER,
On_Blur INTEGER,
On_Change INTEGER,
On_Clik INTEGER,
On_Dbclick INTEGER,
On_Error INTEGER,
On_Focus INTEGER,
On_Keydown INTEGER,
On_Keypress INTEGER,
On_Keyup INTEGER,
On_Load INTEGER,
On_Mousdown INTEGER,
On_Mousemove INTEGER,
On_Mouseup INTEGER,
On_Mouseover INTEGER,
On_Mouseout INTEGER,
On_Reset INTEGER,
On_Resize INTEGER,
);

 21

Properties

CREATE TABLE Properties
(
Properties_ID INTEGER,
Property_Name VARCHAR,
Border_Color INTEGER,
Border_Style INTEGER,
Color INTEGER,
Font_Name VARCHAR,
Font_Color INTEGER,
Font_Size INTEGER,
Font_Style INTEGER,
);

Data Type&Size Format
Properties_ID INTEGER, INTEGER Number
Property_NameVARCHAR, VARCHAR Text
Border_Color INTEGER, INTEGER Number
Border_Style INTEGER, INTEGER Number
Color INTEGER, INTEGER Number
Font_Name INTEGER, VARCHAR Text
Font_Color INTEGER, INTEGER Number
Font_Size INTEGER, INTEGER Number
Font_Style INTEGER, INTEGER Number

Data Type&Size Format
Events_ID INTEGER Number
On_Abort TRUE/FALSE TRUE/FALSE
On_Blur TRUE/FALSE TRUE/FALSE
On_Change TRUE/FALSE TRUE/FALSE
On_Change TRUE/FALSE TRUE/FALSE
On_Clik TRUE/FALSE TRUE/FALSE
On_Dbclick TRUE/FALSE TRUE/FALSE
On_Error TRUE/FALSE TRUE/FALSE
On_Focus TRUE/FALSE TRUE/FALSE
On_Keydown TRUE/FALSE TRUE/FALSE
On_Keypress TRUE/FALSE TRUE/FALSE
On_Keyup TRUE/FALSE TRUE/FALSE
On_Load TRUE/FALSE TRUE/FALSE
On_Mousdown TRUE/FALSE TRUE/FALSE
On_Mousemove TRUE/FALSE TRUE/FALSE
On_Mouseup TRUE/FALSE TRUE/FALSE
On_Mouseover TRUE/FALSE TRUE/FALSE
On_Mouseout TRUE/FALSE TRUE/FALSE
On_Reset TRUE/FALSE TRUE/FALSE
On_Resize

 22

Code

CREATE TABLE Code
(
Code_ID INTEGER,
Code _Name VARCHAR(32),
Code_Type INTEGER,
Code_Line_Number INTEGER,
File_ID INTEGER,
PRIMARY KEY(Code_ID),
FOREIGN KEY(File) REFERENCES File,
UNIQUE (Code_ID, Code_Name,Code_Type),
);

Members

CREATE TABLE Code
(
Member_ID INTEGER,
Member _Name VARCHAR(32),
Member_Line_Number INTEGER,
Code_ID INTEGER,
PRIMARY KEY(Code_ID),
FOREIGN KEY(Code_ID) REFERENCES Code,
UNIQUE (Code_ID, Member_Name),
);

Data Type&Size Format
Member_ID INTEGER Number
Member _Name VARCHAR Text
Member_Line_Number INTEGER Number
Code_ID INTEGER Number

Data Type&Size Format
Code_ID INTEGER Number
Code _Name VARCHAR Text
Code_Line_Number INTEGER Number
Code_Type INTEGER Number
File_ID INTEGER Number

 23

Database

CREATE TABLE File
(
Database_ID INTEGER,
Porject_ID INTEGER,
Project_Name VARCHAR(32),
PRIMARY KEY(Database_ID),
FOREIGN KEY(Project_ID) REFERENCES Project,
);

Table

CREATE TABLE File
(
Table_ID INTEGER,
Project_Name VARCHAR(32),
Database_ID INTEGER,
PRIMARY KEY(Table_ID),
Database KEY(Project_ID) REFERENCES Project,
);

2.6 Database Description

Database will store all of the information of the project which will be occurred by the user.

Also, the File, Code, Inspectors, Database relation are stored in the database. When the

system needs retrieving data, SQL queries are used to get the necessary records.

2.7 Database Normalization

The database in our software is designed avoiding redundancy cases and we tried to suit them to

the BCNF notation. To obey these rules we did some modifications over the real data

Data Type&Size Format
Database_ID INTEGER Number
Database_Name VARCHAR Text
Porject_ID INTEGER Number

Data Type&Size Format
Table_ID INTEGER Number
Table_Name VARCHAR Text
Database_ID INTEGER Number

 24

tables. Instead of creating separate tables for each relation, we added a new attribute to one of the

entities of the relation that is, a foreign key and reference to the other table. Important

modification is assigning a ID of one entity to the entity which is connect to it. This was done to

simplify the interaction between these tables. By this modification, we avoided redundancy of the

tables. As a result, there are no insertion, update and deletion

anomalies. Moreover, these will ease the queries for relations.

3. ARCHITECTURAL and COMPONENT-LEVEL DESIGN

One of the main concepts of developing a software is a well-done architectural and componetlevel

design. A proper design will lead success in software and make the job more obvious

and easier.

3.1 Structure Chart

Structure Chart is composed of modules of the software as Editor Module, Project Module,

Debugger Module and finally Database Module. All these modules has a relationship and none

of them is independently working. Especially Editor Module is core of the software and other

modules are working mainly in relation with that module.

3.2 Editor Module

Editor Module is said to be core of all modules that is obvious to and mostly used by developer. Editor

Module is composed of two main parts named as Code part and Design part. These code and design parts

are to be thought as together, because a change in one of these parts will directly affect the other part. Code

part of the module will include some properties which are special to itself as predefined code segments for

code language that developer wants to use, line number just stating which number line that you are editing

and text highlighting that will enable code readibility. Design part of module will allow developer to drag-

drop designing. Developer will just click on an element on any of

palettes and dragging it to design form, it will work well. Adding a button or such an elemnt will

change code part of module, as noted above thanks to the relation between two parts.

 25

3.3 Project Module

Project module is a part of software that will help where to and how to save and organize

files. It will depending on the system, will make default directory and subdirectories for setup.

When opening a new project and or just opening a previously saved project will be held by

project module part of the software.

3.4 Debugger Module

Debugger module has some powerful debugging capabilities that will help developer to detect

his errors easily and recover them. It will use tect-highlighting as well to show there is

something wrong with that part of code. Debugger module will also check code in such a wat

that if an opening paranthesis is available and there is not corresponding closing

paranthesis,i.e. there is a missing paranthesis, it will warn by changing the color of that code

segment.

3.5 Database Module

Database module as in many other software projects is a little complicated and time

consuming concept. However, it is maybe one of the most important concepts that should

given much time to have an efficient database module which is working well and adoptable to

other modules of the project.

One can not divide database module into parts, but in generally speaking and for some

definition and clear understanding of the subject, we will try to tell it in such a way and give the

important and inevitable parts in a reasonable manner.

Database module then can be explained in two parts consisting of user database and program

software database. To give more specifics about user database, one can say that it provides

some chance with user like connecting to his/her remote database and process some SQL job

on it. There will be a connection form that will require a user name and password besides

tunneling information or port number special to that server, and help user to connect his/her

remote database. In addition, after connection is set to a database, a developer will easily

implement some SQL codes via database tab in the GUI by selecting database name that s/he

wants to work on.

To talk about the second part which is program software database, one can say that it is

 26

required as in many other software programs and will provide faster and dynamic

implementations. It consist of much information on many sub patterns of the software from

how to and where to save files, to how to store properties of the objects on design module. It

also provide some easiness and dynamism for the design module of the project by storing all

important code segments and line numbers in the code as of classes, methods and global

functions.

4. SYSTEM MODELING

4.1 DFD

4.1.1 DFD LEVEL0

User

SOFTWARE User

User Input User Output

 27

4.1.2 DFD LEVEL 1

Design
Editor Change

notification
Change

Auto-change notification
update Edit design Edit code

Code
Editor

Auto-change
update

User User Input

Adding
Query

query
result

Database

SOFTWARE

File
input

Auto-change
Change

update
notification

File
input

Debug

User Output User

File
handling

Project

Auto-change Update: A means of updates of change, and works when there is a change. For

example there can be a change in code editor that is, developer may possibly add some codes to

code editor, or in design editor that is, developer may possibly add some graphical elements to

design environment. When there is such a situation, software automatically reflects new patterns

to other parts and thus update.

 28

Change Notification: This is a notification to software that there is a change in some parts and

there must be some changes in other parts of studio, that is, reflections of previous

changes must be applied to others. For example, if there is a change in or adding a graphical

element to design editor, this must be reflected to code editor immediately.

4.2 Use Case Diagram

4.2.1 New/Load Project

Load File

Write Code

Design

<<
Ex
ten

d>
>

<<

>>

U
se
s

<<Extend>>

<<Extend>>

Load File

Write Code

Design

<<
Ex
ten

d>
>

<<Extend>>

<<Extend>>

<<

>>

Uses

New Project

Load Project
USER

 29

Objective

PreCondition

Main Flow

To allow user to open a new project

--

1) The user interacts with the main window of the program .

2) can open a new project “New project”
“File” menu

User by using selecting from
 menu bar under

New Project

Objective

PreCondition

Main Flow

To allow user to load project/fıle previously saved

--

1) The user interacts with the main window of the program .

2) File menuUser loads a file by using selecting load from menu bar under

3) file or “open project”
User finds the desired project/file.

After pressing “open ” button standard browse
 window appears.

LOAD PROJECT/FILE

 30

4.2.2 Write Code

Save Project

Debug

Run

Database

Write Code

<<Extend>>

<<Extend>>

<<E
xten

d>>
<<
Ex
te
nd
>>

Write Code

Find

Copy

Find and
Replace

Save

Cut

USER

USER

 31

Objective

PreCondition

Main Flow

To allow user to modify code r editor

--

1) codeThe users modify the directly from here. .

2) has som f
.To use this functions user should press “Edit” button of

 menu bar select the function.

User unctionality like undo, redo, copy, cut, paste, find,
 find and replace

WRITE CODE

Objective

PreCondition

Main Flow

To allow user to save current project

The project must be opened or a new project must opened.

1) The user interacts with the main window of the program.

SAVE PROJECT

2) n under “File” from menu barUser presses “save” butto .

3)
 the project

After pressing “save” button a window appears and asks the
name and location of .After selection and name user can save the
Project

4.2.3 Design

 32

Save Project

Debug

Run

Database

Design

<<Extend>>

<<Extend>>

<<E
xten

d>>
<<
Ex
te
nd
>>

USER

Objective

PreCondition

Main Flow

To allow user to modify design or edit

--

1) code designThe users modify the from here. .

DESIGN

4.2.4 Debugging

Debug Main
 Project

Debug History

Debug <<Extend>>

<<E
xten

d>>

USER

Pause

 Stop
Debug

Continue

 33

Objective

PreCondition

Main Flow

To allow user to connect or disconnect database

The project must be opened.

1) The user interacts with the main window of the program.

DATABASE

2) “Database” from menu barUser presses .

3) Under “Database”,user has two chocies:”Connect” is for the connect the
database and “disconnect” is disconnect from this database.

4.2.5 Run

Run Main
 Project

Run File

Run History

Run

<<Extend>>

<<Extend>>

<<
Ex
te
nd
>>

USER

 34

Objective

PreCondition

Main Flow

To allow user to run the project,file or history.

The project must be opened or a new project must opened.

1) The user interacts with the main window of the program.

RUN

2) “Run” from menu barUser presses .

3) Under “Database”,user has three chocies to run:”Run main project” is for
 the current project, ”run file ” is for the selected file and “run history” is
for the projects used recently.

 35

5. CLASS DIAGRAM

 36

Class diagram above is mainly show the relation of modules and operations which are completely explained in

architectural and component-level design part of the report. There is a main manager class that is certainly

calling some other classes and thus is is managin all that above in someway.

5.1. MAIN_MANAGER CLASS

This class has some elements that are private to this class. These elements

are:

Project_Id: This is a integer variable that will contain the id of the currently

working project.

Project_Name: This is a string variable keeping the name of currently

working project.

Directory_Default: This is a string variable that hold the default directory that will be used for saving and

furher processing of the project.

Op_Type:It is a string variable to hold what operation will be done.

And also methods belonging to this class are:

Main_Maneger(): This is default constructor method of Main_Manager class.

File_Op(): This method will call another class file object class

Edit_Op(): This method will call another class edit object class

Insert_Op(): This method will call another class insert object class

Database_Op(): This method will call another class database object class

Run_Debug_Op(): This method will call another class run object class

Get_Op_Type(): This method will get the operation type.

5.2. FILE_OBJECT CLASS

 37

This class has some elements that are private to this class. These elements

are:

File_Id: This is an integer variable that will hold id the of the file that some

operation will be done.

Project_Id: This is an integer variable that will hold id the of the project

that some operation will be done.

File_Name: This is an string variable that will hold name the of the file that

some operation will be done.

And also methods belonging to this class are:

File_Op(): This is default constructor method of file_object class.

New_File(): This is a method to create a new file.

New_Project(): This is a method to create a new project.

Open_File(): This is a method to open a currently existing file.

Open_Project(): This is a method to open currently existing project.

Open_Recent(): This is a method to open recently used project or file.

Save(): This is a method to save files or projects.

Save_As(): This is a method to save files or projects in a selected directory.

Print(): This is a method to print the currently working document.

Exit(): This is a method to exist the file and project.

5.3. EDIT_OBJECT CLASS

This class has some elements that are private to this class. These elements

are:

Obj_Id: This is an integer variable that will hold id the of the object that

some changes will be done.

 38

Temp_Str: This is a string variable that will hold some text which will be used for cut, copy and for some

other methods of the used.

Default_Str: This is a string variable that will hold some text and like Temp_Str, will be used in some methods

like Find_Replace()

And also methods belonging to this class are:

Edit_Op(): This is default constructor method of edit_object class.

Undo_Process(): This is a method to undo jobs done lastly.

Redo_Process(): This is a method to redo jobs done lastly.

Cut(): This is a method to cut a selected text or object.

Copy(): This is a method to copy a selected text or object.

Paste(): This is a method to paste a copied/cutted text or object

Delete(): This is a method to delete a selected text or object.

Select(): This is a method to select all text or objects.

Find(): This is a method to find some text.

Find_Replace(): This is a method to find some text and replace will some other text given by developer.

Balance_Braces(): This is a method to balance braces.

5.4. INSERT_OBJECT CLASS

This class has some elements that are private to this class. These elements

are:

Obj_Id: This is an integer variable that will hold id the of the object that

will be inserted.

Obj_Type: This is a string variable that will hold type of the object that will

be inserted.

 39

Obj_Name: This is a string variable that will hold name of the object that will be inserted.

Temp_Str: This is a string variable that will be used in some methods for manipulation of data and etc.

And also methods belonging to this class are:

Insert_Op(): This is default constructor method of insert_object class.

Get_Obj_Type(): This is a method to get the type of the object that will be inserted.

Ins_PreDef(): This is a method to insert some predefined script.

Ins_Tag(): This is a method to insert tags.

Ins_Image(): This is a method to insert image.

Ins_Image_Obj(): This is a method to insert some image objects.

Ins_Media(): This is a method to insert media.

Ins_Table(): This is a method to insert a table.

Ins_Tb_Object(): This is a method to insert a table object.

Ins_Form(): This is a method to insert a form and form objects.

Ins_Hyperlink(): This is a method to insert a hyperlink.

Ins_Anchor(): This is a method to insert a name anchor.

Ins_Comment(): This is a method to insert some comments.

Ins_Html(): This is a method to insert some HTML codes.

5.5. DATABASE_OBJECT CLASS

This class has some elements that are private to this class. These elements

are:

User_Name: This is a string variable that will hold username to connect to

a database.

 40

Passwd: This is a string variable that will hold password to connect to a database.

Table_Id: This is an integer variable that will hold the id of the table which will be created or processed.

Table_Str: This is a string variable that will hold text for table processing.

Def_Db_Type: This is a string variable that will hold the database type that user will connect.

Conn_Status: This is a string variable that will hold the connection status to a database.

And also methods belonging to this class are:

Database_Op(): This is default constructor method of database_object class.

Connect(): This is a method to connect to a database.

Disconnect(): This is a method to disconnect from a database.

Get_Db_Type(): This is a method to get database type of the database that will be connected..

Select_Db(): This is a method to select database name from connected database.

Get_Conn_Status(): This is a method to get the connection status to a database.

Get_Tables(): This is a method to get the names of tables from a database.

Create_Table(): This is a method to create a new database table.

Update_Db(): This is a method to update the changes that will be done.

Edit_Tables(): This is a method to edit and make some changes to database tables.

5.6. RUN_OBJECT CLASS

This class has some elements that are private to this class. These elements

are:

Process_Type: This is a string variable that will hold the type of process

which is either a run or debug process.

 41

Temp_Str: This is a string variable that will be used in debugging process.

Break_Point: This is an integer array that will hold line numbers which are with break points.

Highlight_Str: This is a string variable that will hold highlighted text lines.

Out_Str: This is a string variable that will hold output of some debugging process.

And also methods belonging to this class are:

Run_Debug_Op(): This is default constructor method of run_object class.

Run(): This is a method to run the project or file.

Debug(): This is a method to debug the project or file.

Get_Pr_Type(): This is a method to get process type whether to run or debug the project or file.

Get_Run_Hist(): This is a method to get the results of previous runs of the project or file.

Get_Debug_Hist(): This is a method to get the results of previous debugs of the project or file.

Put_Break_Pnts(): This is a method to put breakpoints determined by developer during debug process.

Highlight(): This is a method to highlight some special texts or break point lines during debugging.

6. USER INTERFACE DESIGN

User interface is such an important concept that it directly affects the user to decide to use the

software or not, regardless of the quality of other parts of the software. No one wants to use a

not-user-friendly software. So, we tried to design (and will go on trying) the graphical user

interface (GUI) as much user-friendly as we could. Below, we will try to explain the GUI in

detail and we will give some screenshots when needed.

 42

Figure 1 An empty program window

6.1 Menus

We will have 6 menus on the top of the application screen. These menus are “File”,

“Edit”, “Insert”, “Database”, “Run”, and “Help”.

6.1.1 File Menu

In the “File” menu, we will have the usual menu items. These are “New Project”,

“New File”, “Open”, “Save”, “Save as”, “Print”, “Recent Files”, and “Exit”.

“New Project” item will trigger a popup window, and in this window user will

determine the project’s name and related initial inputs that must be necessary to create a new

project.

“New File” item, like “New Project”, will trigger a popup window, and in this window

user will determine the file’s name, type and other related initial inputs that is necessary to

create a new file.

 43

“Open” item, again, will trigger a popup window, and in this window user will be able to

open either a project or a source file to edit.

“Save” item will save the file that is active if the file is saved before. Otherwise it will

react as “Save as” item which is explained below.

“Save as” item will trigger a popup window, and in this window the location and name of
the file to be saved will be determined.

“Print” item will popup a window, and this window will give the user the opportunity to
handle print-related issues. This item is to get the hard copy of the source files.

“Recent Files” item will hold a list of recently edited files.

“Exit” item will close the program.

6.1.2 Edit Menu

Edit menu will have nine items which are: “Undo”, “Redo”, “Copy”, “Cut”, “Paste”,

“Delete”, “Find”, “Find and Replace”, “Balance Braces”.

“Undo” will take back the last performed action.

“Redo” is reverse of “Undo”.

“Copy” copies the selected parts of the source code or components in the design menu to

clipboard and does not change anything else.

“Cut” copies the selected parts of the source code or components in the design menu to

clipboard and deletes the selected parts or components.

“Paste” puts the part or component in the clipboard to desired place.

“Delete” deletes the selected part or component.

“Find” popups a window to find a pattern in the source code of the active file.

“Find and Replace” popups a window to find a pattern in the source code of the active

file and replaces these occurances with the specified pattern.

 44

6.1.3 Insert Menu

“Insert” menu is a big menu. It has thirteen items and five of these items also has

subitems. Even these subitems has some subitems too. To start somehow these thirteen items

are “Tag”, “Image”, “Image Objects”, “Media”, “Table”, “Table Objects”, “Form”,

“Hyperlink”, “Email Link”, “Named Anchor”, “Date”, “Comment”, and “HTML”.

“Tag” lists all the HTML tags which are classified according to their function in a

popup window. Of course this is not only for listing. These tags can be used for entering these

tags easier into the code.

“Image” popups a window to select the image to be inserted.

“Image Objects” has three subitems. These are “Image Placeholder”, “Rollover

Image”, and “Navigation Bar”. “Image Placeholder”, as the name implies puts an image

placeholder with the specified size and text. “Rollover Image” puts an image into the

specified place and changes to another image when mouse is over. “Navigation Bar” creates a

navigation bar with images. Image changes when the mouse is over or out. It can be useful in

circumstances like one wants to show one photo of an album in every page.

“Media” has nine subitems. These are “Flash”, “Image Viewer”, “Flash Text”, “Flash

Button”, “Flash Paper”, “Flash Video”, “Shockwave”, “Applet”, and “Active X”. These

subitems are very self-explanatory that one can easily figure out what all of these is intended

to do.

“Table” insert a table with the specified number of rows, columns and properties.

“Table Objects” has ten subitems. These are “Insert Row Above”, “Insert Row

Below”, “Insert Column to the Left”, “Insert Column to the Right”, “Import Tabular Data”,

“Table”, “TR”, “TH”, “TD”, and “Caption”. First four of these insert either rows or column.

“Import Tabular Data” is supposed to parse delimited text files and put the data into the table.

Last 5 subitems are actually inserts HTML tags in the source code.

 45

“Form” has fourteen subitems. These are “Form”, “Text Field”, “Textarea”, “Button”,

“Checkbox”, “Radio Button”, “List/Menu”, “File Field”, “Image Field”, “Hidden Field”,

“Radio Group”, “Jump Menu”, “Field Set”, and “Label”. These subitems insert implied form

objects.

“Hyperlink” inserts an hyperlink.

“Email Link” inserts an email link.

“Named Anchor” inserts a named anchor.

“Date” inserts the date in the specified format.

“Comment” gives the opportunity to insert comments.

“HTML” has six subitems. These are “Horizantal Rule”, “Frames”, “Text Objects”,

“Script Objects”, “Head Tags”, and “Special Characters”. “Horizantal Rule” insert a

horizantal rule. “Frames” has seventeen subitems. These are “Left”, “Right”, “Top”,

“Bottom”, “Bottom Nested Left”, “Bottom Nested Right”, “Left Nested Top”, “Left Nested

Bottom”, “Right Nested Bottom”, “Right Nested Top”, “Top and Bottom”, “Top Nested

Left”, “Top Nested Right”, “Frameset”, “Frame”, “Floating Frame”, and “Noframes”. First

thirteen of them insert a frame into the implied direction. Last four are tags to insert into

source code. “Text Objects” has nineteen subitems. These are “Font”, “Bold”, “Italic”,

“Strong”, “Em”, “Paragraph”, “Block Quote”, “Preformated Text”, “H1”, “H2”, “H3”,

“Unordered List”, “Ordered List”, “List Item”, “Definition List”, “Definition Term”,

“Definition”, “Abbreviation, and “Acronym”. These subitems are also self-explanatory.

“Script Objects” has two subitems: “Script”, “NoScript”. These are for JavaScript. “Head

Tags” has 6 subitems which are “Meta”, “Keywords”, “Description”, “Refresh”, “Base”, and

 46

“Link”. “Special Characters” has thirteen subitems all for some special characters or symbols.

These are “Line Break”, “Non-Breaking Space”, “Copyright”, “Registered”, “Trademark”,

“Dollar”, “Pound”, “Yen”, Euro”, “Left Quote”, “Right Ouote”, “Em-Dash”, and “Other”.

“Other” popups a window that has more special characters.

6.1.4 Database Menu

“Database” menu has 2 items: “Connect” and “Disconnect” for either connecting to a

database or disconnecting from a connected database.

6.1.5 Run Menu

“Run menu” has 6 items: “Run Main Project”, “Debug Main Project”, “Run File”,

“Debug File”, “Run History”, and “Debug History”.

“Run Main Project” runs the main project.

“Debug Main Project” debugs the main project.

“Run File” runs the active file.

“Debug File” debugs the active file.

“Run History” lists recently runned projects and files.

“Debug History” holds the list of recently debugged projects and files.

6.1.6 Help Menu

“Help menu” has 2 items: “Help Contents” and “About”.

“Help Contents” is for the documentation of the software.

“About” gives some information about the software, like the version.

 47

6.2 Tabs

There six tabs in two seperate windows. These are “File”, “Code”, “Inspector”,
“Properties”, “Events”, and “Database”.

6.2.1 File Tab

“File” tab gives an overview of the project and its folders and directories in a tree
fashion.

6.2.2 Code Tab

“Code” tab gives an overview of the active file. Classes and global variables

(including functions) are listed here in a tree fashion. The following image shows the code

tab.

 48

Figure 2 Code Tab

6.2.3 Inspector Tab

“Inspector” tab gives an overview of the objects or components like form objects in the

active file in a tree fashion. The following image shows the inspector tab.

Figure 3 Inspector Tab

 49

6.2.4 Properties Tab

“Properties” tab shows the properties of the active objects or components. The

following image shows the properties tab.

Figure 4 Properties Tab

6.2.5 Events Tab

“Events” tab shows the functions that are related to actions of the active components or

objects. The following image shows the events tab.

Figure 5 Events Tab

 50

6.2.6 Database Tab

“Database” tab is to handle active objects’ database related issues. The following image

shows the database tab.

Figure 6 Database Tab

6.3 Main Panel

“Main Panel” will show all the opened files and database windows in a project in a

tabbed fashion. The following image shows the main panel.

 51

Figure 7 Main panel with 2 tabs

In figure 7 main panel has 2 tabs. First tab shows a file named “deneme.php”. The second tab

shows a database table. Database tables will be changable in this view. Editing a cell, deleting

a row will be possible in here. Adding/deleting a column will be done in a seperate view

because the database table in figure 7 can be a result of an SQL query as well as the whole

table.

7. GANNT CHART

52

53

