CENG 490

STARSOFT

Final Design Report

By;

Mehmet ALBAYRAK
Omer ESER
Ozer GUMUS
Ozge YAMASAN
Fatih YILDIRIM



INDEX

1. INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT ........uutttiiieeeeiiiititteeeeeeeeeeiaeeeeeeeeeesiaaeseeeeeeesitssseeeeeeeestsssseeeeeeessasreseeeseensnrreees
L2 SCOPE ...t e e et e e e e e e e e e e e e et ——— e e e e e e e ————aaeeeeaa————aaaeeeaaa———ataeeeeeanarraaes
1.3 DESIGN CONSTRAINTS AND LIMITATIONS ...ooviiiiiiiiieiiiee ettt et eeeaaaee e e e e s e eeaaaaeeees
R B B 00 R 1271771 A
VBRI 017111711 T L R
1.4 GOALS AND OBJIECTIVES .ooeiiiiiiiitiee ettt ettt e ettt e e e e ettt e e e e e s eataaeteeeesseeaaaaeeeeessenaanenees

2. DATA DESIGN

2.1 DATA OBJIECTS .ottt eeeeeee et e ettt e et e e et e e e ettt e e e eata e e e etteeeeeateeeeeaaseeetseeeeaaseeeeessaeeeaseseeentseseenseneeaensenean
2.2 ER DIAGRAMS .....c.cvtiittietieiteeetee et e ettt e e vt esaveesaaesaveesabeaeebeesabeeseseessbeesaseesaseessseessseensseesssaessseessseessseesasaenasens
2.3 SEQUENCE DIAGRAMS ....oiiiiiiiiieiiiieeeitee e ettt e e ettt e ettt e e stveeeetbaeeeesaaaaesstsaaeasssseesesssaaesssseasassseeensssaeesnsseaenn
2.4 DATA DICTIONARY ..oiiiiiiiieiiiieeeiitt e eeitee e et te e ettt e eeiaaeeestbeeeessseeeasssaeesssseaeassseeaasssaaesssssasasssseeessssseesssseeenn
2.5 INTERNAL SOFTWARE DATA STRUCTURE .......ccceiiuiieeitrieeiirieeesirteeesitsesessreeesssssesssssssessssssessssssesssssssessssseees
2.6 DATABASE DESCRIPTION ......utiiiiiiie ettt ettt e ettt e e ettt e e e tteeesstbeeeessbeeeesasaaessssaaeasssesessssaeessseanas
2.7 DATABASE NORMALIZATION .....uutiiiiiiii ettt ettt ettt e et e e e sttt e e e bt eeeeaabaeesstseeeessseeessssaeesnsseaeas

3. ARCHITECTURAL AND COMPONENT-LEVEL DESIGN

3.1 STRUCTURE CHART ..ottt ettt ettt e ettt e e ettt e e ettt e e e eate e e eeaaeeeeeaaeeeeetaeseeesseeeeaasseeeesseeeeessseeeansseeeatseeeanes
3.2 EDITOR MODULE ......coiutiiiiiitiee e ettt e eeae e et e e et e e e e eaae e e e eaae e e e eeteeeeeeaaeeeaeaasaeeesseeeeesseeeeenseseeateeeeanns
3.3 PROJECT MODULE .......utiiiiitiee e ettt e ettt e e et e e ettt e e et e e e eeaae e e eetaeeeeeteeeeeesaeeeaeasseeeesseseeesseeeeenseseeantseeeanes
3.4 DEBUGGER MODULE ......oociitiiiiiitiii e eeiieeeeett e e et e e ettt e e eeaeeeeeeaaeeeeeaaeeeeetaeeeeesaeseeeasseeeesseeeeessseeeanseseeanteeeeanes
3.5 DATABASE IMODULE .....ooiiiiitiiii et e ettt eete e et e et e e e et e e e ettt e e eeaaeeeeetaeeeeeaaeeeeeasseeeesseeeeessseesanseseeasseeeanes

4. SYSTEM MODELING

4.2 USE CASE DIAGRAM ....ooooiiiiiiiiiiiiiiiiiieictcte ettt a et
4. 2.1 NEW/LOAA PFOJECE ..ottt bttt ettt
G 2.2 WFIEE COUE..........oeeieeeee e ettt ettt ettt
G.2.3 D@STGN ...ttt a et n e ekttt ettt neeenae s
4. 2.4 DEDUGZING ...ttt ettt
B I ¢ OSSPSR

5. CLASS DIAGRAM

5.1. MAIN_MANAGER CLASS ... .ottt st st
5.2.FILE_OBJECT CLASS ..ot s
5.3.EDIT_OBJIECT CLASS ...ttt s e
5.4, INSERT_OBJIECT CLASS ..ottt s
5.5.DATABASE_OBJECT CLASS ..o
5.6. RUN_OBJECT CLASS ..ottt s s

6. USER INTERFACE DESIGN

O.1 IMIENUS ...ttt e ettt e e et e e eaae e e e et e e e eaateeeeetaeeeeeassaeeesteeeeessseeeaasseeeansseeeeesseeeeanseseeanteneeanes
O. 1.1 FTlE MENU.............coooeeeieeeeeeeeeeee e ettt e ettt e et e e
O. 1.2 EE MU ... et ettt
0. 1.3 INSEIE MERUL ... et et
O.1.4 DALADASE MERUL ...
O. 1.5 RUI MEIUL ...ttt ettt ettt e et et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aas
0. 1.0 HEID MERU ..ottt b ettt ettt

0.2 TABS oottt ettt et et e e e e ———e e e e e e e —————eaaeeeai—————ttaaeeeaaa———taeeeeeaai———ateeeeeaaarraaaaeean
G. 2.1 FUle TAD ... e et
6.2.2 COAC TAD ... e e e
0.2.3 INSPECIOT TAD ...ttt bttt
0.2.4 PFOPEITICS TAD .........c.oooceeeeii ettt ettt ettt e et e e e e abe e e sbeeeabbeensaeenbaeensaeenreas
0.2.5 EVOIES TAD ..........oooooeiiieieeeeeeee e ettt
0.2.0 DALADASE TAD ... e

0.3 MAIN PANEL ....ooiitiiiiieiiee ettt e e e e e e et e e e ettt e e e ett e e e eetaeeeeeaaeeeeetseeeeesaeeeeanseeeeentseeeanes

7. GANNT CHART




1. INTRODUCTION

1.1 Purpose of the Document

1.2 Scope

This document is the Final Design Report for our project regarding the Ajax IDE software.
During the preparation of the report the main purpose is to realize and overcome design issues
and come up with appropriate solutions in more detail than the Initial Design Report. This
document aims to establish a basis for the implementation phases.
In the preparation of the document we found the inclusion of the following necessary :

B Modular Specifications

B UML Diagrams

B Screenshots

B Updated Schedule

Ajax is mainly a web development technique for creating interactive web applications.
The components that made up Ajax were being used even before the naming took place. Due
to the convenience that Ajax brings to developers it has gained popularity quite quickly. In
this project we will design and implement a Graphical Development Environment for
webpages with Ajax which helps the developers further by putting many options and features
together.

The software is to include an editor to write and edit the neccesary codes. The text-
highlighting method will be used to increase readability. Predefined scripts and actions will be
available. Features such as adding, locating, editing, removing scripts and actions will be put
to use. Without using any other software, debugging the code when necessary will also be at
hand. The user will be able to see the effect of the changes made and run the code. The
advanced graphical interface is to be implemented as a way of easing the processes of the
user. Hence, the user of the software is to be satisfied with every need he/she has through one

complete package.



1.3 Design Constraints and Limitations

1.3.1 Constraints

System: Our software should be secure as there will be database connections and editing with
transfers of username, password and potentially other critical data.

Different kinds of databases will be usable so the software should offer such adaptability.

There will be projects with many files and structures within to be used at the same time. This

should not be overlooked.

Interface: The interface should be user-friendly and easy to understand as well as to use.
Since the user’s main goal is to do the work more easily with tools and other components

available, the graphical user interface should be ready to face such demands.

1.3.2 Limitations

Time: Time is an important limitation as there are many other duties of the project members

and the time is strictly defined as 9 months. Scheduling and proper preparation is of the

essence.

Employee Skills: The skills of the project members are developing as the project continues.
While building the software the members are also occupied with learning the processes to be
involved.

Portability: The Windows XP will be used during implementation.

Programming Language: Java programming language has been chosen after the meetings
mentioned in the previous report. The libraries of Java Language and the skill level of the

members on Java contribute to some limitations.

1.4 Goals and Objectives

During the analysis of the software we have focused on the following goals and
objectives. These will be examined again as non-functional requirements in the following
sections of the report as they also constitute an important part of the requirements of our

project.



Easy to Understand : The software package is bound to include many help options and
documentary to help the user understand how to use the software more efficiently with less

effort.

Easy to Use : One of the most important reasons for a developer to use such a software is to
make his life easier with the features presented through the software which are not
available in a regular editor. Consequently, a great deal of effort is to be made to make the

software satisfactory to these needs : Text-Highlighting, pre-defined scripts, etc...

Performance : Since such software should satisfy complex developing as well as simple
ones, the performance issue is rather an important one. The aimed-customer database is also
making the performance goals more important since it is clearly more obvious and critical to

someone who is a developer than a regular software user.

Update Readiness : The technology that the software will depend on in terms of scripts ,
actions, debugging and so on, makes the update issue an important one. One of the main goals of
the project is to make sure not to overlook this concept as with time and with the high
speed of the introduction of new features it should be easy to add new modules, remove old ones

which will not be necessary anymore.

2. DATA DESIGN

In database, project, project files, their codes and its members, files’ inspectors, their form
elements, properties and events of form elements and database which is used at project are
stored at database. In order to store the data in a structured form, the data objects will be used. In
this section, we will look at the data objects, their relationships, the ER-diagram and the data

dictionary to describe the data.

2.1 Data Objects



Project
Project entity is stored the data of projects of the program. When the user opens a new project, the

data of project is stored. The attributes of entity are:

» Project ID
» Project Name
Project ID will be integer and it will be unique for each project. Also Project Name will be unique for each

project and it will be string.

File

File entity will stored the files of project which has relation with Inspector entity and Code

entity.

> File ID
» File Name
» Project ID

File ID will be integer and it will be primary key. The File Name will be string and
Project ID will be foreign key and it references the relation with File entity and Project entity.

Besides, File Name and Project ID together will be unique.

Inspector

Inspector entity will be investigate the File entity and also it has relation with Form_ Elements

entity.

» Inspector ID
» Form Name

> File ID

Inspector ID will be integer and it will be primary key. Form Name will be string and it will store
the name of forms in each inspector. File ID will be foreign key and it reference the relation
with File Entity. Moreover, File ID and Forn Name together will be unique.

Form_Elements

Form_Elements entity will stored elements of each form. The attributes are:

» Form_Elements ID



» Inspector ID
» Form_ FElements Name

» Line Number

Form_Elements ID will be integer and primary key. Inspector ID will reference between
Form_Elements entity and Inspector Elements entity. Form Elements Name will be string and
stored the name of elements. Line Number will be integer and show the line number of each

element. Inspector ID and Form_Elements Name together will be unique.

Events

Events entity will store the event of form elements. The attributes are:

» Events_ID

» On_Abort

» On_Blur

» On_Change
» On_Clik

» On_Dbclick
» On_Error

» On_Focus

» On_Keydown
» On_Keypress
» On_Keyup

» On_Load

» On_Mousdown
» On_Mousemove
» On_Mouseup

» On_Mouseover
» On_Mouseout
» On_Reset

» On_Resiz



Events ID will be primary key. All the other attributes will be true-false.

Properties

Properties entity will store the properties of form elements. The attributes are:

» Property ID

» Property Name
» Border Color
» Border Style
» Color

» Font Name

» Font_Color

» Font_Size

» Font_Style

Porperty ID will be primary key.

Code

Code entity will store the code data of file. The attributes are:

» Code ID

» Code Name

» Code Type

» Code Line Number
» File_ID

Code ID will be integer and will be primary key. Code Name will be string. Code Type is 1 or

2 which means that 1shows that code type is class and 2 shows that type is function.



Code Line Number will be integer and stores the line number. File ID is foreign key and

reference to File entity. File ID, Code Name and Code Type together will be unique.

Members

Members entity will store the variables and the functions of the each class. The attributes are:

» Member ID

» Code ID

» Member Name

» Member Line Number

Member ID will be integer and it will be primary key. Code ID is foreign key and refernce to
Code Entity. Member Name will be string. Code ID and Member Name together will be

unique. Member Line Number will be string and store line number of member.

Database

Database entity will be stored the data of query which the user occur when they will connect to

server. The attributes are:

» Database ID
» Database Name
» Project 1D

Database ID will be integer and it will be primary key. Database Name is string and store the
name of database which the user connect. Porject ID is foreign key and reference Project

entity.

Table

Table entity will stored the tables according to user query. The attributes are:

» Table ID
» Tabale Name
» Database ID

Table ID will be integer and primary key. Table Name will be string and stored the name of

table. Database ID will be foreign key and reference to Database entity.



2.2 ER Diagrams

TABLE

DATABASE

HASZ/

HAS6

o

PROJECT

CODE

INSPECTOR

MEMEBERS

FORM

9

EVENTS

ELEMENT

ISA

PROPERTIES

10



2.3 Sequence Diagrams

User

File Op()

Main Manager

New_File()

File Object

v

v

Save

v

A

Exit()

11



User

Connect()

Database Database
Object

Conn__ Status

v

Database Op()

v

Select Db()

A

v

v

2.4 Data Dictionary

Def Db Type . i
- isValid(Username, Passwd)
4, __________________________
) yes
GetTables()

Project
Name PROJECT
Alias -
Where / How used A new project which users open or load.
Description When the user opens a new project, the data of project is stored.
Project ID
Name Project ID
Alias -
Where / How used It is assigned all projects when they are created.
Description Each project has a unique Project ID.

Project Name
Name

Alias
Where / How used

Description

Project Name

It is assigned all projects when they are created.

Each project has a unique Project Name.

12



FILE

Name FILE

Alias -

Where / How used While creating new file or loading a file.
Description File entity will stored the files of project.
File ID

Name File ID

Alias -

Where / How used It is assigned all files when they are created.
Description Each file has a unique File ID.

File Name

Name File Name

Alias -

Where / How used It is assigned all files when they are created.
Description Each file has a unique File Name.
INSPECTOR

Name INSPECTOR

Alias -

Where / How used Every file entity has inspector.

Description Inspector entity is investigating the File entity.Form names saved in it.

Inspector ID
Name Inspector ID

Alias -
Where / How used Primary key of inspector.

Description Each inspector has a unique Inspector ID.

Form Name

Name Form Name

Alias -

Where / How used It is saved in INSPECTOR entity.
Description Name of the form.

13



FORM ELEMENT

Name FORM ELEMENT

Alias -

Where / How When INSPECTOR takes action.

used

Description Each form and their line number stored in it.It has also form elements
name

Form_ Elements ID

Name Form_Elements ID

Alias -

Where / How used Primary key of FORM ELEMENT.

Description Each FORM ELEMENT has a unique Form_Elements ID

Form_Elements Name

Name Form_ Elements Name

Alias -

Where / How used Member of FORM ELEMENTS
Description It is string and stores the name of elements

Line Number

Name Line Number

Alias -

Where / How used Member of FORM ELEMENTS

Description It is integer and showa the line number of each element.

14



EVENTS

Name EVENTS

Alias -

Where / How When FORM ELEMENTS takes action.

used

Description Events entity will store the event of form elements. These attributes are:

abort,blur,change,click,double,click,error,focus,keydown,keypress,keyup,

mouse down, mouse up, mouse over, mouse out, reset and resize.

Events ID

Name Events ID

Alias -

Where / How used Primary key of Events_ID.

Description Each EVENTS has a unique Events 1D

PROPERTIES

Name PROPERTIES

Alias -

Where / How used When FORM ELEMENTS takes action.

Description It stores the properties of form elements like name, border

color, border style, color, font name, font color, font size, font style

Porperty ID

Name Porperty ID

Alias -

Where / How used Primary key of PROPERTIES.

Description Each PROPERTIES has a unique Porperty ID.
CODE

Name CODE

Alias -

Where / How used Every file entity has CODE entity.

15



Description

Code ID
Name

Alias

It stores the code data of file.

Code ID

Where / How used Primary key of CODE.

Description

Code Name
Name

Alias

Each CODE has a unique Code ID.

Code Name

Where / How used Member of CODE entity

Description

Code Type
Name

Alias

It is name of the classes or functions in code. I is unique

Code Type

Where / How used Member of CODE entity

Description

Code Line Number
Name

Alias

It is an integer:1 or 2.1 is used for classes 2 is used functions.I is
unique

Code Line Number

Where / How used Member of CODE entity

Description

MEMBERS
Name

Alias

It is line number of code.

MEMBERS

Where / How used Every CODE entity has MEMBERS.

Description

Member ID
Name

Alias

It stores the variables and the functions of the each class. It has

unique Code ID

Member ID

Where / How used Primary key of MEMBERS.

Description

Each MEMBERS has a unique Member ID.

16



Member Name

Name Member Name

Alias -

Where / How used Element of MEMBERS.
Description Name of elements.It is unique.
DATABASE

Name DATABASE

Alias -

Where / How used Creating when user will connect to server

Description It stores the data of query

Database ID
Name Database ID

Alias -
Where / How used Primary key of DATABASE.

Description Each DATABASE has a unique Database ID.

Member Line Number

Name Member Line Number

Alias -

Where / How used Element of MEMBERS.

Description It shows the line number of member.

17



Table ID

Name Table ID

Alias -

Where / How used Primary key of TABLE

Description Each TABLE has a unique Table ID.
Table Name

Name Table Name

Alias -

Where / How used Element of TABLE

Description It is string and store the name of the table.

2.5 Internal Software Data Structure

Project

CREATE TABLE Project

(

Porject ID INTEGER,

Project Name VARCHAR(32),
PRIMARY KEY(Project ID),

);
Data Type&Size Format
Porject 1D INTEGER Number
Project Name VARCHAR Text

18



File

CREATE TABLE File

(

File ID INTEGER,

Porject ID INTEGER,

File Name VARCHAR(32),

PRIMARY KEY (File ID),

FOREIGN KEY(Project ID) REFERENCES Project,
UNIQUE (Project 1D, File Name),

);

Data Type&Size Format
File ID INTEGER Number
File Name VARCHAR Text
Porject ID INTEGER Number

Inspector

CREATE TABLE Inspector

(

Inspector ID INTEGER,

Form Name VARCHAR(32),

File ID INTEGER,

PRIMARY KEY(Inspector ID),

FOREIGN KEY(File ID ) REFERENCES File,

UNIQUE (File ID, Form Name),

)
Data Type&Size Format
Inspector ID INTEGER Number
Form Name VARCHAR Text
File ID INTEGER Number

19



Form_Elements

CREATE TABLE Form_Elements

(

Form_Elements ID INTEGER,

Form_Elements Name VARCHAR(32),

Line Number INTEGER,

Inspector ID INTEGER,

PRIMARY KEY(Form Elements ID),

FOREIGN KEY (Inspector ID) REFERENCES Inspector,
UNIQUE (Inspector ID, Form_ Elements Name),

)

Data Type&Size Format
Form Elements ID INTEGER Number
Form Elements Name VARCHAR Text

Line Number INTEGER Number
Inspector ID INTEGER Number

Events

CREATE TABLE Events

(

Events ID INTEGER,
On_Abort INTEGER,
On_Blur INTEGER,
On_Change INTEGER,
On_Clik INTEGER,
On_Dbclick INTEGER,
On_Error INTEGER,
On_Focus INTEGER,
On_Keydown INTEGER,
On_Keypress INTEGER,
On_Keyup INTEGER,
On_Load INTEGER,
On_Mousdown INTEGER,
On_Mousemove INTEGER,
On_Mouseup INTEGER,
On_Mouseover INTEGER,
On_Mouseout INTEGER,
On_Reset INTEGER,
On_Resize INTEGER,

)

20



Data Type&Size Format
Events ID INTEGER Number
On_Abort TRUE/FALSE TRUE/FALSE
On_Blur TRUE/FALSE TRUE/FALSE
On_Change TRUE/FALSE TRUE/FALSE
On_Change TRUE/FALSE TRUE/FALSE
On_Clik TRUE/FALSE TRUE/FALSE
On_Dbclick TRUE/FALSE TRUE/FALSE
On_Error TRUE/FALSE TRUE/FALSE
On_ Focus TRUE/FALSE TRUE/FALSE
On_Keydown TRUE/FALSE TRUE/FALSE
On Keypress TRUE/FALSE TRUE/FALSE
On_Keyup TRUE/FALSE TRUE/FALSE
On Load TRUE/FALSE TRUE/FALSE
On_Mousdown TRUE/FALSE TRUE/FALSE
On_Mousemove TRUE/FALSE TRUE/FALSE
On_ Mouseup TRUE/FALSE TRUE/FALSE
On_Mouseover TRUE/FALSE TRUE/FALSE
On_Mouseout TRUE/FALSE TRUE/FALSE
On_Reset TRUE/FALSE TRUE/FALSE
On Resize

Properties

CREATE TABLE Properties

i’roperties_ID INTEGER,

Property Name VARCHAR,

Border Color INTEGER,

Border Style INTEGER,

Color INTEGER,

Font Name VARCHAR,

Font Color INTEGER,

Font Size INTEGER,

Font Style INTEGER,

)

Data Type&Size Format

Properties ID INTEGER, INTEGER Number

Property NameVARCHAR, VARCHAR Text

Border Color INTEGER, INTEGER Number

Border Style INTEGER, INTEGER Number

Color INTEGER, INTEGER Number

Font Name INTEGER, VARCHAR Text

Font Color INTEGER, INTEGER Number

Font Size INTEGER, INTEGER Number

Font_Style INTEGER, INTEGER Number

21



Code

CREATE TABLE Code

(

Code ID INTEGER,

Code Name VARCHAR(32),

Code Type INTEGER,
Code Line Number INTEGER,

File ID INTEGER,

PRIMARY KEY(Code ID),

FOREIGN KEY (File) REFERENCES File,
UNIQUE (Code ID, Code Name,Code Type),
)i

Data Type&Size Format
Code ID INTEGER Number
Code Name VARCHAR Text
Code Line Number INTEGER Number
Code Type INTEGER Number
File ID INTEGER Number

Members

CREATE TABLE Code

(

Member ID INTEGER,

Member Name VARCHAR(32),

Member Line Number INTEGER,

Code ID INTEGER,

PRIMARY KEY(Code ID),

FOREIGN KEY(Code ID) REFERENCES Code,

UNIQUE (Code ID, Member Name),

)

Data Type&Size Format

Member ID INTEGER Number

Member Name VARCHAR Text

Member Line Number INTEGER Number

Code ID INTEGER Number

22



Database

CREATE TABLE File

(

Database ID INTEGER,

Porject ID INTEGER,

Project Name VARCHAR(32),

PRIMARY KEY(Database ID),

FOREIGN KEY(Project ID) REFERENCES Project,

)i
Data Type&Size Format
Database ID INTEGER Number
Database Name VARCHAR Text
Porject 1D INTEGER Number

Table

CREATE TABLE File

(

Table ID INTEGER,

Project Name VARCHAR(32),

Database ID INTEGER,

PRIMARY KEY/(Table ID),

Database KEY(Project ID) REFERENCES Project,

)i
Data Type&Size Format
Table 1D INTEGER Number
Table Name VARCHAR Text
Database ID INTEGER Number

2.6 Database Description

Database will store all of the information of the project which will be occurred by the user.
Also, the File, Code, Inspectors, Database relation are stored in the database. When the

system needs retrieving data, SQL queries are used to get the necessary records.

2.7 Database Normalization

The database in our software is designed avoiding redundancy cases and we tried to suit them to

the BCNF notation. To obey these rules we did some modifications over the real data

23



tables. Instead of creating separate tables for each relation, we added a new attribute to one of the
entities of the relation that is, a foreign key and reference to the other table. Important
modification is assigning a ID of one entity to the entity which is connect to it. This was done to
simplify the interaction between these tables. By this modification, we avoided redundancy of the
tables. As a result, there are no insertion, update and deletion

anomalies. Moreover, these will ease the queries for relations.

3. ARCHITECTURAL and COMPONENT-LEVEL DESIGN

One of the main concepts of developing a software is a well-done architectural and componetlevel
design. A proper design will lead success in software and make the job more obvious

and easier.

3.1 Structure Chart

Structure Chart is composed of modules of the software as Editor Module, Project Module,
Debugger Module and finally Database Module. All these modules has a relationship and none
of them is independently working. Especially Editor Module is core of the software and other

modules are working mainly in relation with that module.

3.2 Editor Module

Editor Module is said to be core of all modules that is obvious to and mostly used by developer. Editor
Module is composed of two main parts named as Code part and Design part. These code and design parts
are to be thought as together, because a change in one of these parts will directly affect the other part. Code
part of the module will include some properties which are special to itself as predefined code segments for
code language that developer wants to use, line number just stating which number line that you are editing
and text highlighting that will enable code readibility. Design part of module will allow developer to drag-
drop designing. Developer will just click on an element on any of

palettes and dragging it to design form, it will work well. Adding a button or such an elemnt will

change code part of module, as noted above thanks to the relation between two parts.



3.3 Project Module

Project module is a part of software that will help where to and how to save and organize
files. It will depending on the system, will make default directory and subdirectories for setup.
When opening a new project and or just opening a previously saved project will be held by

project module part of the software.

3.4 Debugger Module

Debugger module has some powerful debugging capabilities that will help developer to detect
his errors easily and recover them. It will use tect-highlighting as well to show there is
something wrong with that part of code. Debugger module will also check code in such a wat
that if an opening paranthesis is available and there is not corresponding closing
paranthesis,i.e. there is a missing paranthesis, it will warn by changing the color of that code

segment.

3.5 Database Module

Database module as in many other software projects is a little complicated and time
consuming concept. However, it is maybe one of the most important concepts that should
given much time to have an efficient database module which is working well and adoptable to

other modules of the project.

One can not divide database module into parts, but in generally speaking and for some
definition and clear understanding of the subject, we will try to tell it in such a way and give the

important and inevitable parts in a reasonable manner.

Database module then can be explained in two parts consisting of user database and program
software database. To give more specifics about user database, one can say that it provides
some chance with user like connecting to his/her remote database and process some SQL job
on it. There will be a connection form that will require a user name and password besides
tunneling information or port number special to that server, and help user to connect his/her
remote database. In addition, after connection is set to a database, a developer will easily
implement some SQL codes via database tab in the GUI by selecting database name that s/he

wants to work on.

To talk about the second part which is program software database, one can say that it is



required as in many other software programs and will provide faster and dynamic
implementations. It consist of much information on many sub patterns of the software from
how to and where to save files, to how to store properties of the objects on design module. It
also provide some easiness and dynamism for the design module of the project by storing all
important code segments and line numbers in the code as of classes, methods and global

functions.

4. SYSTEM MODELING

4.1 DFD
4.1.1 DFD LEVELO

User Input
User Output
User > SOFTWARE P User

v




4.1.2 DFD LEVEL 1

Code

Change .
Editor

notification

&hange

Auto-changge nottfjcation

update Editdesign G-change

User User Input SOFTWARE User Output User
>
File
handling
Adding
query
Database

Auto-change Update: A means of updates of change, and works when there is a change. For
example there can be a change in code editor that is, developer may possibly add some codes to
code editor, or in design editor that is, developer may possibly add some graphical elements to
design environment. When there is such a situation, software automatically reflects new patterns

to other parts and thus update.



Change Notification: This is a notification to software that there is a change in some parts and
there must be some changes in other parts of studio, that is, reflections of previous
changes must be applied to others. For example, if there is a change in or adding a graphical

element to design editor, this must be reflected to code editor immediately.

4.2 Use Case Diagram

4.2.1 New/Load Project

Load File

Load File
o 5
AL(’)"
<<Extend>> .
New Project - Write Code
<
@,\7@/)
57 (94NN
&
0@
2 " pesn

Ay
(/se
S N A

VA
<<Extend>> _
Load Project Write Code
USER NS
)

LN N

28



New Project

Objective

To allow user to open a new project

PreCondition

Main Flow

1) The user interacts with the main window of the program

2)User can open a new project by using selecting “New project” from
menu bar under “File” menu

LOAD PROJECT/FILE

Objective

To allow user to load project/file previously saved

PreCondition

Main Flow

1) The user interacts with the main window of the program .
2)User loads a file by using selecting load from menu bar under File menu

3) After pressing “open file” or “open project” button standard browse
window appears. User finds the desired project/file.

29



4.2.2 Write Code

USER

USER

30



WRITE CODE

Objective

To allow user to modify code editorr

PreCondition

Main Flow

1) The users modify the codedirectly from here. .

2)User has som functionality like undo, redo, copy, cut, paste, find,

find and replace.To use this functions user should press “Edit” button of
menu bar select the function.

SAVE PROJECT

Objective To allow user to save current project
PreCondition The project must be opened or a new project must opened.
Main Flow

1) The user interacts with the main window of the program.

2) User presses “save” button under “File” from menu bar.

3)After pressing “save” button a window appears and asks the

name and location of the project.After selection and name user can save the
Project

4.2.3 Design

31



USER

DESIGN

Objective To allow user to modify design editor

PreCondition -

Main Flow ) .
1) The users modify the code design from here. .

4.2.4 Debugging

USER



4.2.5 Run

DATABASE

Objective To allow user to connect or disconnect database

PreCondition The project must be opened.

Main Flow . . .
1) The user interacts with the main window of the program.
2) User presses “Database” from menu bar.
3) Under “Database”,user has two chocies:”Connect” is for the connect the

database and “disconnect” is disconnect from this database.
USER

33



RUN

Objective To allow user to run the project,file or history.
PreCondition The project must be opened or a new project must opened.
Main Flow

1) The user interacts with the main window of the program.

2) User presses “Run” from menu bar.

3) Under “Database”,user has three chocies to run:”Run main project” is for
the current project, ”run file ” is for the selected file and “run history” is
for the projects used recently.

34



5. CLASS DIAGRAM

<< Implementation Class >>
DATABASE OBJECT

User_ Name
Passwd
Table 1Id
Table 8tr
Daf Db Type
Conn status

connect ()
Disconnect()
gat_Db_Type ()
8elact Dbi()

Get _Conn_8tatus()
Get Tables()
Create Table(]
Update Db()

Edit Tables ()

<< Implementation Class ==
EDIT OBJECT

obj_1d
Temp Str
Default str

Edit_op() Ty
uUndo Processi)
Redo Process()
cut ()

copy ()

Paste()

Dalete ()

Select ()

Find()

Find Replace()
Balance Braces()

Database Op() .

<< Implementaticn Class >>
MAIN MANRGER

Project ID
Project Name
Cirectory Default
Op_Type

Main Manager ()
Flle Cpi()

Edit oP() N
Insart op()

« | Database Cp (]
Run Debug oOp ()
et _Op Type ()

Calls

Emm ==

<< Implementation Class >
INSERT OBJECT

cb] 1d

ob] _ type
cb] Name
Temp Str

Insart opi)
Fet_0Ob] _Typel)
Ins PreDef()
Ins Tagil)

Ins Image()

Ins Image ob] ()
Ins Media()

Ins Table()

Ins Th object()
Ins Form()

Ins Hyperlink()
Ins ARnchor()
Ins Comment ()
Insert Html ()

<< Implementaticn Cclass >>

\\Calls
N

=<

RUN_ OBJECT

Process_Type
Temp Btr
Break Point
Highlight str
out_gtr

Run_Debug_op ()
Run ()

Debug()
Fet Pr Typel)
et _Run_ Hist ()
Fet Debug Hist()
Put_Break Pntsi)
Highlight ()

Implementaticon Class »x»
FILE CBJECT

File_1d
Project Id
Flle Name

Flle op()

New Flle()
New Project ()
Cpen Fllel)
Cpen_ Project()
Open_Recent ()
gave ()
Save A= ()
Printi(]

Exit ()

35



Class diagram above is mainly show the relation of modules and operations which are completely explained in
architectural and component-level design part of the report. There is a main manager class that is certainly

calling some other classes and thus is is managin all that above in someway.

5.1. MAIN_MANAGER CLASS

This class has some elements that are private to this class. These elements
Project ID

Project Name

arc:

Directory Default

Op_Type
Project _Id: This is a integer variable that will contain the id of the currently

Main Manager () : .

g working project.
Flla op ()
Edit oP()
Insert oOp() Project_Name: This is a string variable keeping the name of currently
Databasae_op l) working project.

Run Debug Cp (]
Get Op Type ()

Directory_Default: This is a string variable that hold the default directory that will be used for saving and

furher processing of the project.

Op_Type:lt is a string variable to hold what operation will be done.

And also methods belonging to this class are:

Main_Maneger(): This is default constructor method of Main Manager class.
File_Op(): This method will call another class file object class

Edit_Op(): This method will call another class edit object class

Insert_Op(): This method will call another class insert object class

Database Op(): This method will call another class database object class
Run_Debug Op(): This method will call another class run object class
Get_Op_Type(): This method will get the operation type.

5.2. FILE_OBJECT CLASS

36



Mla Td This class has some elements that are private to this class. These elements

Project Id are:
Flla Name

Flle Cp()

New Filel()

New Projecti) File_Id: This is an integer variable that will hold id the of the file that some
Cpen Fllel()
Cpen Project (]
Open Recent ()

operation will be done.

Hawve i) Project _Id: This is an integer variable that will hold id the of the project
Bave As(] . '

Printi) that some operation will be done.

Exit ()

File Name: This is an string variable that will hold name the of the file that

some operation will be done.

And also methods belonging to this class are:

File_Op(): This is default constructor method of file object class.
New_File(): This is a method to create a new file.

New_Project(): This is a method to create a new project.

Open_File(): This is a method to open a currently existing file.
Open_Project(): This is a method to open currently existing project.
Open_Recent(): This is a method to open recently used project or file.
Save(): This is a method to save files or projects.

Save As(): This is a method to save files or projects in a selected directory.
Print(): This is a method to print the currently working document.

Exit(): This is a method to exist the file and project.

5.3. EDIT_OBJECT CLASS

cbqy 1d

Temp Str This class has some elements that are private to this class. These elements

Default Str are:

Edit Opi)
Undo Process ()

Redo Process (]
cut () Obj_Id: This is an integer variable that will hold id the of the object that

Copy () some changes will be done.

Pastel()

Dalete ()

Belact ()

Find(} 37
Find Replacal(]

Balance Braces()




Temp_Str: This is a string variable that will hold some text which will be used for cut, copy and for some

other methods of the used.

Default_Str: This is a string variable that will hold some text and like Temp_Str, will be used in some methods

like Find_Replace()

And also methods belonging to this class are:

Edit_Op(): This is default constructor method of edit object class.

Undo_Process(): This is a method to undo jobs done lastly.

Redo_Process(): This is a method to redo jobs done lastly.

Cut(): This is a method to cut a selected text or object.

Copy(): This is a method to copy a selected text or object.

Paste(): This is a method to paste a copied/cutted text or object

Delete(): This is a method to delete a selected text or object.

Select(): This is a method to select all text or objects.

Find(): This is a method to find some text.

Find_Replace(): This is a method to find some text and replace will some other text given by developer.

Balance Braces(): This is a method to balance braces.

5.4. INSERT_OBJECT CLASS

obi 1d This class has some elements that are private to this class. These elements

Cb] type are:
Cb] Name
Temp Btr

Insert oOpi)
cat ob] Type!) Obj_Id: This is an integer variable that will hold id the of the object that

Ins PreDef () will be inserted.
Ins Tagi)

Ins Image ()

Ins Image ocb] () Obj_Type: This is a string variable that will hold type of the object that will
Ins Media()

Ins Tabla()

Ing Th Object (]
Ins Formi)

Ins Hyperlink()
Ins Anchori) 38
Ins Comment ()

Insert Html ()

be inserted.




Obj Name: This is a string variable that will hold name of the object that will be inserted.

Temp_Str: This is a string variable that will be used in some methods for manipulation of data and etc.

And also methods belonging to this class are:

Insert_Op(): This is default constructor method of insert object class.
Get_Obj_Type(): This is a method to get the type of the object that will be inserted.
Ins_PreDef(): This is a method to insert some predefined script.
Ins_Tag(): This is a method to insert tags.

Ins_Image(): This is a method to insert image.

Ins Image Obj(): This is a method to insert some image objects.
Ins_Media(): This is a method to insert media.

Ins_Table(): This is a method to insert a table.

Ins_Th_Object(): This is a method to insert a table object.

Ins Form(): This is a method to insert a form and form objects.
Ins_Hyperlink(): This is a method to insert a hyperlink.
Ins_Anchor(): This is a method to insert a name anchor.

Ins_ Comment(): This is a method to insert some comments.

Ins_ Html(): This is a method to insert some HTML codes.

5.5. DATABASE_OBJECT CLASS

Uzer Name

Passwd This class has some elements that are private to this class. These elements

Table Id _
Table 8tr are:

Def Db Type
Conn Btatus

Database Opl()
Connect ()
Disconnact () a database.
et Db Type (]

Select Db()

et Conn sStatus()

et Tablas()

Create Tablel(] 3
Update Db()
Edit Tables ()

User_Name: This is a string variable that will hold username to connect to




Passwd: This is a string variable that will hold password to connect to a database.

Table_Id: This is an integer variable that will hold the id of the table which will be created or processed.

Table_Str: This is a string variable that will hold text for table processing.

Def Db_Type: This is a string variable that will hold the database type that user will connect.

Conn_Status: This is a string variable that will hold the connection status to a database.

And also methods belonging to this class are:

Database Op(): This is default constructor method of database object class.

Connect(): This is a method to connect to a database.

Disconnect(): This is a method to disconnect from a database.

Get_Db_Type(): This is a method to get database type of the database that will be connected..
Select_Db(): This is a method to select database name from connected database.
Get_Conn_Status(): This is a method to get the connection status to a database.
Get_Tables(): This is a method to get the names of tables from a database.

Create_Table(): This is a method to create a new database table.

Update_Db(): This is a method to update the changes that will be done.

Edit_Tables(): This is a method to edit and make some changes to database tables.

5.6. RUN_OBJECT CLASS

Process Type
Temp Str This class has some elements that are private to this class. These elements

Break Polnt are:

Highlight Btr
out Str

Fun Debug Op ()
Run ()

Debug() which is either a run or debug process.
zat Pr Type (]

et Run Hist (]

et Debug Hist ()

Put Break Pnts()

Highlight ()

Process_Type: This is a string variable that will hold the type of process




Temp_Str: This is a string variable that will be used in debugging process.

Break_Point: This is an integer array that will hold line numbers which are with break points.

Highlight Str: This is a string variable that will hold highlighted text lines.

Out_Str: This is a string variable that will hold output of some debugging process.

And also methods belonging to this class are:

Run_Debug Op(): This is default constructor method of run_object class.

Run(): This is a method to run the project or file.

Debug(): This is a method to debug the project or file.

Get_Pr_Type(): This is a method to get process type whether to run or debug the project or file.
Get_Run_Hist(): This is a method to get the results of previous runs of the project or file.

Get_Debug_Hist(): This is a method to get the results of previous debugs of the project or file.

Put_Break Pnts(): This is a method to put breakpoints determined by developer during debug process.

Highlight(): This is a method to highlight some special texts or break point lines during debugging.

6. USER INTERFACE DESIGN

User interface is such an important concept that it directly affects the user to decide to use the
software or not, regardless of the quality of other parts of the software. No one wants to use a
not-user-friendly software. So, we tried to design (and will go on trying) the graphical user
interface (GUI) as much user-friendly as we could. Below, we will try to explain the GUI in

detail and we will give some screenshots when needed.

41



! Slarfedt =
Fis Ef Faal Caldbads Run Hee
o A 7 My 0

(I Codi [ T

Prapeies Twirla Datsane

Figure 1 An empty program window

6.1 Menus

We will have 6 menus on the top of the application screen. These menus are “File”,

“Edit”, “Insert”, “Database”, “Run”, and “Help”.

6.1.1 File Menu

In the “File” menu, we will have the usual menu items. These are “New Project”,

“New File”, “Open”, “Save”, “Save as”, “Print”, “Recent Files”, and “Exit”.

“New Project” item will trigger a popup window, and in this window user will
determine the project’s name and related initial inputs that must be necessary to create a new

project.

“New File” item, like “New Project”, will trigger a popup window, and in this window
user will determine the file’s name, type and other related initial inputs that is necessary to

create a new file.



“Open” item, again, will trigger a popup window, and in this window user will be able to

open either a project or a source file to edit.

“Save” item will save the file that is active if the file is saved before. Otherwise it will

react as “Save as” item which is explained below.

“Save as” item will trigger a popup window, and in this window the location and name of
the file to be saved will be determined.

“Print” item will popup a window, and this window will give the user the opportunity to
handle print-related issues. This item is to get the hard copy of the source files.

“Recent Files” item will hold a list of recently edited files.

“Exit” item will close the program.

6.1.2 Edit Menu

Edit menu will have nine items which are: “Undo”, “Redo”, “Copy”, “Cut”, “Paste”,

“Delete”, “Find”, “Find and Replace”, “Balance Braces”.

“Undo” will take back the last performed action.

“Redo” is reverse of “Undo”.

“Copy” copies the selected parts of the source code or components in the design menu to

clipboard and does not change anything else.

“Cut” copies the selected parts of the source code or components in the design menu to

clipboard and deletes the selected parts or components.

“Paste” puts the part or component in the clipboard to desired place.

“Delete” deletes the selected part or component.

“Find” popups a window to find a pattern in the source code of the active file.

“Find and Replace” popups a window to find a pattern in the source code of the active

file and replaces these occurances with the specified pattern.

43



6.1.3 Insert Menu

“Insert” menu is a big menu. It has thirteen items and five of these items also has
subitems. Even these subitems has some subitems too. To start somehow these thirteen items
are “Tag”, “Image”, “Image Objects”, “Media”, “Table”, “Table Objects”, “Form”,
“Hyperlink”, “Email Link”, “Named Anchor”, “Date”, “Comment”, and “HTML”.

“Tag” lists all the HTML tags which are classified according to their function in a
popup window. Of course this is not only for listing. These tags can be used for entering these

tags easier into the code.

“Image” popups a window to select the image to be inserted.

“Image Objects” has three subitems. These are “Image Placeholder”, “Rollover
Image”, and “Navigation Bar”. “Image Placeholder”, as the name implies puts an image
placeholder with the specified size and text. “Rollover Image” puts an image into the
specified place and changes to another image when mouse is over. “Navigation Bar” creates a
navigation bar with images. Image changes when the mouse is over or out. It can be useful in

circumstances like one wants to show one photo of an album in every page.

“Media” has nine subitems. These are “Flash”, “Image Viewer”, “Flash Text”, “Flash
Button”, “Flash Paper”, “Flash Video”, “Shockwave”, “Applet”, and “Active X”. These
subitems are very self-explanatory that one can easily figure out what all of these is intended

to do.

“Table” insert a table with the specified number of rows, columns and properties.

“Table Objects” has ten subitems. These are “Insert Row Above”, “Insert Row
Below”, “Insert Column to the Left”, “Insert Column to the Right”, “Import Tabular Data”,
“Table”, “TR”, “TH”, “TD”, and “Caption”. First four of these insert either rows or column.
“Import Tabular Data” is supposed to parse delimited text files and put the data into the table.

Last 5 subitems are actually inserts HTML tags in the source code.



“Form” has fourteen subitems. These are “Form”, “Text Field”, “Textarea”, “Button”,
“Checkbox”, “Radio Button”, “List/Menu”, “File Field”, “Image Field”, “Hidden Field”,

“Radio Group”, “Jump Menu”, “Field Set”, and “Label”. These subitems insert implied form

objects.

“Hyperlink™ inserts an hyperlink.

“Email Link” inserts an email link.

“Named Anchor” inserts a named anchor.

“Date” inserts the date in the specified format.

“Comment” gives the opportunity to insert comments.

“HTML” has six subitems. These are “Horizantal Rule”, “Frames”, “Text Objects”,
“Script Objects”, “Head Tags”, and “Special Characters”. “Horizantal Rule” insert a
horizantal rule. “Frames” has seventeen subitems. These are “Left”, “Right”, “Top”,
“Bottom”, “Bottom Nested Left”, “Bottom Nested Right”, “Left Nested Top”, “Left Nested
Bottom™, “Right Nested Bottom™, “Right Nested Top”, “Top and Bottom”, “Top Nested
Left”, “Top Nested Right”, “Frameset”, “Frame”, “Floating Frame”, and “Noframes”. First
thirteen of them insert a frame into the implied direction. Last four are tags to insert into
source code. “Text Objects” has nineteen subitems. These are “Font”, “Bold”, “Italic”,
“Strong”, “Em”, “Paragraph”, “Block Quote”, “Preformated Text”, “H1”, “H2”, “H3”,
“Unordered List”, “Ordered List”, “List Item”, “Definition List”, ‘“Definition Term”,
“Definition”, “Abbreviation, and “Acronym”. These subitems are also self-explanatory.
“Script Objects” has two subitems: “Script”, “NoScript”. These are for JavaScript. “Head

Tags” has 6 subitems which are “Meta”, “Keywords”, “Description”, “Refresh”, “Base”, and

45



“Link”. “Special Characters” has thirteen subitems all for some special characters or symbols.
These are “Line Break”, “Non-Breaking Space”, “Copyright”, “Registered”, “Trademark”,
“Dollar”, “Pound”, “Yen”, Euro”, “Left Quote”, “Right Ouote”, “Em-Dash”, and “Other”.

“Other” popups a window that has more special characters.

6.1.4 Database Menu

“Database” menu has 2 items: “Connect” and “Disconnect” for either connecting to a

database or disconnecting from a connected database.

6.1.5 Run Menu

“Run menu” has 6 items: “Run Main Project”, “Debug Main Project”, “Run File”,

“Debug File”, “Run History”, and “Debug History”.

“Run Main Project” runs the main project.

“Debug Main Project” debugs the main project.

“Run File” runs the active file.

“Debug File” debugs the active file.
“Run History” lists recently runned projects and files.

“Debug History” holds the list of recently debugged projects and files.

6.1.6 Help Menu

“Help menu” has 2 items: “Help Contents” and “About”.
“Help Contents” is for the documentation of the software.

“About” gives some information about the software, like the version.



6.2 Tabs

There six tabs in two seperate windows. These are “File”, “Code”, “Inspector”,
“Properties”, “Events”, and “Database”.

6.2.1 File Tab

“File” tab gives an overview of the project and its folders and directories in a tree

fashion.

6.2.2 Code Tab

“Code” tab gives an overview of the active file. Classes and global variables
(including functions) are listed here in a tree fashion. The following image shows the code

tab.

47



| Fle | Code | Inspector |
(] File Mame
% = Classes
¢ = Class 1
@ member 1
% member 2
W method 1 with amquments
@ method 2 with arguments
[ Class 2
] Class 3
¢ 1Globals|
W Global Variable 1
W Global Variable 2
@ Function 1
@ Funclion 2

Figure 2 Code Tab

6.2.3 Inspector Tab

“Inspector” tab gives an overview of the objects or components like form objects in the

active file in a tree fashion. The following image shows the inspector tab.

[ Fle | code | mspector |

1 Fila Mame

% [ Forrm 1
@ Form Element 1
@ Form Element 2
@ Form Element 3
# Form Element 4
@ Form Element 5

& ] Form 2

e = Form 3

Figure 3 Inspector Tab



6.2.4 Properties Tab

“Properties” tab shows the properties of the active objects or components. The

following image shows the properties tab.

| Properties | Events | Database |
ame L |
har witdth | |
% chars I ]
e Single Line | w
value | |

lass none L=l

Figure 4 Properties Tab

6.2.5 Events Tab

“Events” tab shows the functions that are related to actions of the active components or

objects. The following image shows the events tab.

 Properties | Events | Database |

onabor -
onbilur
onechange
onclick
'ondblclick
onerror

onfocus
onkeydown
onkeypress
onkeyIp
onload
onmausedonm
ORMoUSemove
onmouseoul
OnMmouseover .
onmouseup
onresel
onresize

|4

Figure 5 Events Tab



6.2.6 Database Tab

“Database” tab is to handle active objects’ database related issues. The following image

shows the database tab. :
Properties @ Evenis _' Datahase

Database [none (v |
S0L

Figure 6 Database Tab

6.3 Main Panel

“Main Panel” will show all the opened files and database windows in a project in a

tabbed fashion. The following image shows the main panel.



S1arseil - =

Fie [l el Owisbass  Mun Pk

noos

il

Propeviers  [eeeis  Dolabane

Figure 7 Main panel with 2 tabs

In figure 7 main panel has 2 tabs. First tab shows a file named “deneme.php”. The second tab
shows a database table. Database tables will be changable in this view. Editing a cell, deleting
a row will be possible in here. Adding/deleting a column will be done in a seperate view
because the database table in figure 7 can be a result of an SQL query as well as the whole

table.

7. GANNT CHART

51



AUGLTLENL G0 LT Lo sAEp 2 ubizag Jogpg  pE

O LETL ML a0 LE L L sARRCE ubizag no aseqeeq  EE

. QrOLFZIuUnS argzienl  =dept  oday ubisag eyl o uoskay e

¥E A°E L WO G0E T wop Aep poday wltseq e e

Q005 LLNYL  S0ETLLNYL  sAEp g ubiza] szeqeeq

. AOETLUNS a0 LT Ll ANl SAEPG uoipesedald poday ]

AOST LS A0E L RS SAEREL ubizag no e

OZL LIRS a0l LLEnl sAEp g AIATY uoeoysads ]

LS L Ul 8L 20 sARp )Y ubisaq

Qg LL U 90 LU AEp ) Moday SIsABeE Jauradnbay m_

0 LLNUL A0EE 0L PEn SAER T uoipesedald poday ]

a0F LS a0 LLNYL sAEp T splawaanbay uo Aumaisay

Q0T LLAYL 9021 0L PEs SARR T uopeoyneds uo Aupizag  E]

Ay LL U0 anoralanl | sAep |F sisfjeuy uawannbay  fE

04 LLENL 909l 0L Yo sAER g Yoseazay [eouyoa)  [E]

AOZ0LE4 809l 0L Yoy sAER G Yaleasay ey pE]

AUOZ0LE4 S0TLOLRYL  sAEp shugeapy |

g LLayl  aoeol Mg sAER 07 Aaalag aunpley

ar s LLanl  argnlL g ZAER T Aaniag pue yaieasay o

aoolalk=nl  aoeol Mg SABp C uojeuiliala] adoos el i

ool 44 a0SOLNYL sAEp T uoguag wegoly

0SOLNYL SOSTEUNW  SAEP G uolezivefio weal

auoloLanl ArsTe o =ARP T uonannsuo wea)
3lwle{3a|lwlalalwlalalwlala]lmw

| Adenuep [ saquasag | | sequasop) | Jagqoioo | | dequs HEs RS . Suien el | @




71 AUETLanl  AOETLenL  Aep ) ssPojay sdfoindy  RE]| 1

B 20TV LM FLrA N A} uoneewac adfond  RE | g

AUEZELMY AOETELML sAepg ubizag adAcyodd  EE| ge

AUET LENL  AOZLELanl  sAep g adfyoyond  pE | ot

A LT LIRS A0E LU0 sAep ) uojoauunD szegeleq  EE | ge

AUFL LIRS A0ELan) sAep g 7 oqes  RE | 9o

AUELENL A0F LYl sAep g sopoys  RE| o

AT ANl areTILIMd sAepo D agsed Adon RE] | g

QU AT ELPAM QOETILML EAep g opad opun RE] | es

U9 ELENL  QO0T L PEn EAep G qel 2z RE | zZg

S0 LEELAYL A0SLTLMY sAepg paloud ares  RE | g

UELTLENL A0 LLTL UK | SAep g aidaaes  RE | oo

AUTLTLENL AUFTL LW SAep aload aap uado  RE] | g7

90 LZLMd 90ET 1L PEn SABp L a4 amap uado  RE | gz

A0 LT LIRS A0ET 1L PEk | SARR OE Ayeuonoung buippy  RE | 7

AR AR ABp g poday s paiielad oz

AULV L RENA A0S A SAER L) uonpeledald poday  E | o

A0S LM a0 LLE L uoW Shep Oz ueld woeewedy)  RE | 7

UELTLENL A0 LLTL UK | SAep g uflzag 0wy RE | ez
dlwjalafwlalalwuls Ysiulg pels | uoneang awe yse] | @

| | Adenuen | Aagqanag | | Aaquasp)




