
 1

MIDDLE EAST TECHNICAL UNIVERSITY MIDDLE EAST TECHNICAL UNIVERSITY MIDDLE EAST TECHNICAL UNIVERSITY MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERINGDEPARTMENT OF COMPUTER ENGINEERINGDEPARTMENT OF COMPUTER ENGINEERINGDEPARTMENT OF COMPUTER ENGINEERING

ServerTheon ProjectServerTheon ProjectServerTheon ProjectServerTheon Project

DetailedDetailedDetailedDetailed Design Report Design Report Design Report Design Report

BYBYBYBY

TheonTechTheonTechTheonTechTheonTech

 2

TABLE OF CONTENTS

1.0 Project Scope and Description

1.1 Problem Definition

1.2 Project Scope

2.0 Project Schedule

2.1 Work Breakdown Structure

2.2 Gantt Chart

3.0 System Modules

3.1 ServerTheon Core Module

3.2 Web Module

3.3 Mail Module

3.4 News Module

4.0 Data Design

4.1 Database Description

4.1.1 Data Objects

4.1.2 Relationships

4.2 Database Design

4.2.1 Database Table Specifications

4.2.1 Database Table SQL’s

5.0 System Design

5.1 Use-Case

5.1.1 Use-Case Scenarios

5.1.2 User Profiles

 5.1.2.1 Newsgroup Client

 5.1.2.2 Web Client

 5.1.2.3 Mail Client

 5.1.2.4 RSS Client

 5.1.2.5 Administrator

 5.1.3 Use-Case Diagrams

 5.1.3.1 The Use-Case of the Newsgroup Client

 3

 5.1.3.2 The Use-Case of the Web Client

 5.1.3.3 The Use-Case of the Mail Client

 5.1.3.4 The Use-Case of the RSS Client

5.1.3.5 The Use-Case of the Administrator

5.2 Class Diagrams

5.3 Sequence Diagrams

5.3.1 News Module

5.3.2 Mail Module

5.3.3 Web Module

5.3.4 Core Service

5.4 Activity Diagrams

5.4.1 Registration

5.4.2 User Profile Update

5.4.3 News Module

5.4.4 Web Module

5.4.5 Mail Module

6.0 User Interface Design

7.0 Hardware and Software Requirements

7.1 Software Specifications

7.2 Hardware Specifications

7.3 Development Tools

8.0 Testing Provisions

8.1 Unit Testing

8.2 Integration Testing

8.3 System Testing

9.0 Appendix

 4

1.0 Project Scope and Description

1.1 Problem Definition

Usenet is a set of protocols for generating, storing and

retrieving news articles and for exchanging these articles

among a readership which is potentially widely distributed.

Usenet is one of the oldest computer network communications

systems (established in 1980) still in widespread use.

Nowadays, the web forums and RSS newsfeeds are more commonly

used for news broadcasting and discussion sessions. For the

Unified News Exchange Server with NNTP, Mail, Web and RSS

Project, we are expected to implement the followings:

• The Message Exchange Core: A basic threaded and secure

message exchange service

• The Extension Modules: Modules providing e-mail lists,

NNTP, WWW and RSS access methods.

1.2 Project Scope

ServerTheon is mainly responsible for distributing messages

obtained via any channel, using the other channels. Whenever a

 5

subscriber posts a message to one of the extension modules, the

following tasks will be accomplished:

- The message will also be posted as mail to the subscriber

and to the related mail group.

- The message will also be posted to the related newsgroup.

- The message will also be fed to the RSS clients on web.

- The message will also be seen on the web forum.

ServerTheon Core Service communicates with Apache Web Server

and James Mail and NNTP Server while performing the message

distribution. It also communicates with the access modules,

namely web module, mail module and news module; in a service-

oriented manner.

2.0 Project Schedule

2.1 Work Breakdown Structure (Implementation)

1.0 GUI Implementations

 1.1 Authenticaton Implementation

 1.2 User Profiler Implementation

 1.3 Service Selection Implementation

 1.4 Password Operations Implementation

 1.5 NewsTheon Viewer Implementation

 1.6 NewsTheon Sender Implementation

 1.7 ForumTheon Viewer Implementation

 1.8 ForumTheon Sender Implementation

 1.9 Mail Theon Viewer Implementation

 1.10 Mail Theon Sender Implementation

 1.11 RSS Comment Viewer/Sender Implementation

 1.12 Message Searcher Implementation

 1.13 Administrator Panel Implementation

 6

 1.14 Administrator Operations Implementation

 1.15 Integration of the Implementations

2.0 Class Implementations

 2.1 Implementation of the Common Classes

 2.1.2 Authentication Class Implementation

 2.1.1 Database Connector Class Implementation

 2.1.3 Listener Class Implementation

 2.1.4 Message Converter Class Implementation

 2.2 News Module Implementation

 2.2.1 News Class Implementation

 2.2.2 News Thread Class Implementation

 2.2.3 Integration of the Classes

 2.3 MailTheon Module Implementation

 2.3.1 Webmail Class Implementation

 2.3.2 Webmail Operations Class Implementation

 2.3.3 Webmail Composer Class Implementation

 2.3.4 Webmail Reader Class Implementation

 2.3.5 Webmail Subscription Class Impletation

 2.3.6 Integration of the Classes

 2.4 Mail Module Implementation

 2.4.1 Mail Class Implementation

 2.4.2 Integration of the Classes

 2.5 RSS Comment Module Implementation

 2.5.1 RSS Comment Class Implementation

 2.5.2 RSS Comment Viewer/Sender Class Implementation

 2.5.3 Integration of the Classes

 2.6 ForumTheon Module Implementation

 2.6.1 Web Forum Class Implementation

 2.6.2 Web Forum Main Operations Class Implementation

 2.6.3 Web Forum Subscription Class Implementation

 2.6.4 Web Forum Search Class Implementation

 2.6.5 Web Forum Group Operations Class Implementation

 7

 2.6.6 Web Forum Article Sender Class Implementation

 2.6.7.Web Forum Article Editer Class Implementation

 2.6.8 Integration of the Classes

 2.7 Web Module Implementation

 2.7.1 RSS Handler Class Implementation

 2.7.2 Forum Handler Class Implementation

 2.7.3 Admin Handler Class Implementation

 2.7.4 Integration of the Classes

 2.8 NewsTheon Module Implementation

 2.8.1 NewsTheon Class Implementation

 2.8.2 News Operations Class Implementation

 2.8.3 News Sender Class Implementation

 2.8.4 News Reader Class Implementation

 2.8.5 News Subscription Class Impletation

 2.8.6 Integration of the Classes

 2.9 ServerTheon Core Module Implementation

 2.9.1 Core Service Class Implementation

 2.9.2 Service Message Class Implementation

 2.9.3 Service Response Class Implementation

 2.9.4 Integration of the Classes

 2.10 Admin Module Implementation

 2.10.1 Admin Module Implementation

 2.10.2 Admin Display Class Implementation

 2.10.3 Admin Group Operations Class Implementation

 2.10.4 Admin Message Operations Class Implementation

 2.10.5 Admin Sender Class Implementation

 2.10.6 Admin Reader Class Implementation

 2.10.7 Admin Client Operations Class Implementation

 2.10.8 Integration of the Classes

 3.0 Integration of the Modules

 4.0 Testing

 8

 4.1 Unit Testing

 4.2 Integration Testing

 4.3 Debugging & Fixing

 5.0 Documentation

 5.1 User-Manuel Preparation

 5.2 Installation Manuel Preparation

 6.0 Packaging and Releasing

 6.1 Packaging Whole Project

2.2 Gantt Chart

The Gantt Chart can be seen under Appendix-A.

3.0 System Modules

The ServerTheon Modules can be studied in two parts. The first

one is server related modules. The server related modules of

the ServerTheon Project that we are going to explain explicitly

are ServerTheon Core Module, Web Module, News Module and Mail

Module. The second one is client related modules. The client

related modules are MailTheon Module, NewsTheon Module, RSS

Comment Module, ForumTheon Module, Admin Module.

3.1 ServerTheon Core Module

Servertheon core service exists in the core of Servertheon.

Servertheon core service will be implemented as web services.

It is mainly responsible for distributing messages obtained via

any channel, using the other channels. ServerTheon Core Service

communicates with James Mail and NNTP Server while performing

this distribution. It also communicates with the access

modules, namely web module, mail module and news module in a

service-oriented manner. ServerTheon Core Service will organize

interactions among the access modules and between them and the

servers. It is also responsible for providing database

 9

connectivity of the modules and the servers. The classes in the

module are as follows:

• Core Service Class

• Service Message Class

• Service Response Class

• Database Connector Class

The internals of these classes will be explained in the class

descriptions part.

3.2 Web Module

Web Module provides the interaction of ServerTheon with the

clients using HTTP access method. These clients include forum

clients who are using ForumTheon, RSS clients who are using any

RSS aggregator application and administrative users who will

configure ServerTheon using Administration Web Interface. Web

Module obtains HTTP requests, processes them, invokes

CoreService whenever required and finally returns HTTP response

to the client. It also helps Mail Module and News Module in

interacting with the clients using NewsTheon and MailTheon

interfaces. The classes in the module are as follows:

• RSS Handler Class

• Forum Handler Class

• Admin Handler Class

 10

The internals of these classes will be explained in the class

descriptions part.

3.3 Mail Module

The responsibility of Mail Module is to control the access of

clients to ServerTheon via SMTP and POP3 protocols. A client

using any e-mail application will interact with Mail Module.

Mail Module is the main module that a client using e-mail

access through MailTheon web interface will communicate with.

However, since MailTheon is served using HTTP, Mail Module will

also communicate with Web Module while interacting with a

client that uses MailTheon, and this communication will be

organized by ServerTheon Core Service. The classes in the

module are as follows:

• Authentication Class

• Message Converter Class

• Listener Class

• Database Connector Class

The internals of these classes will be explained in the class

descriptions part.

3.4 News Module

News module enables the clients to access ServerTheon via NNTP.

This access method may occur in two different ways: Firstly, a

client can use any news reader application such as Thunderbird.

And secondly, a client may prefer to read newsgroup messages by

using NewsTheon web interface.

If the second way is preferred, then as it is in the operation

of Mail Module, News Module will interact with Web Module with

 11

the help of ServerTheon Core Service. The classes in the module

are as follows:

• News Class

• News Thread Class

• Authentication Class

• Listener Class

The internals of these classes will be explained in the class

descriptions part.

4.0 Data Design

2.1 Database Description

Data Design is the first step of the design procedure.

Therefore, every other step is dependent to this step. To

design our database, we create data object then we organize

some relationships between these objects. We have defined our

relationships by constructing ER diagrams in the requirement

analysis phase. In the following sections we will look at data

objects, their relationships, create tables and the data

dictionary for data objects.

2.1.1 Data Objects

a. Client

The Client entity saves all information related to a user.

Client has to be authenticated. Some of the attributes are

optional, i.e. can be ‘null’. Entity contains a primary key

which is Client ID. Client ID is auto-incremented with seed

one. Attributes are:

• ClientID

 12

• ClientName

• ClientPassword

• ClientSecretQuestion

• ClientSecretAnswer

• Name

• Surname

• Gender

• DateofBirth

• CountryID

• StateID

• ZipCode

• Telephone

• E-mail

b. Admin

The Admin entity saves all information related to an admin.

Admin have to be authenticated. All attributes are mandatory,

i.e. can not be ‘null’. Entity contains a primary key which is

AdminID. AdminID is auto-incremented with seed one. Attributes

are:

• AdminID

• AdminName

• AdminPassword

• Name

• Surname

• Gender

• DateofBirth

• CountryID

• StateID

 13

• ZipCode

• Telephone

• E-mail

c. Message

Message entity contains the information about messages. All

attributes of the entity must be entered. However,

ParentMessageID of first message will be null. Primary key is

MessageID. MessageID is randomly generated by the system

because of security reasons such as SQL injection. MessageSize

is size of the message Attributes are:

• MessageID

• MessageText

• MessageSubject

• MessageSize

• MessageIsRead

• DateTime

• ParentMessageID

d. Attachment

Attachment entity contains the information about attachments.

All entries must be entered. Primary key is AttachmentID.

AttachmentID is auto-incremented with seed one. Attributes are:

• AttachmentID

• FilePath

• FileName

e. Group

Group entity saves all information about groups such as

computer is a group and hardware and software is its subgroups.

 14

All entries must be entered. Primary key is GroupID. GroupID is

auto-incremented with seed one. Attributes are:

• GroupID

• GroupName

• GroupDescription

• GroupParentID

f. Service

Service entity saves all information about services. Services

are news, mail, forum and RSS. All entries must be entered.

Primary key is ServiceID. ServiceID is auto-incremented with

seed one. Attributes are:

• ServiceID

• ServiceName

2.1.2 Relationships

a. Send

Each client may send zero or many messages. Every message must

be sent by exactly one client. Send relation attributes are:

• MessageID

• ClientID

b. Select0

Each client may select one or more services. Each service may

be selected by zero or many client.

• ServiceID

• ClientID

c.Select1

Each client may select one or more groups. Each group may be

selected by zero or many client.

 15

• GroupID

• ClientID

d. Has

Every message has exactly one group. Every group may be owned

by zero or many messages.

• MessageID

• GroupID

e. Has1

Each message has zero or many attachments. Every attachment

must be owned by exactly one message.

• MessageID

• AttachmentID

f. Edit0

Every message may be edited by zero or one client. Each client

may edit zero or many message.

• MessageID

• ClientID

g. Delete0

Every message may be deleted by zero or one client. Each client

may delete zero or one message.

• MessageID

• ClientID

h. AdSendMessage

Each admin may send zero or many messages. Each message is sent

by only one admin

 16

• AdminID

• MessageID

i. AdEditMessage

Each admin may edit zero or many messages. Each message may be

edited by zero or many admin.

• AdminID

• MessageID

• AdEditDate

j. AdDeleteMessage

Each admin may delete zero or many messages. Each message may

be deleted zero or one admin.

• AdminID

• MessageID

• AdDeleteDate

k. AdEditClient

Each admin may edit zero or many client. Each client may be

edited by zero or many admin.

• AdminID

• ClientID

• AdEditDate

l. AdDeleteClient

Each admin may delete zero or many client. Each client may be

deleted by zero or one admin.

• AdminID

• ClientID

• AdDeleteDate

 17

m. AddGroup

Each admin must add one or more group. Each group must be added

by exactly one admin.

• AdminID

• GroupID

• GroupCreationDate

n. EditGroup

Each admin may edit zero or many group. Each group may be

edited by zero or many admin.

• AdminID

• GroupID

• EditDate

o. DeleteGroup

Each admin may delete zero or many group. Each group may be

deleted by zero or one admin.

• AdminID

• GroupID

• DeleteDate

2.2 Database Design

As a database management system we use MYSQL. We stored our

data objects in tables. We created our tables using following

codes.

2.2.1 Database Table Specifications

NOTE: PK = PRIMARY KEY

 FK = FOREIGN KEY

a. Client

 18

Data Type- Size Format

ClientID int, auto-incr, not

null , (PK)

Number

ClientName varchar(30),not

null

Text

ClientPassword varchar(10),not

null

Hidden Text

Name varchar(30),not-

null

Text

Surname varchar(30),not-

null

Text

Gender varchar(10),not-

null

Text

YearofBirth Date Date

CountryID Int (FK) Text

StateID Int (FK) Text

ZipCode Int Number

Telephone varchar(15) Text

E-mail varchar(40) Text

b.Admin

Data Type- Size Format

AdminID int, auto-incr, not

null , (PK)

Number

AdminName varchar(30),not

null

Text

AdminPassword varchar(10),not

null

Hidden Text

Name varchar(30),not- Text

 19

null

Surname varchar(30),not-

null

Text

Gender varchar(10),not-

null

Text

YearofBirth Date Date

CountryID Int (FK) Text

StateID Int (FK) Text

ZipCode Int Number

Telephone varchar(15) Text

E-mail varchar(40) Text

c. Message

Data Type-Size Format

MessageID Int NOT NULL

auto_incr , (PK)

Text

MessagText Text Text

MessageSubject varchar(100) Text

MessageSize int Number

MessageIsRead” Bit Number

SendDate DateTime DateTime

ParentMessageID Int Text

d. Attachment

Data Type-Size Format

AttachmentID Int NOT NULL

auto_incr , (PK)

Number

FilePath varchar(100) Text

FileName varchar(50) Text

 20

e. Group

Data Type-Size Format

GroupID Int NOT NULL

auto_incr , (PK)

Number

GroupName varchar(50) Text

GroupDesc text Text

GroupParentID int Number

f. Service

Data Type-Size Format

ServiceID Int NOT NULL

auto_incr , (PK)

Number

ServiceName varchar(20) Text

g. Send

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

ClientID Int NOT NULL (FK) Number

h. Select0

Data Type-Size Format

ServiceID Int NOT NULL (FK) Number

ClientID Int NOT NULL (FK) Number

i. Select1

Data Type-Size Format

GroupID Int NOT NULL (FK) Number

ClientID Int NOT NULL (FK) Number

j. Has

 21

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

GroupID Int NOT NULL (FK) Number

k. Has1

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

AttachmentID Int NOT NULL (FK) Number

l. Edit0

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

ClientID Int NOT NULL (FK) Number

EditDate DateTime DateTime

m. Delete0

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

ClientID Int NOT NULL (FK) Number

DeleteDate DateTime DateTime

n. AdSendMessage

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

o. AdEditMessage

 22

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

AdEditDate DateTime DateTime

p. AdDeleteMessage

Data Type-Size Format

MessageID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

AdDeleteDate DateTime DateTime

r. AdEditClient

Data Type-Size Format

ClientID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

AdEditDate DateTime DateTime

s. AdDeleteClient

Data Type-Size Format

ClientID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

AdDeleteDate DateTime DateTime

t. AddGroup

Data Type-Size Format

GroupID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

GroupCreationDate DateTime DateTime

 23

u. EditGroup

Data Type-Size Format

GroupID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

EditDate DateTime DateTime

v. DeleteGroup

Data Type-Size Format

GroupID Int NOT NULL (FK) Number

AdminID Int NOT NULL (FK) Number

DeleteDate DateTime DateTime

y. Country

Data Type-Size Format

CountryID Int NOT NULL (PK) Number

CountryName Varchar(30) NOT

NULL

Text

z. State

Data Type-Size Format

StateID Int NOT NULL (PK) Number

StateName Varchar(30) NOT

NULL

Text

CountryID Int NOT NULL (FK) Number

2.2.2 Database Table SQL’s

 24

CREATE TABLE Country(

CountryID INTEGER NOT NULL AUTO_INCREMENT,

CountryName VARCHAR(30) NOT NULL,

PRIMARY KEY(CountryID)

);

CREATE TABLE State(

StateID INTEGER NOT NULL AUTO_INCREMENT,

StateName VARCHAR(30) NOT NULL,

CountryID INTEGER NOT NULL,

PRIMARY KEY (StateID),

FOREIGN KEY (CountryID) REFERENCES Country (CountryID)

);

CREATE TABLE Client(

 ClientID INTEGER NOT NULL AUTO_INCREMENT,

 ClientName VARCHAR(30) NOT NULL,

 ClientPassword VARCHAR(15) NOT NULL,

 Name VARCHAR(30) NOT NULL,

 Surname VARCHAR(30) NOT NULL,

 Gender VARCHAR(10) NOT NULL,

ClientSecretQuestion VARCHAR(50) NOT NULL,

ClientSecretAnswer TEXT NOT NULL,

YearofBirth DATE NOT NULL,

 CountryID INTEGER NOT NULL,

 StateID INTEGER NOT NULL,

 ZipCode INTEGER NOT NULL,

 Telephone VARCHAR(30),

 EMail VARCHAR(40),

 PRIMARY KEY(ClientID),

 FOREIGN KEY (CountryID) REFERENCES Country(CountryID),

 FOREIGN KEY (StateID) REFERENCES State(StateID)

 25

);

CREATE TABLE Admin(

 AdminID INTEGER NOT NULL AUTO_INCREMENT,

 AdminName VARCHAR(30) NOT NULL,

 AdminPassword VARCHAR(15) NOT NULL,

 Name VARCHAR(30) NOT NULL,

 Surname VARCHAR(30) NOT NULL,

 Gender VARCHAR(10) NOT NULL,

AdminSecretQuestion VARCHAR(50) NOT NULL,

AdminSecretAnswer TEXT NOT NULL,

 YearofBirth DATE NOT NULL,

 CountryID INTEGER NOT NULL,

 StateID INTEGER NOT NULL,

 ZipCode INTEGER NOT NULL,

 Telephone VARCHAR(30),

 EMail VARCHAR(40),

 PRIMARY KEY(AdminID),

 FOREIGN KEY (CountryID) REFERENCES Country(CountryID),

 FOREIGN KEY (StateID) REFERENCES State(StateID)

);

CREATE TABLE Message (

 MessageID INTEGER NOT NULL AUTO_INCREMENT,

 MessageText TEXT,

 MessageSubject VARCHAR(100) DEFAULT '[NONE]',

 MessageSize INTEGER NOT NULL,

 MessageIsRead BIT DEFAULT 0,

 SendDate DATETIME NOT NULL,

 ParentMessageID INTEGER DEFAULT NULL,

 26

 PRIMARY KEY (MessageID)

);

CREATE TABLE Attachment(

 AttachmentID INTEGER NOT NULL AUTO_INCREMENT,

 FilePath VARCHAR(300),

 FileName VARCHAR(100),

 PRIMARY KEY(AttachmentID)

);

CREATE TABLE Groups(

 GroupID INTEGER NOT NULL AUTO_INCREMENT,

 GroupName VARCHAR(50),

 GroupDesc TEXT,

 GroupParentID INTEGER DEFAULT NULL,

 PRIMARY KEY(GroupID)

);

CREATE TABLE Service(

 ServiceID INTEGER NOT NULL AUTO_INCREMENT,

 ServiceName VARCHAR(20),

 PRIMARY KEY(ServiceID)

);

CREATE TABLE Send (

 MessageID INTEGER NOT NULL,

 ClientID INTEGER NOT NULL,

 UNIQUE(MessageID),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

 27

);

CREATE TABLE Select0 (

 ServiceID INTEGER NOT NULL,

 ClientID INTEGER NOT NULL,

 UNIQUE (ServiceID,ClientID),

 FOREIGN KEY (ServiceID) REFERENCES Service(ServiceID),

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

);

CREATE TABLE Select1 (

 GroupID INTEGER NOT NULL,

 ClientID INTEGER NOT NULL,

 UNIQUE (GroupID ,ClientID),

 FOREIGN KEY (GroupID) REFERENCES Groups(GroupID),

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

);

CREATE TABLE Has (

 MessageID INTEGER NOT NULL,

 GroupID INTEGER NOT NULL,

 UNIQUE (MessageID,GroupID),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

 FOREIGN KEY (GroupID) REFERENCES Groups(GroupID)

);

CREATE TABLE Has1 (

 MessageID INTEGER NOT NULL,

 AttachmentID INTEGER NOT NULL,

 UNIQUE (AttachmentID),

 28

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

FOREIGN KEY (AttachmentID) REFERENCES

Attachment(AttachmentID)

);

CREATE TABLE Edit0 (

 MessageID INTEGER NOT NULL,

 ClientID INTEGER NOT NULL,

 EditDate DATETIME NOT NULL,

 UNIQUE (MessageID,EditDate),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

);

CREATE TABLE Delete0 (

 MessageID INTEGER NOT NULL,

 ClientID INTEGER NOT NULL,

 DeleteDate DATETIME NOT NULL,

 UNIQUE (MessageID,ClientID,DeleteDate),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID),

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

);

CREATE TABLE AdSendMessage (

 MessageID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 UNIQUE(MessageID),

 29

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE AdEditMessage (

 MessageID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 AdEditDate DATETIME NOT NULL,

 UNIQUE (MessageID,AdminID,AdEditDate),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID)

ON DELETE CASCADE,

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE AdDeleteMessage (

 MessageID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 AdDeleteDate DATETIME NOT NULL,

 UNIQUE (MessageID,AdDeleteDate),

 FOREIGN KEY (MessageID) REFERENCES Message(MessageID),

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE AdEditClient (

 ClientID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 AdEditDate DATETIME NOT NULL,

 UNIQUE (ClientID,AdminID,AdEditDate),

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID)

ON DELETE CASCADE,

 30

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE AdDeleteClient (

 ClientID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 AdDeleteDate DATETIME NOT NULL,

 UNIQUE (ClientID),

 FOREIGN KEY (ClientID) REFERENCES Client(ClientID),

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE AddGroup (

 GroupID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 GroupCreationDate DATETIME NOT NULL,

 UNIQUE (GroupID),

 FOREIGN KEY (GroupID) REFERENCES Groups(GroupID)

ON DELETE CASCADE,

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

CREATE TABLE EditGroup (

 GroupID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 EditDate DATETIME NOT NULL,

 UNIQUE (GroupID,EditDate),

 FOREIGN KEY (GroupID) REFERENCES Groups(GroupID)

ON DELETE CASCADE,

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID)

);

 31

CREATE TABLE DeleteGroup (

 GroupID INTEGER NOT NULL,

 AdminID INTEGER NOT NULL,

 DeleteDate DATETIME NOT NULL,

 UNIQUE (GroupID),

 FOREIGN KEY (GroupID) REFERENCES Groups(GroupID),

 FOREIGN KEY (AdminID) REFERENCES Admin(AdminID));

5.0 System Design

5.1 Use-Case

5.1.1 Use-Case Scenarios

The scenarios often called use-cases provide a description of

how the system will be used. Once actors have been identified,

use-cases can be developed. The use-case describes the manner

in which an actor interacts with the system.

To create our use-cases; we have to identify the actors that

use the ServerTheon. There are 6 actors in our system. These

are Visitor, Newsgroup Client, Web Client, Mail Client, RSS

Client and Administrator:

Actor-1: Visitor

Usage Scenario -1:

1. The visitor accesses our system via internet.

2. The visitor makes registration by using the sign-up feature

of our system.

3. During registration, the visitor selects services which

he/she wants.

4. After registration, the visitor logins by using the sign-in

feature of our system.

Actor-2: Newsgroup Client

 32

Usage Scenario -2:

1. The Newsgroup client subscribes to a group or groups which

she/he wants to follow.

2. The Newsgroup client unsubscribes from a group or groups

which she/he does not want to follow anymore.

3. The Newsgroup client reads messages in groups which he/she

subscribed.

4. The Newsgroup client creates a new thread in a group which

he/she subscribed.

5. The Newsgroup client sends a follow-up to a thread.

6. While replying a message, client quotes.

7. The Newsgroup client deletes his/her message.

8. The Newsgroup client logs out of our system.

Actor-3: Web Client

Usage Scenario -3:

1. The WebForum client reads a message in any group.

2. The WebForum client creates a new topic in any group.

3. The WebForum client replies to a message.

4. While replying a message, client quotes.

5. The WebForum client deletes or edits his/her message that

he/she does not want to be read.

6. The WebForum client makes a search to find a keyword that

he/she is looking for.

7. The WebForum client logs out of our system.

Actor-4: Mail Client

Usage Scenario -4:

1. The Mail client subscribes to a group or groups which she/he

wants to follow.

2. The Mail client unsubscribes from a group or groups which

she/he does not want to follow anymore.

 33

3. The Mail client gets mail in groups which he/she subscribed.

4. The Mail client sends a mail to a group which he/she

subscribed.

5. The Mail client replies to a mail.

6. While replying a message, client quotes.

7. The Mail client deletes his/her mail.

8. The Mail client logs out of our system.

Actor-5: RSS Client

Usage Scenario -5:

1. The RSS client can reach and read RSS comments.

2. The RSS client can write/send a comment.

Actor-6: Administrator (Admin)

Usage Scenario -6:

1. Admin reads message in any group.

2. Admin sends message to any group when he/she wants to make

an announcement or reply a message.

3. Admin deletes a message when he/she thinks that the message

is inappropriate.

4. Admin edits the information of a client.

5. Admin deletes the account of a client.

6. Admin logs out of our system.

5.1.2 User Profiles

 5.1.2.1 Newsgroup Client

• can subscribe to a group

• can unsubscribe from a group

• can read messages in groups

• can create a new thread in a group

• can send a follow-up to a thread

• can quote

 34

• can delete his/her message

• can log out of the system

 5.1.2.2 Web Client

• can read a message in any group

• can create a new topic in any group

• can reply to a message

• can quote

• can delete or edit his/her message

• can make a search to find a keyword

• can log out of the system

 5.1.2.3 Mail Client

• can subscribe to a group

• can unsubscribe from a group

• can get mail from his/her groups

• can send a mail to one of his/her groups

• can reply to a mail

• can quote

• can delete his/her mail

• can log out of our system

5.1.2.4 RSS Client

• can reach and read RSS comments.

• can write/send a comment

 5.1.2.5 Administrator

• can read message in any group

 35

• can send message to any group

• can delete inappropriate messages

• can edit the client information

• can delete the client account

• can log out of our system

5.1.3 Use-Case Diagrams

 Visitor

Register Select Prefenences

Newsgroup Client

 Web Client

Mail Client

 RSS Client

5.1.3.1 The Use-Case of the Newsgroup Client

 Visitor

Login

Newsgroup Client

 36

Newsgroup Client

Post Messages

Read Messages

Subscribe a Group

Unsubscribe a

Group

Logout

Delete Messages

5.1.3.2 The Use-Case of the Web Client

 37

Web Client

Post Messages

Read Messages

Visitor

Login

Web Client

Logout

Search

Edit Messages

Delete Messages

5.1.3.3 The Use-Case of the Mail Client

 38

Mail Client

Send Mail

Get Mail

Subscribe a Group

Unsubscribe a

Group

Visitor

Login

Mail Client

Logout

Delete Mail

 39

5.1.3.4 The Use-Case of the RSS Client

RSS Client

Pull RSS Feed

Visitor

Login

RSS Client

Write/send

Comment

5.1.3.5 The Use-Case of the Administrator

Administrator

Post / Read / Delete

Messages

Add / Delete / Edit
Groups

Visitor

Login

Administrator

Logout

Delete / Edit
Clients

 40

5.2 Class Diagrams

5.2.1 Description of Core Service

ServerTheonCore

- serviceTypes: enum

+ start()
+ stop()
- init()
+ newServiceMessage(message: ServiceMessage) : ServiceResponse
- determineType(message: ServiceMessage) : int
- broadcastNewPost(message: String) : boolean
- performAdminOperation(message: String) : boolean
- performGroupOperation(message: String) : boolean
- generateResponse(success: boolean, info: String) : ServiceResponse

ServiceResponse

+ response : boolean
+ data : String

ServiceMessage

+ request : String
+ sender : String
+ data : String

sends receivesModule

{abstract}

NewsModule MailModule WebModule

DatabaseConnector

<<uses>>

receives sends

 41

Attributes of ServiceMessage

Attribute Name Description

request Identifies the type of request

sender Identifies module that sends this request

data Contains additional information about the

request such as message content that is

posted or messageID of the message to be

edited or deleted,etc.

Attributes of ServiceResponse

Method Name Description

response Indicates the result of the service operation

(successful or not)

data Contains additional information about the

service response such as type of or the reason

for the error.

Attributes and methods of ServerTheonCore

Attribute Name Description

serviceTypes An enumeration of the service request types,

used for determining which operation will be

performed.

Method Name Description

start Starts ServerTheon by instantiating

Server Theon modules to listen on

specified ports in the configuration

 42

Method Name Description

file.

stop Stops ServerTheon by calling each

module’s stop method.

newServiceMessage Firstly, determines type of service

request by invoking determineType

method. Then, invokes related method,

namely performAdminOperation,

performGroupOperation, or

broadcastNewPost. After the invoked

method returns a result, this method

calls generateResponse method for

relevant ServiceResponse creation and

finally, it returns back the generated

response to the caller Module.

determineType Returns the type of service requested

as a value from serviceTypes

enumeration. It uses request attribute

of ServiceMessage class passed to it by

newServiceMessage.

performGroupOperation Processes service requests that related

group subscriptions of the clients.

performAdminOperation Processes service requests that have

origin from AdminModule

broadcastNewPost Distributes new messages posted using

one access method, via the other access

methods.

generateResponse According to the parameters passed this

method instantiate a ServiceResponse

object and returns it to the caller

method, namely newServiceRequest.

 43

5.2.2 Description of News Module

NewsModule

- authenticatedClientList : String[*]

+ start()
+ stop()
+ newRequest(connection: Socket)
- checkAuthentication(connection: Socket) : boolean

1

1

Listener
Authentication

1

MessageConverter

0..*

0..1

1

1

NewsModuleThread

- connection: Socket
- currentCommand: String

+ processRequest(connection: Socket)
- forwardToNewsServer()
- generateServiceMessage() : ServiceMessage
- sendServiceMessage(msg: ServiceMessage) : ServiceResponse
- isServiceRequired() : boolean

0..*

 44

Attributes and methods of NewsModule

Attribute Name Description

authenticatedClientList Array of strings for fast determining

whether the origin of the incoming

connection request is authenticated or

not. Each string stores IP and port

information generated by Authentication

class.

Method Name Description

start Starts the module on the specified port

determined via class constructor.

Initiates a Listener object and makes it

start listening.

stop Stops the module after stopping the

listener attached to it.

newRequest Checks whether the connection made is

authenticated or not by calling

checkAuthentication method. If it is

authenticated, runs a new thread of

NewsModuleThread supplied with the

connection socket. Otherwise, invokes

Authentication class for requesting

authentication from the user, then if

Authentication class indicates a

successful login saves the IP and port

information in authenticatedClientList

checkAuthentication Checks the authentication of the

incoming connection by searching IP and

 45

Method Name Description

remote port information in

authenticatedClientList.

Attributes and methods of NewsModuleThread

Attribute Name Description

connection Socket of the connection with

authenticated client, passed by

NewsModule while running the thread.

currentCommand String containing the packet data

involving currently received NNTP

command from the client. Updated

continuously by processRequest method

Method Name Description

processRequest Connects the incoming socket to NNTP

server and continuously checks the

data flow through the socket. Using

isServiceRequired method, this method

controls the NNTP requests. If they

are of type post or cancel,

generateServiceMessage and

sendServiceMessage methods are called

respectively in order to notify

ServerTheonCore. Otherwise, NNTP

request is forwarded directly to NNTP

server via using forwardToNewsServer

method.

 46

Method Name Description

forwardToNewsServer Forwards NNTP request by opening a

socket to local news server port,

hence response from the news server

can directly be sent back using this

socket.

generateServiceMessage Instantiates a ServiceMessage object

in accordance with the request

contained in currentCommand attribute.

Invokes a MessageConverter object for

converting message in NNTP format to

common format used by ServerTheon,

then sets the attributes of this

object and returns it back to caller

method, namely processRequest.

sendServiceMessage Invokes ServerTheonCore’s

newServiceMessage method passing

ServiceMessage object generated by

generateServiceMessage method.

isServiceRequired Returns true if the currentCommand

attribute contains NNTP post or cancel

request, false otherwise.

 47

5.2.3 Description of Mail Module

MailModule

- authenticatedClientList : String[*]

+ start()
+ stop()
+ newRequest(connection: Socket)
- checkAuthentication(connection: Socket) : boolean

1

1

Listener
Authentication

1

MessageConverter

0..*

0..1

1

1

MailModuleThread

- connection: Socket
- currentCommand: String

+ processRequest(connection: Socket)
- forwardToMailServer()
- generateServiceMessage() : ServiceMessage
- sendServiceMessage(msg: ServiceMessage) : ServiceResponse
- isMailToGroup() : boolean

0..*

DatabaseConnector

1

0..1

 48

Attributes and methods of MailModule

Attribute Name Description

authenticatedClientList Array of strings for fast determining

whether the origin of the incoming

connection request is authenticated or

not. Each string stores IP and port

information generated by Authentication

class.

Method Name Description

start Starts the module on the specified port

determined via class constructor.

Initiates a Listener object and makes it

start listening.

stop Stops the module after stopping the

listener attached to it.

newRequest Checks whether the connection made is

authenticated or not by calling

checkAuthentication method. If it is

authenticated, runs a new thread of

MailModuleThread supplied with the

connection socket. Otherwise, invokes

Authentication class for requesting

authentication from the user, then if

Authentication class indicates a

successful login saves the IP and port

information in authenticatedClientList

checkAuthentication Checks the authentication of the

incoming connection by searching IP and

 49

Method Name Description

remote port information in

authenticatedClientList.

Attributes and methods of MailModuleThread

Attribute Name Description

connection Socket of the connection with

authenticated client, passed by

MailModule while running the thread.

currentCommand String containing the packet data

involving currently received SMTP

command from the client. Updated

continuously by processRequest method

Method Name Description

processRequest Connects the incoming socket to SMTP

server and continuously checks the

data flow through the socket. Using

isMailToGroup method, this method

controls the SMTP requests. If they

contain any mailing list recipients,

generateServiceMessage and

sendServiceMessage methods are called

respectively in order to notify

ServerTheonCore. Otherwise, SMTP

request is forwarded directly to SMTP

server via using forwardToMailServer

method.

 50

Method Name Description

forwardToMailServer Forwards SMTP request by opening a

socket to local mail server port,

hence response from the mail server

can directly be sent back using this

socket.

generateServiceMessage Instantiates a ServiceMessage object

in accordance with the request

contained in currentCommand attribute.

Invokes a MessageConverter object for

converting message in SMTP format to

common format used by ServerTheon,

then sets the attributes of this

object and returns it back to caller

method, namely processRequest.

sendServiceMessage Invokes ServerTheonCore’s

newServiceMessage method passing

ServiceMessage object generated by

generateServiceMessage method.

isMailToGroup Returns true if the currentCommand

attribute contains RCPT line that

points to a mailing list served by

ServerTheon, false otherwise. While

comparing e-mail addresses contained

in RCPT lines, this Method invokes a

DatabaseConnector object to fetch a

list of mailing lists that are served

by ServerTheon.

 51

5.2.4 Description of Web Module

WebModule

+ start()
+ stop()
+ newRequest(connection: Socket)

1

1

Listener

WebForumModule

0..*

0..1

1

1

WebModuleThread

- connection: Socket
- currentRequest: String

+ processRequest(connection: Socket)
- determineRequestTarget() : String
- generateServiceMessage(request: String) : ServiceMessage
- sendServiceMessage(msg: ServiceMessage) : ServiceResponse
+ requestService(request: String) : boolean

AdminModule

0..1

1

RSSCommentModule

0..1

1

 52

Methods of WebModule

Method Name Description

start Starts the module on the specified port

determined via class constructor.

Initiates a Listener object and makes it

start listening.

stop Stops the module after stopping the

listener attached to it.

newRequest Runs a new thread of WebModuleThread

passing it the socket for the current

incoming connection.

Attributes and methods of WebModuleThread

Attribute Name Description

connection Socket of the connection with the

client, passed by WebModule while

running the thread.

currentRequest String containing the packet data

involving currently received HTTP

request from the client.

Method Name Description

processRequest Firstly, determines the target module

of the incoming HTTP request by

calling determineRequestTarget. Then,

the target module indicated by the

return value is invoked, and this

 53

Method Name Description

thread waits for the invoked module to

finish its job since it may invoke

requestService method of this thread.

requestService This method is called by the module

invoked by processRequest method when

necessary. It calls first

generateServiceMessage and then

sendServiceMessage methods for

informing ServerTheonCore about an

operation.

generateServiceMessage Instantiates a ServiceMessage object

in accordance with the request

contained in request parameter, then

sets the attributes of this object and

returns it back to caller method,

namely processRequest.

sendServiceMessage Invokes ServerTheonCore’s

newServiceMessage method passing

ServiceMessage object generated by

generateServiceMessage method and

returns ServiceResponse coming from

ServerTheonCore to caller method.

determineRequestType Determines the module to be

instantiated by parsing the requested

URI contained in currentRequest

attribute.

 54

5.2.5 Description of RSS Comment Module

RSSCommentModule

- sessionID : String
- currentRequest: String

+ handleRequest(request: String)
+ displayLoginForm()
+ sendFeed()
+ displayReadMessagePage()
- requestAuthentication(uname: String, pass: String) : boolean
+ displayCommentPage()
+ displayAuthFailedPage()
+ startSession()
- setCookie()
- readCookie()
+ endSession()

RSSCommentPage

+ displayRSSCommentForm()
- requestSendComment(header: String, comment: String) : boolean

<<link>>

Authentication

1

0..1

 55

Attributes and methods of RSSCommentModule

Attribute Name Description

sessionID Session data of the currently connected

client.

currentRequest String containing the packet data

involving currently received HTTP

request from the client. Updated

continuously by handleRequest method

Method Name Description

handleRequest Connects the client to the web server

then processes each HTTP request until

session ends. If the client requesting

a feed first check authentication by

invoking Authentication class, after

authentication succeeds it sends the

requested feed by calling sendFeed

method. If the client requesting

access to a specific message

displayReadMessagePage method is

invoked provided that session data is

correct. If the client is requesting

to make a comment displayLoginForm

method and either

displayAuthFailedPage or

displayCommentPage methods are invoked

respectivey.

sendFeed Triggers web server for sending the

feed that is requested by the client.

 56

Method Name Description

displayLoginForm Triggers the web server for sending

HTTP response containing a web page

that includes an html login form.

displayAuthFailedPage Triggers the web server for sending

HTTP response containing a web page

that includes an authentication failed

message.

displayReadMessagePage

Triggers the web server for sending

HTTP response containing a web page

that includes the content of the

message that is determined by the HTTP

request passed by this method to the

web server.

displayCommentPage Instantiates an object of class

RSSCommentPage.

requestAuthentication Invokes Authentication class with

obtained username and password via

login form.

startSession

endSession

setCookie

readCookie

These methods are used for session

operations that will be performed on

both sides (client and server) for

HTTP request/response communication.

 57

Methods of RSSCommentPage

Method Name Description

displayRSSCommentForm Triggers web server for sending the

html form used for comment message

entry.

requestSendComment Invokes requestService method of

WebModuleThread from the instance that

instantiated this RSSCommentModule

object.

 58

5.2.6 Description of Web Forum Module

WebForumModule

- sessionID : String
- currentRequest : String

+ displayLoginForm()
- requestAuthentication(uname: String, pass: String) :
boolean
+ displayMainForumPage()
+ displayAuthFailedPage()
+ startSession()
- setCookie()
- readCookie()
+ endSession()

WebForumMainPage

+ displayGroupPageLinks()
+ displayGroupPage(groupName: String)
+ displaySearchForm()
+ displaySubscriptionOptionsPage()
+ displaySearchResultsPage(articlesIDs: String[*])

WebForumGroupPage

+ displayArticles()
+ displayPostArticlePage()
+ showDeleteConfirmationDialog() : boolean
- requestDeletion(articleID: String) : boolean
+ displayEditArticlePage(articleID: String)

WebForumSearchResultsPage

+ displayArticles()

WebForumSubscriptionOptionsPage

- requestSubscriptionChange(subsData:
String) : boolean
+ displaySubscriptionPreferencesForm()

<<link>>

<<link>>
<<link>> <<link>>

WebForumPostArticlePage

- requestForPost(header: String,
body: String) : boolean
+ displayWriteArticleForm()

WebForumEditArticlePage

- requestArticleChange(articleID: String) :
boolean
+ displayEditArticleForm()
+ showEditConfirmationDialog() : boolean

<<link>>
<<link>>

Authentication

1

0..1

 59

Attributes and methods of WebForumModule

Attribute Name Description

sessionID Session data of the currently connected

client.

currentRequest String containing the packet data

involving currently received HTTP

request from the client. Updated

continuously by handleRequest method

Method Name Description

handleRequest Connects the client to the web server

then processes each HTTP request until

session ends. displayLoginForm method

and either displayAuthFailedPage or

displayMainForumPage methods are

invoked respectivey.

displayLoginForm Triggers the web server for sending

HTTP response containing a web page

that includes an html login form.

displayAuthFailedPage Triggers the web server for sending

HTTP response containing a web page

that includes an authentication failed

message.

displayMainForumPage Instantiates an object of class

WebForumMainPage.

requestAuthentication Invokes Authentication class with

obtained username and password via

login form.

 60

Method Name Description

startSession

endSession

setCookie

readCookie

These methods are used for session

operations that will be performed on

both sides (client and server) for

HTTP request/response communication.

Methods of WebForumMainPage

Method Name Description

displayGroupPageLinks

displaySearchForm

These methods constitute the

frames for main ForumTheon page,

via triggering the web server.

displaySubscriptionOptionsPage

Instantiates an object of class

WebForumSubscriptionOptionsPage.

displaySearchResultsPage Instantiates an object of class

WebForumSearchResultsPage,

passing as parameter the results

obtained via the search made by

triggering web server.

displayGroupPage

Instantiates an object of class

WebForumGroupPage, passing it

the name of the slected group.

Methods of WebForumGroupPage

Method Name Description

displayArticles

Triggers the web server for

sending HTTP response containing

a web page that includes the

 61

Method Name Description

contents of the messages in group

determined by parameter passed.

displayPostArticlePage

Instantiates an object of class

WebForumPostArticlePage.

displayEditArticlePage Instantiates an object of class

WebForumEditArticlePage, passing

as parameter the id of the

message to be edited.

showDeleteConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

deletion.

requestDeletion

Invokes requestService method of

WebModuleThread from the instance

that instantiated this

WebForumModule object, sending

message deletion request.

Methods of WebForumPostArticlePage

Method Name Description

displayWriteArticleForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for article posting.

requestForPost

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

 62

Method Name Description

WebForumModule object, sending

message posting request.

Methods of WebForumEditArticlePage

Method Name Description

displayEditArticleForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for article editing.

showEditConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

editing.

requestArticleChange

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

WebForumModule object, sending

message changing request.

Methods of WebForumSubscriptionOptionsPage

Method Name Description

displaySubscriptionPreferencesForm

Triggers the web server for

sending HTTP response

 63

Method Name Description

containing a web page that

includes a form for

subscription preferences

including old preferences of

the user.

requestSubscriptionChange

Invokes requestService

method of WebModuleThread

from the instance that

instantiated this

WebForumModule object,

sending subscription

changing request.

Methods of WebForumSearchResultsPage

Method Name Description

displayArticles

Triggers the web server for

sending HTTP response containing

a web page that includes the

contents of the messages that is

determined by search request for

parameter obtained and passed by

this method to the web server.

 64

5.2.7 Description of Web Mail Module

WebMailModule

- sessionID : String
- currentRequest : String

+ displayLoginForm()
- requestAuthentication(uname:
String, pass: String) : boolean
+ displayMainPage()
+ displayAuthFailedPage()
+ startSession()
- setCookie()
- readCookie()
+ endSession()

WebMailMainPage

+ displayMailHeaders()
+ displayReadPage()
+ displayComposePage()
+ displaySubscriptionOptionsPage()
+ showDeleteConfirmationDialog() :
boolean

WebMailReadPage

+ displayMailBody()

WebMailComposePage

- sendEmail(header: String, body:
String) : boolean
+ displayComposeForm()

WebMailSubscriptionOptionsPage

- requestSubscriptionChange(subsData:
String) : boolean
+ displaySubscriptionPreferencesForm()

<<link>>

<<link>> <<link>>

<<link>>

Authentication

1

0..1

 65

Attributes and methods of WebMailModule

Attribute Name Description

sessionID Session data of the currently connected

client.

currentRequest String containing the packet data

involving currently received HTTP

request from the client. Updated

continuously by handleRequest method

Method Name Description

handleRequest Connects the client to the web server

then processes each HTTP request until

session ends. displayLoginForm method

and either displayAuthFailedPage or

displayMainPage methods are invoked

respectivey.

displayLoginForm Triggers the web server for sending

HTTP response containing a web page

that includes an html login form.

displayAuthFailedPage Triggers the web server for sending

HTTP response containing a web page

that includes an authentication failed

message.

displayMainForumPage Instantiates an object of class

WebMailMainPage.

requestAuthentication Invokes Authentication class with

obtained username and password via

login form.

 66

Method Name Description

startSession

endSession

setCookie

readCookie

These methods are used for session

operations that will be performed on

both sides (client and server) for

HTTP request/response communication.

Methods of WebMailMainPage

Method Name Description

displayMailHeaders

Triggers the web server for

sending HTTP response containing

a web page that includes the

messages of user inbox.

displaySubscriptionOptionsPage

Instantiates an object of class

WebMailSubscriptionOptionsPage.

displayReadPage

Instantiates an object of class

WebMailReadPage, passing as

parameter the id of the message

to be read.

displayComposePage Instantiates an object of class

WebMailComposePage.

showDeleteConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

deletion.

 67

Methods of WebMailComposePage

Method Name Description

displayComposeForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for composing e-mail.

sendEmail

Sends e-mail directly to SMTP

server.

Methods of WebMailSubscriptionOptionsPage

Method Name Description

displaySubscriptionPreferencesForm

Triggers the web server for

sending HTTP response

containing a web page that

includes a form for

subscription preferences

including old preferences of

the user.

requestSubscriptionChange

Invokes requestService

method of WebModuleThread

from the instance that

instantiated this

WebMailModule object,

sending subscription

changing request.

 68

Methods of WebMailReadPage

Method Name Description

displayMailBody

Triggers the web server for

sending HTTP response containing

a web page that includes the

content of the message that is

determined by message id

obtained as parameter obtained

and passed by this method to the

web server.

 69

5.2.8 Description of Admin Module

AdminModule

- sessionID : String
- currentRequest : String

+ displayLoginForm()
- requestAuthentication(uname: String, pass: String) :
boolean
+ displayAdminMainPage()
+ displayAuthFailedPage()
+ startSession()
- setCookie()
- readCookie()
+ endSession()

AdminMainPage

+ displayMessageOperationsPage()
+ displayClientOperationsPage()
+ displayGroupOperationsPage()

AdminMessageOperationsPage

+ displayGroupSelectionForm()
+ displayMessageSelectionForm()
+ displayPostMessagePage(selectedGroup: String)
+ displayReadMessagePage(messageID: String)
+ showDeleteConfirmationDialog() : boolean
- requestDeletion(messageID: String) : boolean

<<link>>

<<link>>

<<link>>

<<link>>

<<link>>
<<link>>

AdminPostMessagePage

+ displayPostMessageForm()
- requestPost(message:
String)

AdminReadMessagePage

+ displayMessage()

AdminClientOperationsPage

+ displayGroupSelectionForm()
+ displayClientSelectionForm()
+ showDeleteConfirmationDialog() : boolean
- requestDeletion(clientID: String) : boolean
+ displayEditClientPage()

AdminEditClientPage

+ displayEditClientForm()
- requestUpdate(clientId: String,
data: String) : boolean

<<link>>

AdminGroupOperationsPage

+ displayGroupSelectionForm()
+ showDeleteConfirmationDialog() : boolean
- requestDeletion(groupName: String) :
boolean
+ showAddGroupForm() : String
- requestAddition(groupName: String) :
boolean
+ showEditGroupForm(groupName: String) :
String
- requestEdit(oldInfo: String, newInfo: String)
: boolean

<<link>>

Authentication

1

0..1

 70

Attributes and methods of AdminModule

Attribute Name Description

sessionID Session data of the currently connected

client.

currentRequest String containing the packet data

involving currently received HTTP

request from the client. Updated

continuously by handleRequest method

Method Name Description

handleRequest Connects the client to the web server

then processes each HTTP request until

session ends. displayLoginForm method

and either displayAuthFailedPage or

displayAdminMainPage methods are

invoked respectivey.

displayLoginForm Triggers the web server for sending

HTTP response containing a web page

that includes an html login form.

displayAuthFailedPage Triggers the web server for sending

HTTP response containing a web page

that includes an authentication failed

message.

displayMainForumPage Instantiates an object of class

AdminMainPage.

requestAuthentication Invokes Authentication class with

obtained username and password via

login form.

 71

Method Name Description

startSession

endSession

setCookie

readCookie

These methods are used for session

operations that will be performed on

both sides (client and server) for

HTTP request/response communication.

Methods of AdminMainPage

Method Name Description

displayGroupOperationsPage

Instantiates an object of class

AdminGroupOperationsPage.

displayClientOperationsPage

Instantiates an object of class

AdminClientOperationsPage.

displayMessageOperationsPage

Instantiates an object of class

AdminMessageOperationsPage.

Methods of AdminGroupOperationsPage

Method Name Description

displayGroupSelectionForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for group selection.

showDeleteConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

deletion of group.

showAddGroupForm Triggers the web server for

 72

Method Name Description

sending HTTP response containing

that includes a form for new

group information.

showEditGroupForm Triggers the web server for

sending HTTP response containing

that includes a form for editing

group information.

requestAddition

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending

group addition request.

requestEdit

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending

group editing request.

requestDeletion

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending

group deletion request.

Methods of AdminMessageOperationsPage

Method Name Description

displayGroupSelectionForm

displayMessageSelectionForm

These methods constitute the

frames for main Admin page, via

triggering the web server.

 73

Method Name Description

showDeleteConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

deletion of a message.

displayAdminReadMessagePage

Instantiates an object of class

AdminReadMessagePage, passing as

parameter the id of the message

to be read.

displayAdminPostMessagePage Instantiates an object of class

AdminPostMessagePage, passing as

parameter the id of the group to

which the message will be

posted.

requestDeletion

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending

message deletion request.

Methods of AdminReadMessagePage

Method Name Description

displayMessage

Triggers the web server for

sending HTTP response containing

a web page that includes the

 74

Method Name Description

content of the message whose id

is passed as parameter.

Methods of AdminReadMessagePage

Method Name Description

displayPostMessageForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for article posting.

requestPost

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending

message posting request.

Methods of AdminClientOperationsPage

Method Name Description

displayGroupSelectionForm

displayClientSelectionForm

These methods constitute the

frames for main client

operations page, via triggering

the web server.

showDeleteConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

deletion of a user.

 75

Method Name Description

displayEditClientPage

Instantiates an object of class

AdminEditClientPage, passing as

parameter the id of the message

to be read.

requestDeletion

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

AdminModule object, sending user

deletion request.

Methods of AdminEditClientPage

Method Name Description

displayEditClientForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for user editing.

requestUpdate

Invokes requestService method of

WebModuleThread from the instance

that instantiated this

AdminModule object, sending user

update request.

 76

5.2.9 Description of Web News (NewsTheon) Module

WebNewsModule

- sessionID : String
- currentRequest : String

+ displayLoginForm()
- requestAuthentication(uname: String, pass: String) :
boolean
+ displayMainNewsPage()
+ displayAuthFailedPage()
+ startSession()
- setCookie()
- readCookie()
+ endSession()

WebNewsMainPage

+ displayGroupPageLinks()
+ displayGroupPage(groupName: String)
+ displaySearchForm()
+ displaySubscriptionOptionsPage()
+ displaySearchResultsPage(articlesIDs: String[*])

WebNewsGroupPage

+ displayArticles()
+ displayPostArticlePage()
+ showCancelConfirmationDialog() : boolean
- requestCancellation(articleID: String) : boolean

WebNewsSearchResultsPage

+ displayArticles()

WebNewsSubscriptionOptionsPage

- requestSubscriptionChange(subsData:
String) : boolean
+ displaySubscriptionPreferencesForm()

<<link>>

<<link>>

<<link>>

<<link>>

WebNewsPostArticlePage

- requestForPost(header: String,
body: String) : boolean
+ displayWriteArticleForm()

<<link>>

Authentication

1

0..1

 77

Attributes and methods of WebNewsModule

Attribute Name Description

sessionID Session data of the currently connected

client.

currentRequest String containing the packet data

involving currently received HTTP

request from the client. Updated

continuously by handleRequest method

Method Name Description

handleRequest Connects the client to the web server

then processes each HTTP request until

session ends. displayLoginForm method

and either displayAuthFailedPage or

displayMainForumPage methods are

invoked respectivey.

displayLoginForm Triggers the web server for sending

HTTP response containing a web page

that includes an html login form.

displayAuthFailedPage Triggers the web server for sending

HTTP response containing a web page

that includes an authentication failed

message.

displayMainNewsPage Instantiates an object of class

WebNewsMainPage.

requestAuthentication Invokes Authentication class with

obtained username and password via

login form.

 78

Method Name Description

startSession

endSession

setCookie

readCookie

These methods are used for session

operations that will be performed on

both sides (client and server) for

HTTP request/response communication.

Methods of WebNewsMainPage

Method Name Description

displayGroupPageLinks

displaySearchForm

These methods constitute the

frames for main NewsTheon page,

via triggering the web server.

displaySubscriptionOptionsPage

Instantiates an object of class

WebNewsSubscriptionOptionsPage.

displaySearchResultsPage Instantiates an object of class

WebNewsSearchResultsPage,

passing as parameter the

results obtained via the search

made by triggering web server.

displayGroupPage

Instantiates an object of class

WebNewsGroupPage, passing it

the name of the selected group.

Methods of WebNewsGroupPage

Method Name Description

displayArticles

Triggers the web server for

sending HTTP response containing

a web page that includes the

 79

Method Name Description

contents of the messages in

group determined by parameter

passed.

displayPostArticlePage

Instantiates an object of class

WebNewsPostArticlePage.

showCancelConfirmationDialog Triggers the web server for

sending HTTP response containing

a dialog data that includes

confirmation request for

cancellation.

requestCancellation

Invokes requestService method of

WebModuleThread from the

instance that instantiated this

WebNewsModule object, sending

message request.

Methods of WebNewsPostArticlePage

Method Name Description

displayWriteArticleForm

Triggers the web server for

sending HTTP response containing

a web page that includes a form

for article posting.

requestForPost

Invokes requestService method of

WebNewsThread from the instance

that instantiated this

WebNewsModule object, sending

message posting request.

 80

Methods of WebNewsSubscriptionOptionsPage

Method Name Description

displaySubscriptionPreferencesForm

Triggers the web server for

sending HTTP response

containing a web page that

includes a form for

subscription preferences

including old preferences of

the user.

requestSubscriptionChange

Invokes requestService

method of WebModuleThread

from the instance that

instantiated this

WebNewsModule object,

sending subscription

changing request.

Methods of WebNewsSearchResultsPage

Method Name Description

displayArticles

Triggers the web server for

sending HTTP response containing

a web page that includes the

contents of the messages that is

determined by search request for

parameter obtained and passed by

this method to the web server.

 81

5.3 Sequence Diagrams

5.3.1 News Module

Newsgroup Client
: Listener : NewsModule : Authentication

request
newRequest(request)

processCurrentRequest()

authenticateIP(user,pass)

authResponse

checkAuthentication()

authResult

opt

[authResult = false]

opt

[doesRequireService = true]

service_news
ref

isServiceRequired()

doesRequireService

response

forwardToNewsServer(request)

Here, the response
is sent by the news

server

loop

[authenticatedClientList not empty]

 82

setParameters(uname,
pass,host,port)

: DatabaseConnector : MessageConverter : ServerTheonCore

service_news

: NewsModule

queryResult

opt

[doesRequireDB = true]

isDBRequired()
doesRequireDB

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

isConversionRequired()

doesRequireConv

convertToCommon(msg)

commonMsg

alt

[doesRequireConv = 1]

[doesRequireConv = -1]

convertFromCommon(msg)

newsMsg

generateServiceMessage(request)

serviceMessage

newServiceMessage(serviceMessage)

sendServiceMessage(serviceMessage)

serviceResponse

 83

5.3.2 Mail Module

Mail Client
: Listener : MailModule : Authentication

request
newRequest(request)

processCurrentRequest()

authenticateSession(user,pass)

sessionData

checkAuthentication()

authResult

opt

[authResult = false]

opt

[doesRequireService = true]

service_mail

ref

isServiceRequired()

doesRequireService

response

[postToGroup = true]
distributeUsingMailServer(request)

Here, the response
is sent by the mail

server

isMailToGroup()

postToGroup

Here, the mail client can be
WebMailModule or a client using

any e-mail application

loop

[authenticatedClientList not empty]

 84

setParameters(uname,
pass,host,port)

: DatabaseConnector : MessageConverter : ServerTheonCore

service_mail

: MailModule

queryResult

opt

[doesRequireDB = true]

isDBRequired()

doesRequireDB

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

isConversionRequired()

doesRequireConv

convertToCommon(msg)

commonMsg

alt

[doesRequireConv = 1]

[doesRequireConv = -1]

convertFromCommon(msg)

mailMsg

generateServiceMessage(request)

serviceMessage

newServiceMessage(serviceMessage)

sendServiceMessage(serviceMessage)

serviceResponse

 85

5.3.3 Web Module

Web Client
: Listener : WebModule : Authentication

request
newRequest(request)

processCurrentRequest()

authenticateSession(user,pass)

sessionData

checkAuthentication()

authResult

opt

[authResult = false]

alt

[handler = "rss"]

handler_rss
ref

determineHandler(request)

handler

response

Here, the response
is sent by the web

server

Here, the web client can be
WebForumModule,

RSSCommentModule, AdminModule or
a client using any RSS aggregator

[handler = "forum"]

handler_forumref

[handler = "admin"]

handler_adminref

loop

[authenticatedClientList not empty]

[else] forwardToWebServer(request)

 86

: DatabaseConnector : MessageConverter : ServerTheonCore

handler_rss

: RssHandler

queryResult

opt

[doesRequireDB = true]

isDBRequired()

doesRequireDB

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

isConversionRequired()

doesRequireConv

convertToCommon(msg)
commonMsg

alt

[doesRequireConv = 1]

[doesRequireConv = -1]

convertFromCommon(msg)

rssMsg

generateServiceMessage(request)

serviceMessage

newServiceMessage(serviceMessage)

sendServiceMessage(serviceMessage)

serviceResponse

: WebModule

setParameters(uname,
pass,host,port)

handle
(request)

isServiceRequired()

doesRequireService

opt

[doesRequireService = true]

isCommentRequested()

doesRequireCommentPage

[doesRequireCommentPage = true]
generateCommentPage()

generateFeed()

triggerWebServer(request)

 87

: DatabaseConnector : MessageConverter : ServerTheonCore

handler_forum

: ForumHandler

queryResult

opt

[doesRequireDB = true]

isDBRequired()

doesRequireDB

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

isConversionRequired()

doesRequireConv

convertToCommon(msg)
commonMsg

alt

[doesRequireConv = 1]

[doesRequireConv = -1]

convertFromCommon(msg)

forumMsg

generateServiceMessage(request)

serviceMessage

newServiceMessage(serviceMessage)

sendServiceMessage(serviceMessage)

serviceResponse

: WebModule

setParameters(uname,
pass,host,port)

handle
(request)

isServiceRequired()

doesRequireService

opt

[doesRequireService = true]

generatePage()

triggerWebServer(request)

 88

: DatabaseConnector : MessageConverter : ServerTheonCore

handler_admin

: adminHandler

queryResult

opt

[doesRequireDB = true]

isDBRequired()

doesRequireDB

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

isConversionRequired()

doesRequireConv

convertToCommon(msg)
commonMsg

alt

[doesRequireConv = 1]

[doesRequireConv = -1]

convertFromCommon(msg)

adminMsg

generateServiceMessage(request)

serviceMessage

newServiceMessage(serviceMessage)

sendServiceMessage(serviceMessage)

serviceResponse

: WebModule

setParameters(uname,
pass,host,port)

handle
(request)

isServiceRequired()

doesRequireService

opt

[doesRequireService = true]

generatePage()

triggerWebServer(request)

 89

5.3.4 Core Service

: ServerTheonCore

newServiceMessage(msg)

loop

[messageQueue not empty]

: Module

processNextMessage()

serviceResponse

serviceResponse

generateResponse()

setParameters(uname,pass,host,port)

queryResult

connect()

selectDB(dbName)

selectTable(tbName)

executeQuery(query)

close()

: DatabaseConnector

determineType(msg)

msgType

alt

[msgType = post]

[msgType = admin]

broadcastNewPost()

performAdminOperation(msg)

opResult

[msgType = group]

performGroupOperation(msg)

opResult

Here, Module is abstract class that implements
NewsModule, MailModule or WebModule

 90

5.4 Activity Diagrams

5.4.1 Registration

Visitor

Fill The Form

[invalid form]

[valid form]

Presonel Info and

select ing services

included in the

form

User

[save]

[cancel]

 91

5.4.2 User Profile Update

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Password]

Reset Password Update Form

[Invalid Form]

[Valid Form]

Logout

[save]

[cancel]

 92

5.4.3 News Module

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Password]

Reset Password

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Password]

Reset Password

News

Group

Threads

[subscribes]
[unsubscribes]

[read thread]
[creat e a new

thread]

[sends a fo llow

up]

Logout

elseelse

els
e

e
lse

[Quoute]

 93

5.4.4 Web Module

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Password]

Reset Password

[Read Message]

[Send

Message]

[Reply Message]

[Creat e a new

Topic]

[Quotes

Message]

[Delete

Message]
[Edit Message]

[Search]

Logout

Forum

Group

Message

els
e

else

else

 94

5.4.5 Mail Module

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Pas sword]

Reset Password

Client

Login

[Login

Incorrect]

[Login Correct]

[Forgot

Pas sword]

Reset Password

Mail

Group

Message

[subscribes]
[unsubscribes]

[read message]
[New Message][reply Message]

Logout

elseelse

els
e

e
lse

[Delete

Message]

[Mark Message]

[Forwaard

Message]

 95

6.0 User Interface Design

6.1 Main Page:

- Visitor can sign up using the “Sign Up” link.

- Client can view his/her profile via “View My Profile” link.

- Client can access a service page via corresponding service

links (“TheonForum”, “TheonNews”).

Figure: Main Page

New Registration Page:

 96

- Visitor fills the required fields of the form and selects the

services which he/she wants via checkboxes.

-This form will include:

• * TheonID (TextBox)

• * TheonPassword (TextBox)

• E-mail Address (TextBox)

• * Theon Secret Question (ComboBox)

-Mother’s birthplace

-Favorite food

-Favorite teacher

-Grandfather’s occupation

• * Theon Secret Answer (TextBox)

• * First Name (TextBox)

• * Last Name (TextBox)

• * Gender (RadioButton)

-Male

-Female

• * Birth Year (TextBox)

• * Country (ComboBox)

• * State (ComboBox)

• * Zip Code (TextBox)

• Telephone (TextBox)

• Services

-TheonForum (CheckBox)

-TheonNews (CheckBox)

-TheonRSS (CheckBox)

-TheonMail (CheckBox)

- Visitor has to fill starred (*) entries for the form to be

valid.

 97

- If User does not fill required filled areas, system throws an

error message such as “Error: Please, fill the “…” area!” or

“Error: Please, fill the (*) areas” or “Error: Password Length

must be …!” or ”Error: Your E-mail address is not valid!” etc.

- At the bottom of the page, there is “I accept” and “Cancel”

button if client presses former registration process will be

ended and the client will be directed to the main page else if

client presses latter one process will be killed and client

will be directed to the main page.

 98

User Profile Login Page:

- Client can log into user profile page using the login group.

• TheonID (TextBox)

• TheonPassword (TextBox)

• Remind Me (CheckBox)

• Sign In (Button)

• I forgot my password! (HtmlLink)

- If user clicks “I forgot my password” link, user will be

directed to the Reset Password Page.

- If user supplies wrong info, system throws an error message

like “Invalid ID or Password!”

- If the information is valid, the client will be directed to

the user profile page.

 99

Reset Password Page:

-User enters email.

• E-mail Address (TextBox)

 100

- If user presses “Continue” button, user will be directed to

the Reset Password Page2, else if user presses “Cancel” button

user will be directed to the User Profile Login Page.

- If User does not give correct data or stay E-mail Address

area as blank then system throws an error message “Error: E-

mail Address are not valid!” or “Error: E-mail Address Area can

not be null!”

Reset Password Page2:

-There will be some account info questionnaire and secret

question.

• Name (TextBox)

• Surname (TextBox)

 101

• Secret Question (Label) (Read Only)

• Secret Answer (TextBox)

-If user presses “Continue” button, user will be directed to

the Reset Password Page3, else if user presses “Cancel” button

user will be directed to the User Profile Login Page.

-If user gives wrong info, system throws a message “Error: Name

or Surname are not true for “…@..” email address!” or “Error:

Secret Answer are not valid!”

Reset Password Page3:

-User will see its email address and system will ask him/her to

write a new password.

• E-mail Address (Label) (Read Only)

• New Password (TextBox)

• Retype Password (TextBox)

 102

- If user presses “Continue” button, user will be directed to

the User Profile Login Page, else if user presses “Cancel”

button user will kill the process and be directed to the User

Profile Login Page.

- If Retype Password != New Password then system throws a

message “Error: Try Again. Your supplied passwords are not

same!”

User Profile Page:

- Client can see/update his/her personal information via a

form. (As we stated above (New Registration Page))

- At the bottom of the form, there is “Save” button to submit

the information on the form.

 103

- If User gives invalid data, system throws messages as I

stated above.

- Client logs out via “Logout” button and directed to the Main

Page.

 104

Forum Login Page:

Client can log into forum module using the login group.

• TheonID (TextBox)

• TheonPassword (TextBox)

• Remind Me (CheckBox)

• Sign In (Button)

• I forgot my password! (HtmlLink)

- If user clicks “I forgot my password” link, user will be

directed to the Reset Password Page.

- If user supplies wrong info, system throws an error message

like “Invalid ID or Password!”

- If the information is valid, the client/admin will be

directed to the forum main page.

 105

Forum Main Page:

- At the top of the page, UserName or AdminName showed.

• UserName or AdminName (Label)

- Client can access messages in any group via clicking the link

of the subject of the message. After clicking, <GroupName> Page

opens.

- Admin can lock any topic via the “Lock Topic” button.

- Admin can move any topic via “Move Topic” button.

- Client can make a search using “Search” button which is on

the bottom of the page. Client can search the keyword in a

specific group/topic or can do general search.

 106

When user clicks search button, user will be directed to the

Search Main Page.

- Client logs out via “Logout” button.

<GroupName> Page:

- Messages are listed in a GridView and this GridView columns

are:

• MessageTopic (link)

• NumberofMessages (label)

 107

• FirstMessageClientID (label)

• LastMessageRepliedDate (label)

- At the bottom right of the page there are “Search” button.

• Search (button)

• Search Key (TextBox)

- GridView will be paged. (style: << < > >>).

-At the top left of GridView there is a NewMessage button. When

User clicks this button, user will be directed to the Create

New Message Page.

-If User clicks MessageTopic link, user will be directed to the

<Message Topic> Page.

Create New Message Page:

 108

-User can create a new topic and this page includes:

• Topic (TextBox)(if this page opened after “Reply” link

this entry will automatically filled such as: Re: Replied

Topic)

• Message (MultiLineTextBox) (if this page opened after

“Quote” link this entry will automatically filled with

Parent Message) (if this page opened after “Edit” link

this entry will automatically filled with Original

Message)

• Send (Button)

• Cancel (Button)

-If User clicks “Send” button, message will send to the group

and user will be directed to the <GroupName> Page.

-If User clicks “Cancel” button, message will not send to the

group and user will be directed to the <GroupName> Page.

<MessageTopic> Page:

 109

- This page includes message and their replies as a GridView.

This GridView’s colums are:

• Sender

• Message

• MessageDate

- GridView will be paged. (style: << < > >>).

- GridView Message column’s every row has:

• Sent datetime (label)

• Reply (link)

• Quote (link)

• Delete (link)

• Edit (link)

- When User clicks “Reply” link, user will be directed to the

Create New Message Page.

- When User clicks “Quote” link, parent message will be quoted

and user will be directed to the Create New Message Page.

- When User clicks “Delete” link, user deletes his/her own

message and be directed to the <Message Topic> Page.

- When User clicks “Edit” link, user will be directed to the

Create New Message Page.

- At the bottom right of the page there are “Search” button.

• Search (button)

• Search Key (TextBox)

 110

Search Main Page:

• Search key (TextBox) (you can put AND,OR between search

words)

• Search according to Sender (TextBox)

• Search according to Date (TextBox)

• Search Place (MultiLineTextBox)

• Search (Button)

• Cancel (Button)

 111

- If User clicks the “Search” Button, search results are shown

in Search Result Page.

- If User clicks the “Cancel” Button, user will be directed to

the ParentPage.

Search Result Page:

- Search Results are shown in a GridView according to Search

parameter, GridView colums are set.

 112

News Login Page:

Client can log into news module using the login group.

• TheonID (TextBox)

• TheonPassword (TextBox)

• Remind Me (CheckBox)

• Sign In (Button)

• I forgot my password! (HtmlLink)

- If user clicks “I forgot my password” link, user will be

directed to the Reset Password Page.

- If user supplies wrong info, system throws an error message

like “Invalid ID or Password!”

- If the information is valid, the client will be directed to

the news main page.

 113

News Main Page:

- Client can (un)subscribe to a group or groups which she/he

wants to follow via “Options” button which leads to a list of

groups which can be selected via checkboxes. Client can also

see the description under the group name and number of messages

in the groups near the group name. At the bottom of the group

list, there is “Save” button which saves the client

preferences. (Option Page)

- There is a ‘selected groups’ menu on the left of the page

which includes links to the groups. Client can access messages

via clicking these links. When user clicks this links,

<GroupName> Page opens.

- Clientlogs out via “Logout” button.

<GroupName> Page:

-Header of this page Message Date, Subject and Author columns

exist. Besides, number of pages will be shown.

- Every row of this page includes message links. Client reads

messages in groups which he/she subscribed via clicking the

link of the subject of the message. When user clicks this

button, message details will shown under this page in

<MessageSubject> Page.

- Client creates a new thread in a group which he/she

subscribed via “New Thread” which is on the top of the page.

When User clicks this button, Create New Message Page is seen

under this page.

 114

Create New Message Page:

• Subject (TextBox)(if this page opened after “Reply” link

this entry will automatically filled such as: Re: Replied

Topic)

• CC (TextBox) (if this page opened after “Reply” link this

entry will automatically filled)

• ID of Sender (Label) (if this page opened after “Reply”

link this entry will automatically filled)

• MessageArea (MultiLineTextBox)

• Quote (Button)

• Post (Button)

-If user clicks “Quote” button, parent message will be quoted

to the MessageArea.

-If user clicks “Post” button, message will send to the group

and user will notified via a message like “To see your message

please click “Refresh” button”.

<Message Subject> Page:

- User will see message details.

• Subject (label)

• From (label)

• Date (label)

- User can reply a message with clicking the link “Reply”. When

user clicks this page, Create New Message Page will appear

instead of <Message Subject> Page.

 115

Admin Login Page:

- Admin can log into system using the login group (AdminID,

AdminPassword, and Remind Me).

- If admin supplies wrong info, system sends an error message

like “Invalid ID or Password!”

- If the information is valid, the admin will be directed to

the admin main page.

Admin Main Page:

 116

- If Admin wants to edit/delete a user, firstly admin search

the user and search results are shown in a gridview and Admin

can Edit or Delete users via this gridview. If admin wants to

search all users, there is a Search All Users Button.

-Admin can delete a group or groups. via a ComboBox and

DeleteGroup button.

-Admin can edit a group or groups. Firstly admin select a group

and group properties (Group Name, Group Description) are showed

and change these values via Edit Group button.

-Admin can create group, To create group admin firstly select

ParentGroup (If no parent group want to be selected then admin

use No Parent option) and then GroupName via a TextBox and

GroupDescription via Multiline TextBox and finally add a group

via using the Create Button.

-Admin can view his/her Priofile via MyProfile Page.

- Admin logs out via “Logout” button.

 117

 118

7.0 Hardware and Software Requirements

7.1 Software Specifications

Server Side

- Unix / Linux

- MySQL Server

- Web Browser

Client Side

- Java Virtual Machine

- Unix / Linux / Windows

- Web Browser for forum access (optional)

- News Reader Application for newsgroup access

(optional)

- RSS Aggregator for RSS access (optional)

- Mail Client Application for mailing list

access (optional)

Developers Side

- Eclipse Java IDE

- MySQL DBMS

7.2 Hardware Specifications

Server Side

- Minimum 1024 MB RAM

- Pentium IV Processor

- Minimum 10 GB Hard disk

Client Side

 - Minimum 256 MB RAM

- Pentium IV Processor

- Minimum 5 GB Hard disk

 119

Developers Side

 - Minimum 512 MB RAM

- Pentium IV Processor

- Minimum 5 GB Hard disk

7.3 Development Tools

We will make use of the following tools during the development

period of the project:

- Java EE SDK, JSP and Apache TomCat

- Eclipse Java IDE

- MySQL Database Management System (DBMS)

- Java Virtual Environment

- Apache Web Server, James NNTP and SMTP Server

8.0 Testing Provisions

8. Testing Provisions:

To be able to deliver an error free server, we are going to

identify and fix possible bugs by using specific testing

techniques. By this way, we will be able to release an error

free final product. We are planning to use the following

testing techniques during our testing period:

8.1 Unit Testing

Unit testing is a procedure used to validate that individual

modules of source code are working properly. The goal of unit

testing is to isolate each part of the program and show that

the individual parts are correct. Unit testing helps to

eliminate uncertainty in the units themselves and can be used

 120

in a bottom-up testing style approach. By using this method, we

can identify the functionality of our individual modules.

However, it will not catch integration errors. Therefore, we

need another testing method to identify integration errors.

8.2 Integration Testing

Integration testing is the phase of software testing in which

individual software modules are combined and tested as a group.

To identify our integration errors, we need integration

testing. It follows unit testing. Integration testing takes as

its input modules that have been unit tested, groups them in

larger aggregates, applies tests defined in an integration test

plan to those aggregates, and delivers as its output the

integrated system ready for system testing.

8.3 System Testing

System testing is testing conducted on a complete, integrated

system to evaluate the system's compliance with its specified

requirements. System testing takes, as its input, all of the

"integrated" software components that have successfully passed

Integration testing. The purpose of Integration testing is to

detect any inconsistencies between the software units that are

integrated together (called assemblages) or between any of the

assemblages and the hardware.

9.0 Appendix-A (Gantt Chart for Implementation)

 122

 123

 124

