PROJECT STYX

Test Specification Report
BY TITANSOFT

Tolga Özgün

Serhan Kars

Pınar Sönmezocak

Taylan Onur Utku

Table of Contents
1.Introduction…………………………………………………………………………………..3
31.1 Scope of the Document

31.2 Goals and Objectives

31.3 Test Plan Scope

41.4 Constraints

52. Testing Strategies and Procedures

52.1 Testing Procedure

62.2 Test Items

62.3 Unit Testing

72.4 Integration Testing

72.5 Interface Testing

82.6 Validation Testing

82.6.1 Requirements Validation

92.6.2 Design Validation

92.7 Stress Testing

102.8 Acceptance Testing

 102.8.1 Alpha Testing

 102.8.2 Beta Testing

103 TEST SCHEDULE

1 Introduction
1.1 Scope of the Document
This document will include formal description of the testing procedure of the project STYX. Sections include descriptions of the outlines of the related testing procedure details. Scope will include following materials:

· Procedures of the Testing phase,
· Testing plan,

· How testing will be documented,

1.2 Goals and Objectives

Goal is this document is to satisfy a formal way for testing phase and maintaining coordination of testing procedures. Moreover once criterias described in this document is achieved, synchronization of each module will be maintained implicitly and each module of the project will be well integrated. To sum up the document will achieve following goals :
· Maintaining coherence between modules,

· Controlling propagation of errors,
· Documentation of common errors for avoiding time waste based on repeated errors,

1.3 Test Plan Scope

Following test procedures and types will be followed in order to maintain quality of the testing:
· Unit Testing: STYX is mainly composed of modules and each module is almost independent of each other therefore STYX is more suitable for unit testing. In testing procedure each module will be tested separately.
· Integration Test : As mentioned before STYX is structure completely modular therefore it is expected integration not to cause much trouble however the strategy for testing Integration is called on-the-fly testing in other words each module will be testing while it is coded.
· Performance Testing : Performance is not one of the main quality criteria of STYX however for all circumstances it is a must for STYX as for all projects. Upon completion of each module will be tested predefined codes which are classified based on their stressing-level.
· Stress Testing : Stress testing is composed of entering inputs at higher levels and concurrent processes on STYX .
· Alpha and Beta Testing : After release of corresponding versions for each version expected modules will be tested with defined criteria.
· Interface Testing : Interface testing is composed of mainly two parts : one is interface of emulator and the other one is the interface of eclipse part and for each part integration test must be done and compatibility of each interface must be achieved at eclipse interface since it is the main interface controlling all other interface.
1.4 Constraints
Since time and human are main constraints, Testing procedure must be different from general understanding. Each developer must follow testing procedures by self and on-the-fly namely testing must be done during code development and upon end of each module.

2. Testing Strategies and Procedures
In this part of the test specification document, the procedures that are going to be followed during the testing are mentioned. The ways and strategies for testing phase are also determined and stated.
2.1 Testing Procedure

Our testing procedure is defined below
Before the test is done

The corresponding data that is to be test will be determined:

Step Number

In order to keep record for each test step, a unique number will be given to each test step.

Expected Results

Our expected results will be the outputs of the systems that we will obtain after testing. These outputs should be under the supplied conditions and environment. Output data should be acquired correctly because it will affect the efficiency of the system directly.

Conditions for the test case

For the sake of getting the expected results, the conditions and the environment under which the testing procedures will be applied, has to be satisfied.
After the test is written and run

The followings activities will take place:

Actual Result

After the testing is performed, we got the test results which will be the actual results either by observing the system or by examining the output.
Pass or Fail

At the end of these activities, to determine whether the system works correctly or not, we will compare our expected results with the actual results we got. If an error exists in any of these steps, we will correct it. In any case, with or without getting error at any one the steps, we will fill the following form as a summary of the whole processes:
	Step Number

&Tester
	Conditions

And

Description
	Expected

Results
	Actual

Result
	Status
	Correction

Status
	Tested

Code

Revision

	
	
	
	
	
	
	

2.2 Test Items

All base modules in the project are going to be tested along with their interactions with each other. The main parts of our project that are gossing to be tested are:

• User Interface
 o Input handling

 o Output integration
• Debugger
• Compiler
• Editor Engine
· Code completion

· Code browsing

· Breakpoint handling(Adding, Removing etc.)

• Viewer Engine
· Watch

· Special Function Registers

· Eeprom

· File Registers

· Program Memory

· Hardware Stack

• File Manager

 o Save File/Project/Workspace
 o Load File/Project/Workspace
 o Open File/Project/Workspace
• Emulator

· Modules Test(LCD,Processor,Button,UART,A/D Converter)
2.3 Unit Testing
Unit testing is composed of two main parts and each part is composed of subparts based on their modular structure as stated below:

1. Testing of Emulator

Testing of CPU

Testing of Modules

2. Testing of Eclipse

Testing of Eclipse General Interface

Testing of IDE features for instance syntax highlighting

As general strategy to testing, which is called on-the-fly testing, each unit testing phase is going to be done during and upon their complete. By during our implication is that for each module development developer of the module must decide some milestones and for each milestone testing must be done upon arrival to corresponding milestone. For instance for timer module getting/setting interrupts is a milestone or maintaining prescaler functionality is another milestone.

2.4 Integration Testing

Integration testing (I&T) is the phase of software testing in which individual software modules are combined and tested as a group. It follows unit testing and precedes system testing.
The purpose of integration testing is to verify functional, performance and reliability requirements placed on major design items.
We are designing and implementing a plugin to eclipse so when a module’s implementation is finished, we embed it into plug in gui and check whether there is a conflict with other functionalities. Therefore we have selected top-down integration strategy. There will be no need to do extra tests after the integration up to new module added to the system. Before delivery, we will be able to verify the integration and interaction of modules establishing the styx.

2.5 Interface Testing
Interface Testing is not focused on what the components are doing but on how they communicate with each other. The emphasis is on verifying exchange of data, transmission and control, and processing times.
· Check whether modules –especially CPU class- take the right values from hex file.
· Check whether “code sending” module interacts with board.
· Check whether debugger module interacts with hex file and advance step by step.

· Check whether compiler module interacts with hex file and pure asm code.

2.6 Validation Testing
At this stage of testing, we will check whether our software conforms to the requirements of the user. In order to achieve this, a series of black box tests will be performed according to the validation test criteria. The requirements in the requirement analysis report will construct a basis fort he validation criteria. When a module is developed and integrated to the system, the requirements it is supposed to achieve will be tested. We plan to associate each module of software with a set of automated validation tests (often called ‘unit tests’). These tests will run on an extremely frequent basis because the module may depend on other modules that may have changed even if the code in the module has not changed. In order to verify the functionalities to obey the requirements and design, we are going to perform two validation steps which are:

2.6.1 Requirements Validation

This type of validation is for testing whether the functionalities mentioned in the requirements are satisfied or not. The reference document for validations is Requirement Analysis Report.

A-) EMULATOR MODE
The following functionalities will be verified in this module:
· Add, delete operations for the modules : LCD, Processor, Button, UART,A/D Converter, Seven Segment Display, Leds, Keyboard.

· Change configuration settings operation for the modules : LCD, Processor, Button, UART,A/D Converter, Seven Segment Display, Leds, Keyboard.

· View operations for the modules : LCD, Processor, Button, UART,A/D Converter, Seven Segment Display, Leds, Keyboard and for some other components that the user would like to see the contents of, such as watch, special function registers, eeprom, file registers, program memory and hardware stack.

B-) DEVELOPER MODE
The following functionalities will be verified in this module:
· Editor operations such as code completion, code browsing, add/remove breakpoint operations.
· File Manager operations such as save, load, open file/project/workspace operations.

· Compilation operation.
· Debug operation.

· Simulation operation along with simulation settings.

· User interface will also be tested in order to ensure the correctness of the I/O operations taken in response to user interaction with our system.

2.6.2 Design Validation

In this validation step we are going to examine the difference between the implementation way and the design document. In case we detect any difference we are going test the correctness of the change.

2.7 Stress Testing
Stress testing is a form of testing that is used to determine the stability of a given system or entity.
We are planning to test the styx in extraordinary conditions and at limits.

• Open all of the modules and check whether they are conflicting.

• Send codes to board frequently and check whether the board understands the serial connection

• Write very long lines and columns of code and establish a huge hex file
2.8 Acceptance Testing
Acceptance testing can be conducted by the client. It allows the end-user, customer or client to validate whether or not to accept the product. Acceptance testing may be performed after the testing and before the implementation phase.

2.8.1 Alpha Testing

 It is simulated or actual operational testing by potential users/customers or an independent test team at the developers' site.
For alpha testing, we are deciding to talk with some successful Ceng336 students and some embedded professionals and want them to use styx and give us a beneficial feedback.

2.8.2 Beta Testing
It comes after alpha testing. Versions of the software, known as beta versions, are released to a limited audience outside of the company.
For beta testing purpose, we will additionally talk with some plug in and embedded system vendors and we will publish our product via web page and put our executables and bug report address.
3 TEST SCHEDULE
Deadlines for our test strategy are given below:

	Test Plan Delivery
	06.05.2007

	Unit Test
	22.05.2007

	Integration Test
	24.05.2007

	Interface Test
	25.05.2007

	Validation
	26.05.2007

	Stress
	27.05.2007

	Acceptance
	No deadline as beta testing is open-ended

	Alpha Testing
	06.06.2007

	Beta Testing
	Open ended

	Correction
	10.06.2007

