MIDDLE EAST TECHNICAL UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

CENG 491
COMPUTER ENGINEERING DESIGN |

FINAL DESIGN REPORT

YAYA BILISIM

YASIN ALPEN 1297431
KAAN Y. CEYLAN 1347269
YUNUS ESENCAYI 1347459

AHMET TAHIR UCKUN 1298371

INDEX

1. Project DeSCriPliON ...uii i e e e e

1.2 CEng Embedded Cardccooiiiiiii i
1.3 THE PrOCESS ittt it e e e e e e e e e e e e
L4 EMUIAEOTS .ttt e e e e e e e
1.5 OUN PrOoQUCT out et et e e e e e e e e e e e e e e
2. TBAIM PrOCESS ottt it e e e e e et e e et e e e e
3. Schematic Layout Of the Softwarecccooiiiiii i,

3.1 Representation of Data FIOW...........ccooiiiiiiii i,

3.1.1 Simple DataFIowWcooiiii
3.1.2 Detailed DataFIOWc.ouvieiiiiieiie e e
3.2 Data DiCLIONAIY ...uiviirie it e e e e e e e e e e
3.3 Interaction Of the User with the Systemc.oooini,
3.3.1 SAVE PrOJeCT ..o
3.3. 20PN PrOJECT vt e e
3.3.3Write Programcooiiiii i e e e
3.3.4BUIld Project ..o,
3.3 5 DEDUG o
3. 3.6 BUM O Card ...
337 SIMUIALE ..ot
3.4 Schematic Representation Of the Of System Activity
3.5 Main Components & Their Relations in the System..................
3.5.1 Assembler Classc.covveiiiiiiiii i
3.5.2CoMPIler Classouiiiiiie e e
3.5.3DebUg Classcuuieiii i e
3.5.4 GUIManager Classcccooiiiiiiiiiiiieiie et e e e e e

3.5.6 Class FindDialogBOXccooviiiiiiii i
3.5.7 ClassS GOTO .uueie it e e e e
3.5.8ClassS replaCeccoviiii i
3.5.9Class VISIDIE ..o
3.5.10 ClassS DMEMOIY ...uiuuiiiieiie it e e e
3.5.11 Class PMEMOIY ...ttt e et e e e e e
3.5.12 Class ReQISter.......ouuiiiiiie it i e e

4. Project’s File SIrUCTUIEooi it e e e e e,
o R o Y =T o B0V o TSR
A e Lo] [T o] o PR PPPPPPPPPPP
G e o] [=To] =157 1 [P O PP PPPPPPPRPPPPPPR
4.4 ProjJECEIST. i ————-
T o o Y=o =T o PRSPPI
4.6 PrOJECTNEX ..ttt
A O L { g T= T gl 1 = S

5. User INterface DeSIgNiuii it it i e e e e e e e e

S5.LFIE MENU ..o e e
S5.2EAIt MENU ..ot e e
5.3VIEW MENU ..o e e e e e e e e e e e
5.4 SIMUIAte MENUovii i e e e
S5 HEIP MENU ..o

1. Project Description

This report describes the process of RCSim Software which is a product of
YAYA Bilipim in initial design level. In this report, we will clarify the process and our
work on RCSYM Software.

Yaya Bilisim is a DEVEMB project group which is supposed to develop a
software emulator for CEng Embedded Card briefly. One who wants to understand
RCSim Software must have a background on PICs, embedded systems, emulators
and development boards. In order to understand our work better, we should deal with

these topics briefly.

1.1 PIC:
A microcontroller is a compact standalone computer, optimized for control
applications. Entire processor, memory and the I/O interfaces are located on a single
piece of silicon so, it takes less time to read and write to extrernal devices.

Following are the reasons why microcontrollers are incorporated in control

systems:

a. Cost: Microcontrollers with the supplemantary circuit components are much
cheaper than a computer with an analog and digital I/O

b. Size and Weight: Microcontrollers are compact and light compared to
computers

c. Simple applications: If the application requires very few number of /0 and the
code is relatively small, which do not require extended amount of memory and
a simple LCD display is sufficient as a user interface, a microcontroller would
be suitable for this application.

d. Reliability: Since the architecture is much simpler than a computer it is less
likely to fail.

e. Speed: All the components on the microcontroller are located on a singe
piece of silicon. Hence, the applications run much faster than it does on a

computer.

There are a lot of microcontroller manufacturers and they are named
according to their manufacturers. PIC (Peripheral Interface controller) is the one

produced by Microchip. PICs have Harvard architecture but not Von Neuman.

Since our product is only about PIC16F877, we will deal with it. PIC16F877 is
one of the most commonly used microcontroller especially in automotive, industrial,

appliances and consumer applications. The core features of PIC16F877 are:

e 14 bit cores with 35 instructions.

e 200 ns instruction time

e 8092 14 bit Flash program memory

e 368 8 bit data memory or registers(RAM)
e 256 8 bit EEPROM data registers

e 8 level hardware stack

e Up to 14 interrupt capability

e 331/0O pin

e 3timer/ counter modules

e 10 bit 8 channel A/D converter

e Parallel and Serial ports

1.2 CEng Embedded Card
CEng embedded system card is the card that is used in CEng 336 "Embedded
Systems" course. It includes two PIC processors and various interfaces like LCD,

Parallel, Serial, USB ports, smartcard reader, LED's etc.

. 3
7-SepDisalays o "lﬁi’;’r""”g LCD Contrast Pot
- -) -

L
| _ -163d LCT

PICI1&FETT =

.
= Smart Card Reader
UsB -

F.sz:i_,_,_/—JE-' ‘ l=— spaaker

Gﬂ:ul.lpa:?r T | 44 kewbeard Circuit
P/.'."
-
LK1 Fort L - beheligh
[Programmingl 01 'if' _ﬁ ‘5 ?} IEI C'
/ \
s
Fowver Jak " Power On Led) Besel Sutlon 1.3 The
Regulatar #1 ! Process:

Programrring Active Lad

Integrated Development Environment (IDE)

1. Write code 2. Translate coce 3 Debug code
with Text Editor into machine op-
codes

i

o

—J &b,
[= 1 s yes
| Ao » Code y=e
SMDIET —— - ——
E Aesemblet Hex Code bugfree? ’
Source . E o

Code Editor c Debugger n

[ASCH Text) Compiler

Developing a project have some steps as:

1- Writing the code:

Software Code for a microcontroller is written in a programming language of
choice (often Assembler or C). This source code is written with a standard ASCII text
editor and saved as an ASCII text file. Programming in assembler involves learning a
microcontroller's specific instruction set (assembler mnemonics), but results in the
most compact and fastest code. A higher level language like C is for the most part
independent of a microcontroller's specific architecture, but still requires some
controller specific extensions of the standard language to be able to control all of a

chip's peripherals and functionality.

2- Translating the code:

Next the source code needs to be translated into instructions the microcontroller
can actually execute. A microcontrollers instruction set is represented by "op codes".
Op codes are a unigue sequence of bits ("0" and "1") that are decoded by the
controller's instruction decode logic and then executed. Instead of writing opcodes in
bits, they are commonly represented as hexadecimal numbers, whereby one hex
number represents 4 bits within a byte, so it takes two hex numbers to represent 8
bits or 1 byte. For that reason a microcontroller's firmware in machine readable form

is also called Hex-Code and the file that stores that code Hex-File.

3- Debugging the code:
Since the process of burning the code to the card takes a long time, it is

unwanted to burn an error including code. In order to prevent such situations, it is

better to check and debug the code before burning. This is in software level.
Although it can be in hardware level (for example setting break points and inspecting

the changes on the card), it is out of our topic.

4- Burning to the Card:
The final step is to burn the bug-free code to the Card. Burning means to

transfer data from the computer to the Card and investigating the results.

1.4 Emulators:

Even it is a simple project, uploading it to the Card takes a long time. So, for a
user it will be very time consuming to work on PICs. In order to reduce this, emulators
are developed. Emulators help user to upload their high level or assemble language
code to development boards. Moreover, these software provide user to simulate their

code’s response without burning it to the Card.

1.5 Our Product:

Emulators(or simulators) which are available are suitable for many types of
PICs and development boards. It can be seen as an advantage, however it is not the
case sometimes.

CENng336 Embedded Course is a must course of computer engineering
department in Metu. In this course, the students are supposed to do some work with
CEng Embedded Card which is also created by this department. MPLab is the
software used in this lesson.

We think that, taking Logic Design course which is the only prerequisite course
for CEng336 do not make it easy to do their works on CEng Embedded Card for a
junior student. They need to be instructed by assistants or teachers. This is a time-
consuming process for students, assistants and instructors. This is where our project
is burned.

Our product RCSim is designed just for CEng Embedded Card. Goals and
objectives of RCSim Software is as follows:

Easy to Use: We motivate ourselves as if our product will be using in
CEnNng336 course spring 2007. So, it is very important for us to develop a product
such that CEng336 students will easily use RCSim Software.

As mentioned before, RCSim Software is specific on CEng Embedded Card.
So, it should be adapted on this card and PIC16F877 only. It keeps us from selection

of PIC type and development board type. For example, because of this, there will be
less steps for creating a new project. Such simplicities will make it easier to use
RCSim Software for CEng336 students.

Moreover, we believe the importance of a user-friendly GUI for easy to use.
So, an easy to use and simple GUI is one of our objectives. On the other hand, we
plan to put a satisfactory help menu and a self learning tool in our GUI.

Responding to Requirements: Although we design a software as simple as
possible, we will provide all requirements of CEng Embedded Card. Satisfying this
balance is very important for us.

Most Realistic: Simulation is a very important part of our product. Users will
be able to simulate their codes without burning it to the card. These simulations

should be done as realistic as possible in order to make those simulations reliable.

2. Team Process

Since we spend much time on preparing the initial design report, we think that we had
reached a better understanding on our subject. On the other hand, this process helped us to see
the needs of our project.

After delivering the initial design report, we were sure that we should continue on
working without giving a break. To be honest, on this point we wanted to have the feedback
on theinitial design report. Up to that day, we did our work without being sure. When we had
the feedback of the initial design report from our assistant Mr. Orkan, we had much more time
on preparing the final report design. We set many meetings when the team members had no
exams or other projects.

We started to implementation part in this age. The first implementation part of RCSim
isthe text editor part. Concurrently, we had started to implement the main interface of
RCSim. The next step was embedding MPASM to RCSim. Now, we have the main interface
and text editor part of RCSim, besides assembler.

While implementing such abig project, it is ordinary to have some bugs. This lead us
to release updates of RCSim. Up to thistime, we have RCSim, RCSim 0.1.1, RCSim 0.1.2,
RCSim 0.1.3 and RCSim 0.1.4 versions.

For the second term, we intend to divide our project into main components. We will
set time interval's to each component. Since, we are not so experienced on this area, we are not
sure that, which component takes how much time exactly. This situation made us to make

decisions about the implementation of RCSim in the second term as follows:

1- If wefinish acomponent in the expected time, nothing to do but continue to

implement to the next component.
2- If wearein front of adead line and we finish to implement a component, do not wait
until the dead line but start to the next implementation part and re-schedule the rest

time.

3- If we could not finish one component up to its dead line, hasten the process. When we
finish that component, again re-schedul e the rest time.

We have given the main components and their present situations below:

Assembler : COMPLETE FOR demo

TextEditor COMPLETE FOR demo

GUIManager %50 COMPLETE FOR demo

Debugger : INCOMPLETE

BurnToCard : INCOMPLETE

Simulator : INCOMPLETE

Compiler : INCOMPLETE

Moreover we have given the next semester’s plan of implementation.

FROM TO PARTS IMPLEMENTED PARTS TO COMPLETE
Beginning | Present | Text Editor , GUI Manager , Assembler ,Simulation(Simple) Demo

20-Jan 1-Mar | Text Editor , GUI Manager , Assembler ,Simulation(Simple) | Simulation , Debugger

1-Mar 21-Mar Text Editor , GUI Manager , Assembler ,Simulation, BurnToCard

Debugger ,

Text Editor , GUI Manager , Assembler ,Simulation,

21-Mar 1-Apr Debugger , BurnToCard Compiler
Text Editor , GUI Manager , Assembler ,Simulation,
1-Apr 15-Apr Debugger , BurnToCard , Compiler Ready For Demo

3. Schematic Layout Of the Software

3.1 Represantation of the Flow of the Data

3.1.1 Simple Data Flow Diagram

User

Uplead Program

»

Ceng 336 Card

LEVEL O DFD

User gives inputs to the system and takes response from the system. Also the

user can upload the program to the Ceng 336 Card.

3.1.2 Detailed Data Flow Schema

Save Projere

Lesar Cormmands and Cata

v

| A=rr |!-_,

SvEtEm UL

Ciwplay I Ny

1h Fesutinfo

Grashica User Interface

Prcjzct File

| =ad Projrrt

T = Prog-an

1%
Comgie”

fozemcly Progrsm Corpilec Fie

r

Discloy MCzsagas and Soatus
- Fesult -fic

Eurn Ststus

Sirmulation Info

Prcjzct's

=xecuzaklz =ile

1%

3.2 Data Dictionary

q
=omkicr

Chiezt e

JE—
he-pa=ary FilF(s1

=roects ExecLtabe

Proects Executah e

--....__‘__‘_-h
File(sita ze Azded

\\

//

Infr Frwr [Text Fdjrr "
1Aba.t Expouticng = ;
v I Sezuulak e File Ceng 106 Card

Exevulatihe File

‘.'.-‘
O=bucer

L=vE_1D=C

| Name:

| User Commands and Data

Aliases: None

Product of: User

Where used: Graphical User Interface (Process 1.1)

Description: User controls by mouse clicks, keyboard
keys, or writing text through editor.

Name: System Output

Aliases: None

Product of: Graphical User Interface (Process 1.1)

Where used: User

Description: User sees the present situation of the
program through a user interface.

Name: C Program

Aliases: None

Product of: Graphical User Interface (Process 1.1)

Where used: Compiler (Process 1.2)

Description: A program written in C language through
the text editor in the program.

Name: Compiled File

Aliases: None

Product of: Compiler (Process 1.2)

Where used: Assembler (Process 1.3)

Description: Assembly code of the program which is
converted by the compiler.

Name: Assembly Program

Aliases: None

Product of: Graphical User Interface (Process 1.1)

Where used: Assembler (Process 1.3)

Description: A program written in assembly language
through the text editor in the program.

Name: Object file

Aliases: None

Product of: Assembler (Process 1.3)

Where used: Linker (Process 1.4)

Description: Object code of the program which is
converted by the assembler.

Name: Display Info

Aliases: None

Product of: Display Messages and Status (Process
1.6)

Where used: Graphical User Interface (Process 1.1)

Description:

Command line outputs or information

about the state of the card (e.g. value of
the registers, memory etc.)

Name: Result Info

Aliases: None

Product of: Compiler(Process 1.2) ,

Assembler (Process 1.3),
Linker (Process 1.4)

Where used: Display Messages and Status (Process
1.6)

Description: Command line outputs of the compiler,
assembler or linker.

Name: Simulation Info

Aliases: None

Product of: Simulator (Process 1.5)

Where used: Display Messages and Status (Process
1.6)

Description: Information about the simulated parts of
the card.

Name: Executable File

Aliases: None

Product of: Linker (Process 1.4)

Where used: Simulator (Process 1.5), Ceng 336 Card,
Debugger (Process 1.7)

Description: Binary file that can be executed on Ceng
336 Card or simulated by the program.

Name: File(s) to be added

Aliases: None

Product of: Necessary File(s)

Where used: Linker (Process 1.4)

Description: Necessary library files to be able to
execute the program for the type of PIC
processor that is used in Ceng 336 Card

Name: Project’'s Executable

Aliases: None

Product of: GUI (Process 1.1)

Where used: Simulator (Process 1.5), Ceng 336 Card,
Debugger (Process 1.7)

Description: Binary file that can be executed on Ceng

336 Card or simulated by the program
that belongs to a previously written

| project.

Name: Info From Text Editor

Aliases: None

Product of: GUI (Process 1.4)

Where used: Debugger (Process 1.7)

Description: Necessary information about the code
text file (line numbers, breakpoints etc.)
for the debugger to run properly.

Name: Burn Status

Aliases: None

Product of: Ceng 336 Card

Where used: Display Messages and Status (Process
1.6)

Description: Message indicating whether the
executable file is successfully written to
the card or not.

Name: Debugging Info

Aliases: None

Product of: Debugger (Process 1.7)

Where used: Simulator (Process 1.5)

Description: Current state of the execution. (The
values of the registers, memory etc.)

Name: Save Project

Aliases: None

Product of: Graphical User Interface (Process 1.1)

Where used: Project File

Description: Code and the settings of the current
project to be saved.

Name: Load Project

Aliases: None

Product of: Project File

Where used: Graphical User Interface (Process 1.1)

Description: Code and the settings of the project to be

loaded.

3.3 Interaction of the User with the System

Sava Project

<<include ==
i <<grtends s>

Cpen Project

T,

L
- : -
;

<<nclides s &
\

Uger)
£ =<incluces:=

I 0
N -

<<inziude=> ¢

;
:
-...
Burn o Card s
§
F winduda ==
;
g
@ .

N

3

Uze Case Diag-am

3.3.1 Save Project

3 i weprtendss>

A Mew Project

P-evously Saved Preject

Save Project

Powgjnciudes =

Open Project

Use Case Diagram (Save Project)

| zer

User can save the project at any time but for this to be done a project must be
opened before.

3.3.2 Open Project

<=extends = .. Mew Project
Open Project .

Usar <<mxtends>> Previously Saved Project

Use Case Diagram (Cpen Project)

User can open a project when the system is idle. This project can be either a

new blank project or a previously written and saved project.

3.3.3 Write Program

Open Project

P a<includes =

Wurite Program

Use Case Diagram (W'rite Program)

| lser

User can write program using the text editor in C or assembly language. But
for this to be done a project must be opened before.

3.3.4 Build Project

Open Project

P w<includes

Use Case Diagram (Build FProject)

Jser

User can build a project via the user interface. Building includes compiling,
assembling and linking stages for a program written in C language, whereas for a
program written in Assembly language building includes assembling and linking

steps. For a project to be builded, a project file must be opened before.

3.3.5 Debug

Build Project

P o=<include =

Use Case Diagram (Cebug)

Jser

The system includes a software-level debugger, in which the user will be able
to execute the current program step by step, put breakpoints, see the contents of the
registers, memory etc.

But for this to be enabled, a new or previously written project must be builded

successfully before and by the way, a hex file must exist for that project.

3.3.6 Burn to Card

Build Project

P=ginciudes >

Burn to Card

Use case Diagram (Burn to Card)

|Jzer

User can burn programs that he/she wrote or are previously written. But for
this to be enabled, a new or previously written project must be builded successfully

before and by the way, a hex file must exist for that project.

3.3.7 Simulate

Build Project

{ <=include= =

:

Use Case Diagram (Simulate)

I lser

User can simulate a program that is previously written or newly written by
him/her. But for this to be enabled, a new or previously written project must be

builded successfully before and by the way, a hex file must exist for that project.

3.4 Schematic Representation of System Activities

RLr Pragram

Mews From Menu Selectec 2pen Fram Manu Saleczed

Y A 4

l: Ernpty Project :l

Open 2roject

P-aject Ale Exists

Display Provect

Empty Project

Mroject File no: Found

@isplay zn Bro- N‘Essage>—

Sreviously saved Project

Wit ite

Sowree Cude Eddiled

Source Code not Edited

Save Proect Bulild Project

Build Unsuczessfull Build Successhull

N
N

h 4

—CDispIay te Dezils ot Eerr)

A

Ivake Hex Flle

Durn 2o Card Mo Menu Selected

Burt Hex Fie to Card

Brn Succzsshull

Simuleks From Menu Sclectoc

Dreaug From Menu Selected

-

Eurn Unsucczsshull

FriNtError Message

Activity Diagram

Run Program:

The program is opened via the Windows user interface. After that, the program
starts and the graphical user interface opens without any project or file opened.

According to the user’s choice:

= New from Menu selected: So an empty project and the text editor opens
automatically to enable the user to write code.

= Open from Menu selected: So an open file dialog opens up to enable the
user to explore the directories to find and open a previously saved project. After the
project file is selected and OK is pressed, the selected project file opens, its settings
are loaded and the source code is shown by the text editor automatically to enable

the editing of the code.

Empty Project:
New from menu is selected and an empty project and the text editor opens

automatically, showing an empty code file.

Open Project:
Open from menu is selected and an open file dialog opens. After that, the user
explores the directories to find and open a previously saved project. According to the

user’s action:

» Project exists: The user explores the directories and selects the project file
via mouse or typing the name of the project. The project exists and it is loaded and

displayed. In here the user has two choices:

» Edit the source code, build and run, and
» Do not edit the source code, and run the project’s executable
directly.
= Project does not exist: The user explores the directories and selects the

project file via mouse or typing the name of the project. The selected file does not
exist or is corrupted. So, an error message indicating that the file that is selected
does not exist or may be corrupted is shown to user. After this message box is
closed, the system returns to its first state without opening any projects.

Display an Error Message:

After selecting open project from menu, if there exists an error about opening
the project file (file does not exist or is corrupted), a message box opens indicating
that there has occured an error while trying to open the specified project and the two

possible reasons for this error.

Display Project:

New from menu is selected or open project from menu is selected. Then, a
new project file is opened and displayed or the selected project is opened and
displayed if it is opened successfully.

Write Code:
If a new project is opened, the user can write source code from scratch. At any
time he/she can save or build the project.

Save Project:

In fact, this process can be done at the times when the program is idle from
the beginning of the execution of the software until stopping of the execution of the
software. But if the user opens a new project, writes the source code without making
a save at any time, and tries to build it, the system will firstly ask the user to save it
using an open file dialog. After this is done and the project file is saved successfuly,

the system will let the user to build the program.

Build Project:

After the user writes/edits the source code and wants to convert it to an
executable file, he/she builds it by pressing the build button shown in the graphical
user interface of the system.

If the project is previously saved but the source code is not saved, the system saves
it automatically and builds it. But if the project file is not saved, a file dialog will open
up and ask the user to save the project file before building. According to the result of

the build two actions are taken:

= Display the details of error
= Make hex file

Display the Details of Error:

After the build button is clicked or build is selected from the menu, if the build
is not successfull, the details of the error and what caused it, is shown in an output

window, which exists inside the main program window.

Make Hex File:

Contains the action of conversion of the source code to the executable or not
at all if a previously saved project file is opened. After the build button is clicked or
build is selected from the menu, if the build is successfull, an executable file having
.hex extension will be created. This file can be:

= Simulated by using the software,
= Debugged, or
= Written to the Ceng 336 card.

Debug:

After obtaining the executable having the extension hex, the user can observe
its behaviour by using the debugger with selecting debug from the menu. The
debugger enables the user to execute the program to a specified line number, pause
and resume execution, and see the contents of the different parts of the PIC

processor (memory, registers, etc.).

Simulate:

After obtaining the executable having the extension hex, the user can load,
execute and see the results on the simulator by selecting simulate from the menu
without burning the hex code to the Ceng 336 card in the real life. At one step, one
line of code is executed, the values are updated, and finally this data is sent to the
graphical user interface to be shown.

Burn Hex File to Card:

The file having the extension hex can be burned to the card to enable the
execution on that card by selecting burn hex file to the card from the menu. If this
process is successfull, the system silently returns. But if not, an error message is
printed indicating that the burn process has failed.

Print Error Message:

An error message shown in a message box indicates that the burn process of

the executable on the Ceng 336 card has failed.

3.5 Main Components and Their Relations in the System

el ol -
b1 i VT T R P
I =0 AT LS 1T

TrHlze & ._,__J_.__n_ %.E;

JELS HIMI
ﬁ-‘ AR ANnna

tL.:Fw biul, 1= His
“{AInnn ANy

1afeuepy no

L

Tl

ST T W

Brgag

pIesa LUIng

e fiucs
e _.._.__._..1

&

HEAS LATRTH
a)4ocEh Tz

s =l
1 -1

b NN [y A

ey :ﬂﬁﬂ Ak i

1apdwon

quassy

|- ZENg - SRR Jqnd
[T= b= = = » Z1enud
Lldis |=5t =jeeud
[EA T (TR oy RS Rl
R S < 1= 2 T
IS (N
[sbquan=" :_wu B _Ew”n.
+
TECETEAL L g s
ST 77 A AN |
F-CHNg .CAng'E 3
LCIng cng ==kt O ;)1 =
FLun 5 Ul AL :n__._c—,.:._._a:_._.“L.
(R ECY IR |
Lofng Lonng
J.Sn..ﬂvom...w B
V=R G |
Wt el e
B e I
..__.__.__.__._., = i

LMy

SEu

aleyosed Joupaxay

_ Joypaka Ly

3.5.1 Assembler Class

Assembler

string getfsmFile);
string sendMPASM(string);
string releaseHex();
string releaselst(
string releaseErr(

i
i

string AsmAddress,
string Lst;

string hex;

bool isAssembled;
string Errdessage;

Methods

getAsmFile();
This function takes no argument and returns the Asm address as string. By using this

method we have the .asm file.

sendMPASM ((string);
This function takes the Asm address as argument and returns .hex file. Sendsthe

address to the MPASM as an argument .

releaseHex();
This function takes no argument and return .hex file.

releaselst();

This function takes no argument and return .Ist file.

releasekrr();

This function takes no argument and return .err file.

Attributes

string AsmAddress,
Thisisthe variable of sendMPASM() function.

string Ist the address of the It file

string hex the address of the hex file

bool isAssembled;

Thisisset to falseinitially. It will return true when the C file is compiled into asm file.
string ErrMessage;

Thisisthe attribute of sendMPASM() function. Thiswill be returned when the C file
Is detected to include bugs.

3.5.2 Compiler Class

Compiler

string getZFilel);

string sendToCompiler{string);
string releaseAsmi);

string releasekrr();

string errfdessage;
hool isCompiled,
strifd s m:

string Cadress;

Methods
getCFile();
This function takes no argument and returns the address of C file as string. By using

this method we have the .cfile.

sendToCompiler(string);

This function takes the address of C file asargument and returns .asm file.
releaseAsm();
If isCompiled istrue, thisfunction gets the address of the compiled asm file. We will

use at this stage a third party software for compilation . This method return .asm file.

releasekrr();

This function takes no argument and return .err file
Attributes
bool isCompiled;
Thisis set to falseinitially. It will return true when the C file is compiled into asm and

hex files.

string ErrMessage;
The error message got from 3 party software .

string Asm the address of the asm file.

string Caddress the address of the Cfile .

3.5.3 Debug Class

Debug

hiool cantrol();

string getAsmi);

woid setBreakPoint({int];
void setWatchPoint(int);
woid pause();

woid resume();

void sendStatusMessage();

hool HexExist

string AsmAddress;
vector<int= WatchPoint:
vector<int= BreakPoint
int LineMumber:

string StatusMessage;

M ethods

control();
This function takes no argument. It will check whether the hex file exists or not. It will

return boolean such that if hex file exists true, otherwise false.

getAsmFile();
This function takes no argument and returns the Asm address as string. By using this

method we have the .asm file.

setBreakpoint(int);
This function takes the line number as int. The mission of this method is to set break

pointsinto the indicated line.

setWatchpoint(int);
This function takes the line number as int. The mission of this method is to set watch

points into the indicated line.

pavise();
This function takes no argument. When this method is called, the process of

debugging stops. Debugging stays in this position unless the method resumeis called.

resume();
This function takes no argument. When this method is called, the process of
debugging starts from the state where it was before calling the method pause;

sendStatusM essage();

This function takes no argument. It returns a message in which the situation of
debugging is explained. The type of this message is string.
Attributes
bool HexExist;

Thisis set to falseinitially. It will return true when the hex file exists. Otherwise it
will return false.
string AsmAddress; the address of the asm file .
vector<int> breakNumber;

This indicates the number of breakpoints that is going to be set. Since multiple
numbers possible we use vector.
vector<int> watchPoint;

This indicates the number of watchpoints that is going to be set. Since multiple
numbers possible we use vector.

int lineNumber; a variable used by getting breakpoint ,watchpoint .

string StatusMessage; The message expressing the current status to the GUI .

3.5.4 GUIManager Class:

GlUIManager

private vaid showhemaorindow
(ohject |, Systerm BEventfrgs)
private void showCodeWWindoe
(ohject |, Systemn EBEventfrgs);
private void showRegister\indow
(ohject, System Bventdrgs);
private void showtatch\Window
(ohject, System Eventdrgs);
private void showQutputindow
(ohject, System BEventdrgs);
private void showStacklindow
(ohject, System BEventdrgs),
private void showProjectFile
(ohject, System Eventdrgs);

private nexTextFile RCTextEditar,
private myForm output;
private goto gotoDialogBox;

Variables:

private newTextFile RCTextEditor
Text Editor variable from RCTextEditor class.

private myForm output

Output window variable from output class.
private goTo goToDiaogBox
Go to dialog box variable from goTo class.
Methods:
private void showMemoryWindow(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks
“Memory” choice from the “View” menu. If the memory window is opened, it is closed;

otherwise, it is opened.

private void showCodeWindow(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks
“Code Editor” choice from the “View” menu. If the code window is opened, it is closed;

otherwise, it is opened.

private void showRegisterWindow(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks
“Registers’ choice from the “View” menu. If the registers window is opened, it is closed;

otherwise, it is opened.

private void showWatchWindow(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks
“Watch” choice from the “View” menu. If the watch window is opened, it is closed,;
otherwise, it is opened.

private void showOutputWindow(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks
“Output” choice from the “View” menu. If the output window is opened, it is closed;

otherwise, it is opened.

private void showStackWindow(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks
“Stack” choice from the “View” menu. If the stack window is opened, it is closed; otherwise,
it is opened.

private void showProject Files(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks
“Project Files” choice from the “View” menu. If the project fileswindow is opened, it is

closed; otherwise, it is opened.

3.5.5 Class RCTextEditor:

FCTextEditar

public void SaveClicked();

public string getText();

public RichTextBox getFichText();
public void setText(string);

public void setFileQOpenedState(bool);
public bool getFileCpenedState(),;
public void setFath{string),

public string getPath();

public void Cut();

public vaid Copy();

public void Paste();

public vaid Undaf);

public void Redof);

public vaid Selectal();

public vaid Find();

public void Replace():

public vaid gaotal);

private woid findMextClicked

(ohject, System BEventArgs);

private woid findMextiNFeplacedClicked

(ohject, System BEventArgs);

private woid replaceThisinFEeplaceClicked

(ohject, System BEventArgs);

private woid replacedllinReplaceClicked
(ohject,System Eventirgs);

private woid saveFileDialog! FileOik

(ohject, System. Componenthodel CancelBEventfrgs);

private System Windows Forms FichtextBox richTextBox 1
private System. Componenttodel Container components
private System Windows Forms SaveFileDialog saveFileDialog
private string fullPath

private string outFile

private bool is_File Opened

private FindDialogBox myFindDialogBox

private replace myreplaceDialogBox

private int nextFindindesx

private System Windows Forms FichtextBox richTextBox?
private bool isReachedEnd

private bool replacement_made

private goTo gotoDialogBox

Variables:

private System.Windows.Forms.RichTextBox richTextBox1

The main component of the text editor in which the user will write his’her code to.

private System.ComponentM odel.Container components
Set to null initially. Indicates the container that the GUI objects will bein.

private System.Windows.Forms.SaveFileDia og saveFileDialogl
This dialog box appears when the user wants to save a newly written code text. This
enables the user to explore the directories and select a directory to save the codefile. If a

previously saved code text is edited and wanted to be saved, just thefile is saved, this doesn’t
appear.

private string fullPath
Set to string “” (empty string) initially. This acts as an intermediate storage for the
path of the file to be saved. This path information comes from the save file dialog that is

shown to the user before.

private string outFile

Set to string “” (empty string) initially. If the fullPath variable is set (that isif it is not
an empty string), this variable is assigned to the fullPath variable, since this variable stands
for the path of the output file to be saved.

private bool is_File Opened
Set to boolean false initially. This variable indicates whether the current codefileis
saved before (in the current session or previous sessions) or not. According to this variable,

savefile dialog is shown to the user or not.

private FindDialogBox myFindDial ogBox
A variable from FindDialogBox class. This stands for the find dialog box when the

user clicks“Find”.
private replace myReplaceDial ogBox

A variable from replace class. This stands for the replace dialog box when the user

clicks “Replace’.

private int nextFindlndex

Set toint Oinitialy. Thisvariable stands for the index that will be used as a starting
point for the next string to be found when the user clicks “Find Next” in replace dialog box or
find dialog box.

private System.Windows.Forms.RichTextBox richTextBox2

ThisrichTextBox variable will be used to show the line numbers on the left hand side
of the richTextBox1 (namely, the text editor). This text box will be read-only (in other words,
editing will not be allowed).

private bool isReachedEnd

Set to boolean false initially. Indicates whether the end of file is reached or not during
the replace and find sessions. According to thisvariable, if it istrue, ayes-no message box is
shown to the user indicating that the end of file is reached and asks to continue from the
beginning of the file or not.

private bool replacement_made
Set to boolean falseinitially. Thisis a precaution for the insertion of atext again and
again when the user clicks “Replace this Occurence” multiple times. Set to true when the user

makes a replacement in the text.

M ethods:

public void saveClicked() :

Handles the events to occur when the user clicks “ Save’ from menu.

public string getText() :

Returns the text written in text editor.

public RichTextBox getRichText() :

Returns the richTextBox object in which the user writes his/her code.

public void setText(string output) :
Assigns the given string argument to the editor’ s richTextBox object’stext. Thisis
used in opening a previously saved file. The contents of the argument is copied to the text

editor’ s empty richTextBox and shown to user.

public void setFileOpenedState(bool state) :
Assigns the given boolean state to the is_File_Opened variable which is a boolean
state, too. Set to true when the user opens afile, or saves. Otherwise, false. According to this

variable' s state, a save file dialog is shown to the user or not.

public bool getFileOpenedState() :
Returns the boolean variable is File Opened that determines whether the codefileis

previously saved or not.

public void setPath(string path) :
Assigns the given string, which is a path, to the output file’ s path. The output path is
represented by the variable outFile in class.

public string getPath() :
Returns the path of the currently opened file.

public void Cut() :
Cuts the selected text from the editor.

public void Copy() :
Copies the selected text from the editor.

public void Paste() :
Pastes the copied or cut text from the editor to the point where the code text’s cursor
stands.

public void Undo() :
Undoes the last action made in text editor.

public void Redo() :
Redoes the last action made in text editor.

public void SelectAll() :
Sdlects dll the text in the text editor.

public void Find() :

Lets the user to search for a string in the code text. Opens a find frame (which isa
class FindDialogBox variable named myFindDialogBox) to enable the user to enter what
he/she will search.

public void Replace() :

L ets the user to replace a string with another string in the code text. Opens areplace
frame (which is a class replace variable named myReplaceDial ogBox) to enable the user to
search for agiven string, replace it or not, or to replace all of the occurences of this text with

new one in the code text.

private void findNextClicked(object sender, System.EventArgse) :
This function is an event handler. It handles the events occur when the user clicks

“Find Next” button in the find next frame.

private void findNextlnRepl aceClicked(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks

“Find Next” button in the replace frame.
private void replaceThislnReplaceClicked(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks

“Replace This Occurence” button in the replace frame.

private void replaceAlllnReplaceClicked(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks
“Replace All” button in the replace frame.

private void saveFileDialogl FileOk(object sender,
System.ComponentM odel.Cancel EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks
“OK” in the save file dialog box.

3.5.6 Class FindDialogBox :

Find

public void button1_ Click
{obhject, Systermn BEvent Args)
public void button? Click
{ohject, Systermn BEvent Args)

private System Windows Forms Label label

private System Windows Forms TextBox textBox]

public System Windows Forms Button buttan 1

private System . ComponentModel Container components
private System VWindows Forms Button button??

public string textToSearch

Variables:

private System.Windows.Forms.Label 1abel1
The label that is set to “Text to Search” and shown to the user.

private System.Windows.Forms.TextBox textBox1

Stands for the text box that the user enters atext to search in the code text.

public System.Windows.Forms.Button buttonl

Stands for the button named as “ Find Next”.

private System.ComponentM odel.Container components

Set to null initially. Indicates the container that the GUI objects will bein.

private System.Windows.Forms.Button button2

Stands for the button named as “ Close”.

public string textToSearch
Set to string “” (empty string) initially. Assigned to the text entered in the textBox1

variable in the process.
Methods:
public void buttonl_Click(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks
“Find Next” button.
private void button2_Click(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks

“Close’ button in the find next frame.

3.5.7ClassgoTo:

goto

public int getlinerum()
public void button_Click
(Object, Systemn BEventfrgs)

private System \Windows Forms Label label1

private System \Windows Forms TextBox textBox

public System Windomes Forms Button button 1

private int lineTolGo

private System \Windows Componenthodel Container components

Variables:

private System.Windows.Forms.Label label1
The label that is set to “Enter Line Number to Go” and shown to the user.

private System.Windows.Forms.TextBox textBox1
Stands for the text box that the user enters aline number to go in the code text.

public System.Windows.Forms.Button buttonl

Stands for the button named as “ Go” .

private int lineToGo
Settoint 1 initially. Indicates the line number to go in the textBox1 variable.

private System.ComponentM odel.Container components

Set to null initially. Indicates the container that the GUI objects will bein.

Methods :

public int getLineNum() :

Returns the line number to go (namely, lineToGo variable).

private void buttonl Click(object sender, System.EventArgse) :

Thisfunction is an event handler. It handles the events occur when the user clicks

“Go” button inthe“go to ling” frame.

3.5.8 Classreplace:

replace

private System \Windows Forms Label labell
private System \Windows Forms Label label?
private System \Windows Forms TextBox textBox
private System \Windows Forms TextBox texthox??
private System \Windows Forms Button button
private String textToReplace

private String replace'?ith

public System Windows Forms Buttan button?
public System Windows Forms Buttan button3
public System Windows Forms Buttan buttong
private System . ComponentModel Container components

public string getTextToReplace()
public string getReplacelith()
private woid button1_Click
{ohject, Systemn Eventfrgs)
private woid button2 Click
{ohject, Systemn Eventfrgs)
private woid button3_ Click
{ohject System . BEventdrgs)
private woid buttond Click
{ohject, Systemn Eventfrgs)

Variables:

private System.Windows.Forms.Label label 1
The label that is set to “Text to Find” and shown to the user.

private System.Windows.Forms.Label label2
The label that is set to “Replace With” and shown to the user.

private System.Windows.Forms.TextBox textBox1

Stands for the text box that the user enters atext to search in the code text.

private System.Windows.Forms.TextBox textBox2

Stands for the text box that the user enters atext to replace with the one entered in

textBox1 in the code text.

public System.Windows.Forms.Button buttonl
Stands for the button named as “Find Next”.

private string textToReplace
Set to string “” (empty string) initially. Indicates the text to find and/or replace in the
textBox1 variable.

private string replaceWith
Set to string “” (empty string) initially. Indicates the text to replace with the one

entered in the textBox1 variable.

public System.Windows.Forms.Button button2

Stands for the button named as “ Replace This Occurence”.

public System.Windows.Forms.Button button3
Stands for the button named as “ Replace All”.

private System.Windows.Forms.Button button4

Stands for the button named as “ Close”.

private System.ComponentM odel.Container components
Set to null initially. Indicates the container that the GUI objects will bein.

Methods:

public string getTextToReplace() :
Returns the textToReplace variable.

public string getReplaceWith() :
Returns the replaceWith variable.

private void buttonl Click(object sender, System.EventArgse) :
This function is an event handler. It handles the events occur when the user clicks
“Find Next” button.

private void button2_Click(object sender, System.EventArgse) :
This function is an event handler. It handles the events occur when the user clicks

“Replace This Occurence” button.

private void button3_Click(object sender, System.EventArgse) :
This function is an event handler. It handles the events occur when the user clicks
“Replace All” button.

private void button4_Click(object sender, System.EventArgse) :
Thisfunction is an event handler. It handles the events occur when the user clicks

“Close’ button.

3.5.9Class Visible

Visible

void setLCD

void Reset()

void Initialize();

void UpdateDisplay(}:
void displayLCD(};

void set7Segment();

void setKeyboard(}):

void setJumper().

void setPIC()

void Evaluate({instruction};

asci[255].

boal visPIC[40]:
bool viskeyboard:
boal vis7Segment:
int instruction .
byte db[8]:

byte rw

byte rs .

Aswe mentioned in previous progresses we will use an Visual CENG Embedded Card
named ‘Visible® . By touching at the buttons on Visible user can change the state of the
Visible card. — The Visible figureisshown at GUI part- A program burned to the Visible
by our RCSim program will change the state of the Visible . For example the 7-segment
display on visible will change its state on Visible.

Void setLCD ()
The datas affecting LCD display are managed by this method . The inner methods for the
LCD display is managed by this method.

Void Reset()
resets LCD

Void initialize()
initializes LCD display

Void updateDisplay()
updates the LCD display

Void evaluatel nstr(instruction)
LCD instruction evaluation function managed by setL CD method .

displayL CD(byte db[7], byte rw, byters)
LCD display method , adapted from the Hitachi HD44780 mode! .

Void set7segment()
The datas affecting 7 Segment display are arranged by this method .

Void setKeyboard()
The situation of the keyboard buttons are managed by this function .

Void setJumper ()
The situation of the keyboard buttons are managed by this function .

Void setPic()
The situation of the PIC on Visible arranged by this method .

Attributes.

ascii[255]
ascii character needed by LCD display

bool VisPIC [40]
Thiswill be used in setVisible(). The values of the buttons at Visible PIC pinswill be kept
onthisdatas. There are 20 left 20 right total 40 pins of our pic.

bool VisKeyboard[16] . This attributes will also be handled by setVisible() method . The
keyboard have 16 buttons ; each are dependent to some value in data memory , the related
values will be kept in this datas.

bool Vis7segment[3][7]
Visible hasalso a3 x 7Segment Display . for all weneed 7 lines each are bool —light on
light off-

int instruction

instructions used in LCD display

byte db[7]
datas connected to LCD display

byte rw
LCD reads or writes

byters
LCD should reset or set ; when O set ,1 reset .

3.5.10 ClassDMemory

Data Memory

void setDMemory();
void getUserChangesi():

double DMemory[368];
vector=change> canges;

struct changelint lineno _int value}
int lineno

int value

The data memory class, managing data memory visualization

Void setDMemory() The changes made to the data memory made from simulater , debugger
Is simultaneously made to this class dMemory[] values by this method .

Void getUserchanges(vector<change>) the changes obtained from the user are made in the

datamemory .

Attributes

double dMemory[368] ;

the values of data memory

vector <struct> change { int linenumber , int tempvalue }

the changes are kept until user sent thisto RCsim in an array.

int linenumber ;

the current linenumber int data memory ;

int tempvalue ;

the value given by the user

3.5.11 ClassPMemory

Program Memory

void setPMemory(});
void getlserChanges(}:

bitArray PMemory[8192][14];
vector=change>= canges;

struct changelint lineno int value}
int lineno

int value

The data memory class, managing data memory visualization

Void setPMemory() The changes made to the data memory made from simulater , debugger
Is simultaneously made to this class dMemory[] values by this method .

Void getUserchanges(vector<change>) the changes obtained from the user are made in the

datamemory .
Attributes
double PMemory[8192] ;

the values of data memory

vector <struct> change{ int linenumber , int tempvalue }

the changes are kept until user sent thisto RCsim in an array.

int linenumber ;

the current linenumber int data memory ;

int tempvalue ; temporary value

3.5.12 Class Register

Register

void setRegister(});
void getUserChanges();

double Register]]:
vector=change> canges;

struct changedint lineno _int value}
int lineno

int value

The data memory class, managing data memory visualization

Void setRegister() The changes made to the data memory made from simulater , debugger is
simultaneously made to thisregister[] values by this method .

Void getUserchanges(vector<change>) the changes obtained from the user are made in the

datamemory .

Attributes

Doubleregister [369] ;

the values of data memory

vector <struct> change { int linenumber , int tempvalue }

the changes are kept until user sent thisto RCsim in an array.

int linenumber ;

the current linenumber int data memory ;

int tempvalue;

the value given by the user

ClassWatch

Watch

void setPMemory(}):
void getlserChanges();

bitArray PMemory[8192][14];
vector=change> canges;

struct changelint lineno int value}
int lineno

int value

The data memory class, managing data memory visualization

Void setWatch() The changes made to the data memory made from simulater , debugger is
simultaneously made to this vector values by this method .

Void getUserchanges(vector<change>) the changes obtained from the user are made in the

data memory .

Attributes

V ector<double >Watch

the values of data memory

vector <struct> change{ int linenumber , int tempvalue }

the changes are kept until user sent thisto RCsim in an array.

int linenumber ;

the current linenumber int data memory ;

int tempvalue ;
the value given by the user

4. Project’s File Structure

Froject

! . b

Praject ypp Project.c Frojezt.asm Project.hex ProjectIst

1EFB77 ik 1.
Project.c
Frojecl.asrm
Froject.hex
Froject Ist

Prijert prr

1. Project.yyp
“.yyp” is the file extension of our main project file. This include links to

project.c — if the code is written in C language
project.asm
project.lst
project .err
e project.hex
e other files
This file also will have records of the settings of the project , like date of last

modification.

2. Project.c
This is the source file used in our project, if the program is written in C language but
not in assemble.
3. Project.asm
This is the assembly source file used in our project. There are two sources of this file
1. A user can directly write the assembly program
2. The user can write C codes, the compiler converts it into assembly language.
4. Project.Ist
This is the file obtained from MPASM assembler program. This file is important for
our system that we will use this in our simulation part. In this file format symbol table
of the assembly file is given. The user can never give his/her .Ist file to our system .
Only our program will generate the .Ist file.

5. Project.err

This file is generated from our program as an output. If there exists any error during
the compiler, assembler , linker , burn period this file will be generated automatically .
The user will also see this text in the output file window on the program.

6. Project.hex

This file is the product of the MPASM assembler. The only format that can be sent to
the program is this file format. The user can never give his/her .hex file to our system.
Only, our program will generate the .hex file.

7. Other files

If the user wants to include some other files, we will categorize this files as a part of

this format For example properties of PIC is here.

5. User Interface Design (Menus)
In this part, menus of RCSim will be explained with some screenshots.

General view of RCSim will be as follows:

RE 5im 1.0

Filz =4t e Simaste Hap

|:] *F H of =3 B S |vebug g6 s (B v [F W

& Projeci1.yyp [';JE]E|
[Soree Fies
E_J =eadz Sles
&= JEpect Hies
X I__-I Frary FlFs
OB e Soriprs)

T 2 e Sl

RARY T

[riles ¥ Symbol:

5.1 File Menu

RC-Sim 1.0

Hlz [Frr W=zw samilae FAC
Mer Chly ebuc % Sim (=) (0} G W
apcn el
Close Chil+T4 ot .
Prajectt.yyp [= |[E1)]
s Sat+s 1] FoLrce Mies
vz Ps, 24 Heacer Flac
A= il o3 obect Flles
FA 1 | Libray Fics
Far SR |1 ke s
Lol otkerTles
21 Fics i“’l:,' Syrnbcls:
a. New

Creates a new project with blank code editor.
b. Open
Opens the dialog box to select a saved project or source files

c. Close

Closes the current project but not the program

d. Save

Saves changes on current active window.

e. Save As
Saves active window with different names as a different project or file.

f. Save All

Saves all changes in all windows.

g. Exit

Closes all windows and exits the program.

5.2 Edit Menu

LB RC 5im 1.0

File | ot wew Smdlake Hzlp

1 o Cll-2Z [T TR NGB e U
Jado Chrl—

Zul Ul

Zopy bl O

|2 sou-ca Fiss

B Ty i [E8 Header Ales
G R

Selecz all Chl & 0 et Fies
[Ubrary Fles

-nd. . 4+ S

Tind Newz T2
Zeplzce... Chrkbd

anla, . trla

LE

Symbiols |

|
27 Filzs i‘*

a.undo

Takes the last action back.

b.Redo

Takes the last undo action back again.

c.Cut

Cuts the selected text and copies to the memory.

d.Copy

Copies the selected text to the memory.

e.Paste

Pastes — writes the copied text.

f.Select All

Selects all the texts in current window.

g.Find

Opens the dialog box to find a word or phrase.

h.Find Next

Finds the next item of the searched word or phrase.

i.Replace

Opens the dialog box to replace the word(s) with the written ones.

j.Go to

Opens a dialog box to go to the line indicated by the user.

5.3 View Menu

RC-Sim 1.0

[» E ' Projec: Files

ol p

Mernory

Registzrz

Fie Edit | Mew | Simiatz Help

&8 Sim (7 0 @

™

B

Tkack,

‘Watch

e Felitar

B Project1.yyp EIE”E
Siource Files
23 Header Hizs
I Utnect Files
L[Libary Files

- (2
-2 oeher =lles

(] Files | # Symbols |

a.Project Files
Shows project’s files.

b.Output

Shows the output file.

c.Memory

Shows the conditon of the memory.

RC-Sim 1.0

=1

File Edit View Simulate Help
= = | Project Files E Sim (=) 0 W
Oukpuk

[0 Y 256-303 g

e Mernary s ST e =
i |[2e4 o0000COD m | [441 00000000 |
1 Registers [|285 DOOOOOOD |44z 00000000
2 o ZH6 00000000 [443 00000000
3 267 00000000 [444 00000000
4 Watch 288 000OOOOOD |445 00000000
5 289 00000000 [445 00000000
6 ; 290 00000000 [447 00000000
7 Coge Edtor 56 00000000 | (448 00000000
] 00000000 || 239 00000000 292 00000000 |43 00OODDOD
q 00000000 240 00000000 293 00000000 [450 00000000
10 00000000 | 241 0000000 284 Q0oOOOOD — | | 451 00000000
11 00000000 |242 00000000 295 00000000 |452 00000000
12 00000000 |243 00000OOO 295 00000000 [453 000OODOD
13 00000000 [244 0000OOOD 297 00000000 [454 000000OC
14 00000000 |245 0OODOOOD 298 000OOOOD [455 0OOOOOOO
15 00000000 |245 00000000 299 00000000 {456 00000000
16 00000000 |247 0000OOOO 300 00000000 [457 00000000
17 00000000 |248 00DODOOD am 00000000 |458 00000000
18 00000000 |43 0O0DOOOO 302 00000000 [459 00000000
19 00000000 |250 00000000 (303 00000000 [460 00000000
20 00000000 | 251 00000000 a04 00000000 | 461 00000000
21 00000000 |252 0000OOOO 305 00000000 [462 00000000
22 00000000 |53 00000000 306 00000000 [463 00000000
23 00000000 |754 000000D0 — | 307 00000000 (464 00000000 |
24 00000000 | [256 0OODOODO | 308 (OOOODOO ¥ (465 00OODOOD |

d.Registers

Shows the conditon of registers.

RC-5im 1.0

File Edit | Miew [Simulate
R =1 |

Project Files

Oukput

Mernary

Registers

Skack
‘Watch

Code Editor

Help

& Sim ()) @ W

Reqisters
Address Hex
oooo oo
0o oo
ooz oo
oooz oo
oood o0
ooos 0o
ooos oo
ooy oo
ooos oo
ooos oo
000s 00
oooe oo
oooc oo

Decimal Binary Symbol Mame

0 Qooooaao INDF

1] Qooooaan THMRO

1] Qoooooan PCL

0 Qooooann STATUS
1] Qooooaan FSR

0 Qoooooan PORTA
0 Qooooaan PORTE

1] Q0000000 PORTC
0 Qooooaao FORTD
1] Qooooann PORTE

1] Qoooooan PCLATH
1] Qooooann INTCOM
1] 00000000 PTR1

i

e.Stack

Shows the conditon of the stack of processor.

RC-Sim 1.0

File Edit Vigw Simulake
RN= " |

Project Files

Oubpuk

Mermnaory

Reqgisters

Stack

Watch

Code Editor

Help

& sim () ()

Stack

T

s

Stack Level

b B g B R L R e

Feturn Address A
Ernpty =
0000
nooo
0ooo
0ooo
0ooo
nooo
0000 B

f.Watch

Opens the dialog box to watch the indicated breakpoints.

g.Code Editor

Opens the editor for programmer.

5.4 Simulate Menu

Contains the menu for debugger.

RC-5im 1.0

File Edii Wiew | Sinulaze Help
PO - e 4 Debugger r Mk
Skart Builc
Run = e
Pause Projecl1. yyp |'LJ@@
5 {1 Source Files
Step Into |27 Header Files
Step Cwer (3 obect Files
i | Library Files
-0
A Other Hles
] Fies | ¥ Synbols
a. Debugger

e Make : Rebuilds an application, re-compiling only those source files that have
changed since the last complete compilation
e Build : Compiles the application
e Run: Runs the simulator
b. Start

Starts the simulation or continues paused simulation

c. Pause

Breaks the simulator

d. Stop

Stops the simulator.
e. Step Into
Steps though code, one instruction at a time.

f. Step Over
Allows you to step over subroutines. This command executes the code in the

subroutine and then stops execution at the return address to the subroutine.

[Yisible

Ol il L]

PIC
16877

| LPT PORT

3

O
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The visible Card is shown above
By using this card user will show the LCD display status on screen . User can give
input to our product by using 16 Keyboard buttons . Simultaneously the system will

adapt to its situation. PIC and 7 Segment display are also shown above.

5.5 Help Menu

P RC-Sim 1.0 =12

Mle Cdit View Simulate l=lp
0 2 H s a8 | T
Links...
How ko Use RCSim Project!.yyp H@El
Abot CEng Embecded Card (B3 Source Fles
Aol RCSin i [Headsr Files
[Caject: Fles
- [Library FAles
¥ B8 Linker Seripts

123 Crher Fils

[Fiks | ¥ Symaoks|

a. Topics
Opens an help menu based on related topics.

b. Links

Opens a box contains links about card, PICs etc...

c. How to Use RCSim

Opens users guide to RCSim. It will be very clear and understandable in order to help
Ceng336 students. Moreover, we will provide some example codes. These codes will
be asked from instructors of Ceng336 course also.

d. About Ceng Embedded Card

Opens a box contains information about card. Determining this information will be

done by the help of instructors of Ceng336 course.

d. About RCSim

It's all about us and our project.

