
MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CENG 491
COMPUTER ENGINEERING DESIGN I

INITIAL DESIGN REPORT

YAYA BİLİŞİM

YASİN ALPEN 1297431

KAAN Y. CEYLAN 1347269

YUNUS EŞENÇAYI 1347459

AHMET TAHİR UÇKUN 1298371

2

INDEX

1. Project Description ……………………………………………………………… 4

1.1 PIC ………………………………………………………………………… 4

1.2 CEng Embedded Card ………………………………………………... 5

1.3 The Process ……………………………………………………………… 6

1.4 Emulators…………………………………………………………………. 7

1.5 Our Product ………………………………………………………………. 7

2. Team Process ……………………………………………………………………… 8

3. Diagrams ………………………………………………………………………….. 9

3.1 Data Flow Diagrams ……………………………………………………. 8

3.1.1 Level 0 DFD …………………………………………………….. 8

3.1.2 Level 1 DFD …………………………………………………….. 10

3.2 Data Dictionary ………………………………………………………….. 11

3.3 Use Case Diagrams …………………………………………………….. 14

3.3.1 Save Project ……………………………………………………. 15

3.3.2 Open Project …………………………………………………… 15

3.3.3 Write Program ………………………………………………… 15

3.3.4 Build Project …………………………………………………... 16

3.3.5 Debug ……………………………………………………………. 16

3.3.6 Burn to Card ……………………………………………………. 17

3.3.7 Simulate …………………………………………………………. 17

3.4 Activity Diagram …………………………………………………………. 18

3.5 Class Diagram …………………………………………………………… 22

3.5.1 Compiler ……………………………………………………….. 23

3.5.2 Assembler ……………………………………………………… 23

3.5.3 Burn to PIC ……………………………………………………... 24

3.5.4 Debug …………………………………………………………… 25

3.5.5 Text Editor ……………………………………………………… 26

3.5.6 Simulator ……………………………………………………….. 27

3.5.7 GUI Manager …………………………………………………… 28

3.6 State Transition Diagram ………………………………………………. 29

3

4. Project’s File Structure ………………………………………………............... 29

5. User Interface Design…………………………………………………………… 31

5.1 File Menu ……………………………………………………………… 31

5.2 Edit Menu …………………………………………………………….. 32

5.3 View Menu ……………………………………………………………. 34

5.4 Simulate Menu ……………………………………………………….. 35

5.5 Help Menu …………………………………………………………….. 36

6. Gantt Chart …………………………………………………………………….. 37

4

1. Project Description

This report describes the process of RCSim Software which is a product of

YAYA Bilişim in initial design level. In this report, we will clarify the process and our

work on RCSİM Software.

Yaya Bilisim is a DEVEMB project group which is supposed to develop a

software emulator for CEng Embedded Card briefly. One who wants to understand

RCSim Software must have a background on PICs, embedded systems, emulators

and development boards. In order to understand our work better, we should deal with

these topics briefly.

1.1 PIC:

A microcontroller is a compact standalone computer, optimized for control

applications. Entire processor, memory and the I/O interfaces are located on a single

piece of silicon so, it takes less time to read and write to extrernal devices.

Following are the reasons why microcontrollers are incorporated in control

systems:

a. Cost: Microcontrollers with the supplemantary circuit components are much

cheaper than a computer with an analog and digital I/O

b. Size and Weight: Microcontrollers are compact and light compared to

computers

c. Simple applications: If the application requires very few number of I/O and the

code is relatively small, which do not require extended amount of memory and

a simple LCD display is sufficient as a user interface, a microcontroller would

be suitable for this application.

d. Reliability: Since the architecture is much simpler than a computer it is less

likely to fail.

e. Speed: All the components on the microcontroller are located on a singe

piece of silicon. Hence, the applications run much faster than it does on a

computer.

5

There are a lot of microcontroller manufacturers and they are named

according to their manufacturers. PIC (Peripheral Interface controller) is the one

produced by Microchip. PICs have Harvard architecture but not Von Neuman.

Since our product is only about PIC16F877, we will deal with it. PIC16F877 is

one of the most commonly used microcontroller especially in automotive, industrial,

appliances and consumer applications. The core features of PIC16F877 are:

 14 bit cores with 35 instructions.

 200 ns instruction time

 8092 14 bit Flash program memory

 368 8 bit data memory or registers(RAM)

 256 8 bit EEPROM data registers

 8 level hardware stack

 Up to 14 interrupt capability

 33 I/O pin

 3 timer/ counter modules

 10 bit 8 channel A/D converter

 Parallel and Serial ports

1.2 CEng Embedded Card

CEng embedded system card is the card that is used in CEng 336 "Embedded

Systems" course. It includes two PIC processors and various interfaces like LCD,

Parallel, Serial, USB ports, smartcard reader, LED's etc.

6

1.3 The Process:

Developing a project have some steps as:

1- Writing the code:

Software Code for a microcontroller is written in a programming language of

choice (often Assembler or C). This source code is written with a standard ASCII text

editor and saved as an ASCII text file. Programming in assembler involves learning a

microcontroller's specific instruction set (assembler mnemonics), but results in the

most compact and fastest code. A higher level language like C is for the most part

independent of a microcontroller's specific architecture, but still requires some

controller specific extensions of the standard language to be able to control all of a

chip's peripherals and functionality.

2- Translating the code:

Next the source code needs to be translated into instructions the microcontroller

can actually execute. A microcontrollers instruction set is represented by "op codes".

Op codes are a unique sequence of bits ("0" and "1") that are decoded by the

controller's instruction decode logic and then executed. Instead of writing opcodes in

bits, they are commonly represented as hexadecimal numbers, whereby one hex

number represents 4 bits within a byte, so it takes two hex numbers to represent 8

bits or 1 byte. For that reason a microcontroller's firmware in machine readable form

is also called Hex-Code and the file that stores that code Hex-File.

7

3- Debugging the code:

Since the process of burning the code to the card takes a long time, it is

unwanted to burn an error including code. In order to prevent such situations, it is

better to check and debug the code before burning. This is in software level.

Although it can be in hardware level (for example setting break points and inspecting

the changes on the card), it is out of our topic.

4- Burning to the Card:

The final step is to burn the bug-free code to the Card. Burning means to

transfer data from the computer to the Card and investigating the results.

1.4 Emulator:

Even it is a simple project, uploading it to the Card takes a long time. So, for a

user it will be very time consuming to work on PICs. In order to reduce this, emulators

are developed. Emulators help user to upload their high level or assemble language

code to development boards. Moreover, these software provide user to simulate their

code’s response without burning it to the Card.

1.5 Our Product:

Emulators(or simulators) which are available are suitable for many types of

PICs and development boards. It can be seen as an advantage, however it is not the

case sometimes.

CEng336 Embedded Course is a must course of computer engineering

department in Metu. In this course, the students are supposed to do some work with

CEng Embedded Card which is also created by this department. MPLab is the

software used in this lesson.

We think that, taking Logic Design course which is the only prerequisite course

for CEng336 do not make it easy to do their works on CEng Embedded Card for a

junior student. They need to be instructed by assistants or teachers. This is a time-

consuming process for students, assistants and instructors. This is where our project

is burned.

Our product RCSim is designed just for CEng Embedded Card. Goals and

objectives of RCSim Software is as follows:

8

Easy to Use: We motivate ourselves as if our product will be using in

CEng336 course spring 2007. So, it is very important for us to develop a product

such that CEng336 students will easily use RCSim Software.

As mentioned before, RCSim Software is specific on CEng Embedded Card.

So, it should be adapted on this card and PIC16F877 only. It keeps us from selection

of PIC type and development board type. For example, because of this, there will be

less steps for creating a new project. Such simplicities will make it easier to use

RCSim Software for CEng336 students.

Moreover, we believe the importance of a user-friendly GUI for easy to use.

So, an easy to use and simple GUI is one of our objectives. On the other hand, we

plan to put a satisfactory help menu and a self learning tool in our GUI.

Responding to Requirements: Although we design a software as simple as

possible, we will provide all requirements of CEng Embedded Card. Satisfying this

balance is very important for us.

Most Realistic: Simulation is a very important part of our product. Users will

be able to simulate their codes without burning it to the card. These simulations

should be done as realistic as possible in order to make those simulations reliable.

2. Team Process

Since we were not comfortable with our position up to the requirements report,

we spent much more time for initial design. After submitting our requirements report,

we first tried to go over requirements process again to understand what is going on

better.

Individually we all studied the basic books about PIC processors and useful

websites related to our are. Some of them are :

http://www.microchip.com

http://www.ceng.metu.edu.tr/courses/ceng336

http://www.gnupic.org

http://www.mikroelektronika.co.yu/english/product/books/PICBook/

http://www.elec.rdg.ac.uk

http://www.picemulator.com

http://www.piclist.com

9

After completing this part, we’ve started to design process. During the process

of initial design, we’ve set some meeting hours according to our syllables. In the last

week, we also set some extra meeting hours at the weekend.

 Meeting hours:

Monday 15.40 – 17.30

Wednesday 12.40 – 15.00 (at 13.20 meeting with Mr. Bayer)

Thursday 14.40 – 16.30

Friday 15.40 – 17.30

Meeting Places: Library Reserve && Ceng Digital Laboratory

In addition to this, we met with Mr. Bayer every Wednesday as routine. He

controlled overall process. Some meetings were vital for the designing process.

Moreover, we also had a meeting with Mr. Kilic. Although he has many things

to do, he did not reject us.

Since Mr. Kilic is the designer of CEng Embedded Card, it is very important for

us to have meetings with him. He acts like a costumer for us. Having a costumer in

designing stage is very important.

3. Diagrams

3.1 Data Flow Diagrams

3.1.1Level 0 DFD

User gives inputs to the system and takes response from the system. Also the

user can upload the program to the Ceng 336 Card.

10

3.1.2 Level 1 DFD

11

3.2 Data Dictionary

Name: User Commands and Data
Aliases: None
Product of: User
Where used: Graphical User Interface (Process 1.1)
Description: User controls by mouse clicks, keyboard

keys, or writing text through editor.

Name: System Output
Aliases: None
Product of: Graphical User Interface (Process 1.1)
Where used: User
Description: User sees the present situation of the

program through a user interface.

Name: C Program
Aliases: None
Product of: Graphical User Interface (Process 1.1)
Where used: Compiler (Process 1.2)
Description: A program written in C language through

the text editor in the program.

Name: Compiled File
Aliases: None
Product of: Compiler (Process 1.2)
Where used: Assembler (Process 1.3)
Description: Assembly code of the program which is

converted by the compiler.

Name: Assembly Program
Aliases: None
Product of: Graphical User Interface (Process 1.1)
Where used: Assembler (Process 1.3)
Description: A program written in assembly language

through the text editor in the program.

Name: Object file
Aliases: None
Product of: Assembler (Process 1.3)
Where used: Linker (Process 1.4)
Description: Object code of the program which is

converted by the assembler.

12

Name: Display Info
Aliases: None
Product of: Display Messages and Status (Process

1.6)
Where used: Graphical User Interface (Process 1.1)
Description: Command line outputs or information

about the state of the card (e.g. value of
the registers, memory etc.)

Name: Result Info
Aliases: None
Product of: Compiler(Process 1.2) ,

Assembler (Process 1.3),
Linker (Process 1.4)

Where used: Display Messages and Status (Process
1.6)

Description: Command line outputs of the compiler,
assembler or linker.

Name: Simulation Info
Aliases: None
Product of: Simulator (Process 1.5)
Where used: Display Messages and Status (Process

1.6)
Description: Information about the simulated parts of

the card.

Name: Executable File
Aliases: None
Product of: Linker (Process 1.4)
Where used: Simulator (Process 1.5), Ceng 336 Card,

Debugger (Process 1.7)
Description: Binary file that can be executed on Ceng

336 Card or simulated by the program.

Name: File(s) to be added
Aliases: None
Product of: Necessary File(s)
Where used: Linker (Process 1.4)
Description: Necessary library files to be able to

execute the program for the type of PIC
processor that is used in Ceng 336 Card

13

Name: Project’s Executable
Aliases: None
Product of: GUI (Process 1.1)
Where used: Simulator (Process 1.5), Ceng 336 Card,

Debugger (Process 1.7)
Description: Binary file that can be executed on Ceng

336 Card or simulated by the program
that belongs to a previously written
project.

Name: Info From Text Editor
Aliases: None
Product of: GUI (Process 1.4)
Where used: Debugger (Process 1.7)
Description: Necessary information about the code

text file (line numbers, breakpoints etc.)
for the debugger to run properly.

Name: Burn Status
Aliases: None
Product of: Ceng 336 Card
Where used: Display Messages and Status (Process

1.6)
Description: Message indicating whether the

executable file is successfully written to
the card or not.

Name: Debugging Info
Aliases: None
Product of: Debugger (Process 1.7)
Where used: Simulator (Process 1.5)
Description: Current state of the execution. (The

values of the registers, memory etc.)

Name: Save Project
Aliases: None
Product of: Graphical User Interface (Process 1.1)
Where used: Project File
Description: Code and the settings of the current

project to be saved.

14

Name: Load Project
Aliases: None
Product of: Project File
Where used: Graphical User Interface (Process 1.1)
Description: Code and the settings of the project to be

loaded.

3.3 Use Case Diagrams

15

3.3.1 Save Project

User can save the project at any time but for this to be done a project must be

opened before.

3.3.2 Open Project

User can open a project when the system is idle. This project can be either a

new blank project or a previously written and saved project.

3.3.3 Write Program

16

User can write program using the text editor in C or assembly language. But

for this to be done a project must be opened before.

3.3.4 Build Project

User can build a project via the user interface. Building includes compiling,

assembling and linking stages for a program written in C language, whereas for a

program written in Assembly language building includes assembling and linking

steps. For a project to be builded, a project file must be opened before.

3.3.5 Debug

The system includes a software-level debugger, in which the user will be able

to execute the current program step by step, put breakpoints, see the contents of the

registers, memory etc.

17

But for this to be enabled, a new or previously written project must be builded

successfully before and by the way, a hex file must exist for that project.

3.3.6 Burn to Card

User can burn programs that he/she wrote or are previously written. But for

this to be enabled, a new or previously written project must be builded successfully

before and by the way, a hex file must exist for that project.

3.3.7 Simulate

User can simulate a program that is previously written or newly written by

him/her. But for this to be enabled, a new or previously written project must be

builded successfully before and by the way, a hex file must exist for that project.

18

3.4 Activity Diagram

19

Run Program:

The program is opened via the Windows user interface. After that, the program

starts and the graphical user interface opens without any project or file opened.

According to the user’s choice:

 New from Menu selected: So an empty project and the text editor opens

automatically to enable the user to write code.

 Open from Menu selected: So an open file dialog opens up to enable the

user to explore the directories to find and open a previously saved project. After the

project file is selected and OK is pressed, the selected project file opens, its settings

are loaded and the source code is shown by the text editor automatically to enable

the editing of the code.

Empty Project:

New from menu is selected and an empty project and the text editor opens

automatically, showing an empty code file.

Open Project:

Open from menu is selected and an open file dialog opens. After that, the user

explores the directories to find and open a previously saved project. According to the

user’s action:

 Project exists: The user explores the directories and selects the project file

via mouse or typing the name of the project. The project exists and it is loaded and

displayed. In here the user has two choices:

 Edit the source code, build and run, and

 Do not edit the source code, and run the project’s executable

directly.

 Project does not exist: The user explores the directories and selects the

project file via mouse or typing the name of the project. The selected file does not

exist or is corrupted. So, an error message indicating that the file that is selected

does not exist or may be corrupted is shown to user. After this message box is

closed, the system returns to its first state without opening any projects.

20

Display an Error Message:

After selecting open project from menu, if there exists an error about opening

the project file (file does not exist or is corrupted), a message box opens indicating

that there has occured an error while trying to open the specified project and the two

possible reasons for this error.

Display Project:

New from menu is selected or open project from menu is selected. Then, a

new project file is opened and displayed or the selected project is opened and

displayed if it is opened successfully.

Write Code:

If a new project is opened, the user can write source code from scratch. At any

time he/she can save or build the project.

Save Project:

In fact, this process can be done at the times when the program is idle from

the beginning of the execution of the software until stopping of the execution of the

software. But if the user opens a new project, writes the source code without making

a save at any time, and tries to build it, the system will firstly ask the user to save it

using an open file dialog. After this is done and the project file is saved successfuly,

the system will let the user to build the program.

Build Project:

After the user writes/edits the source code and wants to convert it to an

executable file, he/she builds it by pressing the build button shown in the graphical

user interface of the system.

If the project is previously saved but the source code is not saved, the system saves

it automatically and builds it. But if the project file is not saved, a file dialog will open

up and ask the user to save the project file before building. According to the result of

the build two actions are taken:

 Display the details of error

 Make hex file

21

Display the Details of Error:

After the build button is clicked or build is selected from the menu, if the build

is not successfull, the details of the error and what caused it, is shown in an output

window, which exists inside the main program window.

Make Hex File:

Contains the action of conversion of the source code to the executable or not

at all if a previously saved project file is opened. After the build button is clicked or

build is selected from the menu, if the build is successfull, an executable file having

.hex extension will be created. This file can be:

 Simulated by using the software,

 Debugged, or

 Written to the Ceng 336 card.

Debug:

After obtaining the executable having the extension hex, the user can observe

its behaviour by using the debugger with selecting debug from the menu. The

debugger enables the user to execute the program to a specified line number, pause

and resume execution, and see the contents of the different parts of the PIC

processor (memory, registers, etc.).

Simulate:

After obtaining the executable having the extension hex, the user can load,

execute and see the results on the simulator by selecting simulate from the menu

without burning the hex code to the Ceng 336 card in the real life. At one step, one

line of code is executed, the values are updated, and finally this data is sent to the

graphical user interface to be shown.

Burn Hex File to Card:

The file having the extension hex can be burned to the card to enable the

execution on that card by selecting burn hex file to the card from the menu. If this

process is successfull, the system silently returns. But if not, an error message is

printed indicating that the burn process has failed.

22

Print Error Message:

An error message shown in a message box indicates that the burn process of

the executable on the Ceng 336 card has failed.

3.5 Class Diagram

23

3.5.1 Compiler

Compiler accepts only C codes. This part gets a file, sends it to the compiler we get

from outside, tries to compile, show the situation and give .asm file as an output.

 getcFile() : gets a file written in C language .If there is an opened file used in

text editor , compiler will get that file .

 sendToCompiler() : this function will send the .c file to compiler used by our

program.

 SendStatusMsg() : If there is any error or warning or if the progress is

completed successfully this function will send message to GUI.

 releaseAsm(): If the completion progress is completed successfully

without any error , this will get the .asm file produced by the compiler release

it.

 releaseErr() :In case of any error or warning this functions will send the error

message to the .err file ; if there exists no .err file ,this function will generate

.err error file.

3.5.2 Assembler

24

Assembler get .asm file from the user or from the compiler described above. In this

stage we will benefit from the MPASM assembler produced by Microchip Company

as free. The asm files will be assembled using MPASM .

 getAsmFile() : This function will get .asm file from the compiler or directly from

the user .

 sendMPASM() : This function will get an asm file and send it to MPASM

assembler.

 sendStatusMsg() : In the assembly process, if any error or warning exists, this

will record this information to the .err file and shown to the user in output

window.

 releaseHex() : If the assembly progress is completed successfully without any

errors, this will get the .hex file produced by the compiler and release it.

 releaseLst : This function releases the .lst file of the project after the assembly

process is completed successfully without any errors.

 releaseErr() : In case of any error or warning this function will send the error

message to the .err file ; if there exists no .err file ,this function will generate

.err error file.

3.5.3 Burn to PIC

After the compilation (if the code is written in C language), assembly and linking

processes are completed successfully a hex file that can be burned on a PIC

microcontroller is created. This part gets this hex file and burns it to the PIC

microcontroller that is on the Ceng 336 embedded card.

25

 isConnected() : This function tries to establish a connection to the Ceng 336

embedded card. The information about the status of the connection process

(successful or not) is shown to the user via a message box.

 getHexFile() : If the connection is established successfully, this function gets

the hex file produced.

 burnHex() : This function tries to burn the hex file to the PIC microcontroller

that is on the Ceng 336 embedded card.

 sendStatusMsg() : If the burn process is failed, the resulting information is

recorded to an err file by this function.

 releaseErr() : This function will release the .err error file generated by the

sendStatusMsg function.

3.5.4 Debug

 control() : This function controls whether a hex file exists for debugging or not.

If not, the user is informed via an error message box.

 getAsm() : The assembly file produced by the system or written by the user is

got by this function.

 getBreakPoint() : The breakpoints specified by the user are got by this

function.

 setBreakPoint() : The breakpoint info is recorded if the user specifies a new

breakpoint.

 pause() : If the user wants to pause the execution of the program, this function

gets the control.

 resume() : After the pausing of the executable program written, this function

enables the resuming of the execution.

26

 sendStatus() : The information about the current status of the program is sent

to GUIManager.

 step() : Executes one line of source code only.

 update() : The changes made on the registers, memory stack etc. are

processed and recorded.

3.5.5 TextEditor

The text editor enables the user to write code, and edit code text.

 undo() : The last change made by the user is undone.

 redo() : The last undo made by the user is redone.

 cut() : The text selected by the user is cut and recorded.

 copy() : The text selected by the user is copied and recorded.

 paste() : The copied or cut text is pasted to the place where the cursor of the

mouse is located in the text editor.

 delete() : The text selected by the user is deleted.

 find() : The text that is to be found by the user is searched in the source code.

 selectAll() : The whole text is selected.

 findNext() : The next occurance of the text that is to be founded by the user is

shown to the user. If there does not exist any more occurance of this text, the

user is informed via a message box that the search is finished.

 replace() : One text specified by the user is replaced in every occurance by

another text specified by user again.

27

 goto() : goto selected position

3.5.6 Simulator

The simulator enables the user to see the execution of the program without burning it

into the Ceng 336 embedded card. That is we supply a graphical user interface for

the card in which the user will be able to push buttons, see the outputs of the

different parts of the card etc.

 getLst() : Gets the .lst file produced by the system.

 update() : The changes made on the registers, memory stack etc. are

processed and recorded.

 getHex() : Gets the hex file produced by the system.

 getAsm : Gets the asm file produced by the system.

 setMemory() : Records the changes made in the memory to the memory.

 setRegister() : Records the changes made in the registers to the registers.

 setVariables() : Records the changes made in the variables to the variables.

 setStack() : Records the changes made in the stack to the stack.

 setVisualCard() : Records the changes made in the visual card to the visual

card.

28

3.5.7 GUIManager

GUIManager is responsible from the visualization of the stack , memory , variables ,

output window etc.

 showMemoryWindow() : activates the memory window

 showStackWindow() : activates the Stack window

 showWatchWindow(): activates the watch window used by debugger

 showOutputWindow() : activates the output window

 showRegisterWindow() : activates the Register window

By the way we are planning to design some data structures as below.

Stack : 10 * 8 sized Array . As default all 0.

Data Memory : 368 * 8 sized Array . As default all 0 .

Register: # register * 8 sized array As default all 0 .

These structures will be used by simulator , GUIManager . Debugger etc. These

structures get more clearer in our mind as we get closer to implementation stage.

29

3.6 State Transition Diagram

4. Project’s File Structure

30

1. Project.yyp

“.yyp” is the file extension of our main project file. This include links to

 project.c – if the code is written in C language
 project.asm
 project.lst
 project .err
 project.hex
 other files

This file also will have records of the settings of the project.

2. Project.c

This is the source file used in our project, if the program is written in C language but

not in assemble.

3. Project.asm

This is the assembly source file used in our project. There are two sources of this file

1. A user can directly write the assembly program

2. The user can write C codes, the compiler converts it into assembly language.

4. Project.lst

This is the file obtained from MPASM assembler program. This file is important for

our system that we will use this in our simulation part. In this file format symbol table

of the assembly file is given. The user can never give his/her .lst file to our system .

Only our program will generate the .lst file.

5. Project.err

This file is generated from our program as an output. If there exists any error during

the compiler, assembler , linker , burn period this file will be generated automatically .

The user will also see this text in the output file window on the program.

6. Project.hex

This file is the product of the MPASM assembler. The only format that can be sent to

the program is this file format. The user can never give his/her .hex file to our system.

Only, our program will generate the .hex file.

7. Other files

If the user wants to include some other files, we will categorize this files as a part of

this format.

31

5. User Interface Design (Menus)

In this part, menus of RCSim will be explained with some screenshots.

General view of RCSim will be as follows:

5.1 File Menu

a. New

Creates a new project with blank code editor.

32

b. Open

Opens the dialog box to select a saved project or source files

c. Close

Closes the current project but not the program

d. Save

Saves changes on current active window.

e. Save As

Saves active window with different names as a different project or file.

f. Save All

Saves all changes in all windows.

g. Exit

Closes all windows and exits the program.

5.2 Edit Menu

33

a.Undo

Takes the last action back.

b.Redo

Takes the last undo action back again.

c.Cut

Cuts the selected text and copies to the memory.

d.Copy

Copies the selected text to the memory.

e.Paste

Pastes – writes the copied text.

f.Select All

Selects all the texts in current window.

g.Find

Opens the dialog box to find a word or phrase.

h.Find Next

Finds the next item of the searched word or phrase.

i.Replace

Opens the dialog box to replace the word(s) with the written ones.

j.Go to

Opens a dialog box to go to the line indicated by the user.

34

5.3 View Menu

a.Project Files

Shows project’s files.

b.Output

Shows the output file.

c.Memory

Shows the conditon of the memory.

d.Registers

Shows the conditon of registers.

e.Stack

Shows the conditon of the stack of processor.

f.Watch

Opens the dialog box to watch the indicated breakpoints.

35

g.Code Editor

Opens the editor for programmer.

5.4 Simulate Menu

Contains the menu for debugger.

a. Debugger

 Make : Rebuilds an application, re-compiling only those source files that have

changed since the last complete compilation

 Build : Compiles the application

 Run : Runs the simulator

b. Start

Starts the simulation or continues paused simulation

c. Pause

Breaks the simulator

d. Stop

Stops the simulator.

36

e. Step Into

Steps though code, one instruction at a time.

f. Step Over

Allows you to step over subroutines. This command executes the code in the

subroutine and then stops execution at the return address to the subroutine.

5.5 Help Menu

a. Topics

Opens an help menu based on related topics.

b. Links

Opens a box contains links about card, PICs etc...

c. How to Use RCSim

Opens users guide to RCSim. It will be very clear and understandable in order to help

Ceng336 students. Moreover, we will provide some example codes. These codes will

be asked from instructors of Ceng336 course also.

37

d. About Ceng Embedded Card

Opens a box contains information about card. Determining this information will be

done by the help of instructors of Ceng336 course.

d. About RCSim

It’s all about us and our project.

6. Gantt Chart

This is the gannt chart of our schedule. We have updated it due to the initial design.

TASKS
Dec Jan Feb Mar Apr May June

DETAILED DESIGN

Detailed design
specifications
Complete class diagrams

Hardware design

Software design

User interface design

Library design

Tests

Design specifications

Milestone

IMPLEMENTATION

Working on pre
implementations
Working on card

Review

Implementation details

Software implementation
on card
Library implementation

Code implementation for
smart card readers
Code implementation for
ports
Code implementation for
other parts of the card
Performance working

Tests and feedbacks

Final implementations

Documentation

Milestone

USER EVAULATION

Feedback

Milestone

38

