
 1

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CENG 491

SENIOR DESIGN PROJECT

FINAL DESIGN REPORT

FALL 2007

Group Name: Hellim

Group Members:

Kutay YILDIRICI e143393@metu.edu.tr 1433937

Tayfun ÇAKICIER e154349@metu.edu.tr 1543495

Halit Emre SAYILIR e143385@metu.edu.tr 1433853

Anil KOYUNCU e143380@metu.edu.tr 1433804

Group Mail: hellim-ltd@googlegroups.com

Project Title: CStar - Optimizing C Compiler

 2

Table of Contents:
1.Introduction

 1.1.Detailed Problem Definition

 1.2.Design Constraints and Limitations

 1.2.1.Constraints

 1.2.2.Limitations

2.Architectural Design

 2.3.Use Case Diagrams

2.3.1.Use Case Diagram of The Test Case Generator

 2.3.2.Use Case Diagram of The Optimization Manager

 2.3.3. Test Case Generator Explanotary Tables

 2.3.4. Optimization Manager Explanotary Tables

 2.3.5.Scenerios

3.Dataflows

 3.1.Test case generator

 3.2.Optimization manager

 4) Algorithms For Optimizations
1) Algebraic Simplifications

2) Constant Folding

3) Local Copy Propagation

4) Global Copy Propagation

5) Tail Recursion Elimination

6) Local Common Subexpression Elimination

7) Global Common Subexpresson Elimination

8) Partial Redundancy Elimination

9) Tail Merging

10) Strength Reduction

11) Unreachable Code ELimination.

12) Jump Optimizations

13) Dead Object Elimination

14) Local Forward Substitution

15) Global Forward Substitution

16) Basic Block Ordering

17) Procedure Calling

18) Dead Code Elimination

5.Synatax Specification

 5.1.Project Language

 5.2.Anatrop Classes

 5.3.Comments

6.Gantt Chart

 3

1.Introduction:

1.1.Detailed Problem Definition:

 The optimization is a very important topic for compilers. Performance is increasingly

being important nowadays in the market. An optimized and tuned program can run much

more fast and better.

 Our first aim is to implement optimizations in order to reduce run time of programs.

Also a well developed implementation must not increase the compilation time too much.

In order to make good implementations we must develop good and efficient algorithms for

optimizations. Also our implementations must not change the functionality of the programs.

 We will think in two dimensions for optimizations; time or space. Optimizations like

Dead Code Elimination, Constant Folding may increase compile time but will decrease the

size of the program. Optimizations like Basic Block Ordering, Strength Reduction will

increase the size of program, but can dramatically decrease the run time of the program.

 Our second aim is to implement as much as optimizations we can. The increased

variety of simple implementations is better than having less number of complex

optimizations. Optimizations will be done over intermediate representation of the framework.

 In our project we will use the framework QuickC developed by CStar. QuickC is a

design by contract framework. Most of the important functions (like creating expression trees,

managing optimizations, etc…) are ready for us to use for implementing optimizations. For

this project we will implement and add our implementations to the framework.

 With the features of the framework, we can call any optimization, any times and any

moment during the compilation. For example we can do the Constant Folding at the

beginning of the compilation, after we can call the Common Subexpression Elimination

optimization, then we can do the Constant Folding optimization again.

 Optimizations are made through the “Anatrop” (analysis-transformation-optimization)

and “AnatropManager” classes in the framework.

 All optimizations have their options that can be set with the “Option” class of the

framework. For example we can set properties for optimizations to recursively call

themselves again if it had made a change on the program. We can set the number of

maximum calls for an optimization.

 Also the optimizations can be done in the specified scope like Basic Blocks, Program,

Statements, etc…

 Rather than optimizations we will also develop an Optimization Manager for the

framework. The Optimization Manager will be implemented as an Anatrop in the framework.

We will implement the manager in two modes; Interactive Mode and Normal Mode. In

Normal mode, the manager will read the names and usages of the optimizations from an

external file. In Interactive Mode, we will get the names, scopes and options of the

optimizations from the user via standard input. Then we will set the options for optimizations

and execute them.

 4

 We will also develop a Test Case Generator for the framework. It will get target and

option files from user. It will read the options from these files and set these in the framework.

Then it will dump generated C Code. At the end these will be sent to output.

1.2.Design Constraints and Limitations:

1.2.1.Constaints:

Experience: Although we have participated in many software projects and homeworks , our

current project is harder than them because of new concepts. Our group is getting familiar to

framework everyday , but some detailed usages must be examined correctly. Also it can be

difficult to handle some unexpected problems about this new concept.

Time: The project must be finished by June and also we should provide at least two of

optimizations at the end of this semester. We should use our time efficiently to not fall behind

the schedule. So we should follow our works due to our Gantt Chart.It can be seen at table 1.a

Performance: It is important that our optimizations must work efficiently. So we must design

and build our optimizations to be work with high performance. Then we should make some

testing to confirm. Dhrystone and Whetstone benchmark tools will be used for time

calculations.

1.2.2.Limitations:

Structure: As known , the compiler has got a complicated structure. Everything is handled

by commands which are entered in Linux terminal. Also test case generator is handled by

extra commands and the optimization manager is handled by an external file.

Platform: Our project is set on Linux machines. Also we should make our implementations

by framework. There are important classes and functions in framework that should be used or

inherited in order to integrate our optimizations to framework and use them.

Language: C++ programming language should be used as all framework , necessary class

and functions were written in C++.

 5

<<Uses>>

<<Uses>>

<<Uses>>

<<Include>>

<<Include>>

<<Extend>>

Get the Seed

Produce

Random Seed

Generate

Code

Generate

Codes with

If-Else USER

TEST CASE

CODE FILE

Name the

Code File

SEED FILE

Generate

Codes with

Simple Loops

SEED FILE

Save Code as

Log File

Print the Code

to Screen

2.1Use Case Diagrams:

2.1.1 Use Case Diagram of The Test Case Generator:

Diagram 3.a

 6

<<Include>>

<<Include>>

<<Include>>

USER

INPUT FILE

Get the

Execution

Order

Call Anatrops

Execution

Order Entry

Interactive

Mode

COMPILER Get the

Options

Option Entry

2.1.2.Use Case Diagram of The Optimization Manager:

Diagram 3.b

2.1.3.TEST CASE GENERATOR EXPLANATORY TABLES:

Use Case Get the Seed

Purpose Taking the Seed from the File or Itself

Type Primary, Real

Actors Seed File

Description Program takes the seed from file or itself

Cross-References Use Case: Produce Random Seed, Generate Code

 7

Use Case Produce Random Seed

Purpose Producing random seeds for the program

Type Primary, Real

Actors None

Description When there is no need for seed file to produce seed it
produces seed

Cross-References Use Case: Get the Seed

Use Case Generate Code

Purpose Generating the test case codes

Type Primary, Real

Actors None

Description After getting the seed, it randomly generates statements
like if-else and simple loops

Cross-References Use Case: Get the Seed, Generate Code with If-Else,
Generate Code with Simple Loops, Save Code to a Log File

Use Case Generate Code with If-Else

Purpose Generating If-Else statements

Type Primary, Real

Actors None

Description According to taken seed it generates If-Else statements

Cross-References Use Case: Generate Code

 8

Use Case Generate Code with Simple Loops

Purpose Generating Simple Loops

Type Primary, Real

Actors None

Description According to taken seed generates simple Loops like for,
while, etc.

Cross-References Use Case: Generate Code

Use Case Name the Code File

Purpose Naming the code file as user wish

Type Primary, Real

Actors User, Test Case Code File

Description Specifies the name of the produced code file

Cross-References None

Use Case Save Code to a Log File

Purpose Saving the code to a log file

Type Primary, Real

Actors Test Case Code File

Description Saves the code to a log file

Cross-References Use Case: Print the Code to Screen

 9

Use Case Print the Code to Screen

Purpose Printing the code to screen

Type Primary, Real

Actors None

Description Prints the generated code to screen

Cross-References Use Case: Save Code to a Log File

2.1.4.OPTIMIZATION MANAGER EXPLANATORY TABLES:

Use Case Get the Execution Order

Purpose Specifying the Execution Order

Type Primary, Real

Actors Input File

Description Reads the execution order of the optimizations from an
external file

Cross-References Use Case: Call Anatrops

Use Case Get the Options

Purpose Specifying the Options of anatrops

Type Primary, Real

Actors Input File

Description Reads the options of the anatrops from an external file

Cross-References Use Case: Call Anatrops

 10

Use Case Interactive Mode

Purpose Entering order and options by hand

Type Primary, Real

Actors User

Description There is command for changing the mode to interactive.
User can enter his own execution order and options in
this mode

Cross-References Use Case: Execution Order Entry, Option Entry

Use Case Execution Order Entry

Purpose Entering the execution order of optimizations by user

Type Primary, Real

Actors None

Description User enters the execution orders as he wishes

Cross-References Use Case: Interactive Mode

Use Case Option Entry

Purpose Entering the options of anatrops by user

Type Primary, Real

Actors None

Description User enters the options of anatrops as he wishes

Cross-References Use Case: Interactive Mode

 11

Use Case Call Anatrops

Purpose Calling the anatrops by specified order and options

Type Primary, Real

Actors Compiler

Description It calls the anatrops and run it by specified order and
options

Cross-References Use Case: Get the Execution Order, Get the Options,
Interactive Mode

2.1.5.SCENARIOS:

a) Test Case Generator:

Scenario 1: Random seed is produced by the program and code is generated with default

name after that saves it to a log file and prints it to screen

Scenario 2: A previous seed is taken from the seed file and code is generated with default

name after that saves it to a log file and prints it to screen

Scenario 3: User gives a specific name to the code file

b) Optimization Manager:

Scenario 1: Optimization manager takes the execution order and options from an external

input file and calls anatrops

Scenario 2: Optimization manager works at interactive mode user can enter execution order

and options by hand and calls anatrops

3.Dataflows:

3.1.Test Case Generator:

Test case generator is an anatrop, so it will be implemented as an anatrop. It has some

requirements to be implemented to fulfill its functionality. It will work only for the program

scope. it will also be executed by a C file.

We should clear the module of the IR Program. It will be achieved by calling the

reset() method of the IRProgram which removes all the modules from the program. We will

use the IRBuilder class for implementation of the generator. The options set will be read and

its functionalities will be added to the IR.The number of functions, statements and

expressions will obey the rules which will be taken from the user with input.

 12

If, for, while, do, assignments, expressions will be generated according to the input

taken from user. The input will be specifications for the generation rules; like ranges and

probabilities of statements, expressions; number of functions.

 In the generator, we will implement the types as rich as possible, like integers, floats,

strings, reals, bools, etc.. We will also define expressions defined in the scope of the

framework like binary expressions (addition, multiplication, xor, arithmetic shifts, etc..),

constants(integer, string...), locals, globals, etc...

 We will implement a kind of Bayesian Networks that Mr. Karpat stated. With the use

of Bayesian Network, we will implement different probabilities for statements.

For example let’s consider the assignment statement; int a = 12.

Here we will look up in the Bayesian Network and create a type of integer according to the

probability. Then in the given range we will assign a constant integer with its probability.

We will also define what can be the contents of the context.

At each compilation a single file is created. We will write the created random seed into a file.

The seed will also be taken with user input.

 In order to be able to write better looking generated code, we will extend the

intermediate representation to a higher level or a HIR implemented by the framework in the

following days will be used. After the generation of IR, we will dump this IR into C code.

This generated C code will be saved to a log file and also it will be printed to the screen.

Diagram 3.a

 13

Diagram 3.b

Diagram 3.c

 14

Diagram 3.d

Diagram 3.e

 15

Explanation of Vocabulary in Data Flow Diagrams for Test Case Generator

Name Purpose Description

Input File İnvoke with any C file Usually an empty files used

Configuration File List of options of Test Case

Generation

Contains options for Test

Case Generation

Options Hold configurations Contains Context,

Specifications and

Probability Distirbutions

Probability Distributions Number of constructs are

created by these distributions

Provided probability of

consturcts from user to Test

Case Generator

Context Provide data for Creation of

Abstract Syntax Tree

List of available statements,

expressions, loops, basic

blocks,functions

IRBuilder Utility of Framework Intermediate Representation

Functions

Debug/Trace Utility Utility of Framework Help to debug and trace the

framework and also dumps ir

to C Code

IAST2HIR Convert Abstract Syntax

Tree into HIR

Step for conversion from IR

to HIR

HIR Human Understandilibity for

dumped Code

High Level Intermediate

Representation

3.2.Optimization Manager:
 Actually , the manager is an anatrop in the framework. Basicly , at compilation time an

external file will be read or interactively user enters optimizations, scopes and options via

standard input and so that the optimizations , which can be in some order or can be integrated

to each other, will be chosen. There are two ways to do this. Firstly , user must write in a file

with a specific way which optimizations can be an object .Secondly , user enters data with

standard input and specify it . Then choosen optimizations will be added to be applied and

then they will be dumped and executed.

The user can call the interactive mode via a code like:

 ATOOptimizationManager.EnterInteractif();

Or with a command line input like :

-mode:Manager:"IActive”

 16

Diagram 3.f

Diagram 3.g

 17

Level 2 DFD

Diagram 3.h

Diagram 3.i

Diagram 3.j

 18

Data Dictionary For Optimization Manager

Name Obtain objects

Purpose Getting objects

Type Primary, Real

Actors -

Description Taking prefence objects from read file

Cross-References Specify optimizations,reading file

Name Specify optimizations

Purpose Specifying optimizations

Type Primary, Real

Actors -

Description Specifying the anatrops

Cross-References Obtain objects,call anatrops

Name Determine anatrops

Purpose Determining the anatrops

Type Primary, Real

Actors user

Description Determine each anatrop one by one

Cross-References State scopes

 19

Name State scope

Purpose Determining each scope

Type Primary, Real

Actors -

Description Determining each scope one by one in an optimization

Cross-References Determine anatrops,determine options

Name Determine options

Purpose Determinin the options

Type Primary, Real

Actors -

Description Determining options one by one in a scope of
optimization

Cross-References State scope, call anatrop

Name Call anatrops

Purpose Calling anatrops from framework

Type Primary, Real

Actors -

Description Calling and choosing optimizations

Cross-References Add to be applied,determine optimizations,specify
optimizations

 20

Name Add to be applied

Purpose Adding the optimizations to be applied

Type Primary, Real

Actors -

Description Adding chosen optimizations with their scope and
options to a list

Cross-References Execute,call anatrops

Name Execute

Purpose Executing the optimizations

Type Primary, Real

Actors C code to be compiled

Description Takin prefence objects from read file

Cross-References Add to be applied

Syntax Specification and Usage of Optimization Manager:

1) File mode:

There will be an external file which will be read.

Syntax will be like this:

a) For optimization calling:

Optimizationname(Scopetype(target))

There will be 3 selection:

Optimizationname(Module(modulename))

Optimizationname(Function(functionname))

Optimizationname(Program())

b)Array creating:

array arrayname

c)Array assign:

 21

arrayname[number]=Scopetype

arrayname[number]=target

arrayname[number]=optimizationname

d)Iteration:

iterate(i to x)

{

//do something i to x

}

Example:

iterate(i=0 to 10)

{

DeadCode(Function(array_a[i]

}

e)If :

if(statement)

{

}

e)Writing of optimization names:

constant folding == Constantfolding

basic block ordering == BlockOrdering

dead code elimination == DeadCode

local forward substitution == LForward

global forward substitution == GForward

strength reduction == SReduction

unreachable code elimination ==Unreachable

dead object elimination ==DeadObject

local common subexpression elimination == LSubexpression

global common subexpression elimination == GSubexpression

jump optimizations == Jump

if simplifications == IfSimp

tail merging == TailMerge

local copy propagation ==LCopy

global copy propagation ==GCopy

partial redundancy elimination ==Redundancy

procedure cloning and specialization ==Cloning

tail recursion ==TailRecursion

 22

2)Interactive mode:

This mode takes the details from the user.

a)Activation:

- In filemodes’ file:

ato_interactive()

- dbccbin –intr

b)Usage:

In interactive mode, the program asks the optimization, scopes and options in a loop.

Like:

 Asks Optimizationname will be used? (Y/N)

-User entry: (Y/N)

if(Y) then{ asks Scopename?):

-User entry:scopename

asks option:

-User entry:option

asks another scope for same optimization?

if (y) then go to scopename asking section

if (n) then go to optimization usage asking section}

if (N) then go to optimization usage asking section

Example:

Deadcode Elimination?

Y

Scope?

add()

Option?

optiona

Another Scope?

Y

Scope?

Min()

Option?

Nooption

Another Scope?

N

BasicBlock Ordering?

N

TAKE ALL&QUIT

 23

4) Algorithms For Optimizations

1) Algebraic Simplifications

a) Addition with 0

 Collect expressions of type addition into vector[]

 foreach element in vector[]

 BEGIN

 if(LeftExpression is Integer Constant)

 BEGIN

 if(LeftExpression == 0 && RightExpression is Integer Type)

 replace element with RightExpression

 END

 if(RightExpression is Integer Constant)

 BEGIN

 if(RightExpression == 0 && LeftExpression is Integer Type)

 replace element with LeftExpression

 END

 END

Explanation

if there is an addition with 0; replace the expression with the Integer

ex:

 a+0; is replaced by a;

 0+b; is replaced by b;

b) Multiplication with 0

 Collect expressions of type multiplication into vector[]

 foreach element in vector[]

 BEGIN

 if(LeftExpression is Integer Constant)

 BEGIN

 if(LeftExpression == 0 && RightExpression is Integer Type)

 replace element with 0

 END

 if(RightExpression is Integer Consant)

 BEGIN

 if(RightExpression == 0 && LeftExpression is Integer Type)

 replace element with 0

 END

 24

Explanation

if there is a multiplication with 0 ; replace it directly with 0

ex:

 a*0 or 0*b is replaced by 0

c) Multiplication with 1

 Collect expressions of type multiplication into vector[]

 foreach element in vector[]

 BEGIN

 if(LeftExpression is Integer Constant)

 BEGIN

 if(LeftExpression == 1 && RightExpression is Integer Type)

 replace element with RightExpression

 END

 if(RightExpression is Integer Consant)

 BEGIN

 if(RightExpression == 1 && LeftExpression is Integer Type)

 replace element with LeftExpression

 END

Explanation

if there is a multiplication with 1 replace it with the Integer

ex:

a*1 can be replaced by a

1*b can be replaced by b

d) Division by 1

 Collect expressions of type division into vector[]

 foreach element in vector[]

 BEGIN

 if(RightExpression is Integer Constant)

 BEGIN

 if(RightExpression == 1 && LeftExpression is Integer Type)

 replace element with Left Expression

 END

 END

Explanation

replace division by 1's directly with the integer

ex:

 a/1 is replaced by a

 25

e) Subtraction with 0

 Collect expressions of type subtraction into vector[]

 foreach element in vector[]

 BEGIN

 if(RightExpression is Integer Constant)

 BEGIN

 if(RightExpression == 0 && LeftExpression is Integer Type)

 replace element with Left Expression

 END

 END

Explanation

replace subtraction by 0 directly with the integer

ex:

 a-0 can be replaced by a

f) Multiplication with powers of 2

 Collect expressions of type multiplication into vector[]

 foreach element in vector[]

 BEGIN

 if(RightExpression is Integer Constant)

 BEGIN

 n = logbase(RightExpression,2) //check if 2 to the power n

 if(int(n)==float(n))

 BEGIN

 if(LeftExpression is Integer Type)

 LeftExpression<<n //leftshift rather than multiplication

 END

 END

 END

Explanation

Use Left shift rather than multiplication

ex:

 a*8;

 log(8,2) returns 3 //logarithm function

 replaced with

 a<<3; since multiplication is expensive

 26

2) CONSTANT FOLDING

Scope = Statements

 Collect expresssions of type addition,

 multiplication,subtraction and division into a vector[]

 For each element in vector[]

BEGIN //foreach

 IF ((LeftStatement is Integer Constant)

 && (RightStatement is Integer Constant))

 BEGIN //if

 IF (Expression is Addition)

 BEGIN //Add

 a := LeftExpression + RightExpression

 replace vector element with a

 END //Add

 IF (Expression is Subtraction)

 BEGIN //Sub

 a := LeftExpression - RightExpression

 replace vector element with a

 END //Sub

 IF (Expression is Multiplication)

 BEGIN //Mul

 a := LeftExpression * RightExpression

 replace vector element with a

 END //Mul

 IF (Expression is Division)

 BEGIN //Div

 a := LeftExpression / RightExpression

 replace vector element with a

 END //Div

 END //if

END //foreach

Explanation

 Get Left and Right expressions of +,-,*,/ operators.

 If both Left and Right expressions are integer constants

 Do the operation for expressions.

 replace the node with new value

ex: 3 + 8

 3 and 8 are both integer constants

 add them

 new value 11 is replaced for 3+8

 27

3) LOCAL COPY PROPAGATION

SCOPE = Basic Blocks

Collect list of all basic blocks into BBListVector[]

foreach element1 in BBListVector[]

BEGIN // foreach BBList

 Collect all statements of the element1(current BB) into CurrStmtVector[]

 Collect all binary expressions of the element1 (current BB) into BinExprVector[]

 foreach element2 in CurrStmtVector[]

 BEGIN // foreach CurrStmt

 if (element2 is Assign) // if operation is an assignment operation

 Add Statement to AvailableAssignmentsVector[]

 foreach element3 in BinExprVector[](

 BEGIN // foreach BinExpr

 if(AvailableAssignmentsVector's LeftHand contains

 element3.LeftExpression)

 replace element3.LeftExpression with the its last occurance

 in

 AvailableAssignmentsVector[].RightHandside

 if(AvailableAssignmentsVector's LeftHand contains

 element3.RightExpression)

 replace element3.RightExpression with the its last occurance

 in

 AvailableAssignmentsVector[].RightHandside

 END // foreach BinExpr

 END // foreach CurrStmt

 clear AvailableAssignmentsVector[]

END // foreach BBList

Explanation

 For every basic block

 look at each expression if any expressions are previously assigned

 to the variables in the current basic block

 if(yes) -> replace the expressions with the last occurrence of previous

declaration

 ex:

 BB1

1) a=b;

2) c=a+4;

 for 2) in BB1 ; a is previously defined so a can be replaced by b so c=b+4;

 28

4) GLOBAL COPY PROPAGATION

Scope : Functions

Collect all basic blocks into BBListVector[]

 for(i=BBListVector.size() ; i>0 ; --i)

 BEGIN

 collect all statements in StmtVector[]

 for(j=StmtVector.size() ; j>0 ; --j)

 BEGIN

 if(StmtVector[j].RightHandSide is a binary expression)

 BEGIN

 Iterate backwards through Control Flow Graph

 if(StmtVector[j].RightHandSide.leftchild

 == Any assignment statement's lefthandside)

 replace StmtVector[j].RightHandSide.leftchild

 with found assingment statement's RightHandSide

 if(StmtVector[j].RightHandSide.rightchild

 == Any assignment statement's lefthandside)

 replace StmtVector[j].RightHandSide.rightChild

 with found assignment statement's RightHandSide

 END

 END

 END

Explanation : Through the basic blocks Iterate Backwards through Control Flow Graph in

order to find if a expression is previously defined with a assignment statements.

5) TAIL RECURSION ELIMINATION

Collect all functions into FunctionsVector[]

foreach element1 in FunctionsVector[]

BEGIN

 collect all statements of element1 into StatementsVector[]

 foreach element2 in StatementsVector[]

 BEGIN

 if(element2 is a Procedure Call)

 BEGIN

 if(name(element2) == name(element1))//look if it is a

 BEGIN recursive call

 Insert a LABEL to the beginning of element1

 Get the arguments of element2

 Insert evaluation of statements for arguments of element2

 if(StackSize of element2 <= StackSize of element1) // prevent overflow

 Equalize the stack sizes of stack

 replace element2 with a jump statement to LABEL

 END

 END

 29

 END

END

Explanation

Replace the recursive function calls with a GOTO(jump) statement in order do

decrease procedure calls.

ex:

void f(int n) void f (int n)

{ {

a=b+8; LABEL

if(n<a) a=b+8;

f(n+1); ---->> if(n<a)

else { n=n+1;

c=12; JUMP LABEL

} }

 else

 c=12;

 }

6) LOCAL COMMON SUBEXPRESSION ELIMINATION

Get Statements of Basic Block StmtVector[]

size:=stmtVector.size()

for(i:=size,i>=0;i--)

 BEGIN

 if(stmtVector[i].RightHandSide == Binary Expression)

 BEGIN

 for(j:=i;j>=0;j--)

 BEGIN

 if(stmtVector[i].RightHandSide.LeftExpression

 != stmtVector[j-1].RightHandSide

 ||

 stmtVector[i].RightHandSide.RightExpression

 != stmtVector[j-1].RightHandSide)

 BEGIN

 if(stmtVector[i].RightHandSide == stmtVector[j-1].RightHandSide)

 BEGIN

 tmp element :=stmtVector[i].RightHandSide

 Add tmp element before stmtVector[j-1]

 stmtVector[i].RightHandSide:=tmp element

 stmtVector[j].RightHandSide:=tmp element

 END

 END

 END

 END

 END

 30

We get basic blocks statements(eg. x=a+b,y=3,..) into a Statement Vector. From the bottom of

the basic block to the top of the basic block we implemented the algorithm. We get the last

statement of the basic block. We look if the right hand-side of this statement is a binary

expression(eg. a+b,a&&b,a<<2). If so then we enter in a loop that initially searchs the entire

statement vector for the prior definiton statements of operands of the binary expression. If we

found a matching definition,we cannot apply Local Common Subexpression to the given

expression. Secondly,if there is no matching definition in the entire statement vector we look

if there is a matching binary expression that we could eliminate. If found we eliminate this

binary expression by setting its value to a temporary element.We insert this tmp definition

before stmtVector[j-1].Then we reset the values of the binary expression that we eliminated

by setting its value to tmp.

7) GLOBAL COMMON SUBEXPRESSION ELIMINATION

Collect all basic blocks into to BBVector[]

foreach element in BBVector[]

BEGIN

 Collect BBVector[].LeftHandSide into BBLHSVector[]

 Collect statements of Basic Block into BBStmtVector[]

 foreach statement in StmtVector[]

 BEGIN

 if(StmtVector[].LeftHandSide == BBLHSVector[])

 BEGIN

 Collect BBVector[i] into stmtVector[]

 END

 END

END

Get Statements of Basic Block stmtVector[]

size:=stmtVector.size()

for(i:=size,i>=0;i--)

 BEGIN

 if(stmtVector[i].RightHandSide == Binary Expression)

 BEGIN

 for(j:=i;j>=0;j--)

 BEGIN

 if(stmtVector[i].RightHandSide.LeftExpression != stmtVector[j-

1].RightHandSide

 ||

 stmtVector[i].RightHandSide.RightExpression != stmtVector[j-

1].RightHandSide)

 BEGIN

 if(stmtVector[i].RightHandSide == stmtVector[j-1].RightHandSide)

 BEGIN

 tmp element :=stmtVector[i].RightHandSide

 Add tmp element before stmtVector[j-1]

 31

 stmtVector[i].RightHandSide:=tmp element

 stmtVector[j].RightHandSide:=tmp element

 END

 END

 END

 END

 END

Different from Local CSE we in Global CSE we search for previous definition of each

statement in all over basic blocks in the control flow graph.Then if we found such definitions

I collect the basic blocks that which matching found into stmtVector. Then I local CSE from

the basic blocks in the stmtVector.

8) Partial Redundancy Elimination

Collect Basic Blocks into BBVector[]

foreach element1 in BBVector[i]

BEGIN

 Collect expression into ExpVector[]

 if(BBVector[i].Previous.size()>1)

 BEGIN

 Collect BBVcctor[i].Previous in a PreviosVector[]

 foreach element in PreviousVEctor[]

 BEGIN

 insert a new bb after PreviousVector[i]

 set new bb's previos as PreviosuVector[i]

 set new bb's next as BBVector[i]

 END

 END

 calcute latest[] and used_out[],e_use[]

 //e_use[]:An expression is locally used in block b if it is computed at least once.

 //latest[]:An expression is in latest[b] that indicates that the last point the

 expression can be computed is at the beginning of block b.

 used_out[]: An expression is in used_out[],if it is globally used in basic block b,

then an evaluation of e

 at b will be used again along some path starting at b.

 foreach expression e in ExpVector[e]

 BEGIN

 create a temporary element t.

 if(e is in (latest[i] and used_out[i])

 BEGIN

 insert t=e to the top of the BBVector[i]

 END

 if(e is in (e_used[i] and used_out[i])

 BEGIN

 32

 replace e with t

 END

 END

END

We collect basic blocks into BBVector. Then we collect expression of each basic block into

ExpVector. Then we found critial edges. Critial edge is a block with more than one

predecessor. Then we insert an empty block along all edges which enter the critial edge. Then

we found latest,used_out,e_use foreach basic block. Then for every expression in basic block

we search for

reduncany. We created a temporary element to store e. Then we check if expression is the last

point the expression can be computed is at the beginning of block and it is globally used in

basic block b, then an evaluation of e at b will be used again along some path starting at

b(latest and used_out).If so we insert t=e into top of the basic block we created. Then we

check is expression is locally used in block b if it is computed at least once and it is globally

used in basic block b, then an evaluation of e at b will be used again along some path starting

at b (e_used and used_out).If so we replace original e with t

9) Tail Merging

Scope = Basic Block

Collect predecessors of blocks into predecs[].

IF (predecs[].size > 1)

BEGIN // if

 IF (laststatement == predecs[].lastNonContStatement)

 BEGIN // if

 Same = true;

 WHILE (predecs[].size > 0)

 BEGIN // while

 IF (predecs[].HasSuccessors == false)

 BEGIN // if

 Same = false;

 break; // while

 END // if

 ELSE IF (laststatement != predecs[].lastNonContStatement)

 BEGIN // if

 Same = false;

 break; //while

 END // if

 Predecs[].size --;

 END // while

 IF (same == true)

 BEGIN // if

 GetCopy (laststatement);

 Insert (laststatement as Beginning BB)

 WHILE (predecs[].size > 0)

 BEGIN // while

 33

 Remove (predecs[].lastNonContStatement);

 END // while

 END // if

 END // if

END // if

Explanation:

We scan backward through predecessors of blocks that have multiple predecessors looking for

same sequences of instructions and we replace all but one such copy with a branch to the

beginning of the remaining one.

10) Strength reduction

Scope = statements

Collect list of all expressions of type multiplication, division, modulos into MulVector[],

DivVector[] and ModVector[]

BEGIN // strength reduction

 WHILE (MulVector[].size > 0)

 BEGIN //while

 IF (expression is multiplication by power of 2)

 BEGIN // if

 // here we have an expression like * 2
n

 FOR (iterate as much as n’s value)

 BEGIN // for

 left_shift(a);

 END //for

 END // if

 END //while

 WHILE (DivVector[].size > 0)

 BEGIN // while

IF(expression is division by power of 2)

 BEGIN // if

 // here we have an expression like a / 2
n

 FOR(iterate as much as n’s value)

 BEGIN // for

 Right_shift(a);

 END // for

 END //if

END //while

WHILE (ModVector[].size > 0)

BEGIN // while

 IF (expression is modulos by power of 2)

 BEGIN // if

 // here we have expression like a mod 2
n

 a AND (2
n
 -1);

 END //if

END //while

 34

END // strength reduction

Explanation:

We look for expressions if it has a cheaper version. If it is multiplication by power of 2 we

replace this multiplication with shifting. Shifting left stands for multiplication by 2
n
. If our

expression is a division by power 2 we remove this calculation and put a shifting there too.

Shifting right stands for division by 2
n
. If our expression is modulo by power of 2 we replace

this calculation with a bitwise AND. By doing this kind of things we reduce a few code but

we got so much code speed.

e.g.

2
n
 * a a / 2

n
 a mod 2

n

Becomes

a << n a >> n a & (2
n
 - 1)

11) UNREACHABLE CODE ELIMINATION

SCOPE = Basic Blocks

Collect blocks into a vector[].

while(!again)

 BEGIN

 again:=false

 i:=2 //There should be at least two blocks.

 while (No of Blocks >= i)

 BEGIN

 if No_Path(1,i)

 BEGIN //true

 We delete the block sets its instruction number to 0,

 we decrease the number of block and set again to true.

 No of Instructions:=0

 No of Blocks--;

 Block[i]:=NULL;

 again:= true

 END //true

 i++;//Increased i to search for other blocks

 END

 35

 END

No_Path(1,i)

 BEGIN

 while(Block[i].Previous != NULL)

 BEGIN

 if(Block[i].Previous == Block[i])

 BEGIN

 return value of the No_Path() set to TRUE;

 END

 else

 BEGIN

 return value of the No_Path() set to FALSE;

 END

 END

 END

We get control flow graph. We get basic blocks into a vector.

Then we define a boolen which is initially false.

Then we iterate through the basic block vector and search for a for an empty path from entry

block to basic blocks.

(We define a function called No_Path(1,i).

1 presents which is set as the entry block.

Then we search for all the basic block for No_Path i.

When No_Path returns true,means that we found an empty path which is unreachable block,

we sets its instruction number to zero (we clear its instruction content),we decrease no of

blocks and set again to true.

We search for an No_Path for all blocks by increasing i. Then functions iterates until again is

true.

 36

12) Jump optimizations

Scope = Basic Blocks

Collect all BB into a vector[]

BEGIN

 WHILE (not exit basic block)

 BEGIN // while

 IF (statement is jump)

 BEGIN //if

 IF (jump.target == labelstatement && label.nextStatement == anotherjump)

 BEGIN // if

 jump.target := anotherJump.target;

 END // if

 IF (jump.target == labelStatement && labelStatement ==

 jump.nextStatement)

 BEGIN // if

 //there is no need to jump

 DELETE (jump)

 END // if

 END // if

 END // while

END

Explanation:

We remove useless jumps in this optimization or remap their addresses for getting more

efficiency. First of all we collect all basic blocks into a vector. Then until reaching the exit

basic block we check whether the statement is a jump or not. If it is a jump we check it is

target. If this jump goes to another jump we change first jump target statement. secondly, we

check the jumps next statement if it is same as the target of the jump. It means there is an

useless jump in here thus we delete this jump.

e.g.

JUMP X JUMP Y JUMP X

... ... label X label X

label X �becomes label X ... � becomes ...

JUMP Y JUMP Y

... ...

label Y label Y

 37

13) Dead object elimination

Scope = module

Collect both global and local objects in the code into GlobalObject[] and LocObject[]

BEGIN

 WHILE (GlobalObject[].size > 0)

 BEGIN // while

 IF (object.HasSuccessor() == true && object.HasInitial == true)

 BEGIN // if

 ObjectInUse[].insert(object)

 END // if

 GlobalObject[].size --;

 END // while

 WHILE (GlobalObject[].size > 0)

 BEGIN // while

 FOR (iterate as much as ObjectInUse[].size)

 BEGIN // for

 IF (GlobalObject[object] == ObjectInUse[object])

 BEGIN // if

 GlobalObject[object].HasUsed = true;

 END // if

 END // for

 IF (GlobalObject[object].HasUsed != true)

 BEGIN // if

 REMOVE (GlobalObject[object]);

 END // if

 GlobalObject[].size --;

 END // while

WHILE (LocObject[].size > 0)

 BEGIN // while

 IF (object.HasSuccessor() == true && object.HasInitial == true)

 BEGIN // if

 LocObjectInUse[].insert(object)

 END // if

 LocObject[].size --;

 END // while

 WHILE (LocObject[].size > 0)

 BEGIN // while

 FOR (iterate as much as LocObjectInUse[].size)

 BEGIN // for

 IF (LocObject[object] == LocObjectInUse[object])

 BEGIN // if

 LocObject[object].HasUsed = true;

 END // if

 END // for

 IF (LocObject[object].HasUsed != true)

 BEGIN // if

 REMOVE (LocObject[object]);

 END // if

 LocObject[].size --;

 38

 END // while

Explanation:

In this optimization we are looking all global and local objects and put them into a vector.

First we check if it is used or not then we insert used ones into a vector. Then we compare

those two vectors. Objects which are not in both are unused (dead) objects. We remove those

objects with a remove () function. We used scope as module because we look for global

objects. For locals function could be enough.

14) Local Forward Substitution:

foreach statement s in basicblock b1

if (s is assigned -> object o1 OR o1 is assigned -> o2)

Lookfor(copypropogation)

endif

else if (statement.lefhand is avaiable)

assign it to an object o3

if (o3 isnt global and avaiable)

assign it as found

endif

foreach statement in bblock b2

look on the all expressions in right hand statement with every depth

put them in a vectora[]

endfor

collect the left expressions->vectorb[]

foreach left expression l in vectorb[]

if(l is used AND l is avaiable)

take from vectora[] , set and replace

endif

endfor

 endif

endfor

This procedure looks in a basic block for left expressions that can take forward substitution.

Then it takes the righthandside of the statements. Lastly if there is availability it sets the right

ones in lefts.

 39

15) Global Forward Substitution:

foreach statement s in program p

if (statement s is assigned -> object o1 OR o1 is assigned -> o2)

Lookfor(copypropogation)

endif

else if (statement.lefhand is avaiable)

assign it to an object o3

if (o3 isnt global and avaiable)

assign it as found

endif

foreach statement in bblock b

look on the all expressions in right hand statement with every depth

put them in a vectora[]

endfor

foreach left statement in program p

foreach basic block b

if(l is used in b)

assign b in list l1

endif

endfor

foreach basic block b1 in l1

lookfor left expressions and collect them in vectorb[]

endfor

foreach left expression in vectorb[]

take from vectora[] , set and replace

endfor

endfor

endfor

This procedure is global version of what we did in local forward substitution. It looks in every

basic block in a CFG. Then it makes lists of the basic blocks for each variable. Lastly it

substitutes the righthandsides.

 40

16) Basic Block Ordering:

if(CFG is not NULL)

foreach basicblock b in CFG

put b in list[]

endfor

foreach b1 in list[]

if(b1 is not an entry block OR not an exit block)

then foreach statement s in b

weight:= weight + calcuteweight(s)

 endfor

endif

endfor

order blocks by weight

linking them

create an exit block

This procedure looks in CFG and orders the basic blocks which were linked together by their

weight.

17) Procedure Cloning:

There are 2 main steps for procedure cloning. Firstly, propogation and determining the maximum

number of clones that can be created.

This is important, because cloning can result exponential program growth and increase of procedures

in the program.After determining it, equivalent clones are merged whenever they produce the same

effect on the optimization. The last phase is to applying cloning based on the decisions we obtained

until the program growth reaches the limited size.

PROC Build_Supertrace(GRAPH,NODE)

foreach SUCC(NODE), S of basic block

if (S is spanning tree ancestor)

then do nothing //S is target of backedge and not member of this supertrace

else if (S in supertrace AND not assigned yet)

if (cloning is permitted ANDPRED_COUNT(S) == 1)

then

if (S is a member of the same loop as NODE)

then SBHEAD(S) = SBHEAD(NODE)

if depth-first

then ENQUEUE_HEAD(S)

else if breadth-first

then ENQUEUE_TAIL(S)

endif

endif

else if (basic block already in supertrace)

NEWNODE = COPYNODE(S)

SBHEAD(NEWNODE) = SBHEAD(NODE)

else basic block must be in different supertrace

 if (cloning is permitted AND NODE is not a supertrace head)

then NEWNODE = COPYNODE(S)

SBHEAD(NEWNODE) = SBHEAD(NODE)

 41

endif

endif

if (NEWNODE was created)

then establish lexical links

foreach SUCC(S), SS

establish flowgraph links from NEWNODE to SS

endfor

add flowgraph link from NODE to NEWNODE

remove flowgraph links from NODE to S

if depth-first then

ENQUEUE_HEAD(NEWNODE)

elseif breadth-first

then ENQUEUE_TAIL(NEWNODE)

endif

endif

endfor

if (NEWNODE was created)

then RETURN TRUE

else RETURN FALSE

END Build_Supertrace

The function Build_Supertrace(),follows the successor links from NODE, adding basic blocks to the

supertrace. Successors to the basic block that are spanning tree ancestors are targets of back edges or

targets of an exit edge. If the successor of NODE is not a member of the same loop, the successor is a

member of another supertrace.

PROC Supertrace(GRAPH)

CALL INIT_QUEUE()

LIMIT_CONDITION = maximum_size block_count_limit maximum_depth

NODE = flow graph entry

while NODE != NULL do

if (NODE is a supertrace head)

then SBHEAD(NODE)=NODE

ENQUEUE_HEAD(NODE)

while queue is not empty do

TNODE = DEQUEUE_HEAD()

if (LIMIT_CONDITION AND Build_Supertrace(GRAPH,TNODE))

then rebuild spanning tree for flow graph

rebuild loops in flow graph

endif

endwhile

endif

NODE = GG_NEXT(NODE)

endwhile

END Supertrace

This algorithm is the entry point for supertrace formation.Passing a flow graph to the function and set

LIMIT_CONDITION to one of the defined limits. This function follows lexical links in the flow graph

and enqueues basic blocks identified as supertrace heads. The inner while loop builds the supertrace

by dequeuing a basic block and then calling Build_Supertrace(). Cloning basic blocks in

Build_Supertrace() requires that we rebuild the flow graph spanning tree.

 42

18) Dead Code Elimination
a) Same assignment case(very simple)

 Collect all assignment statements in a vector[]

 foreach element1 in vector[]

 BEGIN

 if(element1.lefthandside

 == element1.righthandside)

 remove the element1 from vector

 END

Explanation

 Remove unnecessary assignment operations

ex:

 a=a; can be removed since has no effect

b) General Case

 Construct the DU and UD Chains for CFG in IRDUUDCHAINS[]

 Collect all the Basic Blocks in BBListVector[]

 foreach element1 in BBListVector

 BEGIN

 Collect all statements of current BB in StmtsVector[]

 foreach element2 in StmtsVector[]

 BEGIN

 if(element2 is an Assignemt Statement)

 if(Definitions can reach to the element2 via

IRDUUDCHAINS)

 then remove element2 from StmtsVector[]

 END

 END

 43

5.GENERAL SYNTAX SPECIFICATION:

 5.1 PROJECT LANGUAGE:

Our Project is based on a framework which is coded with C++ programming language. That is

why we have to use C++ as our project programming language. We will use framework while

coding the optimizations but the other parts of the project will be handled by us. As a result of

this , we will use the same language, as in the optimizations, with the other parts of the

project. C++ will be our project language.

 5.2 ANATROP CLASSES:
Every software project has its unique syntax definitions and guidelines to follow up but

mostly software experts do not pay attention to this. Hellim project group will really try to

obey the guideline and the syntax definitions while writing codes. It is obvious that a person,

it does not matter he is a computer engineer or software expert, can have problems while

checking out the codes if do not have a guideline to follow up; maybe only the author of the

codes can understand it. We do not want such kind of things. As a result of our weekly

meetings we decided to have standard methods for naming anatrops. It must be begin with a

prefix like “ato_” and then it will continue with its original name which explains its

functionality. Name must be unique. As an example we can show this;

For the dead code elimination optimization: ato_deadcode.cpp and ato_deadcode.hpp

 5.3 COMMENTS:
Increasing the understandability of the codes we write comments after some lines. We will

use C++ comments to reduce the complexity.

It will be like this;

// this function does that
// this call does that

 44

6) Gannt Chart

 45

 46

