

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CENG 491

SENIOR DESIGN PROJECT

REQUIREMENT ANALYSIS REPORT

FALL 2007

Group Name: Hellim

Group Members:

Kutay YILDIRICI e143393@metu.edu.tr 1433937

Tayfun ÇAKICIER e154349@metu.edu.tr 1543495

Halit Emre SAYILIR e143385@metu.edu.tr 1433853

Anil KOYUNCU e143380@metu.edu.tr 1433804

Group Mail: hellim-ltd@googlegroups.com

Project Title: CStar - Optimizing C Compiler

 2

Tables of Content

1 Problem Definition and Project Scope ………….………………………… 3

2 Literature Survey

 2.1 What is a Compiler? ………………….……………………………………...3

 2.2 Back End ……………………………………….……………………….….. 4

 2.3 Structure of a Compiler ……………………………………………….….…. 4

 2.4 Some Compilers in Market: …………………………………………..….…..5

3 Technical Analysis

 3.1 Importance of Code Optimization ………………………………….…….. 6

 3.2 Information about optimizations

 3.2.1 Constant Folding ………………………………………………….……...6

 3.2.2 Dead Code Elimination …………………………………………….…….6

 3.2.3 Unreachable Code Elimination ……………………………………….….7

 3.2.4 Global Common Subexpression Elimination ………………………….…7

 3.2.5 Global Forward Substitution ……………………………………………..7

 3.2.6 Basic Block Ordering ………………………………………………….…7

 3.2.7 Local Common Subexpression Elimination ……………………………...8

 3.2.8 Local Forward Substitution ……………………………………….………9

 3.2.9 Jump Optimizations ………………………………………..…………….10

 3.2.10 Dead Object Elimination ……………………………………….……….10

 3.2.11 Strength Reduction ……………………………………….……………..10

 3.3 How is Code Optimized ……………………………………………………10

 3.4 Advantages of Optimizations ………………………………………………11

4 Specifications

 4.1 Information About the Framework …………………………………………..12

 4.2 Test Case Generator ………………………………………………………….13

 4.3 Optimization Manager …………………………………………………..……15

5 Project Model ……………………………………………………..….………16

6 Project Schedule …………………………………………………….………..17

7 Risk Management Plan ……………………………………………..………..19

 3

1 Problem Definition and Project Scope

 QuickC is a retarget able and optimizing compiler framework. It is simply designed to

produce high quality, easily maintainable compilers in a short time.

 QuickC is;

• Developer friendly

• Extensible

• Modular

• Flexible

 Our aim is to implement optimizations for the framework also by the help of

framework in order to decrease run time and to have efficient programs.

 We will also implement a Test Case Generator for the framework in order to generate

random C codes. We will try to develop the Generator as rich as possible to test our

implementations.

 We will also develop the Optimization Manager which reads an external file during

compilation. Manager will specialize order and number of optimizations for given functions

and modules.

2 LITERATURE SURVEY

2.1 What is a Compiler?

A compiler is a computer program (or set of programs) that translates text written in a

programming language (source code) into another programming language (object code).

Commonly the output has a form suitable for processing by other programs (e.g., a linker), but

it may be a human-readable text.

Compiler design can be separated to three main approaches:

• Front end

• Middle end

• Back end

The front end is generally considered to be where syntactic and semantic processing takes

place, along with translation to a lower level of representation (than source code).

The middle end is usually designed to perform optimizations on a form other than the source

code or machine code. This source code/machine code independence is intended to enable

generic optimizations to be shared between versions of the compiler supporting different

languages and target processors.

The back end takes the output from the middle. It may perform more analysis, transformations

and optimizations that are for a particular computer. Then, it generates code for a particular

processor and OS.

 4

2.2 Back end

The main phases of the back end include the following:

1. Analysis: This is the gathering of program information from the intermediate

representation derived from the input. Typical analyses are dataflow analysis to build

use-define chains, dependence analysis, alias analysis, pointer analysis, etc. Accurate

analysis is the basis for any compiler optimization.

2. Optimization: the intermediate language representation is transformed into

functionally equivalent but faster (or smaller) forms. Popular optimizations are inline

expansion, dead code elimination, constant propagation, loop transformation , register

allocation or even automatic parallelization.

3. Code generation

2.3 Structure of a Compiler

 Parser

 Intermediate

 Code

 Generator

 Optimizer

 Code Generator

 Postpass

 Optimizer

Lexical Analyzer

String of characters

String of tokens

Parse tree

Medium level

intermediate

code

Medium level

intermediate

code

Low level

intermediate

code

Runnable

machine code

Muchnick, Steven S ., Advanced Compiler Design and Implementation, pp. 7-10

 5

2.4 Some Compilers in Market

Intel C++ Compiler: It describes a group of C/C++ compilers from Intel. Compilers are

available for Linux, Microsoft Windows and Mac OS X. Intel supports compilation for its IA-

32, Intel 64, Itanium 2, and XScale processors. The Intel C++ Compiler for x86 and Intel 64

features an automatic vectorizer that can generate SSE, SSE2, and SSE3 SIMD instructions,

the embedded variant for Intel Wireless MMX and MMX 2

Intel tunes its compilers to optimize for its hardware platforms to minimize stalls and to

produce code that executes in the smallest number of cycles. The Intel C++ Compiler

supports three separate high-level techniques for optimizing the compiled program

Interprocedural Optimization (IPO), Profile-Guided Optimization (PGO) and High Level

Optimizations (HLO).

Profile-Guided Optimization refers to a mode of optimization where the compiler is able to

access data from a sample run of the program across a representative input set. The data

would indicate which areas of the program are executed more frequently, and which areas are

executed less frequently.

High Level Optimizations are optimizations performed on a version of the program that more

closely represents the source code. High level optimizations include loop interchange, loop

fusion, loop unrolling, loop distribution, data prefetch, and more. High level optimizations are

usually very aggressive and may take considerable compilation time.

Interprocedural Optimization applies typical compiler optimizations (such as constant

propagation) but using a broader scope that may include multiple procedures, multiple files,

or the entire program.

GNU Compiler Collection: It is a set of compilers produced for various programming

languages by the GNU Project. GCC is a key component of the GNU toolchain, and as well as

being the official compiler of the GNU system, GCC has been adopted as the standard

compiler most other modern Unix-like computer operating systems, including Linux, the BSD

family and Mac OS X

Optimization: Optimization on trees does not generally fit into what most compiler developers

would consider a front end task, as it is not language dependent and does not involve parsing.

GCC developers have given this part of the compiler the somewhat contradictory name the

"middle end." These optimizations include dead code elimination, partial redundancy

elimination, global value numbering, sparse conditional constant propagation, and scalar

replacement of aggregates. Array dependence based optimizations such as automatic

vectorization are currently being developed.

The exact set of GCC optimizations varies from release to release as it develops, but includes

the standard algorithms, such as loop optimization, jump threading, common subexpression

elimination, instruction scheduling, and so forth.

 6

Borland C/C++ Builder: It is a popular rapid application development (RAD) environment

produced for writing programs in the C/C++ programming language.

Dev-C++: It is a free integrated development environment (IDE) distributed under the GNU

General Public License for programming in C/C++. It is bundled with the open source

MinGW compiler.

Microsoft Visual Studio: 2005 version includes

� Visual C# 2005 Express Edition

� Visual C++ 2005 Express Edition: The compile and build system feature, precompiled

header files, "minimal rebuild" functionality and incremental link: these features significantly

shorten turn-around time to edit, compile and link the program, especially for large software

projects.

3 Technical Analysis

3.1 Importance of Code Optimization

 The code can be much more efficient if compiler optimizes it.

 The most important optimizations are those operate on loops, global register allocation

and instruction scheduling among the others.

3.2 Information About Optimizations

 3.2.1 Constant Folding

 A technique, where constant sub expressions are evaluated at compile time.

This optimization should cause little penalty in compile time, but cause run time to decrease

greatly.

Ex:

 return 3+5 >> return 8

 3.2.2 Dead Code Elimination
 A technique, which removes unreachable code that is never executed.

Ex:

 if(0)

 a = 1; >> This code becomes

 else a = 2;

 a = 2;

 Also elimination of variables whose values are not used.

Ex:

 x = y + 1; y = 1;

 y = 1; >> x = z * 2;

 x = z * 2;

 7

3.2.3 Unreachable Code Elimination
 It is an optimization that eliminate code that cannot possibly executed

 -Code guarded by conditional that is always false

 -Code without any branches to it

-Code that cannot possibly be executed, regardless of the input data

causes unreachable code.

 3.2.4 Global Common Subexpression Elimination

• An occurrence of an expression is a common subexpression if there is another

occurrence of the expression whose evaluation always precedes this one in execution

order and if the operands of the expression remain unchanged between the two

evaluations

• CSE is usually done in two phases:

– Local CSE is done within each basic block while the intermediate code for the

basic block is constructed

– Global CSE is done later across an entire flowgraph representing a procedure

3.2.5 Global Forward Substitution
 An optimization in which the result of an assignment can be propagated forward

through a program. For example, the assignment B=C followed by A=B can be replaced by

A=C if B is not used elsewhere in the program.

3.2.6 Basic Block Ordering
 It is an optimization that improves instruction cache hit rates by placing frequently

executed blocks together. So that the improvement of code locality leads to a reduced number

of cache conflicts.

 A basic block ordering is usually performed within the procedure boundaries and

results on an effective reduction of misses , especially if the procedure maps inside the

instruction cache.

 8

a)Bottom-up: Basicly , it tries to reduce number of taken branches (conditional and

unconditional)

 It can be named as forming chains of basic blocks. That chins should be placed as

group as straight-line code in a bottom-up method. In this technique each basic block i

considered as the head of tail of a chain. Then the merging of two different chains, in the

order of large to small by looking at the arcs or block graphs.

Note: There is no must to be transitive and loops are allowed.

b)Top down: Basically , it tries to make conditional branches become forward conditionals.

The algorithm:

1) Place entry basic block.

2) A- Successor that is connected to the last places block by the largest count is selected.

B- If all successors have already been selected, pick among unselected blocks with one

largest connection to already selected.

3.2.7 Local Common Subexpression Elimination
 The compiler detects multiple uses of the same expression or subexpression. The value

is calculated only once and reused where possible superfluous expression calculations are

eliminated from the code.

x = a + b

...

y = a + b

t = a + b

x = t

...

y = t

 9

3.2.8 Forward Substitution

 Forward substitution is transformation that substitutes the right-hand side of an

assignment statement for occurrences of the left-hand side variable which is especially useful

in conjuction with symbolic data dependence.

In programs, temp variables are used to hold commonly used subexpressions or offsets in a

local area. Holding a register too long, causes spills. So, these kind of substitutions might be

useful.

Example:

 a=b+2

 c=b+2

 d=a*b

 t1=b+2

 a=t1

 c=t1

 d=a*b

c = a + b

d = m * n

e = b + d

f = a + b

g = - b

h = b + a

a = j + a

k = m * n

j = b + d

a = - b

if m * n go to

L

t1 = a + b

c = t1

t2 = m * n

d = t2

t3 = b + d

e = t3

f = t1

g = -b

h = t1 /*

commutative */

a = j + a

k = t2

j = t3

 10

3.2.9 Jump Optimizations
 In compiler theory, Jump threading is a compiler optimization. In this pass,

conditional jumps in the code that branch to identical or inverse tests are detected, and can be

"threaded" through a second conditional test. This is easily done in a single pass through the

program, following acyclic chained jumps until you arrive at a fixed point.

3.2.10 Dead Object Elimination
 In compiler theory, dead object elimination is a compiler optimization used to reduce

program size by removing objects which does not affect the program. Dead object includes

variables and functions that can never be executed (unreachable object), and code that only

affects dead variables and functions, that is variables and functions that are irrelevant to the

program.

3.2.11 Strength Reduction
 In compiler theory, Strength reduction is a compiler optimization where a function of

some systematically changing variable is calculated more efficiently by using previous values

of the function. In a procedural programming language this would apply to an expression

involving a loop variable and in a declarative language it would apply to the argument of a

recursive function.

 E.g.

f x = ... (2**x) ... (f (x+1)) ...

becomes f x = f' x (2**x)

where f ' x z = ... z ... (f' (x+1) 2*z) ...

 Here the expensive operation (2**x) has been replaced by the cheaper 2*z in the

recursive function f'. This maintains the invariant that z = 2**x for any call to f'.

3.3 How is Code Optimized?

 Source code is translated into a medium-level intermediate code and optimizations that

are largely architecture-independent are done on it. Then the code is translated to a low-level

form and further optimizations that are mostly architecture dependent are done on it. (mixed

model of optimization)

 Source code is translated to a low-level intermediate code and all optimizations are

done on that dorm of code. (low-level model of optimization)

 11

 In both models optimizer analyzes and transforms the intermediate code to eliminate

unused generality.

3.4 Advantages of Optimizations

 Optimizations generally improve performance, although it is entirely possible that they

may decrease it or make no difference for some (or even all) possible inputs to a given

program.

 In most cases, a particular optimization improves (or at least does not worsen)

performance.

 In general, we attempt to be as aggressive as possible in improving code, but never

make it incorrect.

 12

4 Specifications

4.1 Information about the Framework

 In this project, we are going to work on the framework QuickC, provided by CStar

group.

 First of all, QuickC is a framework which is developed on design by contract. It is

Object-Oriented and developed with C++. Framework has its own intermediate representation

in order to be used with different language front-ends.

Tail-call optimization

Procedure specialization and cloning

Global value numbering

Dead-code elimination

Local and global copy

 propagation

Local and global common

 subexpression elimination

Loop-invariant code motion

Partial redundancy elimination

Dead-code elimination

Control-flow optimizations

Code hoisting

Tail merging

Branch optimizations

Dead-code elimination

Basic-block scheduling

Register allocation

* Constant folding

* Algebraic

simplifications

Scalar replacement of array references

Data-cache optimizations

* Constant folding and Algebraic simplifications

can be applied many times, in any order

Done almost

always on a low-

level form of

code; may be

machine

dependent

Muchnick, Steven S . , Advanced Compiler Design and Implementation, pp. 325-327

Applied to

medium or

low-level

intermediate

code

Applied either to

source code or to

a high-level

intermediate

code; early in

compiling

process

 13

 Also, framework is documented with Doxygen. Doxygen is a documentation system

which is used for creating reference manual from a set of documented source files. Detailed

description of functions and classes can be presented with Doxygen. The advantage of

Doxygen is, it makes documentation a must and helps with understanding the modules of the

framework.

 The framework has a debug/trace utility which helps with debugging and

implementations and also supports Dwarf debugging information standard.

 Framework has a core utility class, IRBuilder, Intermediate Representation Builder.

Basic blocks are created automatically by IRBuilder while adding and removing statements.

Also it updates Control Flow Graph. This makes easier development of optimizations and

transformations.

 The first task of the framework is to translate front-end abstract syntax tree in to the

intermediate representation which helps with to apply transformations in any order and

amount. Intermediate representation is low level enough to represent language constructs of

different languages.

IRProgram

 IRModule Includes unordered list of modules

IRFunction Includes unordered list of functions

 CFG Every function has a corresponding Control Flow Graph. One entry and one

 exit basic block

 IRBB Directed graph data structure of basic blocks.

 IRStmt Ordered list of statements. Statements may have zero or more expression

 trees depending on the type of statement.

 Analysis, transformation and optimization of intermediate representation is done by

ANATROPS. They can be called in any amount and order. You can call an ANATROP on its

set of valid scope like on basic block, a function, a module or a program.

4.2 Test Case Generator

 Test case generator is a tool which we will generate random C programs by using the

framework. As we will see in the data flow diagrams user enter preferences for the program

that want to generate. User will determine the percentages of the constructs. We will generate

the program with a code generation algorithm. Then the program will the tested and the result

will be passed to the logging process. This log and code will pass to the output process and

code will be saved to a file and it will be printed to the screen.

 14

Level 0 DFD

Level 1 DFD

 15

4.3 Optimization Manager

Optimization manager is an effective and advanced tool for managing the optimizations that

will be used in compile time of a program. This manager is an assistant for advanced users.

Some optimizations can be useful and some can affect badly to the program. That situation

changes because of the characteristic of codes and used functions in program.So the user will

specify the optimizations which are chosen to be useful.

Workflow of the optimization manager is very simple. Actually , the manager is an anatrop in

the framework. By reading an external file , which consists of a program that sets execution

order and options , the anatrop will set the optimizations.

Level 0 DFD

 16

Level 1 DFD

5 Project Model:

In our project we will make compiler optimizations. We have a ready framework and

we will use it for producing the code. Requirements are clear but can change in the future,

additional requirements can show up. At the beginning we will do must-optimizations which

are given by company.

Optimizations: Constant folding, basic block ordering, dead code elimination,

local/global forward substitution, strength reduction, unreachable code elimination, dead

object elimination, local/global copy propagation, local/global common subexpression

elimination, jump optimizations, if simplifications, tail merging. Team members shared those

optimizations fairly. There will be bonus optimizations. In addition to optimizations we are

going to produce a test case generator and an optimization manager. Test case generator will

produce random c codes, around 1000 – 2000 lines. We are going to test our optimizations on

these codes. It must be as rich as possible. Optimization manager will be capable of reading

an external file during compilation. This file will contain the execution order of the

optimizations. Our team has 4 members, so we are a small project group and we have chosen

our project model by thinking of this. XP Model is the best for the small groups like us. We

got the requirements from the company as clear as possible but we know there will be

additions to those requirements. We will start the project by following XP model properties.

Requirements are shaped then designing; coding, testing and releasing will come. This

cycle will be processed several times. Between each cycle we will have feedback from the

company. We must be flexible about the applying style the company can make lots of changes

according to our works. We will use simplest design ever. This makes our job clear. We have

divided the team. We have made two pairs. Those pairs will work together in their own area.

 17

Products will be integrated at the end. Every member of the team will use the same

framework and same language. We are going to produce our codes in c++. Time by time we

will make time estimations. Those estimations will show us that which part of the project is

done and what we have ahead. Our friendship will ease the communication. Our continuous

connection will help us for informing each other about what we are doing. Writing the code,

testing and maintenance will be our heavy part of the job. In addition to this we are going to

make advanced documentation. This is not common for XP Model but for the course

professor and assistant it is important.

6 Project Schedule

Project Task Set

Framework Activities

 • Initial Design √

 • Design

 • Programming

 • Testing

Task Set

 • Requirements specification √

 • Learning the languages and tools √

 • Optimizations

 • Test case generator

 • Optimization manager

 • Testing

List of deliverables
Documentation

 • Project Proposal √

 • Requirement analysis report

 • Initial Design Report

 • Final design report

Functional Decomposition of these tasks
Requirements Specification

Internet Search √

Learning the languages and tools

Determining the proper language √

Determining the tutorials and manuals √

Studying the tutorials √

Optimizations

 Learning how to use optimization

 Implementation

 Test case generator

Test case generator initial design

 18

Test case generator initial implementation

Test case generator revised design

Test case generator complete implementation

Optimization manager

Optimization manager initial design

Optimization manager initial implementation

Optimization manager revised design

Optimization manager complete implementation

 Testing

 Test of optimizations with benchmark tools

 Comparing test results with GCC

 Testing the test case generator

 Testing the optimization manager

 Gannt Chart

 19

7 Risk Management Plan

Unavoidably, risks may occur during various times of a software project. There should be a

risk management to reduce the damage of risks which may occur and for safety of project. So

a risk analysis is a must.

Team:
-Misunderstanding the responsibilities: Each member has to recognize his responsibility.

Otherwise the work will be done again unnecessarily and precious time will be wasted.

-Lack of aims and standards: Each part of the project should have an aim and done with some

standards. Otherwise quality of job will be reduced.

-Unavailability of member(s): Because of exams or assignments of other courses, some members

become unavailable. This condition can reduce productivity.

Project:
-Lack of time: Time is a precious factor for this project. Unnecessary jobs or not obeying the

schedule will reduce time.

-Changes of requirements: If the requirements are not specified well, later on there can be

major changes which slow down the project.

-Design and implementation: Design and coding phase of project may become harder due to

some complicated algorithms.

-Technology: Because of framework’s complicated structure, sometimes risks may occur.

Risk Table:

 Risk Probability Impact

Misunderstanding the responsibilites %10 Negligible

Lack of aims and standards %30 Critical

Unavailability of member(s) %30 Critical

Lack of time %20 Negligible

Changes of requirements %15 Negligible

Design and implementation %25 Critical

Technology %20 Marginal

