MIDDLE EAST TECHNICAL
UNIVERSITY

N

COMPUTER ENGINEERING
DEPARTMENT

CENG 491
DETAILED DESIGN REPORT

PSbS -

SMmart

SERKAN CAGLAR 1347285
BURAK CANSIZOGLU 1347244
SERDAR KOCBEY 1250471

HANIFi OZTURK 1298140



I INTRODUCTION.....ccoiiiiiiiiiiitiietet e

1.1 Purpose of the DOCUMENL .........c..ooiiiiiiiiiiieee e
1.2 Detailed Problem Definition .........cccceeviieiiiiiiiiiiiiienieeeeteeeeste e
1.3 DeSi@N CONSLTAINES ....eeeivieeiiieeiiieeiieeeiieeeriieeeiteeeteeesteeesaeeessseeessseeessseeensseessssesnnees
1.3.1 Financial CONSTraINES.......ccuevviiiriiiieenieeieeiee ettt
1.3.2 Manufacturing CONSIIAINES .........eeeriieerriiieriieeeite ettt e et e esreeeiteeenareesiree e
1.3.3 Ergonomic CONSIIAINES .......c..eeiriieerieeeieiieeiieeeiteesieeessseeesseeessseeessseeensseeessseennns
1.34 POWET CONSLIAINES .....eiiiiieiiieiiieiie ettt ettt et
1.3.5 ReSOUICE CONSLIAINES ......eeruiiriiiriieeieeniteere ettt
1.3.6 Lack of Experience of Team Members .........ccccceeeviiiiniiiiniieiniieiiceeiceeiieeee
1.3.7 TIME CONSLIAINLS ...eeueeiiiiieiieetieite ettt ettt e st e bt e st e beesaeean
1.4 Design Objectives and GOAlS ........ceeevvueeiiiieiiiiieeiiieeriee et e e eeseveeeseveeesaneeas
1.4.1 POWET ...ttt
1.4.2 LATEEIME ..ottt st sttt e
1.4.3 S CUTTLY .ttt euteeeiiee et e et e et e e et e e et ee et eeeateeetaeeessaeeensaeesnsaeennsaeensseeenssaeenssaennnns
1.44 ALCCUTACY .. tteeuiittee ettt ettt e et e e ettt e e ettt e e s st e e e s abbeeeseaabteeesansaeeeesnnsbaeesnnnsaeas
1.4.5 SIZE ettt sttt
1.4.6 LG0T F OO P OO VSRR UR PRSP
1.4.7 Wi RANGE ..ottt et e e e e et e e eareeennaee s

2 ARCHITECTURAL DESIGN ..ottt



3

7

2.1 System Hardware MOAUIES .........ccceeeiiieiiiieeiiieeieeciieeeie et 8

2.2 System Software ModUIES..........coouiiiiiiiiiiiiiee e 12
2.2.1 PIC MOAUIE ...ttt 13
222 AP MOAUIE ...t 15
223 Status MOAUIL. ....cc.eiieiiiieiieiieie ettt ettt eaean 17
224 Server MOdULE ......coouiiiiiiiieieeee e 18
225 Database ModUle.........cccoriiiiiiriiiiieieeeeeeee e 19
2.2.6 Main MOAUIE .....coeiiiiiiiee e 19
CLASS DIAGRAMS ...ttt sttt sttt et be et saeenbeensesaean 21

3.1 DIAZIAIMN ...ceiitie ittt et e ettt e et e st e e st e e abe e e b e e 21

3.2 ClaSS TaADIES...cueiiiiiiiieceee e 22
SEQUENCE DIAGRAMS ... oottt ettt sttt sae e 30
USER INTERFACE ... .ottt ettt sttt sttt e ne s 32

5.1 INOAE MOMILOT ...ttt ettt sttt et e e sreens 32

5.2 Data ANALYZET.....ooviiiiiiiiiiiee ettt et 34

5.3 | S 10 L A € 1531 1S L0 ) O RRTRTR 36
PROJECT SCHEDULE .....c..ooiiiiiiiiiieeieeeeeee ettt sttt et st 38

6.1 FINIShEd WOTK ...t 38

6.2 FULUIE WOTK ..ottt 39

6.3 GANLE CRATT ..ottt ettt b e et esane e 40
REFERENCES ... .ottt ettt ettt st sbe et e saeebe e sneenneas 41



APPENDICES

Appendix A

Appendix B



1 INTRODUCTION

1.1 Purpose of the Document

The purpose of this document is to express the detailed design specifications of our project,
HSBS_WSN. With the help of resolving software, hardware, functional and non-functional
requirements, we have prepared this report. This report will be a guideline for our future
studies. In the design process, we intended to design an effective and modular product that
will satisfy the needs and constraints of the project. In this document, we tried to explain our
design process in an illustrative way with the help of diagrams. These diagrams are specific
types of UML diagrams like class, sequence and structural diagrams. Owing to these
diagrams, we have been able to explain the functional, structural and behavioral features of

our system.
1.2 Detailed Problem Definition

As the technology evolves, usage of wireless networks has increased remarkably. In parallel
to this, application area of embedded systems integrated with wireless networks has
expanded. As a result of this development, wireless sensor networks emerged in the last

decade.

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed
autonomous devices using sensors to cooperatively monitor physical or environmental
conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different

. 1
locations.

Wireless sensors are far more efficient and feasible than their wired counterparts with respect
to their easiness of use, wider range and application areas and less deployment costs. In our

project, we aim to establish a wireless sensor network (HSBS_WSN) that will support IEEE

'Wikipedia, Wireless Sensor Network, http://en.wikipedia.org/wiki/Wsn, October 2007



802.11 protocol. Most of the wireless sensors in the market support some protocols like
ZigBee and IEEE 802.15; however, unfortunately there are too few sensors that support IEEE
802.11 and these sensors are unaffordable for us. Because of this, we have decided to build
our own wireless sensor node (HSBS Sentinel). HSBS Sentinels will have two main
advantages. Firstly, they will communicate directly with PCs that support IEEE 802.11.
Secondly, they will be more affordable than the other wireless sensors that are available in the
market. An HSBS Sentinel is formed of an Airties AP-400, a SPO7 (a sensor integrated PIC
board) and other essential hardware parts. In the project, there will be a number of HSBS
Sentinels; some of them will be used in HSBS Sentinels, some of them will be repeaters and
one of them will be the access point. Moreover, there will be a server that will collect data
from HSBS Sentinels over the access point and store the data in the database. Furthermore, a
user interface that will be used to monitor and process the data will be implemented on this
server. HSBS WSNs will be able to be used in many applications in which temperature and

humidity are measured.
1.3 Design Constraints

1.3.1 Financial Constraints

In the market, there are a limited number of wireless sensors that support IEEE 802.11
protocol. However, these sensors are not affordable for us. Therefore, we have to design our

own wireless sensor nodes, namely HSBS Sentinels.
1.3.2 Manufacturing Constraints

Since we have to build our own wireless node, we are obtaining some hardware equipments
and assembling them. However, sometimes we have some problems while combining these
different parts and we cannot foresee the difficulties that we may confront. Furthermore,

testing the hardware units that we implement takes much time.
1.3.3 Ergonomic Constraints

Since a SPO7 and an AirTies AP-400 will be used in HSBS Sentinels, our wireless nodes will
be larger and bulkier than other wireless sensors in the market. This makes HSBS Sentinels be

less ergonomic.



1.3.4 Power Constraints

Because we are using a SPO7 and an AirTies AP-400 in HSBS Sentinels, we are forced to use
a power adapter for SPO7 and AP-400. For this reason, HSBS Sentinels will need a power

socket.
1.3.5 Resource Constraints

Because wireless sensor network area is a new and vast area, this subject is in fact currently
being researched by universities and institutions world wide. For this reason, we have

difficulties in finding enough resources.
1.3.6 Lack of Experience of Team Members

Since the group members have taken a few hardware courses and have little experience on

hardware, sometimes it is difficult for us to visualize the details of the project.
1.3.7 Time Constraints

The schedule of the project is determined by the CENG 491 course syllabus. From now on,

we have about four months to finalize the project successfully.
1.4 Design Objectives and Goals

1.4.1 Power

As we stated in the design constraints section, HSBS Sentinels will consist of a SPO7 and an
AirTies AP-400. In our project, we plan to use only one power supply per an HSBS Sentinel.
Only the power adapter of the AP-400 will be used to supply energy to an HSBS Sentinel.
The power to the SPO7 will be provided from AP-400 with the help of a voltage level

converter.
1.4.2 Lifetime

HSBS_WSN should operate properly for a long time. Since, the sensors (SHT15) have
CMOSens Technology, they have long-term stability. By the help of this feature of the

sensors, the overall product will be able to run for a long time.



1.4.3 Security

Security issue is a big problem for WSNs, however it has been overcome by WPA (802.1x,
TKIP, PSK), WPA2 (IEEE802.11i, AES, CCMP), WEP (64/128 bit), MAC filtering and
SSID hiding properties of AirTies AP-400.

1.4.4 Accuracy

The HSBS WSN will be able to determine accurate temperature and humidity values by the
capability of high-precision measurement of the SHT15s.

1.4.5 Size

In HSBS Sentinels, we could have used a CENG 336 Embedded Board on which a SHT15 is
assembled. However, then an HSBS Sentinel would be bulky. For this reason, we have

implemented the SPO7 to prevent this situation.
1.4.6 Cost

Existing similar products to HSBS Sentinel are expensive to be attained. An HSBS Sentinel
costs approximately $150 and this price is about one fourth of the price of the cheapest
wireless sensor in the market. Thus, the overall project will be affordable than the existing

ones.
1.4.7 Wide Range

The feature of AP-400 that allows it to run as a repeater provides us to implement a mesh
network. With mesh networking, an HSBS Sentinel that is not in the range of the access point
will send its data over repeaters. Thanks to this property of AP-400, HSBS_WSN will operate

on a wide range.



2 ARCHITECTURAL DESIGN

2.1 System Hardware Modules

SensiBus
Temperature&Humidity
Sensor
SHT-15
PIC 16F877 « @ . .
Microcontroller AR Ei
Oscillator

Reset Circuit @——————— P

Voltage Level
Converter

RS-232 Bus

AP-400 4—@  Power Unit

Figure 2-1 Hardware Block Diagram

In Figure 2-1, hardware block diagram is shown. As seen in the figure, the data transfer
between SHT15 and PIC 16F877 are provided by SensiBus. PIC 16F877 is programmed by
the Programming Unit whenever needed. Moreover, an oscillator and a reset circuit are
essential parts for the proper functioning of PIC 16F877 and are connected to it. The data
transfer between PIC 16F877 and AP-400 is provided through RS-232 Serial Bus.
Furthermore, a power unit is connected to AP-400 and this power unit will supply the power
needed SPO7 by converting it to 5V via voltage regulator 7805. AP-400 operates via 3.3 V
and PIC 16F877 operates via 5V. In order to avoid these power differences in RS232 port,
voltage level converter MAX3378 is used between AP-400 and PIC 16F877.



GND U3 ®
— SIN Lol vovLi vee |14 vee ) ‘\\ GND
P3 SouUT 0 3 TX X \
3V3 37 LOVL2 ____ VOVCCL =53y ape
4 BUT S~ THREE-STATE 1/OVCC2 <y TO0E vee
S SIN 5| NC NC I—53v3
2 —3vs —=2= 1OVI3 VL |— o MR
1 . —= OVIA 1O VOC3 |<rg—— Roe | [Ros
Header 4 GiNID LOMCCE 1K 1K
<
— MAX3378 é a
GND Sensor Connection
w GND || i é
SDA | 3
%D RBO/INT RCO/TIOSO/TICKI <H% vee |4
3= RBI RCI/TIOSICCP2 | <o~ Hoadort
P2 36| RB2 REAUCCP1 < gek P1
—5= RBIPGM RC3/SCK/SCL
5 vee 37 rBa 53 SDA Cap Poll
- RC4/SDI/SDA 1
MCLR 38° 54 cs
4 — 9| RBS RCS/SDO | <551 < — 12
S 40 RBGBGE REGJIPCKS 26 RX 1 | Power Input
2 RB7/PGD RCIRX/DT |22 R LoF
1 5 19 {412
Programming U= —5= RAO/ANO RDOPSPO. |<i5- -—{(3 }—4
GND 3" RAIANI RDI/PSP1 | <51 {00
—<©| RAYAN2VREF RD2PSP2 |<i5>- -
o —2 RAYAN3/VRER+ RD3/PSP3 |<5- Ul
—5eb RA4TOCKL RD4/PSP4 i3] Z |70
H o — 2| RAS/AN4/SS RDS/PSP5 |<i5- ) .
Capl Nl 13 RD6/PSP6 % %
\—* OSCI/CLKIN RD7/PSP7 |2 E
22pF Y1 14
= XTAL OSC2ICLKOUT 7 g o}
i ~T MAR 1 REORD/ANS |<tg—
1 & MCLR/VPP REI/WR/ANG <2 =
Y = RE2/CS/AN7 |<t—
Cap2
—  2%pF 12 u_
GND R1 31| VSS VDD |~ o <
, VSs VDD g
Res <
2K R
PICI6F877-20/P —
_\"s1 GND  100nF
D1 SW-DPST Cap2
Diode 11 414ﬁ
vCC —

Figure 2-2 General Schematic of SP07 (renewed)

In Figure 2-2, general schematic of SPO7 is shown. SP07 is the name for the unit that includes

SHT15 and PIC 16F877 for convenience. This schematic shows the connections of the pins in

SHT15, Oscillator, Programming Unit, SensiBus, RS-232 Bus and PIC 16F877. We renewed

the schematic of SPO7 board and eliminated the errors in previous schematic. Designing of

schematic was implemented with Altium Designer. This tool also allows us to design printed

circuit board (PCB) with this sch

ematic.



QDODOODOO

U2
=
o
(o
o
(o
(2]
o
(2]
o
(2]
o
o
o
(o
=
o
(2]
o
=
o

Sensor Connection

Figure 2-3 Printed Circuit Board (PCB) Design (v1.0)

This PCB is implemented by us manually with the help of our advisor assistant. Process is

described as follows:

After designing of PCB we print out the PCB print layout in 1-1 scale onto toner transfer

paper with the laser printer. Then we cut the circuit board into dimensions of our PCB design,

10



we clean the copper plate of circuit board with cleaning powder. We stick the border of
printed paper onto cleaned copper plate and we pressed on it with heated iron. When slowly
ironing the paper, toners were appeared on copper plate after few minutes. If all wire roads
clearly appeared on plate then it can be placed into cool water container. Then we remove the
special paper on copper plate. Now it is ready to place into chemical solution for removing
unwanted copper plates on circuit board. This solution consists of two chemicals. First one is
Hydrochloric Acid (HCL, %38 concentration) with 1.5 measures and the second one is
Hydrogen Peroxide (H,O,) with 3 measures. After placing circuit board into the solution it
was waited about 1 minute. When the circuit wires become clear on board then we placed into
water container again for stopping the reaction on board with solution. Then we dried and
cleaned the board for drilling pin holes on the board. After drilling operation we placed and

soldered the circuit equipments and tested one by one for proper functioning when its work.

* 1T I i L L R B

11



2.2 System Software Modules

SPo07
(SensorPICBoarc)

— DataSenderHandler
PIC !

******

N
Server - AN

GeneralStatusinf O— |
| Status |Statusinf
Gui | ! AP Module
_ } Sta‘tuslnf
| ! ! !
|
|
|
|
|
|
|
|
|

DataQueryHandler No— | | @ —-—- e [ ittt
Database ——& DataRecorderHandler

Figure 2-5 Software Component Diagram

The system is composed of three main physical structures; first one is SP07, second AP-400
and third the server. From this point of view, the modules are defined under these three
structures hierarchically. The PIC Module which is included in SPO7 is responsible for
manipulating the sensor read data within the SPO7 and provide an interface to AP-400 for data
sending. AP Module is placed in AP-400 and requires an interface from SPO7 to retrieve data
and process this data internally in AP-400 and operates in order to communicate with Server
Module and send the data provided. Status Module which is placed in AP-400 also provides
an interface for querying, restarting and turning off AP-400. Server Module provides an
interface for Main Module for sending requests to nodes and directs the data to Database
Module and node messages to Main Module. GUI Module operates on Server side and is
responsible for handling the user interactions like receiving user commands, displaying
system outputs, recording user settings. Main Module is placed on server and processes the
user commands. It requires an interface from Server Module to send requests and GUI
Module to return the outputs. Database Module handles the queries generated by sub

processes from Main Module and Server Module.

12



2.2.1 PIC Module

PIC Module reads the sensor data via Data Bus according to its producer protocol. This

protocol includes the initialization of sensor and data bus for proper measuring of values.

DATA _*
/|

SCK

Figure 2-6 Communication Start Sequence '*!

Measured data is calculated and stored in one memory unit in the banks. If interrupt is
detected on the RS232 port the PIC Module goes into send() routine and sends the stored

data to the RS232 stream. The routines for stated functions are as follows:

void communicationStart()
// generates a transmission start
// in figure 2-6 we shown the initial configuration of Data and CLK
pins for PIC

1. set CLK pin high

2. set DATA pin low

3. reevaluate step 1&2 with complements of previous pin value
until two cycle

int sendCommandToSHT15(int8 iobyte)
//sending commands to sensor

1. sends 8 bit

2. wait ack

3. return ack

intl6 readBytesonSensiBus ()

//reads a byte (data) from the SensiBus
shift most significant bits

send ack 0 bit

shift Teast significant bits

send ack 1 bit

return 7ntlé6 //read data

u-l-hUuI\Jl—‘

vo7d waitSHT15Reading ()
//waits for internal functioning of SHT15 - data reading
1. set DATA pin high
2. set CLK pin low
3. wait >1 ms
4. if DATA pin is Tow then SHT15 is ready

* Humidity & Temperature SHT15 Sensor Datasheet (p.3)

13



5. wait 100ms

wait for data ready
T T TTTT | T T T T T T | T T T I T T T T T T 1T
009 1111 |= O | M$B 119 11 S8 | (A | Fhecksym |

Command

TS

ack

Figure 2-7 Measurement Sequence "’

intl6 measuretemp

//in figure 2-7 measurement sequence 1is showed
//measure SHT15 temperature

// #define MEASURE_TEMP 0x03

call communicationstart()

call sendCommandToSHT15(MEASURE_TEMP)
read return ack

call waitSHT15Reading()

call readBytesOnSensiBus()

read return 7obyte

return 7obyte

\lmU'I-PUUNI—‘

intl6 measurehum ()

//measure SHT15 humidity

// #define MEASURE_HUM 0x05

call communicationStart()

call sendCommandToSHT15(MEASURE_HUM)
read return ack

call waitSHT15Reading()

call readBytesonSensiBus()

read return 7obyte

return 7obyte

\lmU'I-hUUI\JI—‘

void calculate_data (7ntl6 temp, 7nti6 humid)
//required equations and parameters are showed in sensor datasheet
1. calculate the data according to sensor producers equation

void shtl5_initialization O
//first initialize of shtl5 sensor
1. communicationReset()
2. delay 20 ms //for powering sensor

void communicationReset ()
//resets the communication and reestablished it
1. set DATA pin high
2. set CLK pin low
3. toggle CLK pin for 9 times
4.call communicationStart()

void SHT15ReadCalculate()
1. call measuretemp()
2. read and store returned 7obyte

? Humidity & Temperature SHT15 Sensor Datasheet (p.4)

14



3. call measurehum()
4. read and store returned 7obyte
5. call calculate_data( temp, humid) with stored parameters

void main({

1. call shtl5_initialization()

2. in infinite loop make procedure

3. call SHT15Readcalculate()

4. delay 500 ms //for prevent to self heating of sensor

5. if interrupts come send measured temp and humid value to rs232
port

6.return success

2.2.2 AP Module

The AP Module opens the serial device ‘ttySO’ and polls the PIC Module with a single
character string as “T” for temperature and “H” for humidity. Then it waits for the serial input
as strings from the PIC Module which is described as “T val” and “H val” for temperature
and humidity accordingly. The first character of the string defines the type of the following
floating point data in the “val”’. AP Module parses the string and checks whether there is any
threshold violation where the threshold values are defined in “thresholds.txt”. If a violation is

detected an alert message is sent to Server Module over a TCP socket.

On the other hand AP Module opens a TCP socket for handling Server Module connections,
and if a connection exists, AP Module sends the “T val”, “H val” strings over TCP socket.

The pseudo code routines of these processes are described as follows:
string readSensor(string s)
1. write(s) to serial port,

2. read() from serial port to string result,
3. Return result.

int check(string s)

1. if s[0]="T’ then do

2. if not MAX_TEMP > atof(s+2) > MIN_TEMP then do
3. Return 1.

4. else if s[0]="H’ then do

5. if not MAX_HUMD > atof(s+2) > MIN_HUMD then do
6. Return -1.

7. else do

8. Return O.

void initServerSocket()

. Allocate a TCP socket sockserv,

. Setup socket structure sockserv for port 2000,
. Bind it with the 0s,

. Start Tistening,

. Return.

VA WNR

Vo7id initClientSocket()
1. Allocate a TCP socket sockcli,
2. Setup socket structure sockcli for port 2001,
3. Connect to sockcli,

15



4. Return.

void initTty(string device)

1. open device with read/write option,

2. Setup the terminal I/0 structure tio,

3. Set the control, input, output flags of tio according to
BAUDRATE, LOCAL, NO_PARITY,

4. Enable canonical inputting,

5. Clear the device line,

6. Activate settings for serial port,

7. Return.

void apServer()
1. wait for inbound TCP connection inbound_connection,
2. While there is inbound_connection and S7A4A7US is ON do
3 read() from serial device to string s,
4 if (check(s) = -1) then
5. sendAlert(HUMD, S).
6 else if (check(s) = 1) then
7 sendAlert(TEMP, s).
8 end

©o

write(s) to inbound_connection,
10. end.
11. Return.

void sendAlert(7nt type, string s)
1. initclientSocket(),
2. write(type + s) to socket,
3. close(sockcli),
4. Return.

Vb7d getThresho1ds(f77e )

. open(f) for reading,

read() from f,

Set MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD,
close(f),

Return.

u1-l>uu|\J

vo7d getStatus(f11e )

. open(f) for reading,
read() from f,

set STATUS,

close(f)

Return.

u1-l>uu|\J

statusChange(7nt sig)
if sig is TURNOFF then
set STATUS to STANDBY,
else if sig is TURNON then,
set STATUS to ON,
else if sig is NEWTHRESHOLDS then,
getStatus(“status.txt”),
else do nothing,
Return.

coONOUVIhWNERQO

int main()

1. initTty(77YS0),

2. initServersocket(),

3. ass1gn 57g/7a75 S'ig TURNOFF, TURNON, NEWTHRESHOLDS, to
statuschange(sig),

4, getThresho1ds(“thresho1ds txt”),
5. getStatus(“status.txt”),

6. apServer(),

7. close(sockserv),

8. Exit.

16



2.2.3 Status Module

The Status Module provides an interface for Server Module for actions like sending ‘reboot’,
‘turn on’, ‘turn off’ requests, setting node thresholds and retrieving node status information. It
opens a TCP socket and listens for the requests from Server Module. Each request consists of
a string in the form “rRequestIiD: [reboot | turnoff | turnon | status |/
setThreshold( MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD)]”. Status Module parses
the request message, and takes the according action. The pseudo code routines of these

processes are as follows:

Void initClientSocket()
1. Allocate a TCP socket sockcli,
2. Setup socket structure sockcli for port 2003,
3. Connect to sockcli,
4. Return.

vo7id initServersSocket()

. Allocate a TCP socket sockserv,

Setup socket structure sockserv for port 2002,
Bind it with the 0S,

Start listening,

Return.

VA WN R

void rebootAP()
1. wait for 5000ms.
2. call system call reboot.

void turn_off()
1. send TURNOFF signal to process AP Module,
2. saveState(STANDBY),
3. Return.

void turn_on()
1. send TURNON signal to process AP Module,
2. saveState(on),
3. Return.

void send_info()

1. initCclientSocket(),

2. write(“state: STATE thresholds: MAX_TEMP, MIN_TEMP, MAX_HUMD,
MIN_HUMD, uptime: UPTIME’) to sockcli,

3. close(sockcli),

4. Return.

void setThresholds(f77e f)

1. open(f) for writing,

2. write (“MAX_TEMP MIN_TEMP MAX_HUMD MIN_HUMD”) to f,
3. close(f),

4. Send NEWTHRESHOLDS signal to process AP Module,

5. Return.

void parseRequest(string s)
1. set requestID to RequestID,
2. get request from s,

17



3. if request = REBOOT then
4 rebootAP().
5. else if reguest = TURNOFF then
6 turn_offQ,
7. Return.
8. else if request = TURNON then
9 turn_on(),
10 Return.
11. else if request = S7A7US then
12. send_info(),
13. Return.
14. else if request = setThreshold then
15. extract MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD,
16. setThresholds(“threshold.txt”),
17. Return.
18. else do nothing.
19. Return.

Void statusServer()

1. wait for inbound TCP connection inbound_connection,
2. While there is inbound connection do
3 read() from inbound_connection to string s,
4. parseRequest(s),
5. end.
6. Return.
int main(Q)

1. initServersocket(),
2. statusServer(),

3. close(sockserv),

4, EXit.

2.2.4 Server Module

What Server Module simply does is, establish a connection to database server, setup a TCP
socket for collecting the data from nodes in the active nodes list. On the other hand Server
Module opens another TCP socket for receiving alert messages, and sending request strings of
the type “Requestipn: [reboot | turnoff | turnon | status | setThreshold(
MAX_TEMP, MIN_TEMP, MAX_HUMD, MIN_HUMD)]” and request results. The pseudo code

routines of these processes are as follows:

void initRequestClientSocket(string ip)
1. Allocate a TCP socket sockcli,
2. Setup socket structure sockcli for port 2002,1ip,
3. Connect to sockcli,
4. Return.

void initRequestServersSocket()

. Allocate a TCP socket sockserv,

Setup socket structure sockserv for port 2001,2003
Bind it with the 0S,

Start listening,

Return.

VIR WN R

void initCollectDataClientSocket(string ip)

18



. Allocate a TCP socket sockcli,

Setup socket structure sockcli for port 2000,1ip,
. Connect to sockcli,

Return.

AWN R

void RequestServer()

. wait for inbound TCP connection inbound_connection,
2. While there is inbound_connection do

3 read() from serial device to string s,

4 if s:type is ALERT then

5. send signal ALERT to Main Module,

g. else if s:type is STATUS then
8
9

=

. send signal S7TATUS to Main Module,
. end.
. Return.

void collector()

. for each node in the active node Tist do
initCollectDatacCclientSocket(node.ip),
receive() from sockcli to F/oat temp, humd,

dmysq].insertIntoTab1e( temp, humd),

end.

. Go to step 1.

OOV WNE

void sendRequest(sig)

1. string request buildRequest (sig),
2. initRequestClientSocket(sig:ip),
3. write(request) to sockcli,

4. close(sockcli),

5. Return.

void main()
1. mysql.connectDB(HOSTNAME, DB),

2. initRequestServersocket(),

3. assign signals sendRequest(sig) from Main Module,
4. RequestServer(),

5. collector(),

6. Exit.

2.2.5 Database Module

The Database Module provides interfaces for Main Module and Server Module for querying
and updating the database. Methods as connectbDatabase(), createTable(),
insertIntoTable(), dropTable(), updateTable() are offered to system. The database
module of the system will be taken from an existing API; therefore the methods are not going

to be described in detail here. Class diagrams can be seen for further information.
2.2.6 Main Module

The Main Module requires interfaces from Server Module, Database Module and GUI
Module for actions like changing node status, fetching data from database, collecting
messages and regulating the data for outputting. The base class of the Module is Node class.

The methods getStatus(), changeNodeState(), rebootNode(), acknowledge() are

19



offered as interface. The routines of these methods are as follows;

void getStatus(Q{
1. If status = UNREACHABLE then,

2 Return.

3. Else,

4. Generate requestID

5 call server.sendRequest(nodeID, S7ATUS, requestID)
6. Return.

}

vo7id changeNodeState(){
3. If status = ON then,

4. Generate requestID

5. call server.sendRequest( nodeID, TURNOFF, requestID)
6. Else if status = STANDBY then,

7. Generate requestID

8. Ccall server.sendRequest( nodeID, 7URNON, requestID)
9. Return.

}

void rebootNode() {
1. If status is UNREACHABLE then,

2. Return.

3. Else,

4. Generate requestID

5. Ccall server.sendRequest(nodeID, REBOOT, requestID)
6. Return.

20



3 CLASS DIAGRAMS

3.1 Diagram

ReportGenerator

-startDate :

dataAnalyzer

-nodeList : string

-isCheckedHumidity : bool
-isCheckedTemperature : bool
-isCheckedGraphs : bool
-isCheckedComments : bool
-isCheckedAuthor : bool
-fileType : int

Date

-endDate : Date
-fileName : string
-filePath : string
-nodelList : string
-filePreview : string

nodeMonitor

-nodeList : string
+getNodeList() : string

-object : Graph
-isLatestChecked : bool

+generateReport() : void

+getStates() : void

-poi s +saveFile() : void +showWsnSitePlan() : void
_gg;g:g\{%étlgt +viewFile() : void +nodeAction(in nodelD : int, in action : int) : void
1 -endDate : Date +printFile() : void “;
—1-chartType : int +isCheckengde(in nodelID : int)} bool 1 }
+isCheckedNode(in nodelD : int) : bool +browsePath(in path : string) : void !
+drawCharts() : void i
t 1 1 !
|
|
1 I O, NN
«uses» 1> 1
Node
L -nodelP : string
-nodelocation : string
1. -nodelD : int
Graph * .
tartDate - Dat P : -nodeStatus : bool
-startDate : Date

-endDate : Date

-pointinterval : int

-xAxisScale : int

-yAxisScale : int
+drawBarChart(in data : Graph)
+drawLineChart(in data : Graph)
+drawTrendLineChart(in data : Gr:

‘«usesy,

«interface»
dataQueryHandler

+getData(in sqlParameter : string, in sqlQuery : string) : object
+executeQuery(in sqlParameter : string, in parameterList : string, in sqlQuery :

string) : bool

+getStatus() : void
+changeNodeState(in state : int) : void
+rebootNode() : void
+acknowledge() : bo «uses»

T

-statusPort : int
-dataPort : int
-serverlP : string

+listenStatus() : void

+listenData() : void

+recordData() : void

+returnStatus(in nodelD : int) : void

+returnAck(in nodelD : int) : void

+requestStatus(in nodelD : int) : void

+sendRequest(in param1 : int, in param2 : int, in param3 : int) : void

Database

-serverlP : string
-dbName : string
-portNumber : int
-userName : string
-userPasswd : string
-db : object
-timeOut : int

+connectDatabase() : Database
+createTable(in tableName : string, in columnName : string)

+dropTable(in tableName : string) : bool

+insertintoTable(in tableName : string, in columns : string, in values : string)

+updateNodelnfoTable(in oldColumns : string, in oldValues : string, in newColumns : string, in newValues : string) :

«uses»

void

«interface»

dataRecorderHandler

+saveData(in nodeNumber : int, in tableName : string, in data : uint) : bool

Figure 3-1 Class Diagram

21



3.2 Class Tables

NodeMonitor
Attribute Name | Type Description
Attributes
nodeList Node[ | | Holds all the information about sensors in the database
Method Name Return | Arguments | Description
Methods
getNodeList Node[ | | Void Extracts all the information about
sensors in the database
getStates Void Void Determines the states of all sensors
with the help of server module
showWsnSitePlan | Void Void Displays the existing site plan
nodeAction Void Int, Int Perform node applications(turn
on&off, reboot node, ack node)
DataAnalyzer
Attribute Name | Type Description
Attributes
nodeList Node[ ] | Holds all the information about sensors in the database
Graph Object
graph

22




isLatestChecked | Bool Holds the value of the Latest checkbox

pointInterval Int Sets the x axis interval
startDate Date Start date of the measured data
endDate Date End date of the measured data
chartType Int Holds the chart type
Method Name | Return | Arguments | Description
Methods
isCheckedNode | Void Void Determines whether checkbox of a node
is checked or not
drawCharts Void Void Draws the charts according to user
preference
ReportGenerator
Attribute Name Type Description
Attributes
nodeList Node[ | | Holds all the information about sensors in the
database
1sCheckedTemperature | Bool Holds the value of temperature checkbox

isCheckedHumidity Bool Holds the value of humidity checkbox

1sCheckedGraphs Bool Holds the value of graph checkbox

23




isCheckedComments | Bool Holds the value of comments checkbox

isChecked Author Bool Holds the value of author checkbox

fileType Int Holds the value of file type dropdownlist

startDate Date Holds the value of start from dropdownlist

endDate Date Holds the value of end dropdown list

fileName String | Holds the value of file name textbox

filePath String | Holds the value of save to textbox

filePreview String | Holds the value of text version of generated data

Method Name Return | Arguments | Description

Methods

generateReport Void Void Shows the data in preview textbox
with respect to user preferences

browsePath Void String Browse the path of the file to be
saved

saveFile Void Void Saves the generated data

viewFile Void Void Views the print preview of the
generated data

printFile Void String Prints out the generated data

24




Graph

Attribute Name | Type Description
Attributes
startDate Date Start date of the measured data
endDate Date End date of the measured data
pointInterval Int Holds the interval of x axis selected by the
user(minutely, hourly, daily)
xAxisScale Int Holds the interval of x axis scale
yAxisScale Int Holds the interval of y axis scale
Method Name | Return | Arguments | Description
Methods
drawBarChart Void Void Draws the bar chart of requested data
drawLineChart | Void Void Draws the line chart of requested data
drawTrendLine | Void Void Draws the line chart of requested data
Node
Attributes | Attribute Name | Type | Description

25




nodelP String | Holds IP of the node
nodeLocation String | Holds the location of the node
nodelD Int Holds the unique id of the node
nodeStatus Bool Holds the state of the node
Methods | Method Name Return | Arguments | Description
getStatus Void Void Sends a request to the server module to
get the state of the node
changeNodeState | Void Int Sends a request to the server module to
change the state of the node
rebootNode Void Void Sends a request to the server module to
reboot the node
acknowledge Bool Void Request the acknowledge message of the
requested actions
Server
Attributes | Attribute Type Description
Name
statusPort Int Holds the port number for the status
dataPort Int Holds the port number for the incoming data

26




serverIP String | Holds the unique id of the server
Methods | Method Return | Arguments | Description
Name
listenStatus | Void Void Listens the status port
listenData Void Int Listens the data port
recordData | Void Void Records the data which is buffered from the
data port
returnStatus | Bool Int Returns the state of the node buffered from
the status port to whom it requested it
returnAck Void Int Returns the acknowledgement of the requests.
sendRequest | Void Int, Int, Int | Sends a request to the Status Module in
HSBS Sentinel in order to learn the state, turn
on, turn off or reboot.
Database
Attributes | Attribute Name | Type | Description
server[P String | Holds the IP of the database server
dbName String | Holds the name of the database
username String | Holds the username of the user who will login to the
database

27




userPasswd String | Holds the password of the user who will login to the

database

timeOut Int Holds the connection timeout value

Methods | Method Name | Return | Arguments | Description

connectDatabase | Bool Void Creates a connection to the database

createTable Void String, Creates a table in the database
String[]

insertIntoTable | Void String, Inserts a values into a table as a row
String[],

dropTable Void String Deletes the table

updateTable Void String[], Updates the table with the new values
String[],
String

dataRecorderHandler <<interface>>

Methods | Method Return | Arguments | Description
Name
saveData Void Int, String, | Saves the data which is coming from the
Uint server module

dataQueryHandler <<interface>>

28




Methods | Method Name | Return Arguments | Description

getData DataTable | String, Gets the result of the query from the
String database

executeQuery Bool String, Executes the requested query
String,
String

29




4 SEQUENCE DIAGRAMS

S

AP-400

StatusConnectionModule

i dataueryHandier
nodeMonitor Node dataQueryHandler Database Server
T T T |
i getNodeList() | executeQuery(parameter paramLisi query) ! |
| | H N 1 |
T nodeList[ i DataTable ! ! !
| B | |
T T s T i i | ‘
! getStates() o | o !
L 1] sendRequesi(nodelC status state) !
nodeAction(nodelC ping) | | getStatus : ! quest( b
d | | —¥,
states of nodes | retu‘rnStatus(nodell:] } ! send infc
B Stk bbbl K T T } __________ f_ e
| ! | | | —-—=d
| o ! ; T
i il ! ! AR T
nodeAction(nodelC reboot) ﬁebootNode() ; iendRequesi(nodelC rebool reques
3 ; s |-
|
| = - -
nodeAction(nodelC turnOr) changeNodeState(") | endRequesi(nodelC status change) !
| | Y |
returnAck(nodelC - ) | ack
R R i b---mmmooo K
! |
! | L
T - | I i —
! ! 3 : i !
nodeAction(nodelC turnOff) chapgeNodeState(:] } endRequesi(nodelC status change
! i
L — S ——— e
retyrnAck(nodelC Z) | ack
|
L Ke—mmmmm o — } ———————————— | i mmmm e
| | !
M - | ! T T
> showWsnSitePlan() | ! i ! !
1 ! 1 ! 1
| | ! | |
L | | |
|
|
|
|

dataAnalyzer

Figure 4-1 Node Monitor

Grapt

dataQueryHandler

h ‘::) reboots the node

Database

Figure 4-2 Data Analyzer

| |
| |
| |
| |
i i

> isCheckedNode(nodelD ! !
1 1
| |

LJ e o
1
drawCharts() getDate(parameter query, executeQuery(parameter paramList query
chart DataTable DataTable
K mmmm oo S K mmmm oo

30



reportGenerator dataAnalyzer OsFileSystem Graph dataQueryHandler Database

> isCheckedNode(nodelD)

L
|
|
generateReport() ! )
drawCharts() getData(parameter,query) TexecuteQuery(parameter,paramL|st,query)
chart :
K=o T chart DataTable DataTable
B _} ,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
|
|
|
|
|
|
|
saveFile()

|
|
|
|
|
|
i
|

> printFile() !
|

|

> viewFile() |
|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

Figure 4-3 Report Generator



S USER INTERFACE

The HSBS WSN Soft which will run on the server constitutes the user interface of the project.
The user interface has three parts namely Node Monitor, Data Analyzer and Report

Generator. The following text describes these three features in detail.

5.1 Node Monitor

HSBS Smart - WSN Soft vO. 1
File View Help

Node Monitor I Data Analyzer " Report Generator ]

@ Node #1
Node #2z
Node #Z
Node #4
Node #&
Node #6
Node #7
Node #8

E 0D DO0O®EDO

Ping Node #1...
Request-1
Node #1 (192 168 1 122) response time 19&ms

Request- 2

Node #1 (192 168 1122) response time 181ms =
Request-:

Node #1 (192 16€ 1 122) response time 99ms b 1

Figure 5-1 Node Monitor

Node Monitor tab has three panels as can bee seen in the Figure-5-1; node list, location map

and activation output.

The left side panel lists the nodes with the names user has defined while initiating the system.
Little squares before the node names illustrates the status of the node in such a way that
“green” square means the node is alive, “red” square means node is turned off, “gray” square
means node is unreachable. If a right click mouse event occurs on a node in this panel a menu

shows up as shown in the Figure-5-2 allowing user to trigger four actions; ping the node, turn

32



the node off, turn the node on and reboot the node.

Turn off

Reboot

Figure 5-2 Right Click Menu

The location map illustrates the node locations according to their definition to the system.
This part is only for only demonstrating the overall view of the system, no interactions are
provided to user. The colored circles represent the positions of the nodes. The colors are

captured from the left side node list panel.

Ping Node #1...

Request-1

Node #1 (192.168.1.122) response time: 198ms
Request-2

Node #1 (192.168.1.122) response time: 181ms
Request-Z

Node #1 (192.168.1.122) response time: 99ms

Figure 5-3 Activation Output

The activation output panel in Figure 5-3 displays the messages of system responses the user

actions over nodes. The displayed text also recorded into “ActivationLog.txt” in file system.

33



5.2 Data Analyzer

HSBS Smart - WSN Soft v0.1 g@@

File View Help

Node Monitor | Data Analyzer | Report Generator

O Node #1 Graph Type = Start From End

B Node #2 Trend Line | | ‘

O Node #3 © Line Latest

B Node #4 Minutely — w

Temperature

@ Node #5 []

B Node #6 [] 25

O Node #7 [] 23 i S .

@ Noders 1, | \'\4 N\ A
Q_/\———Q——H:.___Q———Q\v\/ W—Q—Q—Q—Q—Q

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

25
23 -_./‘;‘\.h‘_ﬂl:"i _ =
4 —-&
21 L m—— _’#‘.4‘/
_.T-/ \xe/\%* v

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 5-4 Data Analyzer

Data Analyzer tab allows user to see the recorded data on graph illustrations. The nodes
defined in the system are listed in the left side panel and specified types of graphs are plotted

on the window according to the options specified by user using options panel.

The node list on the left side panel includes checkboxes for each node and user can add or
remove the nodes to be displayed in the graphs. Different colors are assigned to each node to

make the graphs more understandable.

Graph Type Start From Enc
Bar
Trend Line ‘ ‘ |
© Line Latest

Figure 5-5 Graph Options Panel

The options panel in the Figure 5-5 consists of two parts, first the graph type radio group and
second part is time panel to set the interval of the graph to be plotted. In the graph type radio

group there are three types of graphs as, bar, trend line and line and if a change event occurs

34



the graphs are redrawn. The time panel allows user to define the start and end points of the
graph in means of time. The user also can select to display latest time interval and let the

program select the interval.
Temperature Minutely 4
25 -

23 ./.“.\.\._—m:.; . X

21

19

17

23:21 23:22 23:23 23:24 23:25 23:26 23:27 23:28 23:29 23:30 23:31 23:32 23:33 23:34 23:35 23:36

Figure 5-6 Plotted Graphs

There always two graphs are drawn a temperature and a humidity like in Figure 5-6. User can
set the frequency of the data shown from the combo box on the right top of each graph. The
minutely, hourly and daily options are listed here and if user changes this setting the graph
related is redrawn. Each line or bar on the graph is related to a node on the left side node list

panel.

35



5.3 Report Generator

HSBS Smart - WSN Soft vO. 1 Q@@

File View Help
Node Monitor | Data Analyzer | Report Generator
O Node #1
@ Node 42 Include File Type Save tc
O Node #: Humidity Adobe PDF *.pdf v| [ C\Documents and Settings\admir_us... || Browse
B Node #4
Temperature MS Office Exce *.xs| File Name Include Date and Time
@ Node #t [] Graphs MS Office Worc *.doc
B Node #6 [] Text Document * txt
ode Comments [ 17_09__19_01_08_report pdt | Save
@ Node #7 [ [¥] Author
@ Node #8 []
Start From End
[18/01/2008 1700 w| [19/01/200817 00 w| 2) Print
Preview @ 5
Report 19/01/2008 - 17 09 Author admin_user (Burak Cansizoglt’ [~
Included Nodes
Node #1
Node #z
Node #Z
Node #4
Node Locations
Node #1 Ceng Building A, Entrance z
Node #2 ES Car Parking, West Corner
v
< >

Figure 5-7 Report Generator

Report Generator in tab in Figure 5-7 contains seven parts as left side node list panel, include

option panel, file save panel, generate report panel, time panel, print panel and preview panel.

The left side node list panel is same with the panel in Data Analyzer tab and lets the user by

check boxes to define to include or exclude the nodes which the report will be created about.

Include

Humidity
Temperature
Graphs
Comments
Author

Figure 5-8 Include Panel

Include options panel allows user to select the information which is going to be reported. User
can leave out the unwanted info by deselecting the checkboxes on each row. The include

options panel can be seen in detail in Figure 5-8.

36



File Type Save to:

Adobe PDF *.pdf v C:\Documents and Settings\admin_us...

MS Office Excel *.xsl ; . '
Ms Office Word * doc File Name: Include Date and Time

Text Document *.txt
17_09__19_01_08_report.pdf

Figure 5-9 File Save Panel

The file save panel in Figure 5-9 has two parts; first one is file type selection combo box and
second part is path and file name textbox and buttons. The user can select through four types
of file formats which are Adobe PDF, MS Office Excel, MS Office Word and plain text
document. Save to text input box displays the path where the file to be saved and file name
text input file allows user to type in a custom name. The user can check the “include date and

time” check box allowing program to add time and date info to file name.

Start From Enc

18/01/2008 17:00 | [16/01/2008 17:00 w| 2

Figure 5-10 Generate Report Panel

Generate report panel consists of a time panel, a help icon and a generate button which are
used for defining the time interval that the information in the report will be built on,
displaying a calendar for supporting the user while deciding on interval and generating the

report accordingly.

Print
b s
Figure 5-11 Print Panel
Print panel has two icons representing the print preview and print functions. User can preview

the generated report before printing by clicking on the print preview icon and can print the

report by clicking the print icon.

The preview panel is to display the preview of the generated report in a simple text view

mode. Objects like graphs or images are included as tags, (<<graphO1>>, <<image002>>).

37



6 PROJECT SCHEDULE

6.1 Finished Work

e The SHTI5 Temperature & Humidity Sensor Datasheet has been examined.

Furthermore, the schematic of SHT15 has been analyzed.

e RS-232 Serial Communication Bus Protocol which is used in data transferring

between AP-400 and PIC 16F877 has been examined.

® We have assembled a SHT15 on a CENG 336 Board in order to try our PIC-sensor

protocol.

e  We have implemented the PIC Module. This module retrieves the data from a sensor,

processes it and sends this data to AP-400 over RS-232.

e After implementing the PIC Module successfully, next mission was to obtain a SPO7.
In order to obtain a SP07, firstly we have drawn the schematic and PCB layout of

SPO7. Next, we have printed the board with the help of this schematic and layout.

e We have configured Embedded Linux kernel of AP-400 and reloaded it. We have
disabled the serial console of AP-400 which was implemented by default and now, AP

Module can use the serial port.

¢ We have implemented a basic version of AP Module. This module reads the values

from the serial port and sends the data to the Server Module on the server.

* We have implemented a basic version of Server Module. This module gets the data
from an HSBS Sentinel over TCP/IP protocol, checks the data against an alert
condition and prints an alert message on the screen if the data violates the alert

condition. Furthermore, this module saves the incoming data into the database.
e We have created the database and necessary tables.

¢ For the prototype demo, we have implemented a simple interface that is used to show

the last 15 temperature and humidity values. The data shown is refreshed every 5

38



seconds.

Now, we are able to read data from sensors to PIC, send it to AP-400 over RS-232
port, read data from PIC to AP-400 over serial port, send it to the server over TCP/IP,
read data from HSBS Sentinel to server over TCP/IP, save it to the database and show

the data via a simple user interface.

Figure 6-1 HSBS Sentinel v1.0

6.2 Future Work

We are going to implement two more SPO7s. With these two SP07s and two AP-400s,
we are going to obtain two more HSBS Sentinels and totally with the existing one, we

will have three HSBS Sentinels.

We are going to upgrade the AP Module. In the demo version we have implemented,
AP-400 reads data from the serial port periodically. However, the final AP Module
will send a request to the PIC Module and the PIC Module will send a temperature
value or a humidity value depending on the request. Furthermore, alert condition

testing will be implemented.

We are going to modify the PIC Module a bit. In the demo version, PIC Module sends
temperature and humidity values to the AP Module periodically. In the final version,

PIC Module will send a temperature or a humidity value depending on the request

from the AP Module.

39



® We are going to implement the Status Module. This module, will turn off, reboot or
turn on the node depending on the request from the Server Module. Moreover, it will
get the user defined alert conditions from the Server Module and write them to the
flash of AP-400. Furthermore, this module will send data about the state of the node to
the Server Module.

* We are going to modify the Server Module significantly. In the demo version, it just
gets temperature and humidity values from AP Module and records the data to the
database. However, in the final version, in addition to the demo version, the Server
Module will send turning on and off and rebooting requests to the Status Module.
Moreover, it will send user defined alert conditions to the Status Module. Furthermore,
it will get the status of the node from the Status Module. In addition to these, this

module get the alert messages from the AP Module.

e We are going to implement the Main Module. Generally, this module is an interface

for Server, GUI and Database Modules. In addition, it will handle alert conditions.

e The GUI Module will be implemented. This module will provide a user interface and
generally, this interface will be used to monitor temperature and humidity values of
the specified nodes and states of the nodes, to turn on, turn off and reboot the nodes

and to create reports of the information about the nodes.

e The next step is to build a wireless mesh network via a number of HSBS Sentinels,

some repeaters, an access point and a server.

e The last step is to use HSBS_WSN in a scenario. This scenario will be created in the

spring semester.

6.3 Gantt Chart

Gantt Charts of first and second semester can be found in Appendix-A and Appendix-B

accordingly.

40



7 REFERENCES

1. Wikipedia, Wireless Sensor Network, October 2007, http://en.wikipedia.org/wiki/Wsn

2. Jason Lester Hill, System Architecture for Wireless Sensor Networks, 2003,
http://www.jlhlabs.com/jhill_cs/jhill_thesis.pdf

3. SHT1x Breakout Board, 2007, http://www.sparkfun.com/datasheets/Sensors/ SHT15-
Breakout-Schematic.pdf

4. P. Raghavan, Amol Lad, Sriram Neelakandan, “Embedded Linux System Design and
Development”, Auerbach, (2005).

5. Data_Sheet_humidity_sensor_SHT1x_SHT7x_E.pdf,2007
http://www.sparkfun.com/commerce/product_info.php?products_id=8257/Data_Sheet
_humidity_sensor_SHT1x_SHT7x_E.pdf

41



APPENDICES

Appendix A

Ctca
cntca spui
Cillca Frogres; E—

Figure A-1 General View of the Gantt Chart of 1** Semester

Following 2 images show the Gantt Chart of 1* Semester in detail.

42



D Ttk Maria

Diedail ad Design Aapart

Designing HSES_Santinel

Datigning PCE [SPI7)

B| Wy k3| —

Devalaping an Algarifem for SemsiBus Protos

m

Devalaping an Algarifem for AS-232 Pratacs

1]

Devalaping an Algeri®rm o Sending Data e HSBS_Sarfing 1o Sarver

Daveaping an Algarifrn b Sarver 3 Fecaive Dala Sent barn HSE3_Serling

AN NN N N N S N N R N (-

] Designing Dot abhass
Detigring Lder Intartacs
10 Implamenting & Windlass Noda
1 Assarnbiing P07 + Ut Taging
e Pragrameming P IC- 18F 877 Micracarmralar + Urit Tasing
T3 Trarslaring datakam SHT15 fa PIC18FE7T via SarsiBus Pramsal + Unil Tasing
7z PIC Campanant Tasing
15 Traralaring datavam SPO7 @ AP-200 wia A3-232 Pratoss + Unit Tasing
18 Tatling HSBS_Sarfing
7 Rrototype Dema
18 Prefetypa Davalopemant
] WA ag e
Srises E———"1 gasine e Pcit Sy —
Criseal Sgit Voo Bassina St Ui iiienres,  Emanal Tasks —
Prees biavil Criical Prograss (I 5 oeains Wilasiane AV External Milastone iy
L Tash  E— O Y &» Casding Ik
St rtrrrrrrrrrnnna WHWI?&NHFE
TetkProguss N s sy P—

Pags 1

43



JJan 14,08

glslwlTiwlTIrFls]s

a7 JJan 7. '08

44

[Caz22£ 07 [ Do 31,07
M1l T IwlTIlFI]
% Il
) R

e gadine Prajact Surmmany ]
3 External Tasus | E—

h : frrrrrrrrnion mmh.““u.l LI T T T O O O B O
S Crifcal Prograss S susina \issing < Extemal Milesime 4
Tinke: vl 1118008 CEm  ygestane rs S a
Se rrrrrrrrerrernd WLWaﬁUuﬂﬂm g

= IR
I ey [

Tatk Prograss




Appendix B

[ EEEE
= i
=  —
= =Y
= ey
-
= =
0 = — ¥ — e
| TEED e e B T e e e S I [ = TR R — i
—_ — H —_ — b4
[~ & [
= *
=
. :
=] %?
] * T T * . I * T
...... — = : — s — sl
—_— — H _— — 0 _— — 4

Figure B-1 General View of the Gantt Chart of 2" Semester

Following 6 images show the Gantt Chart of 2" Semester in detail.

45



_._.mmﬁ NAT

=

Ihetailed Idatabase Dmplementation
[ Creating Mew Tables
CEnerating New Relationships

Writing New Querics
Testing Datahase
Ed 9 Designing New HSBS_Sentinel {v2.0)] ]

ME Designing PCH (3PO7(
H -

Improving the Algorghm of SensiB = Protocal . 228

Improving the Algarithm of R 3232 Protocal _

[ad &1 &

Improving the Algorghm of Server o Receive Data Sent from HS B3 _Sentine]

11 Imigle e nling New Wirslags Nodes

—

Asembling new JPOT s (w20 Lnit Testing

Programming PICs 1 &FE 77 Microcontraller + Unit Testing
Tramfering data fram SHT 15 o PIC16FETT via SersiBes Protocol + Unit Testing

FHFEF

15 PIC Compomenit Testing
18 | Tramsfering data from SPONvE 0o AP0 via B 5«232 Protocal + U'ni Testing
17 Testing HIRS_Sentmels (v 2.0}
18 Software Implementation
13 Designing Alert Conditions
20

Improving the Algamihm of Commomication Protocals

(]
%]

EEE

Implementing an Algorithm for 3 ending&S tori ng&Hand ling Alert wcoes

Implementing A P-4 Status Query Handler Mo dule

h | Milestone
24 |[EH Implementing User Interface Module
25 Implementing User Command Interpreter Module
28 Implementing HSBS_Sentine] Monitoring Module
27

Implementing Graph Generator Maodule

Pmject: hanifi2 . . S "
n_m...m__u.:m.um Salit _______________m...‘..‘.m.__ ] Eaz mrmwﬁm.’

Pengrass N Fojoc Sorerany Caadling 4k

Page 1

46



) _ﬁmfﬂﬁ [Fep 25 08 Var3d ga
e E MITIWITIFIS|SIR]TIWIT
28 ||z« Implementing Report Generator Mo dule
23 Implementing Dat Retum Process
0 |[E Milestone
31 HSBS WSN Implementation
iz |Ea Examining Metwork Topology
13 | [ Transfering Data from HSBS_Sentine] to Serverf Testing Transfer Process
= | [Ed Milestone
<= Studving Winsless Mash Network
1E | Building a mesh via a number of HEBS Sentinels and a Server
7 |[En Milestone
1 |G Creating a scenarn foresting HSBS Sentinels
33 Teming and Demonstrating HIAS WEN Network with scenario
= ) weome @ s Tase [
Project: hanifi2 . ) » .
Date: Fri 1118708 Splin EEEERRRRRRRERR Aummary ] = .m{m..us.n_m.‘.
Pegrass I Fojec Sumrary P oakling L
Page 2

47



.’_ 316

T_

Exlamal Tasks _

Pmijast: Ranilia P — gy . o
Data: Fri 1118/08 * RERERRRRRRERRR Surmmary ] my.mw.emwum*
Pragress I FojcciSummary N [eonine iy

48



Var 19 08 Mar 17 03 ETYETIGE [z 02 | Y EERGE a1 0a
FIS|ISIMITIWIT[F[S[S[MITIWI[TIF[S]S MITIWITIFISISIMITIWITIFISISIWMITIWITIFISISIMITIWI]T
] weme @ R
Pmject: hanii2 . y ] o g
Cate’ Fri 171808 Sl AR RRRRERRERE Summary _mn.u.m.m{.m.m.._n_.m.‘.
Fragrass I Fojec ooy (P (o ajine L

Page 4

49



[Agr 78 o0&

g,"08 Lunz o8 Lung 08

FlIS|Sw|[TW[TIFISISIMIT|W|T[FISISIMITIW]ITIFIS]S

[TV ERGE] Ivay 1z 04 [vay
| I |

13,08 [va
TIWITIFIS|S [ W

¥
T W] TIFISISImITIWITIF]ISISIMITIWIT

Prjast hanilid
Da%e: Fri 171808

Split Sumenary

*
]

Pragrass I oo Summary

Eemal Milaziane 4

Deaine &

Faga

50



lag- 28 08 [T ERGE] Ity 12, 108 |May 13 08 | May 25 08 Llna 08 Lung 08
FIS[SIM[TIWIT|FIS|S[MITW|T[FISISIMITIWITIFISISIM|TIWITIFISISIMITIW|TIFISISIMITIWITIFISISIM]ITIWI]T
& 10
LR
L
&

_u_.........m.u.._ naniti2 - . S & N
Dafte: Fri 171808 Split gy Summany ] = m.....m.w...u.m.’

Fagrass I Fojec Sumrary P [ sjine I

51



