MIDDLE EAST TECHNICAL UNIVERSITY

[image: image1.png]

COMPUTER ENGINEERING

[image: image2.emf]
LIFDsoft

Initial Design Report
[image: image3.png]

Topic: Lighthouse Interactive Form Designer
Teaching Assistant: Umut Erogul
1.0 INTRODUCTION..3
1.1 Project Title..3
1.2 Problem Definition...3
1.3 Project Scope & Goals...4
1.4 Project Features..5
2.0 PROJECT REQUIREMENTS..6
2.1 Functional Requirements..6
2.2 Non Functional Requirements..7
2.3 System Requirements...8
3.0 PROJECTSCHEDULE & PROCESS MODEL...9
 3.1 Project Schedule...9
3.2 Process Model..9
4.0 CONSTRAINTS..10
 4.1 Times..10
4.2 Skills..10
 4.3 Funding...10
4.4 Resource...10
 4.5 Performance..10
5.0 DATA DESIGN...11
5.1 Functional Modeling..11
5.1.1 Data Flow Diagrams...11
5.1.2 Process Specifications..12
5.1.3 Data Dictionary..14
5.2 Behavioral Modeling...19
 5.2.1 State Transition Diagram..19

6.0 SYSTEM MODULES...20

6.1 Editor ...20

6.2 XML ..20

6.3 Form ...20

6.4 Main Process..21

6.5 Help ...21
7.0 ARCHITECTURAL DESIGN ..21
 7.1 Class Diagram..21
7.2 Use Case Diagrams..23
8.0 USER INTERFACE DESIGN...27
 8.1 General Layout Design...27
8.2 Menu Bar..28
 8.3 Toolbar...32
8.4 Component Libraries...32
 8.5 Structure..33
8.6 Properties...34
9.0 TESTING...35
9.1 Testing Plan and Strategy..35
10.0 SYNTAX SPECIFICATIONS...36
11.0 CONCLUSION...36
12.0 REFERENCES..37
13.0 GANNT CHART...38
1.0 INTRODUCTION
The aim of this report is to provide information about the design process of the project. During the requirement analysis phase of our project, we investigated possible problems that we will have to solve and in this phase we want to generate solutions.
At the beginning, we mention problem definition and scope of the project. Then, system, functional and user requirements are explained in details. After that, detailed version of the Data Flow Diagram and data dictionary are also included. Moreover, to describe processes, we used use cases, UML and state transition diagrams. In the interface design part of our project, detailed description of our GUI design and actions are explained. Then our test strategy and test case specifications are described. Lastly, we will introduce our progress during these two semesters via a Gannt Chart.
1.1 PROJECT TITLE

Our project title is LIFD (Lighthouse Interactive Form Designer).
1.2 PROBEM DEFINITION

Communication and Quality Management System - Lighthouse is software designed for electronic document and work flow. There are lots of services and modules in this software:

- Document Management System

- Internal Audit Management

- Process Management

- Information and Communication Management

- Personal Information Management

- Sales Tracking
Lighthouse is software which increases efficiency and effectiveness of organization. Centralized digital workspace provides simplicity, efficiency with highly secured system. Lighthouse manages flow process of documents starting from preparation until the end of document life cycle. It provides quick access to information. Automatic report generation and document revision management facilities result in time and money savings. Moreover, it allows you to track audits and monitor your processes. It enhances your communication power. (Description of the Lighthouse project is retrieved from http://www.cybersoft.com.tr/ which is owner of the project and our client) We are given to implement one of the modules of this project. This module is form designer.
These days, form applications are being used in a wide range of areas. Some examples are registration forms, application forms, order forms, surveys and questionnaires. More and more you find forms on the web to be filled in online bases or like a desktop application. With a well-prepared form designer you can design these forms and make them available for needs. It should be very easy to use and offers many advanced features. Since no programming skills are required to use form designers, not only webmasters and programmers use it but also ordinary people can use to design a questionnaire for their research such as employees of a marketing department. Features that alternatively would require substantial investments in both time and software should easily be implemented with designer.

We aim to create an Interactive Form Designer which will enable us to design a form by clicking-and-droppings components and widgets like combo boxes, radio buttons and etc. Out form designer must provide an easy-to-use but powerful user interface. Also we must obey some restrictions while implementing the project, such as coding by “Common Controls” and “Struts”. When form is designed, XML code will be generated automatically for that form. So even users, who do not know XML, can easily create forms with the help of LIFD. Therefore there is no need to care about XML details, enjoy with your mouse. Developers can also embed Java codes into XML files to personalize their forms.

To sum up, our project will both design an interactive form designer and generate XML code where programmers can embed Java code. After finishing LIFD, we are going to design company’s documentation forms using LIFD.
1.3 PROJECT SCOPE and GOALS

Our project, LIFD, is a desktop application for developing new forms with Java and XML. Our aim is to offer a user friendly functional form designer and configuration wizard for the developers from different backgrounds; professionals or amateurs. We will develop a desktop application which doesn’t need an internet connection to run (actually it needs internet, but just for online manual). Concerning these design parameters, our product will include the following features:

- Ease of use
- Not cause bureaucracy, increases productivity
- Enhanced

- Robust and reliable

- Platform Independent

- Secure

- Graphical and user friendly

- No programming language knowledge skills needed

- Consistent

- Code and Design view

- Error Handling

- Help Menu

- Predefined XML code generation

- Forming widgets in the code

- Easy to embed Java code

- Customizable user interface
- You can update your form anytime anywhere
- Modular, so you can change any module independent of others.
1.4 PROJECT FEATURES

A simple clicking and dragging design will be produced. There will be some components like textboxes, checkboxes and radio buttons. Component properties such as their names, sizes, positions, colors will be adjusted via using property panel.

When a new desktop application is open, an empty visual editor will be opened. Form can be visually built quickly and intuitively by clicking and dragging graphic elements and user interface components onto the work area (visual editor). At the top of design window, a toolbar is designed to provide access to file operations like new, load and save. And user can use text editor provided by our program, in embedding its Java code.
We will also provide Eclipse plug-in for our form builder. We are going to put a button on toolbar in Eclipse which will directly reach our program. After that, both a code window and design window will be opened in Eclipse. Users can modify their design easily. Moreover, every change in design must modify XML code accordingly. I want note that program can run standalone too. We must build our project by using “Common Controls”, “Struts” and “Spring” technologies. Common Controls is a licensed program but Cybersoft will provide it for us. When we will code interface by Common Controls, we must also work on Struts.
2.0 PROJECT REQUIREMENTS
2.1 Functional Requirements

Functional requirements define the internal workings of the software: that is, the calculations, technical details, data manipulation and processing and other specific functionality that show how the use cases are to be satisfied.

2.1.1 Widgets (tree view, toolbars and tabs)

The user will be provided with easy to use and intuitive widgets. These widgets help developers to follow and manage his/her work.
2.1.2 Work Area

Work Area will be the place where the user designs his/her forms. We want to design work area enough large, which helps developers to preview their forms easily. Some of the important features of our workspace are:

- There will be hotkeys such as Ctrl+C, Ctrl+V for managing work area.
- There will be a tabbed view for both design view and source view.
- XML code is generated in editor (source) view depending on the form designed.
- Users firstly select a component from toolbox, and then they can drag it.
2.1.3 Language support

Our program will support English, Turkish and Kyrgyz languages.
2.1.4 Help menu

- Tutorials: Usage of program is explained step by step. Firstly, it teaches creating your first form via using components, and then it explains basic other advanced features of visual and text editors.

- Online Help: Opens projects web page, from where users can get online help via asking questions or reading already answered questions.

- FAQ: Some frequently asked questions and answers.
2.1.5 Predefined code generation

When we change the design of the form or add new component and click generate code or save the form, corresponding predefined code will be automatically generated.

2.1.6 Menu Components
Menu components will be explained in details in User interface part.
2.2 Non-Functional Requirements
2.2.1 Platform Independency

We will use Java as programming language. We should write operating system independent code so project will be used on every system which has Java Virtual Machine.
2.2.2 Modularity

We designed system as modules. As a result, components can be add/remove easily. Modules can work together but one of them may not need to know internal design and processes of another module.
2.2.3 Consistency

Our aim is to make unexpected states or behaviors of system less possible. It means that, system should behave in a predetermined manner.
2.2.4 User-friendliness

One of our main goals is to create the best user interface among the other products. User friendly interface and easy designing features will help us to be successful, because user spends all his time interacting with this interface. GUI provides ‘easy to understand’ and ‘easy to use’ interface. Menu and toolbars will be as much as manifested. The program provides click – and- drop operations.
2.2.5 Reliability - Maintenance

We are planning to program our product to be reliable so that any minor program change will not stop the program or corrupt the program. We will test our software by both white and black box, so that our program will be as bug free as possible. Moreoveer, since maintenance is required to be able to solve problems encountered before and after installing the system, we can add new modules after releasing our product easily.

2.2.6 Performance

The performance of our program is very important. A slow development environment

will not satisfy the needs of the user. The system resource usage will be minimized to increase the performance on slower computers. The user should be able to run many other applications while using our program.

2.3 System Requirements
2.3.1 Software Requirements

2.3.1.1 Development Phase

During the analysis, design, implementation and testing phases of the project, we are planning to use several tools to carry out the project. These tools can be divided into two main groups: documentation tools and development tools.
Documentation Tools: Especially during the first term, we will be using several documentation tools. We are using Microsoft Office 2003 & 2007 for writing documents. Also we have chosen SmartDraw as the drawing tool because of its ease of use. For time being, we have drawn use case diagrams, DFD, STD and Gantt chart using SmartDraw.
Development Tools: Since we have chosen Java as our implementation language, we have to decide on the IDE to use. There exist several successful Integrated Development Environments for Java in market. Among these we are planning to use Eclipse to implement, test and debug our project. However, the GUI part is going to be implemented (designed) using Common Controls. This is licensed program that we must buy, however Cybersoft is going to provide us with this tool. For time being we are using JFormDesigner to design the GUI part of the project.
2.3.1.2 For the End Use

 To use LIFD as a standalone application, user needs JRE. If user wants to get online help, he/she must have browser. But if user wants to use LIFD with Eclipse together, then user needs Eclipse.
2.3.2 Hardware Requirements
- 256 MB disk space

- 128 MB RAM (256 preferable)

- Intel 500 MHz Processor (or above)
3.0 PROJECT SCHEDULE and PROCESS MODEL

3.1 Project Schedule

This project is going to be completed at the end of second term. Schedule mechanism works differently for each semester. Because this is a graduate project, there are definite deadlines determined by TA and instructor. These deadlines consist of proposal report, requirement analysis report, initial design report and final design report and prototype demo for the first semester. Besides these deadlines, we have also our own deadlines for the works inside the group. In the following months, we are responsible for initial design and final report. Meanwhile, we have started to implement our prototype. Our schedule may be affected by the courses that we take current semester and next. Details of the project can be seen in Appendix A as Gantt chart.

3.2 Process Model

We have chosen Spiral Model as process model for both documentation and implementation side. Spiral Model is suitable for documentation because our requirements and design properties are expected to change in the next steps of project. Therefore some modifications take place in documentation with respect to design changes. At the coding side, we are planning to add new components one by one. Editing, debugging, testing and generating XML code steps are achieved at each component forming. When new components are added it has to be revised again and again.

4.0 CONSTRAINTS

4.1 Time

Our schedule is pre-determined by course syllabus. We have to finish our project by June and provide a prototype at the end of this semester. Moreover, the design should be completely finished in one month from the delivery of initial design report. Therefore, time is the most important constraint for us. In case of schedule, to compensate lost in time we should focus on the project instead of other responsibilities and spend more time on it. Actually, we thought lots of features and special properties for development environment. However, because we have limited time, we may not able to do some exciting features; instead, we should provide expected functionalities firstly
4.2 Skills

Our programming and design skills are another constraint for us. Two of our members do not know Java language, and nobody knows XML. Therefore we must learn Java and XML. Moreover, Common Controls, Struts and Spring are new concept for us. All of them are skill and experience constraint for us. It is very difficult for us to manage unexpected problems about this field but we may consult experienced people to get help about solving problems.
4.3 Funding

We will not need any additional software and hardware. Therefore there is not any funding constraints.
4.4 Resource

While we are implementing our project, we need different software resources such as Common Controls, Struts and Spring. Some of them are not freeware (Common Controls). Cybersoft will provide us these programs when we need them. Therefore we do not think that the resources will be a problem for us to complete our project.
4.5 Performance

We are implementing our project as “easy to use” and “easy to understand”. Therefore performance is a very important constraint for our team. A slow form builder program will not satisfy the needs of user. The system resource usage will be minimized to increase performance of our form builder.
5.0 DATA DESIGN
5.1 Functional Modeling

5.1.1 Data Flow Diagrams

[image: image4.wmf]LIFD

USER

code

project file

LOCAL FILE

SYSTEM

WEB

BROWSER

http request

DFD - LEVEL 0

project file

command

GUI_display

browser_display

ECLIPSE

PLUG-IN

GUI_display

command

code

command

code

GUI_display

[image: image5.wmf]USER

http request

browser_display

DFD - LEVEL 1

commands

GUI_display

1.0

GUI

&

Main Process

WEB

BROWSER

2.0

Work

Area

3.0

Update

Component

Drag&Drop

parameter changes

4.0

Property

Panel

parameter changes

property change

component operations

LOCAL

FILE

SYSTEM

project file

project file

5.0

Editor

6.0

Code

Generate

7.0

Rebuilt

file operations

XML code

formatted code

XML code

code generate_request

project file

XML code

form

code

ECLIPSE

PLUG-IN

GUI_display

commands

GUI_display

code

commands

code

5.1.2 Process Specifications

Our project LIFD has following main components GUI, Work Area, Property Panel, Editor, Update Component, Rebuilt and Code Generation.

5.1.2.1 GUI & Main Process

This process includes all the graphics view provided by our form designer. Menu, all components, work area and property panel are all presented to user via GUI. Main process takes invocation from the user which is passed to Work Area, Property Panel, Code Generation, Rebuilt or Editor depending on the request and/or mouse clicks of the user. Moreover formatted XML code shown in Editor will be presented by the GUI. When the user uses LIFD as Eclipse plug-in, then all the information will come from the Eclipse, rather than from user directly.
5.1.2.2 Work Area

This process is invoked by GUI & Main Process when the user Drags and Drops a component to Work Area Panel or moves, updates components that are already in Work Area Panel by mouse movements. It updates information about the components that are currently in work area, which is very crucial in generating code. Afterwards, it will invoke “Update Component” of the component which is updated. Also it can be invoked by Rebuilt to add Components.

5.1.2.3 Update Component

This process is invoked by either Work Area or Property Panel as the parameters of the component change. Actually there is its own Update Component for each item that is in Work Area, which updates its internal variable as values change and repaints itself each time.

5.1.2.4 Property Panel

This process is invoked by the GUI & Main Process when user updates component properties by entering values for parameters that define component through Property Panel. The “Update Component” of the component will be invoked as its properties change.

5.1.2.5 Editor

This process is invoked by GUI & Main Process. Editor is provided with code from local file system. This coded is formatted by editor and passed back to GUI & Main Process to present user. All the user update requests are passed to editor by GUI & Main Process. If user wants to save the code, this code is then passed back to local file system. Saved code is loaded back upon user request.
5.1.2.6 Code Generation

This process is invoked by the GUI & Main Process when user presses “generate code” button or exits project. It will generate XML code for the form that is designed in Work Area and saves it as XML file in the local file system.

5.1.2.7 Rebuilt

This process is invoked by the GUI & Main Process when user loads exiting project from local file system and wants to rebuild form. It will rebuild form and add components to Wok Area.

5.1.3 Data Dictionary
	Name
	Commands

	Aliases
	User requests

	Where used/how used
	Input to GUI & Main Process directly from a user or it can pass through Eclipse. Contains information (user’s request) about which component is going to be invoked and what operation to be performed. Its processed and sent as a request data to other components

	Description
	[Mouse Click | Drag &Drops | Pressing Shortcuts]

	Name
	Drag and Drop

	Aliases
	None

	Where used/how used
	Contains Request of the user to drag Component and drop in Work Area. So it is output of GUI & Main Process and input `to Work Area.

	Description
	[Click Mouse Button+ Move Mouse + Release Mouse Button]

	Name
	Component Operations

	Aliases
	Component Updates

	Where used/how used
	Contains user request about the component operations such as resize, move, undo, redo, copy, paste, delete and cut that are done by the user directly in Work Area. So it is output of GUI & Main Process and input to Work Area.

	Description
	[Shortcuts | Menu Selections | Mouse Clicks | Mouse Movement]

	Name
	Property changes

	Aliases
	None

	Where used/how used
	Contains information about the component such as its size, location in the window, label, class name, color, font etc. and passed by user. This information is taken from the user by GUI & Main Processes and passed to Property Panel.

	Description
	[strings | numbers]

	Name
	Parameter Changes

	Aliases
	 None

	Where used/how used
	Contains information about the component such as its size, location in the window, name, class name, color, font etc. This information is passed to Update Component by Work Area or Property Panel as an argument of functions.

	Description
	[string | number]

	Name
	Code Generate Request

	Aliases
	Source

	Where used/how used
	User’s request about generating the XML code. This information is passed to Code Generate by GUI & Main Process. Also this data is passed automatically to Code Generate when user saves the form.

	Description
	[Shortcuts | Mouse Click]

	Name
	Project File

	Aliases
	None

	Where used/how used
	This is a file that consists of XML code of the form and some additional information about the project. It’s saved to and retrieved from local file system by GUI & Main Process. Also this file is passed to Rebuilt by GUI & Main Process, in order to rebuild GUI of the form from the information in the Project File and initialize all needed parts.

	Description
	[.lifd extension file]

	Name
	XML code

	Aliases
	None

	Where used/how used
	XML code of the form designed in Work Area. Additionally there may be Java Code embedded. XML code is passed to GUI & Main Process by Code Generate as a response to code generate request. And GUI & Main Process displays it to user. Also It’s passed to Editor by GUI & Main Process so that file operations can be applied. Also XML code will be passed to GUI & Main Processes by Rebuilt.

	Description
	[valid XML code]

	Name
	File Operations

	Aliases
	None

	Where used/how used
	Contains request of file operations such as copy, paste, undo, delete etc. that is passed to Editor by GUI & Main Process.

	Description
	[Shortcuts | Mouse Click]

	Name
	GUI_Display

	Aliases
	Display, View

	Where used/how used
	This is View that is displayed by the GUI & Main Process to user. Or if application is used as a plug-in, GUI will be sent to Eclipse, and Eclipse will display it to user.

	Description
	Graphics

	Name
	Formatted Code

	Aliases
	None

	Where used/how used
	This is a code that is formatted after applying file operations, and is sent to GUI & Main Process by Editor.

	Description
	[XML code]

	Name
	Code

	Aliases
	Java Code, Embedded Code, User Code

	Where used/how used
	This is a Java Code that is entered by the user. It’s sent to GUI & Main Process directly by the user or it’s passed over the Eclipse. Afterward it’s sent to Editor by GUI & Main Process in order to embed it to generated XML code.

	Description
	Java Code

	Name
	Http Request

	Aliases
	None

	Where used/how used
	This is request to browser to open online support web page for our project. This is sent to Web Browser by GUI & Main Process when user clicks “online help”.

	Description
	http request

	Name
	Browser Display

	Aliases
	None

	Where used/how used
	This is online web page that is opened by Browser and presented to user.

	Description
	Web page

	Name
	Form

	Aliases
	None

	Where used/how used
	Data that describes the form, that is to be put into Work Area. This data is passed to Work Area by Rebuilt, after rebuilding previously saved project.

	Description
	Component = name + location +size + other properties.

	Name
	Browser_display

	Aliases
	Web page

	Where used/how used
	Support web page of our application.

	Description
	Web page

5.2 Behavioral Modeling
5.2.1 State Transition Diagram

[image: image6.wmf]STATE DIAGRAM : CPU EXECUTION

rebuilt request

 rebuilt

DESIGN MODE

CODE

GENERATING

REBUILDING

EDITOR MODE

code generation request

code generate

finished

GUI & main process

finished

GUI & main process

rebuilt request

rebuilt

source code

editor

design view

GUI & main process

 .

STATE TRANSITION DIAGRAM

PREVIEW MODE

preview_mode

edit_mode

6.0 MODULES

Our classes that are diagramed on class diagram fairly correspond to modules. Since many of operations of modules are explained in class diagram we are not listing all of them here. But instead we just describe main operations of modules and the reasons why we decided to implement them separate. Our project has following modules:

6.1 Editor
We are planning to provide basic text editor with some basic functionality, such as copy/paste/delete/find/select, in order to give user opportunity to embed Java code into the XML code generated by LIFD. List of operations that are supported and specifications of how they can be achieved is explained in GUI part of the project. Since our potential clients will use LIFD mostly using Eclipse plug-in and there is advanced editor there we aren’t adding more advanced features like highlighting, error inspection, AI, to our editor. This is a separate module in our project, it exists in standalone LIFD, but doesn’t in LIFD with Eclipse plug-in, where Eclipse’s text editor is automatically launched to Source View Panel.

6.2 XML
This module, the job of which is to generate XML code for the form and rebuilt form from the XML file that is previously generated by LIFD, is called XML Module. We have decided to implement it as a separate module, so that later it is possible to add new Generator to LIFD that will generate code in another language for the same form. For example it’s possible to add a module that will generate HTML or Java code for the form that is designed using LIFD.

6.3 Form
This is a module that encapsulates form with its design view, source view and all its operations. It’s possible to add new components to the form and adjust them as needed to have desired form. One can modify components by clicking, resizing or editing data in the table in Property Panel. It depends on the Main Process by only one variable, but it’s very easy to transfer Form module to other GUI. Indeed, this module can run as a stand alone application if we change few lines of code.

6.4 Main Process
This is module that mainly interacts with user and call appropriate functions of other modules. But the module depends on other modules so it’s not easy to transfer it to other software or replace it.

6.5 Help
This is separate module. So it’s possible to add new contents and tutorials, or add items to FAQ independent from other modules.
7.0 ARCHITECTURAL DESIGN
7.1 Class Diagram
Classes that will be used in LIFD are shown in beloe given class diagram. However, we haven’t included classes that are provided by Java packages, such as File, Panels, Listeners, Tables, Trees etc, in our diagram. The public variables begin with ‘+’, the private ones begin with ‘-‘. Since all the methods declared above are public ones, they are not explicitly marked as public. The methods define the communication between classes.
MainProcess: This is the class that mainly interacts with user and calls appropriate functions of other classes when menu is selected, or shortcut is pressed. When button corresponding to a component is clicked, it will set “selectedComponent” to appropriate flag, and later when mouse is clicked in some workArea Work Area will add there. It keeps list of Forms that are open at current time. And it is has one form that is currently under edition (viewed in main GUI) and its workArea. When user saves form, if Editor is opened (viewed in GUI), then only file in the editor will be saved. But if workArea panel is opened, then it will save whole form and automatically generates XML code for that form, overriding al the changes made to XML file. So user should embedd his code after all the form is completed, and code is generated.

[image: image7.wmf]Property

+selectedObject : Object

+ currentForm : Form

-componentProperty:JTable

-formProperty:JTable

-property:JTabbedPanel

-form:JPanel

-component:JPanel

synschronizeTable() : void

WORK AREA

+ workArea : JPanel

+ components : Vector

+selectedObject : Object

+ MovingObject : Object

+ selectedComponent : int

- forwardStack : Stack

- backwardStack : Stack

- clipboard : Object

MouseListener() : void

MouseMotionListener() : void

AddComponent(int):void

gettersAndSetters()

cut() : void

copy() : void

paste() : void

delete() : void

undo() : void

redo() : void

preview():void

Main Porcess&GUI

+ forms : Vector

+ selectedComponent : int

- currentForm : Form

-currentWA:WorkArea

Main() : void

ActionListener() : void

MenuKeyListener() : void

Form

-workArea:WorkArea

-xmlFile:File

+ name : String

+ modified : Boolean

save() : void

saveAs() : void

open() : void

close():void

getWA():WorkArea

XML

 generateXML(string,Vector

):File

 rebuiltForm(string) : Form

Editor

-editor:TextArea

+ XmlFile : File

copy(string) : void

cut(string) : void

paste(string) : void

delete(string) : void

select(int int) : void

selectAll() : void

undo() : void

redo() : void

find(string) : int

setFile(File):void

HELP

License():void

AboutLIFD ():void

FAQ():void

onlineHelp():void

helpContents():void

Structure

-structure: Tree

-panel: JPanel

+forms:Vector

setForms(Vector):void

insertForm(Form):void

deleteForm(String):void

Figure – Class Diagram
WorkArea: This is a class that visually represents the form. It will add components based on the variable “selectedComponent”, which will be set by the main process. Every time user edits components in the work area by menu selection, shortcut or moving component, main process will call appropriate functions of the class. Moreover when object is selected in the WorkArea it will set that object to the field of Property and call “synchronizeTable” function of Property.

Property: This is a simple class, which has two tables that will show properties of the currently selected component and general property of the form. These two tables are shown in two panels. It has its current Form and Component, so that it will be able to synchronize them when data in the table is changed.
Form: This is the class that encapsulates Form. It has its attributes that describe form, such as modified flag, its name, and corresponding XML file. It “supplies” XML file to Editor Class. When opening a Form it will call “rebuiltForm” of the XML class, and when saving it’ll call “generateXML” of XML class.

XML: This is the class that has only two functions. First one, given vector of components and name of the file, generates XML code for that ‘form’. Another one, rebuilds form from previously saved XML file. But for time being we haven’t decided on exact structure of the generated XML file, so we can’t supply this information right now.
Editor: This is the class that will support simple file operations on the XML file generated. It has file, that will be show in TextArea, and supports simple operations that can be achieved by shortcuts or menu selection.

Help: This is a class, methods of which are called, when menus in Help menu bar are selected. This will handle opening online help in browser, opening tutorial, license info, FAQ list and information about LIFD in a new window.

Structure: This is a class, responsible for visually representing list of forms and its components currently opened, in a tree form.
7.2 Use Case

[image: image8.wmf]USER

IN

EDITOR

MODE

 USER IN EDITOR MODE (STANDALONE APPLICATION)

HELP MENU

GET

PREVIEW

EDITING

SOURCE

CODE

OPERATION

PROJECT

OPERATION

Create New

Form

Open Existing

Form

Save Form

Adding JAVA

code

Text

Operations

Open Tutorial

and

FAQ

Open Web

Help

LOCAL HOST

BROWSER

Viewing

XML code

[image: image9.wmf]USER

IN

DESIGN

MODE

 USER IN DESIGN MODE (ECLIPSE PLUG-IN)

ECLIPSE

PLUG-IN

HELP MENU

GET

PREVIEW

DESIGN A

PROJECT

PROJECT

OPERATION

Create New

Form

Open Existing

Form

Save Form

Design with

Adding

Component

Modifying

Components in

Work Area

Open Tutorial

and

FAQ

Open Web

Help

LOCAL

HOST

BROWSER

[image: image10.wmf]USER

IN

EDITOR

MODE

 USER IN EDITOR MODE (ECLIPSE PLUG-IN)

ECLIPSE PLUG-IN

&

ECLIPSE EDITOR

HELP MENU

GET

PREVIEW

PROJECT

OPERATION

Create New

Form

Open Existing

Form

Save Form

Adding Java

Code

Viewing

XML Code

Open Tutorial

and

FAQ

Open Web

Help

Formatting

Code

LOCAL

HOST

BROWSER

8.0 USER INTERFACE DESIGN
[image: image11.jpg]LrormDesigner 1316:236 (130000 SN NS L L o e eS| aie

Fie Edt Help

Ded o XBB)
% Label *Formi | .
 TexField 1) Projecti(MyProjectt)

b Formi(MyForm”)
i Forma('Deneme)

s
o
i
e
|-
s
e
e

’

o spinmer Form |ipmaeent]
Name Value
e Name Dererm

| Design View | Code View|

8.1 General Layout Design

The user starts with a clear design panel at the beginning of the work. There are two options for layout scene.
[image: image12.jpg]CoteVew

Design View: This is default view of layout. This is area where all the visual design is done. The user may create specialized form and see in the layout of LIFD. The user may also start with saved project.

Code View: The user may select any saved form and see XML code of selected form. The form has to be saved for being presented as xml version in Code View part. There is an alternative way of getting Xml code for the form without saving it. We called it “generate code” which we will mention in next page in file menu. Code view mode can be seen in below figure:

[image: image13.jpg]Fie Edt Help

Bea

SR I XBB ®

% L
 Tenficd
 cambo Box
 utton
 checkgox
 Radio uston
 Tonares
 PasswondFiela
 Totpane
 separator
 Tatle
 Spinner

=

<fualidation>
<field>

<field i

esult” typ:
<attributes sizs

<label>Sonug </label>

textfield” require
7>

<datatype base="String"/>
<alidation>

<length min="2"/>
<fualidation>
<field>

<field id="answer" type="textarea’” required="false">
<attributes cols="35" row:

<label>Cevap </label>

<datatype base="String"/>
<alidation>

<length min="2"/>
<fualidation>
<field>

<field id="status" typ
<label></label>
<datatype base="String"/>

<default-value type="text" >1</default-value>
<field>

idden” required="false">

<field id="auditQuestionListOid" type="hidden" require
<label></label>

<datatype base="String"/>

<field>

<field id="auditQuestionOid" typ
<label></label>

<datatype base="String"/>
<field>

hidden” required="false" >

5). Projectil MyProjectl)
b Formi(MyForm”)
i Forma('Deneme)

Form |Component]

Name Value

Design View| Code View

orm Name Denemi

[image: image14.jpg]*Fomi

<fualidation>
<field>

The form name is located at left top corner of work area. It shows star symbol at the beginning of the name if the form has been modified since last save.
8.2 Menu Bar
A simple menu bar is provided by LIFD to present function that users can use.

[image: image15.png]e Edit Help

8.2.1 File Menu
[image: image16.jpg]& LFormDesigner 1316x836 (1300<800)
emossgrer 13

Bt Help

wwom o] xpE @

ot Moo =

[}
®
¥ CloseFrom CuleW
=]
=]

Save Calss
Save As

Generate Code
B preview
0 et

New Form: By clicking on the new Form button user creates a new form. Then new empty work area is provided to user.
Open Form: By selecting open menu, there comes a dialog box called file chooser. User chooses one of existing forms. This form is viewed in the layout. If user changes design mode to code mode, form is seen as its XML code.

Close Form: When user chooses close menu, the form s/he is working on is closed. If form is modified since last save, LIFD will ask wether user wants to save changes or discard them.
Save: When user chooses save menu, XML code for the Form is automatically generated and saved. Also other information about the Form will be saved under the current directory.

Save As: When user chooses save as menu, a copy of the form that the user had created or modified is saved with a different name. XML code for the Form is again automatically generated and saved under the choosen directory with other related information about Form.

Generate code: As we mentioned in the previous page, this is an alternative way of getting xml scene of form. This time only XML part of the form will be saved, but other information about the form will not be saved.

Preview: Current form can be viewed by preview process. Users may preview their unfinished forms without deploying and saving the forms.

Exit: When the user chooses exit menu, two possible actions exists. If the user has worked on new created form and has not saved yet or if he/she has made additional changes in form after last save, there comes a dialog box with warning message.

8.2.2 Edit Menu
[image: image17.jpg]£ FormDesigner 1316x836 (1300x800)

Fie 3 rep
[5je & Undo iz g

cut Ctrlx
Copy calvc
Paste ctlev
Find Ctrl+F
Delete Delete

SelectAll Ctrl+A

|
s
v . |

¥ Redo cul+y '—

Undo: This is extremely necessary function in form operations for time and effort save. It cancels the last change done to the form reverting it back to a previous state. Undo works for both design mode and editor mode

Redo: This menu can be considered as reverse type of the undo action. The user takes forward operation on what is done. Redo operation works for both design mode and editor mode.

Cut: When user chooses cut menu, the item that is selected is cut and put to clip board. Cut operation works for both design mode and editor mode.
Copy: When user chooses copy menu, the item that is selected is copied to clip board. Copy operation works for both design mode and editor mode.
Paste: When user chooses paste menu, the item that is in the clip board is pasted on place of the cursor. Paste operation works for both design mode and editor mode.
Find: Find operation works just for editor mode. The user selects find menu and a pop-up window is opened. After entering the keyword for search, all the strings whichi much is shown in order.
Delete: When user chooses delete menu, the item that is selected is delete. Delete operation works for both design mode and editor mode.

Select All: When user chooses select all menu, the items on the current container are all selected. Select all operation works for both design mode and editor mode.
8.2.3 Help Menu

[image: image18.png]LFormDesigner 1016x636

[y

@

FAQ
Online Help

ComboB @ About D

o |

Help Content F1

We try to design LIFD as easier usage as possible, however, help menu is needed for simplifying the usage of the LIFD.

Help Content: User can use the Help Content menu to get access to the complete LIFD tutorials and topics. A popup window including search indexes near help topics will be opened. F1 is a shortcut for Help Content.

FAQ: User can access some frequently asked questions and answers by clicking FAQ menu.

Online Help: This menu opens projects web page, from where users can get online help via asking questions or reading already answered questions.

License: This is about license description of LIFD.

About LIFD: There is a display of General information about Lighthouse Interactive Form Designer on a small display window.

8.3 Toolbar
[image: image19.jpg]hed

PR I XB®

®

The user can perform some menu operations only with single click. We assigned some meaningful images to them for increasing usability. There is also hidden description about action which becomes visible when cursor is on it. From left to right, default toolbar button actions can be listed as : New Form, Open Form, Save Form, Undo, Redo, Cut, Copy, Paste.

8.4 Component Libraries

[image: image20.jpg]File Edit Help

bed
X Lobel
o TextFied P
Poeoin <
o Button e
o checkbox o
& Radio Bution b
P
o Towares <
i
o PasswordFied
il
 Textpane 3
o
o separstor b
e o
<
o spinner e ¢

The component library is located at left side of work area. There are several components in this panel. The selected components will be seen as product signal while others seen as tic mark. The user may define and customize new elements by adding java code among the widgets of xml code. Components are working by simple clicking functionality.
8.5 Structures
[image: image21.jpg]51, ProjectL('MyProjectl)
& i Form1("MyForm®)
[TextField(Field)
[TextField(Field2)
+[] Button(Button1)
[Label(label1)
[ComboBox(combex1)
[Label(label2)
[Label(label3)
[TextArea(areal)
-l Form2(‘Deneme’)
[TextField(field1)

The detailed structure of current form and other forms are organized in structure panel which is located at right-top of work area. This panel shows the well organized content of the form elements in a tree form. In example, it is shown that under the project1 there is form1 named as “myform” consists of a text field element named as field1 and many other components. While the form is being modified, the structure of this form is presented in this panel simultaneously.
8.6. Properties
[image: image22.jpg]Form | Companent

Name

Name
Label
Width
Height
Font
Color

Value

Button
Submit

2

1

Tahoma 11
white

 [image: image23.jpg]Form [Component]

Name Value

orm Name Denemi

Properties Panel is composed of two tabs, Form and Component. The component tab presents all the information related to currently selected component in a table form. This tab also provides another way of editing components. Also some features of compnents can be modified using only this table. In the form tab, general properties of the current form, such as name of the form, its background, is present in a table form.
9.0 TESTING
9.1 Testing Plan and Strategy

We are planning to present an error free and defect free product. To achieve this, we need to make some tests. We have decided on some testing strategies and built a testing plan. We must apply them into our project according to several characteristic:
Operability: From the beginning, we will try to work carefully and eliminate errors. This will help us to test our product easily.
Observability: We will prepare well-placed warnings and errors in our project.

Controllability: We decomposed a job into smaller parts to handle errors easily.

Simplicity: We will try to code as efficiently as possible.

Stability: Separate modules will help us for the stability. Function and module dependencies, architecture are all understood clearly by group members and this will help in testing.
9.1.1 Unit Testing

In unit testing, we will test each module separately. We use white box testing which will both detect errors and correct them We will test components by executing input and controlling its output. We must make sure that all components work correctly and efficently. Test is done by module’s programmer. GUI is the most important module for the end user :
GUI: User mostly interacts with GUI, so we have to be careful about the issues related to GUI. Even a small error at GUI might cause fatal errors. Besides these, GUI is very important for the user to choose our program. To reduce the probability of failure, we should apply many tests for each of the operations which are done through GUI such as menu tests, submenu tests, keyboard and mouse events.
9.1.2 Integration Testing

After we test modules one by one, we should apply integration test in order to find errors that can be caused when we want to integrated modules. We will be looking whether all the modules work correctly and data is correctly managed. All of these tests will be implemented from the perspective of a user. However it will not be possible to see all the errors, and there may probably be defects. Some other tests are still needed.
9.1.3 Validation Testing

Validation asks: “Are we building the right product”. And the answer specifies whether our program will be preferred by the form users or not. Therefore validation is important. We will perform a black box testing too. Use cases will be used in order to specify all the needed requirements and obtain possible errors.

10.0 SYNTAX SPECIFICATIONS

According to communication between group members, we decided to limit our members with strict syntax specifications. We use mainly Java in out project which is an object oriented language. Some of our specifications are:
- Files that include the source code must be named as : <class_name>.java

- All classes must begin with a capital letter. Each word must begin with a capital letter.

- Names of class attributes begin with a lower case. There must be “_” between each word.

- Class methods begin with a lower case; the next words must begin with capital letter.

- We will avoid using global variables in our implementation as software engineering principle. However, in case of necessity, global variables must begin with “g_”.
- There will be one empty line between functions.

- Only one member can be defined on a line.

- Opening and closing brackets of functions, conditional and loops will be on individual lines.
However, the most important specification is using comments efficiently:

- Nearly every new item in the code must be commented about the process in a detailed way. - Before “if” and “for” expressions, the purpose of them must be stated.

- Before every class definition, the component that class specifies will be stated.

- Before every function definition, the functionality will be stated in a comment.
11.0 CONCLUSION

During the preparation of Initial Design Report, we draw diagrams according to our design such as class diagrams, data flow diagrams and use case diagrams. These diagrams are very beneficial for us to clarify many important points. We have tries to decide on the way we will implement our product. However, our project still needs more review up to Final Design Report. We may improve our design procedure and provide some extra functionality on GUI.
To sum up, we believe the importance of the initial design report and we think that our initial
design will be helpful and simplify implementation phases.
12.0 REFERENCES
http://www.cs.com.tr/pdf/lighthouse-en.pdf

http://www.cs.com.tr/urunler/lighthouse.html
13.0 GANNT CHART

[image: image24.wmf]ID

I

Tasks

Duration

Start

Finish

October

November

December

January

1

8

15

22

1

8

15

22

1

8

15

22

1

8

15

22

1

Ö

WP1: Introduction to Project

5 days

01.10.2007

05.10.2007

2

Ö

Grouping and Selecting Topic

3 days

01.10.2007

04.10.2007

3

Ö

Milestone-1:Proposal Report

1 day

05.10.2007

05.10.2007

4

Ö

WP2: Analysis

28 days

06.10.2007

04.11.2007

5

Ö

Building Web Site

2 days

06.10.2007

08.10.2007

6

Ö

Market Research

14 days

09.10.2007

23.10.2007

7

Ö

Requirement Analysis

5 days

20.10.2007

25.10.2007

8

Ö

Modeling Diagrams

10 days

23.10.2007

03.11.2007

9

Ö

Risk Management

3 days

01.11.2007

04.11.2007

10

Ö

Milestone-2: Requirement Analysis Report

1 day

04.11.2007

04.11.2007

11

Ö

WP3: Initial Design

27 days

05.11.2007

02.12.2007

12

Ö

Task Assignment

1 day

05.11.2007

06.11.2007

13

Ö

Technology Learning

10 days

07.11.2007

17.11.2007

14

Ö

Architectural Design

 4 days

18.11.2007

22.11.2007

15

Ö

Data Design

4 days

23.11.2007

27.11.2007

16

Ö

User Interface Design

4 days

27.11.2007

01.12.2007

17

Ö

GUI Design Implementation

10 days

22.11.2007

02.12.2007

18

Ö

Milestone-3: Initial Design Report

1 day

02.12.2007

02.12.2007

19

WP4: Implementation Step-1

38 days

03.12.2007

11.01.2008

20

Work Area Module Coding

10 days

03.12.2007

13.12.2007

21

Property Module Coding

10 days

08.12.2007

18.12.2007

22

Structure Module Coding

10 days

13.12.2007

23.12.2007

23

XML Module Coding

10 days

18.12.2007

28.12.2007

24

Editor Module Coding

10 days

23.12.2007

03.01.2008

25

File Operations Module Coding

10 days

28.12.2007

08.01.2008

26

Preparing Presentations

5 days

20.12.2007

25.12.2007

27

Detailed Architecture Design

10 days

25.12.2007

05.01.2008

28

Detailed Data Design

10 days

28.12.2007

08.01.2008

29

Detailed User Interface Design

10 days

31.12.2007

10.01.2008

30

Milestone-4: Final Design Report

1 day

11.01.2008

11.01.2008

31

Preparing for Demo

6 days

11.01.2008

17.01.2008

32

Milestone-5: Prototype Demo

1 day

18.01.2008

18.01.2008

33

Holiday

20 days

19.01.2008

09.02.2008

[image: image25.wmf]ID

I

Tasks

Duration

Start

Finish

February

March

April

May

1

8

15

22

1

8

15

22

1

8

15

22

1

8

15

22

34

WP5: Implementation Step-2

90 days

09.02.2008

07.05.2008

35

Technology Learning Assignment

1 day

10.02.2008

10.02.2008

36

Common Controls

10 days

11.02.2008

21.02.2008

37

Spring

10 days

11.02.2008

21.02.2008

38

Struts

10 days

11.02.2008

21.02.2008

39

Hibernate

10 days

11.02.2008

21.02.2008

40

Work Area Module Coding

20 days

22.02.2008

12.03.2008

41

Structure Module Coding

20 days

02.03.2008

22.03.2008

42

Proporty Module Coding

20 days

12.03.2008

02.04.2008

43

XML Module Coding

20 days

22.03.2008

12.04.2008

44

Editor Module Coding

20 days

22.03.2008

12.04.2008

45

File Operations Module Coding

20 days

27.03.2008

17.04.2008

46

Eclipse Plugin Module Coding

20 days

17.04.2008

07.05.2008

47

WP6: Testing

15 days

07.05.2008

22.05.2008

48

Debug

5 days

07.05.2008

12.05.2008

49

Unit Testing

5 days

12.05.2008

17.05.2008

50

Integration Testing

5 days

17.05.2008

22.05.2008

51

WP7: Project Finalization

5 days

22.05.2008

27.05.2008

52

User Manual Preparation

5 days

22.05.2008

27.05.2008

 Yusuf Yavuz

Akzhol Abdukhaliev

Ishak Yapar

Niyazi Gursoy

All of us

PAGE
19

_1258125294.bin

_1258126293.bin

_1262142232.bin

_1258125314.bin

_1255687020.bin

_1258056090.bin

_1258125266.bin

_1258055928.bin

_1255687013.bin

