
TESTING SPECIFICATION PLAN

1

INDEX

1. Introduction …………………………………………………………………….... 3

1.1 Goals and Objectives ………………………………………………………... 3

1.2 Scope of Document ………………………………………………………….. 3

1.3 Statement of Testing Plan Scope ………………………………………….... 3

1.4 Major Constraints …………………………………………………………... 4

1.4.1 Time ………………………………………………………………….. 4

1.4.2 Staff ..………………………………………………………………… 4

2. Testing Plans and Strategies ……………………………………………………. 4

2.1 Unit Testing ………………………………………………………………….. 4

2.1.1 User Interface Module Testing ……………………………………... 5

2.1.2 Search Module Testing ……………………………………………… 5

2.1.3 Text Mining Module Testing ……………………………………….. 6

2.1.4 Database Module Testing …………………………………………… 6

2.2 Integration Testing ………………………………………………………….. 6

2.3 Higher Order Testing ……………………………………………………….. 7

2.3.1 Performance Testing ………………………………………………… 7

2.3.2 Alpha – Beta Testing ………………………………………………… 7

3. Testing Tools and Environments .………………………………………………. 8

4. Staffing …………………………………………………………………………… 8

5. Testing Schedule ……………………………………………………………….… 8

2

1. INTRODUCTION

This section gives a general overview of the test specification for our project Report Separator

a text miner for free text radiology reports.

1.1. Goals and Objectives

The Report Separator project has several modules including user interface, search, text mining

and database modules. We are assured that processing and duties of each module should be

verified so that all of these modules work in harmony and correctly when they are integrated.

As a result, we give great importance to testing our project in order to obtain a bug free, and

logically correct product with high performance.

1.2. Scope of Document

The purpose of this document is to describe the testing process of the project Report

Separator. In fact, while developing our project up to now, we did testing for each module, so

we will explain about the testing process that took place since the beginning of the project

until now.

1.3. Statement of Testing Plan Scope

Testing process of the project Report Separator includes unit testing, integration testing,

performance testing and alpha- beta testing.

Unit testing: For the modules user interface, search, text mining and database.

Integration testing: This is the most important part of our testing because getting a whole

program that works correctly is the aim of this project.

Performance testing: In this part we tested the accuracy of results and the speed of program.

Alpha-Beta testing: Whenever a new feature was added to the project someone in our group

made alpha testing so we could be sure that the added parts work correctly. After all of the

parts were added all group members made beta testing for being sure that our project was

bug-free.

3

1.4. Major Constraints

We had several different constraints in our testing plan. For our project most important

constraint was time since we had to finish the final package on time while we were testing our

software. Another constraint of our testing plan was the number of staff. We had 4 group

members and it made difficult to do all tests in time. Since our project could work on a

standard computer we had no hardware constraints.

1.4.1. Time

Since our project should have been finished due to 15 June, time was the main constraint for

us. We had a schedule for the testing phase, therefore the deadlines of each specific work were

known beforehand. If we managed to obey the deadlines according to schedule, our project

was released after proper testing and in time.

1.4.2. Staff

Number of staff was a major constraint for our testing plan since there were only four people,

who had also other responsibilities in our project, as a staff.

2. TESTING PLANS AND STRATEGIES

In our testing plan we had unit testing, integration testing, performance testing and alpha-beta

testing.

2.1. Unit Testing

While developing our project by proceeding module by module, we were making sure that

every module was processing correctly so that when these modules were combined, we could

be sure that there were no problems in the basement. We believed that the modules could

work in harmony more easily by proceeding in this bottom up manner. We tested search, text

mining and user interface modules manually. On the other hand database module tested with

the help of the program that we had coded and with the help of a database management
4

program pgAdmin III. This program has a GUI for managing postgreSQL database.

2.1.1. User Interface Module Testing

Tests of user interface functionalities. All functionalities of user interface were also tested

whenever they were added in the scope of alpha testing. In our user interface testing major

functionalities that we tested are:

1. ‘Dosya’ tab: Selecting a file and displaying the content of file.

2. ‘Düzelt’ tab: Displaying unknown words together with suggestion for each word. Entering

correct form of unknown words and tagging these words.

3. ‘Etiketle’ tab: Displaying sentences of reports, selecting sentences with the help of buttons

‘Önceki’ and ‘Sonraki’ and displaying the tagged words of selected sentences, selecting a

word from these sentences by left clicking to the word and choosing a label for tagging this

word.

4. ‘Sonuç’ tab: Displaying name of file and the results of text mining process.

5. ‘Arama’ tab: Supplying four different choices for search in four new tabs.

All other user interface functionalities were also tested here only the main parts were given.

2.1.2. Search Module Testing

Although testing of this module was relatively easy, for accomplishing this part we needed

database module since all reports were stored in database. In search module we supplied four

different type of search and each were tested individually. These parts were ‘search for doctor

name’, ‘search for similar reports’, ‘general search’ and ‘detailed search’. In each part we

entered needed information for search and manually looked the reports, which names were

given in the search result, whether they actually included the given information or not

5

2.1.3. Text Mining Module Testing

This part was tested twice. In first one we tagged some words with labels such as ‘yer’,

‘hastalık’ and ‘zaman’. After this tagging operation we tested some sentences that contained

tagged words and determined whether our tagging process worked correctly or not. Since the

accuracy of the results of text mining module shows the accuracy of our project we tested this

module again after a training set was tagged. We checked results for seeing whether our

method works correctly or not.

2.1.4. Database Module Testing

For testing database module we used a program coded by us that inserts all reports in a

directory to database. This program also inserts each word and sentence to related tables of

database. These tables are used for searching and tagging. Another way that we test database

module was GUI functionalities of our project. We manually selected reports and inserted

them to database. We use pgAdmin III which is software with GUI used for managing

postgreSQL databases. With the help of this software we could see all tables in database and

elements of tables easily.

2.2. Integration Testing

When we were confident that the all individual modules were working well, we began the

integration test of the modules. In integration test we used bottom up modeling. The reason

why we determined the bottom up testing was that it was easy to combine the little pieces.

Moreover, we were not able to do integration test from beginning of the implementation to the

end of the implementation. We determined some milestones for each module to be finished.

Only when they were finished we could integrate them and test them in this phase. However

in some cases, in order to test some modules we had to use the other modules. Especially

search module testing could not be tested without database module.

In the following, we listed the modules which were interacted to other modules. From the list,

it is easily seen that which module needed to be integrated to which one

1. Search module – Database module

6

2. Text Mining module – Database module

3. User Interface module – Search module

4. User Interface module – Text Mining module

All these modules were tested after integrations of them.

2.3. Higher Order Testing

As at the end of this project we had to come with a full software package and we had to

release this software to costumers, it was required to apply higher level test to our software

package. We separated our high level tests as, performance and alpha-beta tests.

2.3.1. Performance Test

Since accuracy and time were the most important performance measure in our software we

measured time for analyzing a radiology report and the accuracy of each report. Measuring

time was relatively easy and we tested lots of different reports. For this testing we chose a

report that was not currently in database and analyzed it. For accuracy test we manually

checked results whether they were correct or not. We looked correctness of the ‘name of

illness’, ‘area of illness’, ‘state of illness’, ‘dimension of illness’, ‘time’ and ‘suggestion’.

Some of these were available in all reports while some of were not. If one was not in the

report we neglected that part while calculating accuracy.

2.3.2. Alpha-Beta Testing

Every time we added a new feature to our software package, we tested our application and

looked the results. Moreover, we tested the reliability and consistency with other features of

the new feature. Consequently, our alpha testing continued during the semester. However, as

we intended to come up with a reliable software package we had to do a beta test, to see

whether we had any bug or inconsistency which had not recognized before. For this, all

members of our group Logiciel tested the project’s different parts. While some of us testing

search module in detail the others tested the database modules.

7

3. TESTING TOOLS AND ENVIRONMENTS

1. Net Beans IDE 6.0: For Java code developing and debugging

2.. pgAdmin III: For visualizing and managing database

4. STAFFING

The staff of our project was mainly responsible for the parts showed below:

Mashar Tekin: Testing text mining modules, Testing user interface

Onur Ak: Testing database modules, Testing user interface

Sadettin Şen: Testing database modules, Testing search modules

Şerif Çetiner: Testing text mining modules, Testing search modules

5. TESTING SCHEDULE

The following is the schedule for the testing plan that was presented in this report:

Test Plan Delivery: (Deadline) 23.05.2008

Unit Test and Integration Tests: (Start) 23.05.2008 - (Deadline) 01.06.2008

Performance Test: (Start) 01.06.2008 - (Deadline) 06.06.2008

Alpha and Beta Tests: (Start) 06.06.2008 - (Deadline) 13.06.2006

Results (i.e. Bugs) Tracing and Correction: (Deadline) 15.06.2006

8

