

ONLINE VIRTUAL TEAM COLLABORATION PLATFORM ONLINE VIRTUAL TEAM COLLABORATION PLATFORM ONLINE VIRTUAL TEAM COLLABORATION PLATFORM ONLINE VIRTUAL TEAM COLLABORATION PLATFORM

WITH 3D GRAPHICSWITH 3D GRAPHICSWITH 3D GRAPHICSWITH 3D GRAPHICS

CENG 491

Initial Design Report

METU

2007

2

Table of Contents

1. INTRODUCTION .. 4

1.1 Purpose of the Document ... 4

1.2 Scope of the Document .. 4

2. PROJECT DESCRIPTION .. 4

2.1 Detailed Problem Definition ... 4

2.2 Project Features ... 5

2.3 Design Constraints and Limitations ... 6

2.4 Design Goals and Objectives .. 6

3. SYSTEM AND TOOL CHOICES .. 7

4. GRAPHICAL USER INTERFACE DESIGN ... 8

4.1 Initial Menu .. 9

4.2 Main Menu .. 9

4.3 Paused Mode Menu .. 11

4.4 Disconnect Menu .. 11

4.5 Final Statistics Menu .. 12

5. OVERALL ARCHITECTURE .. 13

6. DETAILED DESIGN ... 14

6.1 Data Flow Diagrams and Data Dictionary... 14

6.2 Use Case Diagrams ... 21

6.3 Class Definitions and Diagrams .. 24

6.3.1 Simulation Module ... 25

6.3.2 Network Module ... 27

6.3.3 Graphics Module .. 28

6.3.4 AI Module ... 29

6.3.5 Physics Module ... 30

3

6.3.6 Sound Module .. 31

6.3.7 Agents .. 32

6.3.8 Objects ... 33

6.4 State Transition Diagrams .. 34

6.4.1 Simulation States Diagram .. 34

6.4.2 Object Interaction States Diagram .. 35

6.4.3 Menu States Diagram ... 36

6.5 Activity Diagrams ... 37

6.6 Sequence Diagrams .. 41

6.7 ER Diagram .. 43

7. SYNTAX SPECIFICATIONS ... 43

7.1 File Naming Conventions .. 44

7.2 Classes ... 44

7.3 Method and Function Definitions ... 44

7.4 Variable Naming Conventions .. 44

7.5 Comments .. 44

8. PROJECT SCHEDULE .. 45

8.1 Current Stage of the Project .. 45

8.2 Future Work ... 46

8.3 Gantt Chart ... 47

4

1. INTRODUCTION

The initial design is a constitutive process that identifies the future implementation phase and the

justification of the main concerns related to the project in some basic perspective. That is what

makes the initial design report so critical for the project. The design decisions mentioned in this

report are not strictly unchangeable, but the points explained in the report can be seen as a

guide to follow in the following phases of the project.

1.1 Purpose of the Document

The purpose of this document is to explain initial design process of the project. In addition, the

data types and the use of them in the context of the project are defined in detail to make the

whole system more understandable and more concrete.

1.2 Scope of the Document

The document comprises of simulation flow, environment, user interfaces, data design,

architectural design, design constraints, development schedule, current design level and future

works planned so far.

In the document, many diagrams are used to visualize the system components including the

relations between them.

2. PROJECT DESCRIPTION

The project is to develop an educative 3D virtual team collaboration platform. In the project, a

ship emergency simulation is used to respond the project specifications. Users will have three

different alternatives for character selection and different communication alternatives to

strengthen the collaboration with other users. The users will take place in a scenario that is

devised to be in benefit of the mankind.

2.1 Detailed Problem Definition

In the simulation, users will cope with a fire on the ship. According to the character type they

chose before initiating the simulation, they will decide what to do on that occasion. During the

event flow, there will be exactly three persons using the program, each having a different role.

5

The available roles will be: (1) captain, (2) sea rescue chief and (3) first-aid chief. The user will

choose one of them and think him as if he is really having that emergency case, so he will gain

experience from an imaginary event and will not repeat his simulation mistakes in real life. That

is a realistic goal for our project because the event flow that will be provided in the simulation will

not be very simple in order to prevent the users to memorize the steps. Instead, for every event

there will be different routes for users and these routes will give different results.

The fire is recognized by the fire alarm that is only given to the captain’s central station not to

make passengers panic or cause a chaos. Then the captain -the coordinator in the simulation-

will communicate with his assistants (human resource) and then inform the other chiefs on the

ship. The chief of rescue team will intervene in the fire and try to evacuate passengers. The crew

will help him on his action. In the course of events, some passengers will get injured and the last

character’s mission is to help them as much as possible. Again, the crew will be working with

him; they are obliged to process his orders.

As stated in the requirement analysis report the resources are shared among the characters like

below:

• Resource of the coordinator (captain): assistants.

• Resource of rescue team chief: crew, extinguisher, cutting and piercing equipment,

special protective outfits, lifeboats.

• Resource of “chief of first-aid”: health officers, medical equipment, wheeled bed.

Each of the three characters will have the first person view while the facilitator has both the first

person views of three characters and a third person view.

Two modes will be available for users in the simulation. The first mode will not require a

computer experience background; however the second mode will require a basic level of

experience with computers. The user interaction methods will be so simple that the program in

the first mode will work with only mouse clicks and necessary devices for communication.

2.2 Project Features

The features to be provided:

• 3D Computer graphics

• Text messaging

6

• Voice communication

• Simple, easily understandable user interface

• Evaluation of the simulation performance

2.3 Design Constraints and Limitations

Maca Yazilim is preparing this simulation project for senior project course of Computer

Engineering Department, METU. This brings the most inevitable constraint – time. This project

must be finalized before June; so development phase has duration of eight months, and two

months have passed. Maca Yazilim team members are all senior students and have other

projects, and courses that do not directly help this project, so time must be spent carefully.

Beside the main deadline, there are many mini deadlines such as reports, presentations, demos

that should be met.

Network security is one of the constraints that are underlined by the company. Encryption will be

used in the further phase of the project, to provide the security of the network module. Since this

property will be easily attached to the network module, it is not mentioned in this phase.

Performance is another constraint that must be concerned carefully in order to use resources

effectively. In network module, only changed variables is sent to the server to inform the

simulation module. Also in graphics module, frame per second rendering value will not go

beyond the human vision capabilities in order not to waste resources.

Team members will use many libraries during development stage like torque, OGRE… These

libraries will decrease the time that will spend in the implementation phase, but their limitations

would directly affect the project, and become project’s limitations. Team members will try to

manage these limitations by using qualified libraries.

2.4 Design Goals and Objectives

Usability: The main concern for the simulation developing is the target user’s computer

capability. A simulation must be easily usable by a related person; however he did not know

anything about the computers. As our purpose is to educate these people for the real life, they

should be provided with the equipments they use in real life. Unfortunately, this is not a keyboard

or mouse. The voice communication technique and a facilitator bring up an easily adaptable

simulation environment.

7

Virtual Reality: In order to make users concentrate to the situation, it is inevitable to build up a

realistic environment. The virtual reality should be supplied by not only graphical realism but also

the appropriate physics rules or human behaviors. Therefore, a physics engine and a fire

dynamics simulator were used. The virtual reality will surely increase the benefits of the

simulation since it will be a close test of real life.

Reliability: The reliability requirement is always considered as a key requirement in the project

team. Developing a bug free simulation is an important aim. Testing and debugging should be

done very carefully in order to achieve this aim. The realistic environment of the simulation

should not be sabotaged by the buggy codes.

Security: The online usage of simulation points out the importance of security. The carefully

developed code should block outer threats to the users during and after the simulation.

Portability: The simulation would not be working on a Linux operating system. However, the

simulation will work on Windows operating system.

3. SYSTEM AND TOOL CHOICES

System and tool choices can be grouped into four broad categories:

Operating System Choice: Windows XP Operating System.

Hardware Choice: P4 class processor or equivalent, 256MB of memory, Graphics card and

Direct3D support, sound card, internet or network connection, devices for voice communication.

Open Source Engine Choices: OGRE as rendering engine, openTNL for networking and voice

communication, ODE for physics engine, FDS (Fire Dynamics Simulator) to represent fire

characteristics, emanation and smoke emission.

It should be noted that the team decided to use Torque Networking Library instead of DirectPlay.

This modification was inevitable since Microsoft depreciated DirectPlay in the recent DirectX

development kits. This depreciation resulted to an inconsistency between documentations and

the SDK’s. The team tried to develop simple applications with DirectPlay but these attempts

failed due to these inconsistencies. The team decided to use DirectSound as the sound engine,

however if it causes problems it will be directly replaced with OpenAL or Fmod sound engine.

8

4. GRAPHICAL USER INTERFACE DESIGN

Figure – 1: Main menu screenshot

This screenshot is prepared for giving a general idea about menus and overall graphics. This

small graphics application is implemented in OGRE with the help of its built-in ocean application.

Ship model (actually which is not a passenger ship) is taken from the internet. This ship model is

created by 3D Studio Max and is in .3ds format. “.3ds” format is not supported directly by OGRE,

which accepts mesh files. However OGRE provides a converter for this purpose (converts .3ds

file to .mesh file). In further stages this tool can be helpful for converting the models that are

created by 3D Studio Max. After integrating this ship model to the application, model and camera

positions are adjusted with OGRE GUI. After that by using CEGUI, project’s Main Menu is

created and positioned. As can be seen, this menu will consist of a title and buttons which are

capable of changing simulation flow.

9

4.1 Initial Menu

Initial Menu is designed for, as the name implies, initial configurations of the simulation. This is

the first menu that user is faced.

Figure – 2: Initial menu

If the user chooses facilitator mode, its simulator instance will behave as server and other users

will connect to facilitator in order to involve the simulation. Facilitator cannot be able to choose

simulation mode, start or replay simulation, so after selecting facilitator mode, another menu

(different from main menu) will be shown. In this menu, facilitator will be able to see the on-ship

characters state (ready / not ready).

Figure – 3: Connection Status Screen

After on ship characters become ready, facilitator starts the simulation.

If the users choose on-ship characters, they will be directed to Main Menu.

4.2 Main Menu

Main Menu is shown after client / server attributes of the created instances are become certain

and is related to client side application.

10

Figure – 4: Main Menu

Users that choose on ship characters must choose their certain character – captain, first aid

chief, or sea rescue chief. To prevent from duplicated roles, previously chosen roles will not be

available. This is handled by server-side.

Mode selection is – as stated before, decidable by the users and default mode is 1.

Options consisted of three fields: Graphics, Sound, and Key Board Controls. When Options is

selected this menu will occur:

Figure – 5: Options Menu

11

Graphics session can be used for resolution settings, volume slider can be used for increase/

decrease volume level and keyboard controls is used for assigning keys to certain tasks,

direction (default ‘w’, ‘a’, ’s’, ‘d’) , inventory screen shortcut (default ‘i’), change camera mode

(default ‘c’), message box shortcut (default ‘m’). Change camera mode is used by facilitator only.

Other users can use these keyboard controls only in mode 2.

Changes are activated by “Apply Settings” button.

4.3 Paused Mode Menu

This menu will be shown when the simulation is in the suspended state. In this state background

is consisted of lastly rendered scene. On this background paused mode menu will be shown as

follows:

Figure – 6: Paused Mode Menu

The state switches to suspend state when the user pause the simulation or one/more users lost

connection.

4.4 Disconnect Menu

Disconnect Menu is used when the user lost connection to server. Like Paused Mode Menu

there will be a frozen background (lastly rendered scene) and this menu:

12

Figure – 7: Disconnect Menu

User can chose to reconnect or exit simulation totally.

4.5 Final Statistics Menu

This menu will be shown when the time is up and simulation is ended. In order to give feed back

to the users some statistics must be given. With these information users can compare their

success between different simulations.

Figure – 8: Final Statistics Menu

New simulation button will start new simulation with the same team (users).

13

5. OVERALL ARCHITECTURE

Figure – 9: Overall Architecture

The overall architecture of the project can be examined above. The main organizer part is the

simulation module. It has the job of initializing and controlling other components in the simulation

flow. Some of the modules have different behaviors for the server and client side; they will be

spotted in the detailed design section.

In order to explain briefly:

Graphics Module: It will render the scenes of the player. The objects will be provided from the

simulation module.

14

Network Module: The module will supply the data flow with a client/server approach. All

communications will be done via the server. The communication types will be data packets for

simulation flow and text or voice messages.

AI Module: The AI module will simulate the non-playing characters and fire.

Physics Module: The physics module will check the actions validity and detect the collisions. All

actions will be evaluated in this module and the simulation module will notify the clients whether

their actions are approved or not.

Audio Module: The module for playing audios and voice messages. The user will hear the

audios that are appropriately selected by the simulation module.

User inputs: The keyboard/mouse inputs will trigger events on the simulation engine. This will

not be implemented as a separate module however further considerations can be observed in

the detailed design section.

6. DETAILED DESIGN

6.1 Data Flow Diagrams and Data Dictionary

Level: 0 DFD:

Figure – 10: Level 0 DFD

15

Level: 1 Simulation Client DFD:

Figure – 11: Level 1 Simulation Client DFD

Level: 1 Simulation Server DFD:

Figure – 12: Level 1 Simulation Server DFD

16

Level: 2 Graphics Module DFD:

Figure – 13: Level 2 Graphics Module DFD

Level: 2 Network Module DFD:

Figure – 14: Level 2 Network Module DFD

17

Level: 2 Physics Module DFD:

Figure – 15: Level 2 Physics Module DFD

Level: 2 AI Module DFD:

Figure – 16: Level 2 AI Module DFD

18

Level: 2 Sound Module DFD:

Figure – 17: Level 2 Sound Module DFD

Data Dictionary:

Name Keyboard/Mouse Input

Where used Output of User, input of SimulationModule (Level: 0)

Description These are user input given during the simulation by keyboard or mouse

Name Data Packet

Where used Output of Simulation Client Module, input of SimulationModuleServer (Level: 0)

Description The structure that transfers data between server and client

Name Voice Message

Where used Output of Simulation Module Client, input of Simulation Module Server (Level: 0)

Description The byte buffer form of user voice

19

Name Graphics output

Where used Output of Simulation Module Server, input of Facilitator (Level: 0)

Description The scenes rendered on the user display

Name Audio output

Where used Output of Simulation Client Module, input of SimulationModuleServer (Level: 0)

Description The audios that the user hears

Name Evaluated Controls

Where used Output of User, input of SimulationModule(Level:1)

Description These are user input given during the simulation by keyboard or mouse

Name NPC Data

Where used Output of Simulation Data, input of AI Module(Level:1)

Description The various data of non playing agents

Name NPC Event

Where used Output of AI Module, input of Network Module Client(Level:1)

Description Any action of a non playing agent

Name Game State

Where

used
Output of Simulation Data, input of Sound Module(Level:1)

Description
The game state that is stored in simulation data. General decisions about the loop

and the menus

20

Name Voice

Where used Output of User, input of Sound Module(Level:1)

Description The speech of the user

Name Actions

Where used Output of is action valid, input of detect collision(Level:2)

Description The actions that will be controlled in the physics module

Name Evaluated actions

Where used Output of detect collision, input of Simulation Data(Level:2)

Description The results of the actions evaluated by the physics module

Name Audio data

Where used Output of Simulation Data, input of play audio(Level:2)

Description The audio files stored in the simulation data

Name Scene data

Where used Output of Simulation Data, input of add entity(Level:2)

Description The environment objects data stored in the simulation data

Name Model/texture

Where used Output of Simulation Data, input of Graphics Module(Level:2)

Description The model and texture files stored in the simulation data

Name Entity

Where used Output of add entity, input of attach entity to node(Level:2)

Description An OGRE class used for rendering objects

21

Name Scene manager

Where used Output of attach entity to node, input of render(Level:2)

Description OGRE class that renders the attached entities

Name object data

Where used Output of Object Data, input of is action valid(Level:2)

Description The simple object class containing information about an object

6.2 Use Case Diagrams

Menu Use Case Diagram:

Figure – 18: Menu Use Case Diagram

22

Facilitator Use Case Diagram:

Figure – 19: Facilitator Use Case Diagram

Captain Use Case Diagram:

Figure – 20: Captain Use Case Diagram

23

First Aid Chief Use Case Diagram:

Figure – 21: First-Aid Chief Use Case Diagram

Sea Rescue Chief Use Case Diagram:

Figure – 22: Sea Rescue Team Chief Use Case Diagram

24

Passenger Use Case Diagram:

Figure – 23: Passenger Use Case Diagram

6.3 Class Definitions and Diagrams

Modules will be implemented in an object oriented paradigm. Specifically, the simulation engine

will create instances of other modules. The ‘M’ character before the class names represents

“Maca” as a convention of the team.

The relationship between the classes can be examined in the following sections. Some basic

get/set methods of the class will be ignored in the diagrams.

6.3.1 Simulation

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the use

contains the necessary information about the game state, the objects in t

agents.

client s

Simulation Client

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

.1 Simulation Module

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the use

contains the necessary information about the game state, the objects in t

agents. The simulation engine has a special design which behaves different f

client side, therefore the simulation engine can be considered as

Simulation Client according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

Module

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the use

contains the necessary information about the game state, the objects in t

The simulation engine has a special design which behaves different f

ide, therefore the simulation engine can be considered as

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

Figure – 24: Simulation Module Class Diagram

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the use

contains the necessary information about the game state, the objects in t

The simulation engine has a special design which behaves different f

ide, therefore the simulation engine can be considered as

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

24: Simulation Module Class Diagram

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the user will be provided with a consistent simulation flow. It

contains the necessary information about the game state, the objects in t

The simulation engine has a special design which behaves different f

ide, therefore the simulation engine can be considered as

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

24: Simulation Module Class Diagram

The simulation engine is the core component of the project that initializes the simulation and

r will be provided with a consistent simulation flow. It

contains the necessary information about the game state, the objects in t

The simulation engine has a special design which behaves different f

ide, therefore the simulation engine can be considered as

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

24: Simulation Module Class Diagram

The simulation engine is the core component of the project that initializes the simulation and

r will be provided with a consistent simulation flow. It

contains the necessary information about the game state, the objects in the environment and the

The simulation engine has a special design which behaves different f

ide, therefore the simulation engine can be considered as Simulation Server

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

The simulation engine is the core component of the project that initializes the simulation and

r will be provided with a consistent simulation flow. It

he environment and the

The simulation engine has a special design which behaves different for server side and

Simulation Server

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into two different

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

25

The simulation engine is the core component of the project that initializes the simulation and

r will be provided with a consistent simulation flow. It

he environment and the

or server side and

Simulation Server and

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

two different

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

25

The simulation engine is the core component of the project that initializes the simulation and

r will be provided with a consistent simulation flow. It

he environment and the

or server side and

and

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

two different

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing. When the user enters

26

necessary information in the initialization state, the simulation engine creates instances of other

modules. The state is switched to suspension on connection losses or pauses. Each module

behaves according to the state.

The simulation module for clients initializes its graphics module, network-client module, AI

module and sound module. The client firstly provides the connection to the server by networking

module and waits for its state change to start simulation. It does not initialize the physics module

since these controls will only be considered on server side. However, the AI module for clients

organizes the behaviors of human resources of the user character.

The simulation module for server is instantiated for the user type of facilitator, and initializes all

the modules. The network-server module creates a connection on the local host and accepts

connections from clients. When all other clients connect and send ready message to the server,

the server sets the state to flowing and simulation begins. In the flowing state, the game loop

gathers information from the clients evaluates them in physics module, handles NPC agents like

passengers. The network-server provides the delivery of voice or text messages between

clients. At the end of loop the simulation server sends the evaluated events to the clients and

clients are modified according to the changes received from the server.

The input handler module is omitted here since the keyboard/mouse inputs will trigger an event

on OGRE and they can be handled. However an additional input handler module can be added

to the simulation module in order to simplify the jobs done by simulation module.

6.3.2 Network Module

The network module is initialized by the simulation module according

the user. The network module is created as

the server side. However, both these modules extend a base class

common properties for networking. The MDa

communication. The packet is minimized in order to reduce the network traffic

the changes.

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

type over the ne

separated as arguments to transfer between sides.

The common methods of

checking the connection link is not broken and s

The Network Client

client ID by

The Network Server

gathering information from

can broadcast a voice message to the all clients by the broadcastVoice method.

.2 Network Module

The network module is initialized by the simulation module according

the user. The network module is created as

the server side. However, both these modules extend a base class

common properties for networking. The MDa

communication. The packet is minimized in order to reduce the network traffic

the changes.

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

type over the network connection. The DataPacket object will be converted to ByteBuffer or

separated as arguments to transfer between sides.

The common methods of

checking the connection link is not broken and s

Network Client

client ID by Network Server

Network Server

gathering information from

can broadcast a voice message to the all clients by the broadcastVoice method.

.2 Network Module

The network module is initialized by the simulation module according

the user. The network module is created as

the server side. However, both these modules extend a base class

common properties for networking. The MDa

communication. The packet is minimized in order to reduce the network traffic

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

separated as arguments to transfer between sides.

The common methods of Network Module are transfers

checking the connection link is not broken and s

Network Client gathers server address information from the user and it is assigned a unique

Network Server when the connection accepted by the server side.

Network Server contains all client ids and provides the simulation server the ability of

gathering information from the clients

can broadcast a voice message to the all clients by the broadcastVoice method.

Figure – 25: Network Module Class Diagram

The network module is initialized by the simulation module according

the user. The network module is created as

the server side. However, both these modules extend a base class

common properties for networking. The MDa

communication. The packet is minimized in order to reduce the network traffic

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

separated as arguments to transfer between sides.

Network Module are transfers

checking the connection link is not broken and s

gathers server address information from the user and it is assigned a unique

when the connection accepted by the server side.

contains all client ids and provides the simulation server the ability of

the clients and broadcasting packets to

can broadcast a voice message to the all clients by the broadcastVoice method.

25: Network Module Class Diagram

The network module is initialized by the simulation module according

the user. The network module is created as Network Client

the server side. However, both these modules extend a base class

common properties for networking. The MDataPacket is the common packet used in

communication. The packet is minimized in order to reduce the network traffic

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

separated as arguments to transfer between sides.

Network Module are transfers

checking the connection link is not broken and shutting down the

gathers server address information from the user and it is assigned a unique

when the connection accepted by the server side.

contains all client ids and provides the simulation server the ability of

and broadcasting packets to

can broadcast a voice message to the all clients by the broadcastVoice method.

25: Network Module Class Diagram

The network module is initialized by the simulation module according

Network Client for client side and

the server side. However, both these modules extend a base class

taPacket is the common packet used in

communication. The packet is minimized in order to reduce the network traffic

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

Network Module are transfers of packages and voice messages,

hutting down the

gathers server address information from the user and it is assigned a unique

when the connection accepted by the server side.

contains all client ids and provides the simulation server the ability of

and broadcasting packets to

can broadcast a voice message to the all clients by the broadcastVoice method.

25: Network Module Class Diagram

The network module is initialized by the simulation module according to the information given by

for client side and

the server side. However, both these modules extend a base class Network Module

taPacket is the common packet used in

communication. The packet is minimized in order to reduce the network traffic

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

of packages and voice messages,

hutting down the connection.

gathers server address information from the user and it is assigned a unique

when the connection accepted by the server side.

contains all client ids and provides the simulation server the ability of

and broadcasting packets to them. Also the network server

can broadcast a voice message to the all clients by the broadcastVoice method.

to the information given by

for client side and Network Server

Network Module

taPacket is the common packet used in

communication. The packet is minimized in order to reduce the network traffic, transferring only

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

of packages and voice messages,

connection.

gathers server address information from the user and it is assigned a unique

when the connection accepted by the server side.

contains all client ids and provides the simulation server the ability of

Also the network server

can broadcast a voice message to the all clients by the broadcastVoice method.

27

to the information given by

Network Server for

Network Module that has

taPacket is the common packet used in

, transferring only

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

of packages and voice messages,

gathers server address information from the user and it is assigned a unique

contains all client ids and provides the simulation server the ability of

Also the network server

27

to the information given by

for

that has

taPacket is the common packet used in

, transferring only

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

twork connection. The DataPacket object will be converted to ByteBuffer or

of packages and voice messages,

gathers server address information from the user and it is assigned a unique

contains all client ids and provides the simulation server the ability of

Also the network server

6.3.3 Graphics Module

The Graphics Module

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

the SceneNodes an

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects.

The camera object will be attached to

the facilitator can switch to free look mode, simply the third person view.

Graphics Module

Graphics Module

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

the SceneNodes an

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects.

The camera object will be attached to

the facilitator can switch to free look mode, simply the third person view.

Graphics Module

Graphics Module will be developed using OGRE (Object

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

the SceneNodes and the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects.

The camera object will be attached to

the facilitator can switch to free look mode, simply the third person view.

Figure – 26: Graphics Module Class Diagram

will be developed using OGRE (Object

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

d the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects.

The camera object will be attached to a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

26: Graphics Module Class Diagram

will be developed using OGRE (Object

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

d the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects.

a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

26: Graphics Module Class Diagram

will be developed using OGRE (Object

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

d the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

26: Graphics Module Class Diagram

will be developed using OGRE (Object-Oriented Graphics Rendering

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

d the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

Oriented Graphics Rendering

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

d the SceneNodes contains the Entities attached on them. Each object in the

environment will be attached to the scene nodes as entities. The entities will be created using

a character agent to provide a first person view. However,

28

Oriented Graphics Rendering

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

Each object in the

environment will be attached to the scene nodes as entities. The entities will be created using

a character agent to provide a first person view. However,

28

Oriented Graphics Rendering

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

Each object in the

environment will be attached to the scene nodes as entities. The entities will be created using

a character agent to provide a first person view. However,

29

6.3.4 AI Module

Figure – 27: AI Module Class Diagram

The AI module handles all the NPC agents’ behaviors during the game loop. The NPC agent

class derives from the Agent class which also derives from the Object class. The possible

behaviors of a NPC agent are enumerated and the organizeAgents method of AI module will

decide which action will be appropriate for the agent.

The AI module of a client will be responsible from the behaviors of human resources of a

character agent. This design choice will be appropriate for improving the intelligence levels of

human resources rather than improving all non-playing characters since the human resources

may have specific knowledge about their job. The specific events should be handled in different

module since a human resource can encounter complex events such as carrying a wheeled-bed

with another human resource.

30

The AI module of the server will organize the all remaining non-playing characters in the main

loop according to their current states. On the other hand, the fire will be evaluated with this AI

module and the physics module.

6.3.5 Physics Module

Figure – 28: Physics Module Class Diagram

The physics module, which is defined as an optional requirement for the project, will be

developed with an open source library ODE. The main job of this module will be detecting

collisions between objects and approving the actions depending on the physics rules. Each

action handled in the simulation server will also be approved by the physics module.

6.3.6 Sound Module

The sound

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

voice message and then play.

A powerful ability of the sound module is generating sound effects according to the position of

the sound source.

.6 Sound Module

The sound module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

voice message and then play.

A powerful ability of the sound module is generating sound effects according to the position of

the sound source.

.6 Sound Module

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

voice message and then play.

A powerful ability of the sound module is generating sound effects according to the position of

the sound source.

Figure – 29: Sound Module Class Diagram

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

voice message and then play.

A powerful ability of the sound module is generating sound effects according to the position of

29: Sound Module Class Diagram

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

29: Sound Module Class Diagram

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

29: Sound Module Class Diagram

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulatio

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod.

role of the sound module is playing the audio files selected by the simulation module according

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

31

module will be developed using DirectSound, however as described on the section of

system tools, there can be a risk of changing to another library like OpenAL or Fmod. The main

n module according

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

31

module will be developed using DirectSound, however as described on the section of

The main

n module according

to the state and playing the voice messages posted by the network module. It will decode the

A powerful ability of the sound module is generating sound effects according to the position of

32

6.3.7 Agents

Figure – 30: Agents Class Diagram

The agents of the project will derive from an agent class which also derives from the object

class. There are two types of agents: NPC agents and character agents. The NPC agents are

the human resources and the passengers, briefly the AI agents. They have predefined

enumerated actions and they are handled by the AI module in the game loop.

The character agents are the agent to represent the roles of the player in the simulation. They

have NPC agents as human resources and inventory objects. The inventory objects are

attached to the characters while initializing the characters.

The character agent uses

object. In order to control its human resou

This method will also be used for directing other non

The non

The communications between the character

methods sendTextMessage and sendVoice.

6.3.8 Objects

The base class of the simulation is the object class. Most of the classes derive from the object

class. However

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

The character agent uses

object. In order to control its human resou

This method will also be used for directing other non

The non-playing characters will be in tendency to obey these commands.

The communications between the character

methods sendTextMessage and sendVoice.

.8 Objects

The base class of the simulation is the object class. Most of the classes derive from the object

class. However most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

The character agent uses actOnObject method in order to encounter a predefined action on an

object. In order to control its human resou

This method will also be used for directing other non

playing characters will be in tendency to obey these commands.

The communications between the character

methods sendTextMessage and sendVoice.

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

actOnObject method in order to encounter a predefined action on an

object. In order to control its human resou

This method will also be used for directing other non

playing characters will be in tendency to obey these commands.

The communications between the character

methods sendTextMessage and sendVoice.

Figure –

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

actOnObject method in order to encounter a predefined action on an

object. In order to control its human resources, the method giveCommandToAgent will be used.

This method will also be used for directing other non

playing characters will be in tendency to obey these commands.

The communications between the character agents will be directed to the network module by the

methods sendTextMessage and sendVoice.

– 31: Objects Class Diagram

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

actOnObject method in order to encounter a predefined action on an

rces, the method giveCommandToAgent will be used.

This method will also be used for directing other non-playing characters for evacuation team.

playing characters will be in tendency to obey these commands.

agents will be directed to the network module by the

31: Objects Class Diagram

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

actOnObject method in order to encounter a predefined action on an

rces, the method giveCommandToAgent will be used.

playing characters for evacuation team.

playing characters will be in tendency to obey these commands.

agents will be directed to the network module by the

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

actOnObject method in order to encounter a predefined action on an

rces, the method giveCommandToAgent will be used.

playing characters for evacuation team.

agents will be directed to the network module by the

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

33

actOnObject method in order to encounter a predefined action on an

rces, the method giveCommandToAgent will be used.

playing characters for evacuation team.

agents will be directed to the network module by the

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

33

actOnObject method in order to encounter a predefined action on an

rces, the method giveCommandToAgent will be used.

playing characters for evacuation team.

agents will be directed to the network module by the

The base class of the simulation is the object class. Most of the classes derive from the object

most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

34

6.4 State Transition Diagrams

6.4.1 Simulation States Diagram

Figure – 32: Simulation States Diagram

The simulation will be in initial state before all the users that will take place in the simulation

select mode1 or mode2 and one of the available character alternatives. The user who made the

selection will make a transition to the suspend state and wait for the other users to complete

their selections. If the user is the last one making these selections then the simulation is ready to

start, else it will state in suspension until all the necessary selections are made. In active state,

the normal simulation flow continues. If the simulation flow is corrupted by a connection break or

one of the users pauses the simulation all the users go by the suspension. If the simulation

completes, the users make a transition to the evaluation state where the users are informed

about their simulation performance results.

35

6.4.2 Object Interaction States Diagram

Figure – 33: Object Interaction States Diagram

In the simulation environment, there are objects used as resource. These objects are specific to

the character types. If one user clicks on an object, then it is controlled if he can use it. For an

object being usable points out being interactive for that user. An interactive object becomes

selected when the user clicks on it. An object menu is opened with a right click provided that the

object was in selected mode. The user can either select a menu entry to perform or close the

menu without choosing an action.

36

6.4.3 Menu States Diagram

Figure – 34: Menu States Diagram

Simulation starts with main menu. User selects character type and mode type in main menu

before starting simulation. He can also change the settings in main menu and quits by selecting

Exit in the menu.

37

6.5 Activity Diagrams

User Movement Activity Diagram:

Figure – 35: User Movement Activity Diagram

38

User Command Activity Diagram:

Figure – 36: User Command Activity Diagram

39

Menu Activity Diagram:

Figure – 37: Menu Activity Diagram

40

Manage Inventory Activity Diagram:

Figure – 38: Manage Inventory Activity Diagram

41

6.6 Sequence Diagrams

Simulation Sequence Diagram:

Figure – 39: Simulation Sequence Diagram

42

Menu Sequence Diagram:

Figure – 40: Menu Sequence Diagram

43

6.7 ER Diagram

Figure – 41: ER Diagram

Character agent entity represents the characters in the simulation, while NPC agent corresponds

to the human resource of main characters and inventory object corresponds to the other

resource. In the simulation, characters have human resource and other resource, so the

relationship owns stands for the ownership of characters. The relationships are one-to-many

type since the characters can have more than one resource; in contrast a resource can belong

to only one character.

7. SYNTAX SPECIFICATIONS

As every software company has its own syntax, Maca Yazilim has defined own syntax

specification for the project. Having programming guidelines before starting the implementation

44

phase will be very useful in a large scaled project. This is a vital issue in order to ease the

readability of the codes developed by separate team members. The common syntax

specification will be helpful for integration and debugging phases.

The general specifications of Maca Yazilim will be stated in the sections below.

7.1 File Naming Conventions

The header files of the classes will have the same name with the class it contains. The mesh

files that are used in OGRE will have names simply representing the model it provides. The

audio files will have clear names describing the state when it is played. The documentation files

will have a prefix showing that they are documentation files.

7.2 Classes

As a Maca Yazilim convention, the class name starts with an uppercase M stand for Maca

Yazilim, the remaining part will contain words starting with an uppercase letter. The classes will

first declare the private members and then public members. The classes will simply use set and

get methods in order to avoid use of public variables.

7.3 Method and Function Definitions

The methods except simple get/set methods will be preceded with comment blocks briefly

explaining the main usage of the function. The functions will be given meaningful names related

to their jobs. Their names will start with a small letter and followed by words starting with an

uppercase letter.

7.4 Variable Naming Conventions

The variable naming will not be very critical expect the global variables. The use of Visual Studio

will help the coder to find the variables automatically. However, a convention similar to Win32

API’s can be helpful for further progresses.

7.5 Comments

Comment writing will be helpful for understanding the codes written by other team members, for

later modifications and debugging. On the other hand unnecessary and long comments will

decrease the readability of the code. Team members decide to write comments for class

descriptions, hardly understandable methods, and complex implementation parts of the project.

Comments will be clear and informative.

45

8. PROJECT SCHEDULE

This section covers detailed information about the overall development and the remaining future

work plans. The development section mainly contains how the prototypes have been developing.

8.1 Current Stage of the Project

The prototype that will be demonstrated on January 18, 2008 will include basic graphics about

the simulation where the clients connect, do some basic actions like moving and perform a voice

communication with the other clients.

In order to achieve this aim, the team has started to implement network module and graphics

module. The detailed information about these implementations can be found as follows:

The network module was firstly planned to develop using DirectPlay library. During the

implementation of the network library the team faced with problems caused by the inconsistency

of the documentation and version of the DirectPlay. The methods defined in the API’s did not

exist in the SDK’s. The corresponding methods for them were not doing the same job correctly.

The inconsistencies of DirectPlay were caused by the depreciation of this library by Microsoft.

Therefore the team switched the network library to an open source networking library: openTNL

(torque networking library).

First of all, a simple network module developed for proving connection over IP addresses. The

server simply created a connection to the local host and the clients directly connected to the

server using the IP address of the server given as an input from the command line. After that the

methods used for transferring strings between the server and the clients are implemented. In

order to get rid of parsing strings, the methods for transferring primitive arguments implemented.

As the next step the team started to the implementation of methods passing the structure types

that will be used in the project as data packets. The method for this job is converting the objects

to the predefined type of TNL::ByteBuffer. Instead of parsing the strings, these methods will

convert the byte buffers into objects when they received byte buffers. Also they will convert the

object into byte buffers for sending.

The prototype for the networking works in an infinite loop and in every time step the clients

randomly generates x and y coordinate values and sends them to the server. The progress of

sending packets is still continuing.

46

As the second part of the prototype, the team has developed a simple application with OGRE

and the graphical user interface library CEGUI. The start point of the development inspired from

a sample application of OGRE named ocean application. The team has found models for the

ship via internet and integrated it to the application. The models were developed by 3D Studio

Max so that they were in a file type of .3ds. However OGRE library did not support using a 3ds

file directly in the application but it accepted mesh files. Therefore the team made use of a

converter application that converts 3ds files into mesh files. The converter application will be

very useful in the following steps of the project. At this step, the team achieved the success of

rendering a ship sailing on an ocean with sunset view.

The next step for this prototype was implementing the graphical user interfaces with CEGUI. The

team examined the XML codes of the sample applications and tutorials of CEGUI. Implementing

a simple XML code brought us a main menu that can be seen in the graphical user interface

section. The further progress of this prototype will be adding simple agent models and other

necessary menus.

8.2 Future Work

The main flow of the project can be examined in the Gantt chart section. In this section, the near

future works for the prototype implementation will be discussed.

The target prototype will be developed by integration of separate prototypes. The team has

currently developed some parts of the networking and graphics module. As a future work the

team needs to develop an application for transferring voice messages.

The voice communication will be implemented after the network module becomes strongly

successful on transferring any type of messages. In order to play the transferred voices, the

need of sound module comes up. Therefore the team will continue the researches about the

sound module.

The graphics module will be able to render agents and some basic objects on the ship or an

empty room.

The final prototype will be an application that the users connect to a server, has a rendered

character in the environment, can make basic movements and send voice messages to other

clients via server. This prototype will be an easy progress if the separate prototypes are correctly

developed.

47

Although it is not visible directly, the final prototype mainly builds the backbone of our project.

8.3 Gantt Chart

48

