
1

SENIOR PROJECT

FALL 2007

FINAL DESIGN REPORT

MIDDLE EAST TECHNICAL UNIVERSITY

 DEPARTMENT OF COMPUTER ENGINEERING

Okan AKALIN e1448273

Görkem KURT e1395250

Kazım Işık e1448760

Yunus Olgun e1448992

2

Table of Contents

1. Introduction .. 5

1.1 Project Title ... 5

1.2 Problem Definition ... 5

1.3 Project Scope ... 5

1.4 DESIGN OBJECTIVES ... 6

1.4.1 Usability .. 6

1.4.2 Efficiency: ... 7

1.4.3 Reliability: ... 7

2. Current State of the Project ... 7

2.1 Survey Topics ... 7

2.2 Implementation ... 7

3. Data Design ... 12

3.1 Internal Structures ... 12

3. 2 External File Structures ... 13

3.2.1 - '.prj' Files ... 13

3.2.2- '.cob' Files .. 14

3.2.3- '.gob' Files .. 14

4. Architectural Design .. 16

5. Design of Program Interfaces ... 17

5.1 Use Cases... 17

i. Project Manager .. 17

ii. DEM Extractor .. 21

iii. DEM Displayer ... 22

iv. Mosaic Maker .. 22

v. Orthophoto Generator ... 23

5.2 Activity Diagrams ... 23

5.2.1 Project Creation .. 23

5.2.2 DEM Extraction ... 24

5.2.3 Orthophoto Generation .. 25

5.2.4 Help retrieval .. 26

6. Component Design Descriptions .. 26

3

6.1 ProjectManager Module .. 26

6.1.1 Project Class .. 27

6.1.2 GISObject Class ... 27

6.1.3 GISImage Class .. 27

6.1.4 CameraObject Class .. 27

6.2 ImageProcessor Class ... 27

6.3 DEMExtractor Class .. 28

6.4 OrtophotoGenerator Class ... 28

6.5 MosaicMaker Class .. 28

6.6 DEMDisplayer Class.. 28

7. Component Design .. 29

7.1 Project Manager .. 29

7.2 DEM Extractor Module... 30

7.3 Mosaic Maker Module ... 31

7.4 Image Processor Module ... 31

7.5 Output Objects .. 32

7.6 Helper Classes .. 32

7.7 Image Viewer and Help Window .. 33

8. Process Description ... 33

8.1 Data Flow Diagrams ... 33

8.2 Data Dictionary .. 35

8.3 DEM Extraction Sequence Diagram .. 37

9. Design Constraints ... 37

9.1 Time Constraints .. 37

9.2 Performance Constraints ... 38

9.3 Software Constraints ... 38

9.4 Hardware Constraints .. 38

10. Design Constraints ... 39

a. Gantt chart .. 39

b. Future Work .. 40

10.2.1 Survey Topics .. 40

10.2.2 Implementation .. 40

4

11.1 Software and Implementation Environment Choices .. 40

11.2 Hardware Choices .. 41

References .. 42

5

1. Introduction

Till the design phase, group’s interest was focused on determining the requirements. In determining

the requirements, a literature survey had been performed, market research had been done and the

constraints are fixated. In determination of the needs of the project, the team had a better

understanding of the necessities, phases, and the operational aspects of the project. This information

helped the team to start the designing process at an initial level. Revising the initial design of the

project, and working on the prototype leaded the way to make the final design.

Until now, before the initial design phase of the project, the interest was focused on determining the

requirements. To specify the requirements, a literature survey had been performed, market research

had been done and constraints were fixated. By determining the needs of the project, the team had a

better understanding the necessities, phases, and the operational aspects of the project. In the light of

the information obtained from requirements, the initial design of the project has been completed.

The initial ideas on the design have developed into mature visions about the project.

 1.1 Project Title

The title of the project is Photokan. The title is a derivation from the company name.

 1.2 Problem Definition

The advent of the computing technology and the research in the computer vision and image processing

area opened up many possibilities for softcopy photogrammetric tools in which geometrical properties

of objects are examined. These tools attract a well deserved attention since without the software assist,

gathering information on geographical properties, such as terrain analysis, land survey becomes a heavy

chore. Provided with online data, these tools can supply crucial information efficiently in case of

emergencies. A disaster such as an earthquake is a good example of this. A quick analysis of the

disaster’s effects can speed up the life saving operations. Another area of application is the military

tactical operations in which terrain topology forms the basis of the rationale. A before hand knowledge

of the surface directly affects the decisions, such as the determination of necessary vehicles. The scope

of softcopy photogrammetry actually covers a wider range of areas than mentioned, ranging from police

investigation to archeology; anywhere geometric properties of objects are useful. The application of

these tools in critical issues (such as generating data concerning national security) makes national

companies the first choice in obtaining licenses so even though a softcopy photogrammetry tool doesn’t

have a direct impact on human life, the interest in new tools don’t cease. In Turkey, there is also a lack

of software in this area. Another issue is the lack of flexible, user friendly software for linux platform

even though some open source alternatives exist.

 1.3 Project Scope

Photokan will be a softcopy photogrammetry tool which will also employ geographical information

processing facilities. The basic input target of Photokan is aerial images but it will be possible to use it on

other types of images if deemed necessary. This will be a result of the flexibility of the program.

6

Basically, Photokan will process a set of aerial images with given camera parameters. The aim is using

these images to create a model of the surface covered, and combining them to create one big picture

which have the properties of a map. This can be achieved by a pipeline model. The process will work its

way sequentially but it will also be possible to directly jump to any stage since all phases are

independent from another. The processing modules are:

 • Image Registration: Image registration is performed to detect the overlapping areas of a given

set of images. This process will also estimate the transformation relation between images. This data will

be used in determining the missing camera parameters in case one is missing this data. Also the

overlapped region will be combined in mosaicking process.

 • Digital Elevation Model Creation: A digital elevation model (DEM) provides the height map of

the surface. Digital elevation models will be created using multiple images of the scene. There will also

be a 3-d visualization of the DEM.

 • Orthorectification: This process will shift the perspective of the image so that It gains the basic

property of a map.

 • Mosaicking: Mosaicking yields the overall image which combines the overlapping images. All

of these methods are prone to errors; this is a result of the problem. The problems are ill posed and the

criterion of quality is mostly subjective. We will provide manual correction mechanisms in the methods

to overcome the difficulty of reaching results which will be satisfactory.

The images that Photokan will work on are aerial images which possess geographical information. When

a basic set of parameters are supplied, it will be possible compute the world coordinates under the

mouse. The basic set of parameters will be provided in World file format. It will be possible to convert

between various coordinate systems.

It will be possible to work on many file formats and convert between them. Photokan will also employ

basic image processing and manipulation methods so that preprocessing, enhancing, restoration will be

possible by operator intervention. The basic capabilities are zooming, changing contrast and brightness

values, rotating, sharpening, smoothing, contrast stretching, histogram equalization, and convolution by

manually entered filters. It will be possible to work on a selected area of the image.

The scope of the project extends to bringing together qualified algorithms under a flexible interface,

creating the necessary space to the user. In order to achieve these goals, fine tuning of algorithms will

be as much as possible.

1.4 DESIGN OBJECTIVES

 The design of Photokan is based on 3 objectives. objectives.

1.4.1 Usability

Photokan is designed to be a flexible program, it has consecutive main steps in execution order but user

can jump to any phase if the necessary inputs are provided, so it has to be easily understandable. A GUI

7

will be provided to the user and it is planned to be a simple, yet it can comprise all the functionalities of

the program.

Another important fact is that, in image processing the methods are too generic and there is not one

solution to all of the problems. In order to produce a usable photogrammetry tool, viable alternatives to

problems should be provided to the user.

1.4.2 Efficiency:

It is a certain case that in image processing there is a high computational load. So the algorithms used in

the project must be chosen and implemented carefully. The image files on which Photokan will execute

on take huge amounts of storage. Both the space used and the time consumed has to be minimized in

order to run Photokan efficiently on a regular Personal Computer.

1.4.3 Reliability:

In order to make Photokan reliable enough, the design mustensure that the data on which Photokan

executes on has to be stored carefully, because there can be cases in which reverting to the beginning is

impossible. Also the files Photokan works on are huge in size; the inevitable high computational load

should not be repeated because of the program, its execution must be reliable.

2. Current State of the Project
The current state of the project had been prescheduled with the assignments given by Milsoft. Image

registration which is an essential part in all other processes has been completed. Mosaicking has also

been implemented. The details of the algorithms were provided by Milsoft. Since surveying is also an

important part of the project, it needs to be treated in its own right.

2.1 Survey Topics

Since the project consists of sequential phases, survey on topics which will be used earlier, has been

considered first. Image registration and stereopsis has been surveyed during this process and the

problem has been classified. A detailed review on image registration and links to valuable sources have

been provided by Milsoft.

A wiki has been setup in order to facilitate communication between team members themselves, and

between Milsoft and the team. It also serves as a way of supervising and verifying the progress of the

project by the supervisors.

2.2 Implementation

The implementation is moving according to a predefined plan. An assignment has been given to perform

basic image viewing and coordinate transformation (georegistration) tasks. During the implementation

of this assignment, the team decided on the libraries which will be adapted and a convention has been

setup. A second assignment on image registration and image mosaicking has followed the first

assignment. In its current state, the project is capable of opening and loading of all major image file

formats and the geographical image file format variants. The associated world files of images can be

parsed and loaded. An affine transformation is obtained from this world file, and real coordinates of

image pixels are computed and shown accordingly for image frames.

can be combined into mosaicks. Also project serialization is also partly implemented. A p

deserialized from XML structure.

Ideas on graphical user design have also developed. The program consists of a workspace which

provided basic tools and image viewers.

available to provide the structure of the project in an accessible format.

Model-Viewer-Presenter pattern,

adapt the wrapper pattern for image processing capabilities since

replaced if deemed necessary.

Photokan consists of dockable user interface elements as can be observed on figure.1. This allows a

flexible user interface. The project consists of a s

The user can traverse the project with this tree list. In order to process a set of elements, the user can

select multiple elements from the tree and can

georegistration values can be observed on the statusbar. Another important point is the tab manager

which allows to handle multiple images concurrently by the user.

8

image pixels are computed and shown accordingly for image frames. Image sets can be registered and

can be combined into mosaicks. Also project serialization is also partly implemented. A p

deserialized from XML structure.

Ideas on graphical user design have also developed. The program consists of a workspace which

provided basic tools and image viewers. Frames can be loaded under a tab manager, a tree control is

ovide the structure of the project in an accessible format. The team decided to adapt the

Presenter pattern, separating the viewing logic from the data. Another decision was to

adapt the wrapper pattern for image processing capabilities since many alternatives exist that can be

Figure.1The main view of Photokan.

Photokan consists of dockable user interface elements as can be observed on figure.1. This allows a

The project consists of a set of folders which are present in the tree controller.

The user can traverse the project with this tree list. In order to process a set of elements, the user can

select multiple elements from the tree and can apply a process on them using the popup menu.

georegistration values can be observed on the statusbar. Another important point is the tab manager

handle multiple images concurrently by the user.

Image sets can be registered and

can be combined into mosaicks. Also project serialization is also partly implemented. A project can be

Ideas on graphical user design have also developed. The program consists of a workspace which

Frames can be loaded under a tab manager, a tree control is

The team decided to adapt the

the viewing logic from the data. Another decision was to

many alternatives exist that can be

Photokan consists of dockable user interface elements as can be observed on figure.1. This allows a

et of folders which are present in the tree controller.

The user can traverse the project with this tree list. In order to process a set of elements, the user can

apply a process on them using the popup menu. The

georegistration values can be observed on the statusbar. Another important point is the tab manager

An evaluation of Photokan’s mosaicking

9

 Figure.2.2 Open project dialog box

An evaluation of Photokan’s mosaicking can be performed with the following figures.

can be performed with the following figures.

10

Figure.2.3 Result of registration of two images. Overlapping area is shaded with blue. The circles show

the matching points. Red points are interesting points.

Figure.2.4 Result of registration of two images. Overlapping area is shaded with blue. The circles show

the matching points. Red points are interesting points.

11

Figure.2.5 Result of final mosaicking of two images.

12

Figure.2.5 Result of mosaicking of frames of 4 seconds video. 4 frames were used in mosaicking.

3. Data Design

The design of data in Photokan consists of both internal and external structures.

3.1 Internal Structures

The Photokan handles data of huge amounts. 3 types of data are output in the course of processing:

digital elevation models, orthophotos and mosaics, all of which are essentially 2 dimensional matrixes,

which all boil down to the usual images. Images are associated with cameras , camera parameters

include the camera’s internal parameters which affect the quality of the overall image and the external

parameters which provide the information on spatial coordinates of the scene (from which

georegistration can be performed). Figure.3 provides an entity relationship diagram describing the

internal structures.

13

Figure.3 ER Diagram for internal structures

3. 2 External File Structures

There are three different file structures which will be created by PHOTOKAN project. The main purpose

of these file structures are the serialization of the internal data.

3.2.1 - '.prj' Files

This file structure is based on XML and it will be used for "Project" class. When user is creating a new

project this file will be created along the internal project data and all changes will be inserted at the time

when there is a change. To open an existing project this file will be used. Main scheme of this file

structure can be seen at below.

 <project>

 <name> Project1 </name>

 <workingPath> /where/is/the/working/path </workingPath>

 <images>

<GISObjectPath> GISObjectPath1 </GISObjectPath>

 <GISObjectPath> GISObjectPath2 </GISObjectPath>

 <GISObjectPath> GISObjectPath3 </GISObjectPath>

 </images>

 <dems>

14

 <GISObjectPath> GISObjectPath4 </GISObjectPath>

 <GISObjectPath> GISObjectPath5 </GISObjectPath>

 <GISObjectPath> GISObjectPath6 </GISObjectPath>

 </dems>

 <ortophotos>

 <GISObjectPath> GISObjectPath7 </GISObjectPath>

 <GISObjectPath> GISObjectPath8 </GISObjectPath>

 </ortophotos>

 <mosaics>

 <GISObjectPath> GISObjectPath9 </GISObjectPath>

 </mosaics>

 </project>

As seen '.prj' files are self describing.

3.2.2- '.cob' Files

This file structure is based on XML and it will be used for "CameraObject" class. When user is creating a

new camera this file will be created along the internal CameraObject data. When there is a reference to

this '.cob' file this file will be used.

 <cameraObject>

 <name> CameraObject1 </name>

 <parameters>

 <f> fVal </f>

 <pixelSize> pixelSizeVal </pixelSize>

 <principlePointX> principlePointXVal </principlePointX>

 <principlePointY> principlePointYVal </principlePointY>

 </parameters>

 </cameraObject>

Parameters are the internal parameters of the camera.

3.2.3- '.gob' Files

This file structure is based on XML and it will be used for "GISObject" class. When user is creating a new

GISObject this file will be created along the internal GISObejct data and all changes will be inserted at

15

the time when there is a change. To open an existing GICObejct this file will be used. Main scheme of

this file structure can be seen at below.

 <GISObject>

 <name> GISObejct1 </name>

 <sources>

 <GISObjectPath> GISObjectPath1 </GISObjectPath>

 <GISObjectPath> GISObjectPath2 </GISObjectPath>

 <GISObjectPath> GISObjectPath3 </GISObjectPath>

 </sources>

 <products>

 <GISObjectPath> GISObjectPath1 </GISObjectPath>

 <GISObjectPath> GISObjectPath2 </GISObjectPath>

 </products>

 <baseImagePath> baseImage </baseImage>

 <parameters type = "GISImage">

 <param> param1 </param1>

 <param> param2 </param1>

 <param> param3 </param1>

 </parameters>

 </GISObject>

 Sources are the source GISObjects which are used for the creation of this GISObject and

products are the GISObjects which created from this GISObject. Parameters field contains the type of

the image. It can be "GISImage" , "GISDEM" , "GISOrthophoto" , "GISMosaic". According to this attribute

down casting of the GISObject can be made at when reading. Also other parameters will change

according to this attribute. For instance, a GISImage will contain the external parameters of the camera

but a GISDEM cannot hold this parameters.

16

4. Architectural Design

In Photokan, the modules are totally independent of each other even though they make use of each

other's products as can be observed from figure.4. This split allows modeling them without interfering

the other module's internals. Photokan is partitioned into 5 modules: Project manager, digital elevation

model extractor, orthophoto generator, mosaic maker, image processor. Project manager module

checks the dependencies, drives the other modules and harnesses the serialization facilities of project

and the contained objects.

Figure.4

The project data of Photokan is complex, and the processes that this data will go through are also

complex so separating the viewer from the data will certainly ease maintaining of the project. Also, as

can be observed from the figure, a graphical user interface is attached to every module which behaves

as the viewer.

The modules except for the project manager are all a product of the problem definition. The aim of the

project is creating a photogrammetry tool that will process given images and will obtain a mosaicked,

orthorectified big picture along with its elevation model. The fact that a sequential flow of processes is

17

present was harnessed to reduce the overall complexity and to obtain interchangeability of modules if

deemed necessary.

Another important point is the database of the Photokan. The project manager module houses the

project data which holds the objects belonging to the project scope. Every other module that will work

on a dataset obtains its input from the project manager. This centralized management also avoids

clashes.

5. Design of Program Interfaces
As mentioned before, Photokan provides an interface for every one of its modules. These interfaces are

graphical and provide the capability of driving the module and viewing its outputs. Use cases and activity

diagrams are provided to make the intent clearer,

5.1 Use Cases

The use cases give an overview of the usage of Photokan. Use cases for project manager, image

processor module, digital elevation extractor module, orthophoto generator module, mosaic maker

module.

i. Project Manager

Project manager provides the project manipulation, module driving, dependency checking functionality.

The figure is split into four parts since it is too big.

18

Figure.5.1 Project Manager use case

19

Figure.5.2 (cont.)

20

Figure.5.3 (cont.)

21

Figure.5.4 (cont.)

ii. DEM Extractor

Dem Extractor module extracts the digital elevation model.

Figure.5.5 DEM Extractor module use case

22

iii. DEM Displayer

DEM displayer module provides the option of viewing digital elevation models from different viewers.

Figure.5.6 DEM Displayer

iv. Mosaic Maker

Mosaic maker module provides the mosaic making capability given two images.

Figure.5.7 Mosaic maker module

v. Orthophoto Generator

Orthophoto generator module produces an orthorectified version of an image.

5.2 Activity Diagrams

Diagrams for major activities are provided.

5.2.1 Project Creation

Project creation scenario is considered.

23

Orthophoto Generator

Orthophoto generator module produces an orthorectified version of an image.

Figure.5.8 Orthophoto generator module

Diagrams for major activities are provided.

Project creation scenario is considered.

Figure.5.9 Project creation activity diagram

24

5.2.2 DEM Extraction

In DEM extraction the user may intervene to the procedure in order to make changes to the results of

image registration.

Figure.5.10 DEM Extraction

25

5.2.3 Orthophoto Generation

During orthophoto generation, the digital elevation model is needed. If the elevation model is not

currently generated, the user is directed to this phase first, otherwise the model is retrieved from the

database.

Figure.5.11 Orthophoto Generation

26

5.2.4 Help retrieval

Documenting the software is one of the most important aspects of software development, Photokan

provides indexed help and search capability to ease the burden on users.

Figure.5.11

6. Component Design Descriptions
Basically, Photokan is divided into 6 modules. The project manager module among these, drives the

other modules. During the startup an instance of it is created, the lifetime of the project manager spans

the program execution time. It must be noted that the user interface of project manager lies in a

separate class. This also holds for every other module. The user interfaces drive the modules by events

produced by the user which result in calls to corresponding methods. The trigger* methods in dialog and

window classes basically correspond to the fore mentioned feature and every module has a counterpart

of this methods which are named without the trigger prefix. The ProjectManager class contains one

instance of Project class (it manages only one project at a time). It can open every other module and

every request for project manipulation is directed over project manager.

6.1 ProjectManager Module

This class is the core of ProjectManager module. An instance of this class will be generated when

Photokan starts and it will exist till the end of the program. Actually this class is a simple controller. It

controls the project related data. All graphical user interface requests will be sent to this class and it will

call appropriate procedures. Besides that, it is the portal of other modules. For opening another module

27

user should send a request to this class. At this module, a use of model-view-controller design pattern

can be seen.

As data, it contains only an instance of the 'Project' class. It is a method container more than data

because it is a controller at all.

As functions; it contains project methods, camera methods and run methods of other classes. The GUI of

this module will be at interaction with this class only. All methods of them will actually call another

method simply.

6.1.1 Project Class

This class contains all data of the project. Other modules will use this class to see the existing 'GISObject'

instances. Every image, DEM, orthophoto or mosaic should be a member of a project for processing.

As data, it contains the name of the project, the working path, a default camera and pointers of other

GISObjects. As seen, there are four containers. Each one of them is for another type of GISObject. First

one is for images, second one is for DEMs, third one is for orthophotos and last one is for mosaics.

Other modules will use this class's methods to access or modify GISObjects. 'serialization' method of this

class will create a '.prj' file.

6.1.2 GISObject Class

This class is base class of all GISObjects like image, DEM, orthophoto or mosaic. Actually all this types

have some common properties; therefore we used this inheritance schema. Firstly all of them is a simple

image. Even DEM is a simple image with 1-band rather than 3-band like other ones. Secondly all of them

can be source of other GISObjects or products of other GISObjects. For instance a DEM is a product of

two images. An orthophoto is a product of DEM and an image. A mosaic can be a product of more than

one image or orthophoto and their corresponding DEMs.

When the bitmap data is requested by a module the data will be taken from hard disk and when a new

bitmap is given by a module it will be placed at hard disk. After that by delete method the memory

which was taken for bitmap data can be given back to CPU.

6.1.3 GISImage Class

This class is a super class of GISObject. Besides normal data it has the external parameters of the camera

and a camera object which contains internal parameters of camera.

6.1.4 CameraObject Class

This class is a container of internal parameters of a camera. Every project can have a default camera.

6.2 ImageProcessor Class

This class is the core of ImageProcessor module. It is a simple image editor at all. When the

openImageProcessor method of the ProjectManager class called an instance of this class will created. It

has access all the data and methods of the current project. Any GISObject of the current project can be

modified by operations of this class.

As data, it contains a pointer of the current project and a set of GISObject pointers which are opened at

ImageProcessor. It can open more than one image at one time. Operations will be applied on current

GISObject.

It has complex image processing methods like filter convolution besides simple operations like adjusting

brightness or contrast.

28

6.3 DEMExtractor Class

This class is the core of DEMExtractor module. It can access all data of the project. To put it simple, it will

take two GISImages and by using their parameters it will register second image to first image and then

extract the digital elevation model of the intersection region. For registering it will use static

ImageRegisterer class.

6.4 OrtophotoGenerator Class

This class is the core of OrtophotoGenerator module. It can access all data of the project. To put it

simple, it will take one GISImage and one GISDEM. By using the parameters of the GISImage it will

generate corresponding orthophoto of the given image.

6.5 MosaicMaker Class

This class is the core of MosaicMaker module. It can access all data of the project. To put it simple, it will

take two GISObjects and produce a GISMosaic. For the registering part as DEMExtractor module it will

use static ImageRegisterer class's methods.

6.6 DEMDisplayer Class

This class is the core of DEMDisplayer module. It can access all data of the project but it can not change

any of them. To put it simple, it will take one DEM and displays the area at different types. It can display

as a contour-based map, a color-based height map or a 3-D relief map. At 3-D relief map user can

explore or view the area by a free camera.

29

7. Component Design

The component diagrams are were partitioned into subsections in order to fit them on the report so

some connections are not shown deliberately.

7.1 Project Manager

The GISObject is not shown in order to avoid clutter.

Figure.7.1 Project Manager Component

30

7.2 DEM Extractor Module

GISDEM object was removed from the figure.

Figure.7.2 DEM Extractor Module

31

7.3 Mosaic Maker Module

GISObject and OkanPoint classes were removed from the diagram.

Figure.7.3 Mosaic Maker Module

7.4 Image Processor Module

Figure.7.4 Image Processor Module

32

Image processor module works independent of the other module’s workflow. The ROI class is a helper

class which defines a region of interest.

7.5 Output Objects

These objects are the basic outputs of modules. Their common properties were realized with

inheritance hierarchy. Main vectors holding up casted GISObjects exist in Project class.

Figure.7.5 Output objects’ class diagram

7.6 Helper Classes

These classes are used throughout the system. Basically, a wrapper class for matrices, point and region

of interest classes exist.

Figure.7.6 Helper classes

33

7.7 Image Viewer and Help Window

Image viewer is the frame in which images and their corresponding world data can be viewed.

Figure.7.7 Image Viewer and Help Window

8. Process Description

Data flow diagrams and state diagrams provide a basic view of the system and its dynamic properties.

8.1 Data Flow Diagrams

These data flows give an overview of the general data flow among processes. The details are left aside

since component design is already detailed and includes information about dynamic content.

Figure.8.1 Level 0 DFD

34

Figure.8.2 Level 1 DFD

35

8.2 Data Dictionary

Corresponding definitions are given for the term used in the data flow diagrams.

Name User Inputs

Where/how used Photokan (0) input

Description Every command that the user issues and every input the user supplies

Name Program Outputs

Where/how used Photokan (0) output

Description Every output that the program generates

Name PM Outputs

Where/how used Project Manager (1) output

Description The registration data generated by project manager

Name PM Data

Where/how used Project Manager (1) input

Description Every kind of information available in Project Data datastore

Name IP Data

Where/how used Image Processor (3) input

Description Image information available in Project Data datastore

Name IP Outputs

Where/how used Image Processor (3) output

Description Processed output image

Name PM Response

Where/how used Project Manager (2) output

GUI (1) input

Description The result of Project Manager operation

Name PM inputs

Where/how used Project Manager (2) input

GUI (1) output

Description The user command issued to the project manager

Name Image Operations

Where/how used Image Processor (3) input

36

GUI (1) output

Description The image to be processed along with the requested operation

Name IP Response

Where/how used Image Processor (3) output

GUI (1) input

Description The resulting image

Name DEM Inputs

Where/how used DEM Extractor (4) input

GUI (1) output

Description The user command issued to the DEM extractor

Name DEM Response

Where/how used DEM Extractor (4) output

GUI (1) input

Description The generated DEM representation

Name Orthophoto Inputs

Where/how used Orthophoto Generator (5) input

GUI (1) output

Description The issued command to the Orthophoto generator

Name Orthophoto Outputs

Where/how used Orthophoto Generator (5) output

GUI (1) input

Description The resulting image

Name Mosaicker Inputs

Where/how used Mosaicker (6) input

GUI (1) output

Description The issued command to the mosaicker

Name Mosaicker Outputs

Where/how used Mosaicker (6) output

GUI (1) input

Description The resulting combined image

37

Name M Outputs

Where/how used Mosaicker (6) output

Description The resulting mosaick which will be stored in the Project Data datastore

Name M Data

Where/how used Mosaicker (6) input

Description The images stored in the Project Data datastore and their registration info

Name OG Outputs

Where/how used Orthophoto Generator (5) output

Description The Orthophoto image to be stored in the Project Data datastore

Name OG Data

Where/how used Orthophoto Generator (5) input

Description The images stored in the Project Data datastore and their DEM data.

Name DE Outputs

Where/how used DEM Extractor (4) output

Description The generated DEM data to be stored in the datastore

Name DE Data

Where/how used DEM Extractor (4) input

Description The images stored in the datastore and their camera information

8.3 DEM Extraction Sequence Diagram

This diagram provides an overview of the run time aspects of the system. The other modules behavior

also almost fit to this pattern. The operator feedbacks are taken as much as possible to leave space to

the user to correct the mistakes.

9. Design Constraints

The design constraints can be partitioned into three classes. Time constraints exist since schedule is

fixed by syllabus of the course and performance constraints are a result of the nature of the problem.

9.1 Time Constraints

Since the time constraints are already predefined at the outline of the senior project, the project must

be completed by June and the prototype must be completed at the end of this semester as also defined

in the Gantt chart. For a healthy progression of the project, time constraints are vital for our group.

Minimizing potential risks that will harm the progression should only be avoided with a strict schedule.

38

Group members should be aware of their responsibilities for the project and arrange their timing

carefully for a successful final product.

Figure.8.3 DEM extraction sequence diagram

9.2 Performance Constraints

Large file sizes are a challenging area for our team during the project, so efficiency is a critical issue.

Team must cope with the efficiency problem and performance is a very important constraint. At each

phase of the project, performance must be carefully considered.

9.3 Software Constraints

Software resources are needed during the project. The software requirements that our team benefit are

open source components and the soft resources that we need for the project are mostly available on

open source communities. Team is planning to work on Linux environment but compatibility of all

environments is optional. Since we work on Linux environment, C++ meets our demands so team has

decided to use C++ programming language. The graphical user interface is implemented by using

wxWidgets Library. Rational Software Architect has been preferred for use case diagrams, activity

diagrams and UML diagrams. Smart Draw has been used for state diagrams and sequential diagrams.

Microsoft Office and Adobe Professional for documentation and Concept Draw for Gantt Chart are

frequently used by group members.

9.4 Hardware Constraints

To meet software constraints, hardware requirements must be carefully planned. Basic requirements

that have been estimated before are Pentium 4 or equivalent AMD processor, 512mb of ram, 1GB

available hard disc space. Hardware needed by the development environment doesn’t exceed the

39

hardware needed for the proper running of Photokan in computational power so the requirements

don’t vary amongst developers and users.

The requirements will not raise an issue since team members all have fast and reliable computers that

meet hardware demands. The computers in the department’s computer labs also offer us opportunities

to overcome possible hardware troubles.

10. Design Constraints
The team has a schedule defined as a Gantt chart. The schedule has milestones which are synchronized

with reports and the implementations. The current stage of the project can be viewed from the chart.

Also the roadmap is discussed in the future work.

a. Gantt chart

Figure.10.1 Updated Gantt chart

The Gantt chart was updated to reflect the current status of the project.

40

b. Future Work

Future work exists for both surveying the subjects and implementation.

10.2.1 Survey Topics

Since the project has started, Photokan has come a long way and the teams experience on softcopy

photogrammetry has been enriched as the project progressed but this is a huge research area so a limit

on survey topics can be determined. The members will widen their knowledge on digital elevation

model extraction and orthorectification. The current knowledge on image registration and mosaicking

should also be enriched with new methods since employing different methods for a problem is essential

in image processing in order to able to process large amounts of data of varying contexts. Photokan is

integrating the methods and experience in the area into solutions, so developing the theoretical

foundations, customizing and integrating the algorithms is a never ending work.

10.2.2 Implementation

While the current state of the implementation lacks implementation of some graphical user interface

elements, their design and style have been considered extensively. The future work is realizing these

concepts in the developed framework.

Another important point of consideration for optimization is image pyramids which result in huge gains

in speed. The image processing background of Photokan is supplied partly by OpenCV which provides

quick implementation of image pyramids. Image pyramids will be integrated into the data store

infrastructure (by making the pyramid generation the first step after an image is imported into the

project.)

The current codebase is amongst the candidates for improvement. The coding conventions have been

violated in certain places which needs revision. Design Choices

During the design phase, the team has strived to leave as much as space for flexibility in choices. The

needs were provided after surveying for viable alternatives.

11.1 Software and Implementation Environment Choices

One of the important software choices is choosing the operating system on which the program will be

hosted. We decided to use Linux operating system since the market lacks the photogrammetry tools for

Unix derivatives; also Linux is a much more reliable system than Windows, providing a solid ground.

While the primary target operating system is Linux, the team still strives to make the project cross

platform.

The team members are free in their choice of development environment as long as they do not break

the rules and the conventions.

As for the implementation environment, Photokan is written using C++ and makes use of the open

source libraries:

• OpenCV: An open source computer vision library and image processing library.

41

• ITK (Insight Toolkit): An image segmentation library specifically developed for medical

imaging but still applicable in other areas.

• wxWidgets: A graphical user interface library which also has other generic functionalities

such as string processing etc.

• GDAL (Geographical Data Abstraction Library): A library capable of loading almost all

geographical image file formats along with their world data files.

Another important thing is that the team has made decisions on conventions to provide a uniform

codebase. It was decided to use Sun Microsystems’ coding conventions
 [1]

.

11.2 Hardware Choices

Linux is capable of running on many known platforms so our hardware choices are bound by the Linux

operating system and the fore mentioned libraries. Photokan does not specifically require a hardware

but it is tested on Intel architecture and still a lower bound on computational power exists.

As for the team, members are free in their hardware choices for the development process. All members’

hardware satisfies the minimum requirements and in case a hardware problem occurs, the

department’s laboratories exist.

42

References

[1] http://java.sun.com/docs/codeconv/

