
 1

 MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CENG 491 - SENIOR PROJECT

FINAL DESIGN REPORT

 18.01.2008

 PREPARED BY

Aycan Tekerek 1347988 aycantekerek@gmail.com

Barış Yanar 1348093 barısyanar@gmail.com

Şeniz Yıldırım 1502814 senizyildirim@gmail.com

Wai Phyoe Maung 1368687 waiphyoe2003@gmail.com

 2

TABLE OF CONTENTS

1. INTRODUCTION... 4

 1.1. Background ... 4

 1.2. Project Redefinition .. 5

 1.3. Project Goals and Scope.. 8

 1.4. Design Goals ………………………………………………………………………...... 9

1.4.1 Ease of Use…………………………………………………………………....... 9

1.4.2 Consistency…………………………………………………………………...... 9

1.4.3 Interoperability and Portability…………………………………………...… 10

1.4.4 Security…………………………………………………………….………….. 10

 1.5 Design Constraints………………………………………………………….………... 11

1.5.1 Language Constraints………………………………………….…………….. 11

1.5.2 Experience & Skills of Members Constraints………………………………. 11

1.5.3 Time Constraints………………………………………………….………….. 11

1.5.4 Resource Constraints……………………………………………….………... 11

2. ARCHITECTURAL DESIGN.. 12

 2.1. System Modules and Overall Architecture.. 13

 2.2. Functional Design... 14

 2.2.1 Data Objects and Modeling………………………………………………….. 14

 2.2.2 Data Flow Diagrams…………………………………………………………. 21

 2.2.3 Data Dictionary………………………………………………………………. 26

 2.2.4 Database Design……………………………………………………………… 30

 2.3. Behavioral Design…………………………………………………………………. 46

 2.3.1. State Transition Diagram ……………………………………………...…… 46

3. SYSTEM DESIGN.. 47

 3.1. Use Case Diagrams and Description.. 47

 3.2. Class Diagram.. 55

 3.3. Sequence Diagrams ….. 64

 3.4. Activity Diagrams ….. 66

4. USER INTERFACE DESIGN... 74

 4.1 Main Page... 75

 4.2 Sign Up Pages.. 76

 4.3 User Profile Main Pages... 77

 3

 4.4 CV Creation Page.. 78

 4.5 Job Search Results Page.. 79

 4.6 Market Analysis Page.. 79

5. SYNTAX SPECIFICATION.. 80

6. TESTING ISSUES... 81

7. PROJECT SCHEDULE.. 82

 7.1. Project Task Set and Work Packages.. 82

 7.2. Gantt Chart... 89

8. APPENDIX………………………….. 90

9. REFERENCES…………………….. 90

 4

1. INTRODUCTION

This document is the final design report of our Project named as ĐSTEĐS. In the first

part of the document, you can find our Project definition, the names and descriptions of its

modules. Then we have discussed our general Project goals and scope, later we stated our

design goals and constraints. The second part explains our modules and overall architectural

design. We have drawn detailed Data Flow Diagrams, describe our data objects, data

dictionary and our database design, the behavioral design of our Project is also explained by

state transition diagram on this section. On the System Design level, you can see our updated

Use Case diagrams and scenarios. We have also put class, sequence and activity diagrams of

our system on this part. The upcoming part of the report is where we simply discussed and

showed the graphical user interfaces of our modules. Later, we explained our syntax

specification and testing issues. At the last part, you can see our work packages and

explanation of what we have done so far and what we have next on our Schedule. The

complete Project Schedule can be seen in appendix as a Gantt Chart.

1.1 Background

Today, internet is in every part of our lives. Every one of us without distinction of age,

sex etc. uses internet extensively. Due to this technological improvement, traditional ways of

doing many things have changed and are still changing. These days, we do shopping, pay our

bills on the internet, make reservations, take tickets, and even get educational degrees online.

Web services and applications make most of these possible.

Wikipedia defines Web services as a software system designed to support

interoperable Machine to Machine interaction over a network. Web services are frequently

just Web APIs that can be accessed over a network, such as the Internet, and executed on a

remote system hosting the requested services.[1] In recent years, web technology has made a

big progress and web services has started to been used in many different styles. Most popular

one of these styles today is Service Oriented Architecture (SOA).

“SOA is an architectural style for building software applications that use services

available in a network such as the web. SOA enables businesses to leverage existing

investments by allowing them to reuse existing applications, and provides interoperability

 5

between different applications and technologies.”[2] Service-oriented architecture is a hot

topic in enterprise computing. Because especially a web services – based SOA has the

potential of dramatically speeding up the application development process. It is also a way to

build applications and systems that are more adaptable then systems become more agile in

responding to changing business needs. SOA is clearly the wave of the future.

We are building an online portal using web services – based Service Oriented

Architecture. SoftwareAG which is one of the leader companies in SOA solutions is our

supporting company in this Project.

1.2 Project Redefinition

Our Project is a gateway portal where we will be able to get together both job seekers

and job providers in cooperation with career web pages. Essentially, our Project will act as

traffic driver to those career web sites. Simply, a job seeker can become a member of our

portal and leave his/her CV and do job searches within all offers from our source career web

pages and apply any of them. While a job provider company can publish their vacant

positions on any of our cooperating career web sites by having a membership of both our

portal and the subjected career web page. And also they can search employees from the CV

pools of the source web sites on which they also have an account. Because we have two types

of external users and our administrators as internal users, we have to consider the services that

we provide for our users on our portal in three different categories. There will be services for

job seekers and similar or different services for job providers, employer companies and

services for system administrators to manage the portal. To give these services to our portal’s

users, we need services from our cooperating career web pages. These needed services are

basically data insertion, selection and update services on their databases, the statistical data

and their interpretation.

Our portal will run on a membership system for real users. At first, both job seekers

and providers have to have an account to use our portal. TC Kimlik No validation for all users

and also Vergi Kimlik No validation for companies will be made before any account is

activated. And we are not planning to charge any fees from job seeker users but job providers

have to pay a little membership fee to have an account on our portal.

The services that we will offer for job providers can be listed as:

 6

Payment Module:

We need this module for both taking the membership fees from job provider users to

have an account on our portal and transferring the membership fees of chosen career web

pages by employer companies to work with and publish their job offers. At this point, we are

simply thinking of informing employer companies about what information we need from

them on this payment action and how much they need to pay, and then we provide a bank

account number that they can transfer total membership fees for both our portal and any

career web page that they want to become a member of. After this transfer, we will be

transferring the amount that is needed for a membership on the corresponding career web

page to this web sites bank account that we would already arrange with this career web page.

The administrator users of our system will be in control of all these actions.

Publish Site Selection Module:

This module allows our job provider users to select on which cooperating career web

sites they publish their job offers. To help employer companies on their choice we will have a

section where we compare these career pages on different categories such as; membership

fees, extra services they provide, the statistics of their preference by job seekers, numbers of

positioned job seekers to published offers on their web sites. And then we will grade each

career web site on these categories. We think this service helps job providers and decreases

the time spent on this decision.

Employee Search Module:

By this module job providers can search employee having the properties that they

want on different categories through the job seeker information pools of the cooperating

career web pages on which they have a membership.

Information Module:

Our member employer companies will be informed of any change or improvement

made on our portal or career web sites services. Also, they can see if there is any application

to their published job offers and who did these applications. Moreover, this module will

inform job provider users about their membership statuses of both our portal and cooperating

career web page.

 7

The services that we will provide for job seekers can be categorized as:

Job Search Module:

By this module job seekers can search job offers on our portal, and see all resulting

offers with the related search tags gathered from all career web sites that we are working with.

They can see the published offer as it is given to the career web site with the reference of the

subjected career web page.

Job Application Module:

This module allows Job seekers leave their CVs in the forms word or PDF documents,

videos or the standard form that we provide for them. We will be sending all these

information to each career web site that we will be working with. Applications to the jobs that

they choose will be made according to related career web sites' ways which is preceded as it is

on our portal.

Information Module:

We will inform our job seeking members with offers made to them and new job offers

published on any career site that is in cooperation with our portal. We will also planning to

show job seekers different job opportunities from those that they are looking for according to

their skills, experience. Moreover, most popular and preferable jobs, positions and companies

will be listed on our portal. Their application status will also be sent by e-mail to them.

Feedback Module:

This module will get into action after positioning of any job seeker occurs. We will

send polls to job seekers to get the feedback of the process. These polls will contain questions

about our portal considering such as the ease of use, any lacking properties or services. The

referring career web site will also be questioned about their services, etc.

For management and control of our system, we provide services for our system administrator

users. These are:

User Management Module:

System administrators of our system can add or delete users, the addition of users is

limited to the new system administrators and the job provider companies that paid the

 8

membership fee of our portal. However, deletion can be applied to all kinds of users such as

job seekers who does not use their account for a long time period or job provider companies

which do not renew their membership on our portal and want the deletion of their accounts.

Moreover any problem regarding user ids or passwords of our members will be solved by our

system administrators. The informing of each user about their status or announcements is also

controlled by administrators.

Poll Management Module:

Poll management process consists of adding/updating/deleting polls, sending the polls

to the related users, gathering the poll results and making comments out of them and updating

the related parts of the system according to those comments.

Commercial Adds Management Module:

We will be taking and publishing commercial adds on our portal. These ads’ addition

to system, arrangement, publishment, deletion will be made by system administrators. The

seen adds will be changed according to the user type on our portal. For example; we will be

showing different ads to job seekers and job providers cause they may generally be interested

in different products.

 The basic architecture of the project is SOA and all the communications with the

cooperating career web pages will be made through the web services that these web sites

provide us.

1.3 Project Goals and Scope

Our goal in this Project is to develop a portal which makes job and employee finding

processes much easier and less time consuming. Our portal will prevent job seekers to search

all career web pages and do the same create an account, upload a CV, search job offers, and

apply to job procedure. Also it will simplify finding a career we site to publish offers or

searching employee processes for job providers.

Besides, on doing this Project we have goals like;

• building a web based service oriented architecture

• completing web portal at the end of 7 months.

 9

• creating a portal which is interactive, easy to use, efficient and visually

attractive.

The scope of this Project is providing a methodology and guideline to build a gateway

portal integrating many services from different sides. Because this integration idea can be

used in applications in many different sectors. This Project will help developers in;

• Proposal of a web – based Project,

• Analysis and documentation of current gateway portal applications,

• Specification of a detailed user, system and developer requirements,

• Design of an appropriate system having necessary properties,

• Implementation of Service Oriented Architecture and Web Services on Project.

1.4 Design Goals

Besides general Project goals, we have design goals for our portal. Our Project is web

– based SOA application so it has to have this specific architecture’s design principles.

Interoperability, portability, modularity and reusability are the main properties of a SOA

based applications. Moreover, our platform has Web Services layer, this component makes

security is an important issue for our Project. Ease of use and consistency are other important

design issues of a system.

1.4.1 Ease of Use:

Our portal will be user-friendly; clear, sightly, and not subsuming useless structures. If

a visitor encounters pages, links, animations and popups much more than adequate it will

create a bad impression, which is undesirable. Also the pages and menus will be designed

well. Priority functions like login, sign up, and search should be more striking to obtain the

user-friendliness and clearness.

1.4.2 Consistency:

Our portal should be able to manage invalid user inputs or inconsistent conditions. It

provides error checking to ensure the right input format and returns errors and warnings to the

user.

 10

1.4.3 Interoperability and Portability:

Interoperability is the most important principle of SOA. This principle allows different

distributed web services to run on a variety of software platforms and hardware architectures.

Our portal will be operating with different career web pages and all these web pages can have

different platforms, so it has to be interoperable. Moreover, our system is going to be software

and hardware independent. The internet connection will be sufficient to access and use our

portal.

1.4.4 Security:

Web services provide significant new benefits for SOA-based applications, but they

also expose significant new security risks. Creating and managing a secure Web services

environment involves dealing with various Internet, XML, and Web services security

mechanisms. So, we are building a web service based SOA application and we will be storing

many important personal information on our portal, we will be taking into account below

security issues:

• Transport-level security such as firewalls, virtual private networks, basic

authentication, non-repudiation, and encryption.

• Message-level security such as using authentication tokens to validate

requester identity and authorization assertions to control access to provider

services.

• Data-level security such as encryption and digital signature to protect against

altering stored and/or transmitted data.

• Environment-level security such as management, logging, and auditing to

identify problems that need to be fixed and establishing trusted relationships

and communication patterns.

For securely transferring data, we are planning to use https protocol instead of http.

Https is an updated version of http which is combined with SSL (Secure Socket Layer). SSL

provides cryptographic system with two encrypted keys, one public key and a private key

which is only known to recipient. In consideration of environment-level security the user

management will be done by our administrator users. Every user on the portal will be allowed

to see only his/her information.

 11

1.5 Design Constraints

1.5.1 Language Constraints

Our Project will be built based on Web Services and AJAX Technologies and we are

going to do the development in java on the tools provided for us by our supporting company

SoftwareAG. WebMethods Integration Server is used to design and integrate our services.

1.5.2 Experience & Skills of Members Constraints

Although, we have some experience on programming and design, our capabilities are

restricted. Web Services and Service Oriented Architecture concepts are new to all of our

Project members. Also, we are going to work on development tools that we have not used

before, so we will have unexpected problems considering both the architecture and

development tools throughout the Project. However, we have a supporting company on this

Project, in any problem we have experienced people to consult and get help from.

1.5.3 Time Constraints

The most important constraint on our Project is the time constraint. We have to finish

our portal by June and also we should provide a prototype at the end of this semester. We

have strict Schedule consisting of determined milestones. We have to follow this program and

at the end finish our Project in time. Any time loss can cause us to be left behind Schedule

and it will be so hard to compensate this loss.

1.5.4 Resource Constraints

We explained that we were going to use WebMethods Integration Server and

Application Designer tools of SoftwareAG to develop our Project. Both these tools have their

own hardware and software requirements. We will be working with WebMethods Integration

tool on a virtual machine set up by Vmware software. Application Designer can be embedded

into Eclipse development environment. We have to had installed and made necessary

adjustments on these software before starting to develop our Project. For hardware we need

PCs has properties: 1Gz or higher CPU, 512 MB main memory, TCP/IP connection.

 12

2. ARCHITECTURAL DESIGN

2.1 System Modules and Overall Architecture

Our project, isteis, provides and demands web services, and requires Enterprise

Service Bus (ESB) for integration of data and applications with our trading partners. Briefly,

it is an implementation of Service Oriented Architecture (SOA). SOA is a specific

architectural style that is concerned with loose coupling and dynamic binding between

services. Below is the infrastructure of SOA.

Here, WSDL, UDDI, and SOAP are the fundamental pieces of the SOA infrastructure.

WSDL is used to describe the service; UDDI, to register and look up the service; and SOAP,

as a transport layer to send messages between service consumer and service provider.

We have discussed our modules in problem definition section. Those are namely:

• Payment Module

• Publish Site Selection Module

• Employee Search Module

• Information Module for our member employer companies and,

• Job Search Module

• Job Application Module

• Information Module

• Feedback Module for our portal’s job seeker users.

• User Management Module

• Poll Management Module

• Commercial Adds for our system administrator users.

 13

2.2 Structure Chart of the System

 14

2.3 Functional Design

2.3.1 Data Objects and Modellig

Entity Sets

Career Site

ID# Site Name

Job Seeker

ID# Name Last

Name
Username Password e-

Mail
1

e-
Mail

2

Father’s
Name

Birth
date

Secret
Question

Secret
Answer

Employer

ID#

Job Provider

ID# Career

Site
ID#

Company
Name

Applicant’s
Full Name

Applicant’s
Position

Phone# Country Province City District

Address Sector Employee# Username Password Secret

Question
Secret

Answer

Polls

ID Poll_ID Vote

CV

Personal Information

Educational Information

Seeker ID# Education

Level
Status Graduation

Date
Department School

Seeker
ID#

Gender Phone# Mobile
Phone#

TC
Identity

Military
Service
Status

Marital
Status

Country Province District

 15

Work Experience Information

Seeker ID# Company

Name
Business
Sector

Work Area City/Country Start
Date

End
Date

Language Information

Computer Programs

Seeker ID# Program Name Knowledge Level

Programming Languages

Seeker ID# Language Name Knowledge Level

Operating / Network Systems

Seeker ID# System Name Knowledge Level

Databases

Seeker ID# DBMS Name Knowledge Level

Institutional Software

Seeker ID# Software Name Knowledge Level

Office Utilities

Seeker ID# Utility Name

Certificate Information

Seeker ID# Certificate Name Date Institution

Seminar Information

Seeker ID# Seminar Name Institution Duration Date

Examinations

Seeker ID# Examination
Name

Examination
Grade

Institution Date

References

Seeker ID# Language
Name

Reading
Level

Writing
Level

Speaking
Level

Place
Learned

 16

Seeker
ID#

Reference’s
Name

Reference’s
Last Name

Company Position Phone e-
Mail

Reference
Type

ER Diagrams

Job Seekers

Job Providers

id

name

last_nam
e

username

password

e-Mail1

e-Mail2

father_name

birthdate

secret_question

secret_answer

Works_In

id

company_name

applicant_name

applicant_position

phone

country

province

city

district

address

sector

employee#

username

password

secret question

secret answer

Career Sites

Works_With

 17

Poll

…poll_id… vote

Has Personal Info

Job Seekers Job Providers Voted

Job Seekers

phone

mobile phone

tc_identity#

military_service

marital status

country

province

district

gender

 18

Job Seekers Worked
In

Companies

Job Seekers Educated
In

Schools

school_level

status

graduation_date

department

school

company_name

business_sector

work_area

city/country

start_date

end_date

Job Seekers Speaks Languages

language_name

reading_level

writing_level

speaking_level

place_learned

Job Seekers Uses Computer
Programs program_name

program_level

 19

Job Seekers Programs
With

Programming
Languages pl_name

pl_level

Job Seekers Programs
With

DBMS dbms_name

dbms_level

Job Seekers Uses Institutional
Software software_name

software_level

Job Seekers Uses Office Utility

utility_name

Job Seekers Certified
with

Certificate

certificate_institution

certificate_date

certificate_name

Job Seekers Uses Operating/Net
work Systems system_name

system_level

 20

Job Seekers Took
Exam

Examinations

examination_name

examination_grade

examination_instituti
on

examination_date

Job Seekers Took
Seminar

Seminars

seminar_name

seminar_institution

seminar_duration

seminar_date

Job Seekers Has
Reference

References

reference_name

reference_lastname

reference_company

reference_position

reference_phone
reference_e-mail reference_type

 21

2.3.2 Data Flow Diagrams

a. DFD : Level 0

b. DFD : Level 1 for “ĐSTEĐS”

 22

c. DFD : Level 2 Sign Up 1.1

d. DFD : Level 3 Seeker Sign Up 2.1

 23

e. DFD : Level 3 Provider Sign Up 2.2

f. DFD : Level 3 Admin Sign Up 2.3

g. DFD : Level 2 Login 1.4

 24

h. DFD : Level 2 Process for user 1.3

seeker_process

2.1

provider_process

2.2

update_data

update_data

access_dataaccess_data

career_in

career_out

career_in

career_out

c_user

c_user

pro_out

pro_out

admin_process

2.3pro_out

update_data

access_data

career_out

career_in

c_user

i. DFD : Level 3 seeker_process 2.1

update_pro

file

3.1

update_cv

3.2

search_job

3.3

apply_job

3.4

do_poll

3.5

log_off

3.6

upd_profile

upd_cv

pro_out

pro_out

pro_out
career_out

career_in

pro_out

pro_out

access_data

upd_poll

access_data

career_out pro_out

 25

j. DFD : Level 3 provider_process 2.2

update_pro

file

3.1

leave_job

3.2

search_seeker

3.3

do_poll

3.5

upd_profile

upd_data

pro_out

pro_out

pro_out

career_out

career_in

pro_out

access_data

upd_poll

access_data

access_data

career_out

access_data
accept_seeker

3.4
pro_out

upd_data

log_off

3.6career_out pro_out

k. DFD : Level 3 admin_process 2.3

 26

l. DFD : Level 2 Process Output 1.5

2.3.3 Data Dictionary

 Data Dictionary for Data Flow Diagrams of our Project.

Name S_info

Input Our Project

Output Job Seeker

Description Information of job seeker for sign up and login

Name P_info

Input Our Project

Output Job Provider

Description Information of job provider for sign up and login

Name Ad_info

Input Our Project

Output Admin

Description Information of Administrator user for s ign up and login

 27

Name seeker_cvs

Input Job Provider

Output Process Output

Description CVs of job seekers

Name Display_data

Input Monitor

Output Process Output

Description Displayed data on the monitor

Name acceptant_info

Input Job Seeker

Output Process Output

Description Information or email telling job seeker that the company

accepts or offers a position to the him/her.

Name career_in

Input Career

Output Process for users

Description Information sent to the career web pages.

Name career_out

Input Process for users

Output Career

Description Accessed information from the career web pages.

 28

Name Sign_up_info

Input Data for user

Output Sign Up

Description Sign up information sent to database

Name check_info

Input Checking

Output Sign Up

Description Information to check that user is already existing in

database

Name reply_check

Input Sign Up

Output Checking

Description Result of the checking process

Name s_display

Input Sign Up

Output Process Output

Description Result of sign up process to be displayed in the monitor

Name Data_out

Input Data for users

Output Checking

Description Data selected from the database to do checking

Name access_data

Input Process for user

 29

Output Data for users

Description Accessed data from the database such as current user

information, search result, etc

Name update_data

Input Data for users

Output Process for user

Description Data to be updated in the database

Name c_user

Input Process for user

Output Checking

Description Pointer of the user

Name check_reply

Input Process output

Output Checking

Description Result of the checking process to be displayed in the

monitor

Name pro_out

Input Process for user

Output Process output

Description Data to be shown in the monitor and to be sent to the user

 30

2.3.4 Database Design

 Below are our database tables, data attributes and sql statements.

Career_Site

Data Type and Size Format
id INTEGER Number
site_name VARCHAR - 60 Text

Career_Site.sql

CREATE TABLE Career_Site (

id INTEGER NOT NULL,
site_name VARCHAR(60) NOT NULL,

PRIMARY KEY(id),
FOREIGN KEY (id) REFERENCES Job_Provider (id),
);

Job_Seeker

Data Type and Size Format
id INTEGER Number
name VARCHAR – 20 Text
last_name VARCHAR -10 Text
username VARCHAR – 20 Text
password VARCHAR – 20 Text
e-mail_1 VARCHAR – 30 Text
e-mail_2 VARCHAR – 30 Text
father_name VARCHAR – 30 Text
birthdate DATETIME Date/Time
secret_question VARCHAR – 100 Text
secret_answer VARCHAR – 100 Text
employer_id INTEGER Number

Job_Seeker.sql

CREATE TABLE Job_Seeker (

id INTEGER NOT NULL,
name VARCHAR(20) NOT NULL,
last_name VARCHAR(10) NOT NULL,
username VARCHAR(20) NOT NULL,
password VARCHAR(20) NOT NULL,
e-mail_1 VARCHAR(30) NOT NULL,

 31

e-mail_2 VARCHAR(20),
father_name VARCHAR(30) NOT NULL,
birthdate TIMESTAMP NOT NULL,
secret_question VARCHAR(100) NOT NULL,
secret_answer VARCHAR(100) NOT NULL,
employer_id INTEGER,

PRIMARY KEY(id),

);

Job_Provider

Data Type and Size Format
id INTEGER Number
career_site_id INTEGER Number
company_name VARCHAR – 30 Text
applicant_full_name VARCHAR – 30 Text
applicant_position VARCHAR – 30 Text
phone_no VARCHAR – 20 Text
country VARCHAR – 20 Text
province VARCHAR – 20 Text
city VARCHAR – 20 Text
district VARCHAR – 20 Text
address VARCHAR – 60 Text
sector VARCHAR – 20 Text
employee_no INTEGER Number
username VARCHAR – 20 Text
password VARCHAR – 20 Text
secret_question VARCHAR – 100 Text
secret_answer VARCHAR – 100 Text

Job_Provider.sql

CREATE TABLE Job_Provider (

id INTEGER NOT NULL,
career_site_id INTEGER,
company_name VARCHAR(30) NOT NULL,
applicant_full_name VARCHAR(30) NOT NULL,
applicant_position VARCHAR(30) NOT NULL,
phone_no VARCHAR(20) NOT NULL,
country VARCHAR(20) NOT NULL,
province VARCHAR(20),
city VARCHAR(30) NOT NULL,
district VARCHAR(30),
address VARCHAR(60) NOT NULL,
sector VARCHAR(20) NOT NULL,
employee_no INTEGER,
username VARCHAR(20) NOT NULL,

 32

password VARCHAR(20) NOT NULL,
secret_question VARCHAR(100) NOT NULL,
secret_answer VARCHAR(100) NOT NULL,

PRIMARY KEY(id),

);

Personal_Information

Data Type and Size Format
seeker_id INTEGER Number
gender VARCHAR – 5 Text
phone_no VARCHAR – 20 Text
mobile_no. VARCHAR – 20 Text
tc_no INTEGER Number
military_status VARCHAR – 10 Text
marital_status VARCHAR – 10 Text
country VARCHAR – 20 Text
province VARCHAR – 20 Text
district VARCHAR – 20 Text

Personal_Information.sql

CREATE TABLE Personal_Information (

seeker_id INTEGER NOT NULL,
gender VARCHAR(5) NOT NULL,
phone_no VARCHAR(20) NOT NULL,
mobile_no VARCHAR(20) NOT NULL,
tc_no INTEGER NOT NULL,
military_status VARCHAR(10) NOT NULL,
marital_status VARCHAR(10) NOT NULL,
country VARCHAR(20) NOT NULL,
province VARCHAR(20),
district VARCHAR(20) NOT NULL,

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Educational_Information

Data Type and Size Format
seeker_id INTEGER Number
education_level VARCHAR – 20 Text
status VARCHAR – 20 Text

 33

graduation_date DATETIME Date/Time
department VARCHAR – 20 Text
school VARCHAR – 30 Text

Educational_Information.sql

CREATE TABLE Educational_Information (

seeker_id INTEGER NOT NULL,
education_level VARCHAR(20) NOT NULL,
status VARCHAR(20) NOT NULL,
graduation_date TIMESTAMP NOT NULL,
department VARCHAR(20) NOT NULL,
school VARCHAR(30) NOT NULL,

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Work_Experience_Information

Data Type and Size Format
seeker_id INTEGER Number
company_name VARCHAR – 30 Text
business_sector VARCHAR – 20 Text
work_area VARCHAR – 20 Text
city_country VARCHAR – 40 Text
start_date DATETIME Date/Time
end_date DATETIME Date/Time

Work_Experience_Information.sql

CREATE TABLE Work_Experience_Information (

seeker_id INTEGER NOT NULL,
company_name VARCHAR(30),
business_sector VARCHAR(20),
work_area VARCHAR(20),
city_country VARCHAR(40),
start_date TIMESTAMP,
end_date TIMESTAMP,

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

 34

Language_Information

Data Type and Size Format
seeker_id INTEGER Number
language_name VARCHAR – 40 Text
reading_level VARCHAR – 10 Text
writing_level VARCHAR – 10 Text
speaking_level VARCHAR – 10 Text
place_learned VARCHAR – 20 Text

Language_Information.sql

CREATE TABLE Language_Information (

seeker_id INTEGER NOT NULL,
language_name VARCHAR(40) NOT NULL,
reading_level VARCHAR(10) NOT NULL,
writing_level VARCHAR(10) NOT NULL,
speaking_level VARCHAR(10) NOT NULL,
place_learned VARCHAR(20),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Computer_Programs

Data Type and Size Format
seeker_id INTEGER Number
program_name VARCHAR – 20 Text
knowledge_level VARCHAR – 10 Text

Computer_Programs.sql

CREATE TABLE Computer_Programs (

seeker_id INTEGER NOT NULL,
program_name VARCHAR(20) NOT NULL,
knowledge_level VARCHAR(10) NOT NULL,

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

 35

Programming_Languages

Data Type and Size Format
seeker_id INTEGER Number
language_name VARCHAR – 20 Text
knowledge_level VARCHAR – 10 Text

Programming_Languages.sql

CREATE TABLE Programming_Languages (

seeker_id INTEGER NOT NULL,
language_name VARCHAR(20),
knowledge_level VARCHAR(10),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Operating _Network_Systems

Data Type and Size Format
seeker_id INTEGER Number
system_name VARCHAR – 20 Text
knowledge_level VARCHAR – 10 Text

Operating_Network_Systems.sql

CREATE TABLE Operating_Network_Systems (

seeker_id INTEGER NOT NULL,
system_name VARCHAR(20),
knowledge_level VARCHAR(10),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Databases

Data Type and Size Format
seeker_id INTEGER Number
DBMS_name VARCHAR – 20 Text
knowledge_level VARCHAR – 10 Text

 36

Databases.sql

CREATE TABLE Databases (

seeker_id INTEGER NOT NULL,
DBMS_name VARCHAR(20),
knowledge_level VARCHAR(10),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Institutional_Software

Data Type and Size Format
seeker_id INTEGER Number
software_name VARCHAR – 20 Text
knowledge_level VARCHAR – 10 Text

Institutional_Software.sql

CREATE TABLE Institutional_Software (

seeker_id INTEGER NOT NULL,
software_name VARCHAR(20),
knowledge VARCHAR(10),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Office_Utilities

Data Type and Size Format
seeker_id INTEGER Number
utility_name VARCHAR – 20 Text

Office_Utilities.sql

CREATE TABLE Office_Utilities (

seeker_id INTEGER NOT NULL,
utility_name VARCHAR(20),

 37

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Certificate_Information

Data Type and Size Format
seeker_id INTEGER Number
certificate_name VARCHAR – 30 Text
date DATETIME Date/Time
institution VARCHAR – 20 Text

Certificate_Information.sql

CREATE TABLE Certificate_Information (

seeker_id INTEGER NOT NULL,
certificate_name VARCHAR(30),
date TIMESTAMP,
institution VARCHAR(20),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Seminar_Information

Data Type and Size Format
seeker_id INTEGER Number
certificate_name VARCHAR – 30 Text
date DATETIME Date/Time
institution VARCHAR – 20 Text

Seminar_Information.sql

CREATE TABLE Seminar_Information (

seeker_id INTEGER NOT NULL,
certificate_name VARCHAR(30),
date TIMESTAMP,
institution VARCHAR(20),

 38

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

Examinations

Data Type and Size Format
seker_id INTEGER Number
examination_name VARCHAR – 20 Text
examination_grade VARCHAR – 5 Text
institution VARCHAR – 20 Text
date DATETIME Date/Time

Examinations.sql

CREATE TABLE Examinations (

seeker_id INTEGER NOT NULL,
examination_name VARCHAR(20),
examination_grade VARCHAR(5),
institution VARCHAR(20),
date TIMESTAMP,

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

References

Data Type and Size Format
seeker_id INTEGER Number
reference_name VARCHAR – 20 Text
reference_last_name VARCHAR – 10 Text
company VARCHAR – 30 Text
position VARCHAR – 30 Text
phone VARCHAR – 20 Text
e-mail VARCHAR – 30 Text
reference_type VARCHAR – 20 Text

References.sql

CREATE TABLE References (

 39

seeker_id INTEGER NOT NULL,
reference_name VARCHAR(20),
reference_last_name VARCHAR(10),
company VARCHAR(30),
position VARCHAR(30),
phone VARCHAR(20),
e-mail VARCHAR(30),
reference_type VARCHAR(20),

PRIMARY KEY(seeker_id),
FOREIGN KEY (seeker_id) REFERENCES Job_Seeker (id),

);

XML Schema Definitions

seekers.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 This document is the XML Schema of a Job Seeker
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Seeker">
 <xsd:element name="id" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="name" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="last_name" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="username" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="password" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="email1" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="email2" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="fathername" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="birthdate" type="xsd:date" minOccurs="1"
maxOccurs="1"/>

 40

 <xsd:element name="secret_question" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="secret_answer" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 </xsd:element>
</xsd:schema>

providers.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 This document is the XML Schema of a Job Provider
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Seeker">
 <xsd:element name="id" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="company_name" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="applicant_name" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="applicant_position" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="phone" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="country" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="province" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="city" type="xsd:string" minO ccurs="1"
maxOccurs="1"/>
 <xsd:element name="district" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="address" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="sector" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="employee#" type="xsd:integer" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="username" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="password" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 <xsd:element name="secret_question" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="secret_answer" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 </xsd:element>
</xsd:schema>

cv.xsd:

<?xml version="1.0" encoding="UTF-8"?>

 41

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 This document is the XML Schema of a CV
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="CV">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="personal" ref="personalType"/>
 <xsd:element name="school" ref="schoolType"
maxOccurs="unbounded"/>
 <xsd:element name="company" ref="companyType"
maxOccurs="unbounded" />
 <xsd:element name="language" ref="languageType"
maxOccurs="unbounded"/>
 <xsd:element name="program" ref="programType"
maxOccurs="unbounded"/>
 <xsd:element name="pl" ref="plType" maxOccurs=" unbounded"/>
 <xsd:element name="dbms" ref="dbmsType"
maxOccurs="unbounded"/>
 <xsd:element name="software" ref="softwareType"
maxOccurs="unbounded"/>
 <xsd:element name="certificate" ref="certificateType"
maxOccurs="unbounded"/>
 <xsd:element name="utility" type="xsd:string"
maxOccurs="unbounded"/>
 <xsd:element name="os" ref="osType" maxOccurs="unbounded"/>
 <xsd:element name="seminar" ref="seminarType"
maxOccurs="unbounded"/>
 <xsd:element name="reference" ref="referenceType"
maxOccurs="unbounded"/>
 <xsd:element name="examination" ref="examinationType"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="personalType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="gender" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="phone" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="mobile_phone" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="tc_identity#" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="marital_status" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="country" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="province" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="district" type="xsd:string" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="schoolType">
 <xsd:complexType>
 <xsd:sequence>

 42

 <xsd:element name="school_level" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="status" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="graduation_date" type="xsd:date"
maxOccurs="1"/>
 <xsd:element name="department" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="school" type="xsd:string" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="companyType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="company_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="business_sector" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="work_area" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="city/country" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="start_date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="end_date" type="xsd:date" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="languageType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="language_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reading_level" type="xsd:integer"
maxOccurs="1"/>
 <xsd:element name="writing_level" type="xsd:integer"
maxOccurs="1"/>
 <xsd:element name="speaking_level" type="xsd:integer"
maxOccurs="1"/>
 <xsd:element name="place_learned" type="xsd:string"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="programType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="program_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="program_level" type="xsd:integer"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="plType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="pl_name" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="pl_level" type="xsd:integer" maxOccurs="1"/>

 43

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="dbmsType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="dbms_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="dbms_level" type="xsd:integer"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="softwareType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="software_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="software_level" type="xsd:integer"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="osType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="os_name" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="os_level" type="xsd:integer" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="certificateType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="certificate_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="certificate_institution" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="certificate_date" type="xsd:date"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="seminarType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="seminar_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="seminar_institution" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="seminar_duration" type="xsd:integer"
maxOccurs="1"/>
 <xsd:element name="seminar_date" type="xsd:date"
maxOccurs="1"/>
 </xsd:sequence>

 44

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="referenceType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="reference_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_lastname" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_company" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_position" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_phone" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_email" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="reference_type" type="xsd:string"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="examinationType">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="examination_name" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="examination_institution" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="examination_grade" type="xsd:string"
maxOccurs="1"/>
 <xsd:element name="examination_date" type="xsd:date"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

polls.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 This document is the XML Schema of a Poll
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Poll">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="vote" ref="Votes" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 45

 </xsd:element>

 <xsd:complexType name="Votes">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="votestring" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

 46

2.4 Behavioral Design

2.4.1 State Transition Diagram

 47

As you can see in the above figure, there are two main session in the system, inactive

and active sessions. First of all, the user have to create account and identify the user name and

password to log in to the system. If the identification is invalid, the user can not pass to active

system and the system is still in inactive status and waiting for the correct identification. If the

system gets the valid identification, then it lets the user pass to the active status.

There are three main sessions in active system, “Job Seeker Session”, “Job Provider

Session” and “Admin Session”. The system can specify the type of the user by the input

identification value and allow the access to the appropriate functions according to the user

type. As shown in the figure, job seeker can update profile, update cv, apply job and search

job , while job provider can update profile, leave job and search employee and accept job

seeker. The administrator can add new admin user to the system, delete user, add source

career web pages and delete these pages, post mail to all kinds of users and post commercial

advertisements on to portal. Since these functions are cooperating with database and career

web pages, so next sessions are update database and access to career web page sessions. In the

update database, if the system gets the valid input and valid command, it will access to the

database of the portal and do the appropriate work. If the system gets the valid command and

input to access the career web site, then it will connect to the career web page services and do

the appropriate job.

3. SYSTEM DESIGN

3.1 Use Case Diagrams and Description

We have grouped use cases according to our user groups : Job Seekers and Job

Providers and our System Administrators.

Job Seeker Use Cases

The set of activities or functions performed by a job seeker on our portal are listed

below.

A job Seeker can ,

• Sign up and then log in to our portal.

• Log off from system.

• Create a profile and update it in time.

 48

• Create or upload CV in any format (video , .doc , standard form)

• Search through job offers

• Apply to a position

• Take our evaluation polls

Use Case Diagram for Job Seeker on our Portal

Job Provider Use Cases

The activities of other user group of our portal , Job Providers can be listed as ;

A Job Provider can

• Sign up to our portal by paying the membership fee.

• Log off from system.

• Log in and then create a profile with necessary information.

• Update profile informations

 49

• Choose career web site to become a member and publish job offers.

• Pay the fee of the career web site that is chosen.

• Search through job seekers to find appropriate employer.

• See job seekers applied to their published job offers.

Use Case Diagram for Job Provider on our Portal

Job Provider

Main Page

Sign Up Log In

Menu Page

Create or Update

Profile
PaymentChoose Career Publish Job Offer Log OffSearch Job Seeker Accept Employee Polling

System Administrator Use Cases:

 The activities of this user group of our portal can be listed as ;

A System Administrator can

• Sign up (this action is done by other administrator at first) and Log in to system.

• Log off from system.

• Create or update profile.

• Add (any system administrator) / Delete user.

• Add / Delete member career web pages.

• Post anouncement,information or feedback mails to users.

• Manage polls.

 50

Use Case Diagram for System Administrators on our Portal

Use case: Sign up and Log in

Primary Actors: Job Seekers, Job Providers, System Administrators

 This use case applies to all user groups. Job seekers, job providers and administrators

have to sign up to use our portal. We provide each group a different sign up module.

Administrators’ sign up process is done by one of the other system administrators. A job

seeker needs to fill in his/her user id, password, personal identification number, e-mail

address and an answer to secret question for security issues. However, job providers have to

enter their tax id besides the company user id, password, e-mail address and a secret question.

It is necessary to pay the membership fee to finalize the sign up process for companies.

For log in process all user groups has to enter correct user ids and passwords to the

spaces provided if any of these values unmatches with the ones provided during sign up

process, a warning will appear on the screen.

Use case: Log off from System

Primary Actors: Job Seekers ,Job Providers, System Administrators

 For logging of from the sytem all user have to click on log out button provided on

each of the pages that they are using at that moment. By clicking the log out button , the users

will lead to the main page of our system.

 51

Use Case: Create and/or Update Profile

Primary Actors: Job Seekers, Job Providers, System Administrators

 After signing up to our portal, all user groups have had a profile which they can

change or update whenever they need or want. On a job seeker’s profile, we can see their

actual names, surnames, mother’s surnames (for security issues), if they have uploaded any

CVs and if they have, we can see these documents. Job seekers can change their user ids or

passwords through their profiles. We can also see their situation whether they applied to a job,

they are still searching or their positionig has occured. Job seekers can see all the job offers

that they apply or want to follow through their profiles.

 Job providers’ profile holds their company informations, user ids, passwords, they can

change these informations any time they need or want. And also they can see the list of career

web pages that they have a membership on, their payment situations on both career web pages

and our portal. The job offers that are being published on any career web site and their

previous job offers.

 System Administrators profile holds their personal information , name, surname ,

address, phone number and user ids and passwords. They can change their personal

information whenever they need or want but for changing their user ids and passwords on

system they need an aproval from one of other system administrators.

Use case: Create and/or Upload CVs

Primary Actors: Job Seekers

 Job seeker users of our portal can either create their CVs by filling in standard form

that we provide on our portal or they can upload their CVs as documents in .pdf or .doc

format or as video streams to one of the video upload web pages form the list that we have

provided.

Use case: Search Job

Primary Actors: Job Seeker

We provide a job search module for job seekers where they can see resulting job offers

coming from all career web pages that our portal cooperates. They can also see on which

career web site the subjected offer is being published. The categories which jobs are grouped

are mainly the country, the city, company, publish date, job area, departmant, position. All the

 52

choices in each category will be listed in a drop down menu to make the searching process

easy for job seekers. Also more detailed search parameters can be provided for users in

detailed search screen like title, position level, education level, job experience, job style.

Use case: Apply Job

Primary Actors: Job Seeker

We will implement an appliction module which works in the same way as the source

career web page of listed offers. We will provide the description of the job offers as they are

published on the career web page and our users can apply to any of these offers through this

module.

Use case: Polls

Primary Actors: Job Seeker, System Administrators

We will give polls to our job seeker users after their positioning occurs to get feedback

from them about both our portal and our cooperate career web sites. These feedbacks help us

updating our statistical data on career web pages and etc.

The management of these polls given to job seekers are made by our system

administrators. They can update , add or delete polls and send them to job seekers.

Use case: Choose a Career Web Page

Primary Actors: Job Provider

 Job provider users need to choose and then sign up to a career web page to publish

their job offers on at least one of them. To make this easy we provide a selection module for

them. We have compared and scored our cooperate career web pages on different categories

such as their membership fees, extra services and the statistics of their preference by job

seekers, numbers of positioned job seekers to published offers on their web sites on this

module.

Use case: Pay the Membership fees

Primary Actors: Job Provider

 A simple payment module will be built for both payment of our portal’s membership

fee and the transfer of payment fees of chosen career web pages. Job providers just transfer

the total needed amount to become a member of both our portal and their selected career web

 53

pages to the provided bank account for our system with the necessary information such as

company name, company address, the respondants’ name, company tax number etc. then the

transformation of the amount that has to be paid to career web pages is going to be made by

our portal’s system administrators. Job providers will be informed about the situation on each

step of this action.

Use case: Publish Job Offers on Career Web Pages

Primary Actors: Job Provider

 After becoming a member of the chosen career web sites , job providers can publish

their job offers on these web sites through our portal. We will provide a job offer form which

is like the standard form of the actual career page that publishes the offer. Job providers need

to fill in this form for each of their offers and set the date of publishment. After they approve

all these information, their offer will be sent to career web page and published.

Use case: Search Employee

Primary Actors: Job Provider

 Job providers can search employers for their vacant positions by this module on our

portal. The categorization of job seekers can be made according to their experience on the job

area, educational information, age, sex. Job providers only allowed to see job seekers who are

also members of the career web pages on which they have membership. Job seekers’ CVs and

contact informtions will be available for job providers through this module.

Use case: See Who Applied to an Offer

Primary Actors: Job Provider

 Job providers can see who applied through our cooperate career web pages to any of

their published offers by this module. The same detiled information avilable about job seekers

applied to these offers on Search Employee Module will also be reached through this module.

Use case: Add (any system administrator) / Delete user

Primary Actors: System Administrators

 System administrators can add any new administrators to the system and delete job

seeker users who are not using their account for a long period in time.

Use case: Add / Delete member career web pages

 54

Primary Actors: System Administrators

 The membership of any career web page is approved by system administrators by

controlling their payment status and their given necessary information. If there is any

unsatisfied condition, at first a warning message is sent to these companies and the action is

taken according to their responses. If any career web page wants to call off or do not renew

their membership in a given time , system administrator will delete these job provider users

from the system.

Use case: Post information, announcement , feedback mails to users

Primary Actors: System Administrators

 We have infromation and feedback modules for job seekers and job providers , these

modules are invoked by our system administrators. They can send mails to all users to inform

and get feedback from them. Any announcement about our portal or our source career web

pages can be made through mails and seen on announcement section of our systems main

page.

Use case: Post commercial adds on system

Primary Actors: System Administrators

 System administrators also manage the commercial adds on our portal , they can add ,

delete or update any commercial adds publishing on our system.

 55

3.2 Class Diagram

+check_user(string name, string pass)() : bool

+check_already_exist(string, string)() : bool

+create_user(string,string)()

+forget_pass(string)()

+go_to_next_page() : <unspecified>

-username : string

-password : string

Sign Up & Log In Page

+view_profile(string)()

+update_profile(string)()

+view_cv(string)()

+update_cv(sting)()

+update_database()()

+access_database(string)()

+goto_seekerjob_page(string)()

+goto_poll_page()()

+log_off()()

-userID : string

Job Seeker Main Page

+search_job(string)()

+display_search_result()()

+apply_job()()

+access_to_career(string)() : <unspecified>

+update_database(string)()

+log_off()()

-userID : string

Job Page For seeker

+view_profile(string)()

+update_profile(string)()

+view_career()()

+select_career()()

+deselect_career()()

+update_database()()

+access_database()()

+pay_fee()()

+goto_providerjob_page(string)()

+goto_poll_page()()

+log_off()()

-userID : string

Job Provider Main Page

+search_employee()

+publish_job_off(string)()

+list_applied_seeker()() : <unspecified>

+sent_acceptance(string,string)()

+update_database(string)()

+access_to_career(string)()

+log_off()()

-userID : string

Job Page For Provider

+view_profile(string)()

+update_profile()()

+access_database()()

+update_database()()

+goto_portalmanage_page()()

+log_off()()

-userID : string

Admin Main Page

+add_admin()()

+delete_user(string)()

+add_career()()

+delete_career()()

+post_mail()()

+update_database()()

+access_database()()

+log_off()()

+goto_poll_page()()

Portal Management Page

+view_poll()()

+select_poll()()

+deselect_poll()()

+add_poll()()

+delete_poll()()

+access_database()()

+update_database()()

+log_off()()

Poll Page

This component of the system starts when the user identifies the correct username and

password. As shown in the above figure, there are 8 classes working in the system and the

details of the classes and attributes are as below:

Sign Up and Log In Page

In this page, the system will check the user’s identification. If the user’s information is

not valid, then the system don’t let the user to access the other components.

Attributes:

 56

username :: string

password :: string

Methods:

check_user:

This method checks the identification of username and password. If the input

identification is valid, then the system classifies the type of the user and then calls

goto_next_page according to the user type. If the input information is not valid, then the user

can not get in to the system.

create_user:

 This method allows the user to create the new account on the system. It will take the

detailed information of the user and check the user name whether it is conflicted with any of

the already existing users by calling check_already_exist method. If the information is valid,

then it creates a new account and calls goto_next_page to let the user continue on the system.

If the information is invalid, then the system will ask for the appropriate username and

password.

check_already_exist:

 This method is called from create_user to check whether the user name is already

existed in the system or not.

forget_pass:

 When the user forgets his/her password, this method allows him/her to get his/her own

password by checking the user’s secret information according to the user’s identification. If

the user can give the correct information again, then the system tells his/her own password. If

the user can not give information correctly, then the system doesn’t allow him/her to get

his/her password and get in to system.

goto_next_page:

 This method allows the user to go to Job Seeker main page, Job Provider main page

and Admin main page. By checking the type of the parameters and then allowing the user to

continue to next page according to its type.

 57

Job Seeker Main Page

Attributes:

userID :: string

Methods:

view_profile:

 This method allows the user to check his/her profile, according to the userID. This

method will call the access_database to get the correct information of the user which is stored

in the system database.

update_profile:

 This method allows the user to update his/her profile. This method will take

appropriate identification of the user and update the current profile which is stored in the

system database if the information is valid. This method will call update_database and update

the current profile.

view_cv:

 This method allows the user to check his/her CV if the CV is already stored in the

database. It will call access_database to get the appropriate CV if he/she has already put the

CV already.

update_cv:

 This method allows the user to update the CV if he/she has already put the CV in the

database. It takes appropriate information and update the CV by calling update_database

method.

update_database:

 This method updates the database according to the parameters. In Job Seeker main

page, this method allows updating the profile and CV of the user.

access_database:

 This method allows the system to access the database and get the appropriate results

from the database. Here, it can access the profile and CV of the user.

 58

goto_poll_page:

 This method allows the user to connect to poll page.

goto_seekerjob_page:

This method allows the user to connect to seekerjob page.

log_off:

 The system is logging off the user and send him/her to the main page of the system.

Job Provider Main Page

Attributes:

userID :: string

Methods:

view_profile:

 This method allows the user to check his/her profile, according to the userID. This

method will call the access_database to get the correct information of the user which is stored

in the system database.

update_profile:

 This method allows the user to update his/her profile. This method will take

appropriate identification of the user and update the current profile which is stored in the

system database if the information is valid. This method will call update_database and update

the current profile.

select_career:

This method allows the job provider users to select the career web pages from the ones

already in cooperation with our portal.

deselect_career:

This method allows the provider to deselect the career web page on which their job

offers are already being published.

 59

pay_fee:

 This method checks the user’s profiles whether the user already done the payment or

not. If the payment is not done yet, the system will show the procedure of the payment

process.

update_database:

 This method updates the database according to the parameters. On Job Provider main

page, this method allows updating of profile of the user.

access_database:

 This method allows system to access the database and get the appropriate results from

the database. Here, it can access the profile of the user.

goto_providerjob_page:

This method allows the user to connect to providerjob page.

goto_poll_page:

 This method allows the user to connect to poll page.

log_off:

 The system is logging off the user and send him/her to the main page of the system.

Admin Main Page

Attributes:

userID :: string

Methods:

view_profile:

 This method allows the user to check his/her profile, according to the userID. This

method will call the access_database to get the correct information of the user which is stored

in the system database.

update_profile:

 This method allows the user to update his/her profile. This method will take

appropriate identification of the user and update the current profile which is stored in the

 60

system database if the information is valid. This method will call update_database to update

the current profile.

update_database:

 This method updates the database according to the parameters. On this Admin main

page, this method allows the updating of the profile of the admin user.

access_database:

 This method allows the system to access the database and get the appropriate results

from the database. Here, it can access the profile of the user.

goto_portalmanage_page:

This method allows the user to connect to portalmanage page.

log_off:

 The system is logging off the user and send him/her to the main page of the system.

Job Page For Seeker

Attributes:

userID :: string

Methods:

search_job:

 This method searches the job offers according to input keywords and other filters then

calls the display_search_result function to display the available jobs’ list.

display_search_result:

 This method displays the list of available jobs according to the filtering options. User

can choose how the listing occurs by this method.

apply_job:

 This method allows the user to apply to the available job and the information is also

updated in the system’s database.

 61

access_to_career:

 This method is called in search_job and display_search_result, to get the appropriate

information from the career web pages.

update_database:

 This method will update the system’s database.

log_off:

 The system is logging off the the user and send him/her to the main page of the

system.

Job Page For Provider

Attributes:

userID :: string

Methods:

search_employee:

 This method searches the available job seeker through both our portal and the source

career web pages that the employer company is a member of according to the filtering

options.

publish_job_offer:

 This method puts the job offer of the provider company on the career web page on

which this provider company has a memebership. This announcement will also be added to

the system’s database.

list_applied_seeker:

 This method lists the seekers who applied to the published job offers of the provider

company.

sent_acceptance:

 This method is called when the provider accepts the applied job seeker and acceptant

information is sent to the applied seeker.

 62

update_database:

 This method will update the system’s database.

access_to_career:

 This method is called in search_employee and publish_job_offer, to get the

appropriate information from the career web pages.

log_off:

 The system is logging off the user and send him/her to the main page of the system.

Poll Page

Methods:

view_poll:

 This method will show the selected poll by the job seeker and provider users which is

stored in the system database.

add_poll:

 This method is called by both job seeker and provider. The user can specify the

appropriate result for the system, and can add their poll result.

select_poll:

 This method is called by the administrator. The selected poll is shown in the system.

deselect_poll:

 This method is called by the administrator. The deselected poll is not shown in the

system.

delete_poll:

 This method can only be called by the administrator user type. This method allows to

delete the poll and its results.

update_database:

 This method updates the database according to the parameters. This method is called

from add_poll and delete_poll.

 63

access_database:

 This method allows the system to access the database and get the appropriate results

from the database. Here, it is called from view_poll.

log_off:

 The system is logging off the the user and send hime/her to the main page of the

system.

Portal Management Page

Methods:

add_admin:

 The administrator can add the new administrator on the system and this method

creates the new administrator user account.

delete_user:

 The administrator can delete the any type of user on the system.

add_career:

 This method adds new source career web page to the system.

delete_career:

 This method deletes any source career web page from the system.

post_mail:

 The method allows the administrator to send mail to all kinds of users on the system.

update_database:

 This method updates the database according to the parameters. This method is called

from add_admin, delete_user, add_career and delete_career.

access_database:

 This method allows the system to access the database and get the appropriate results

from the database.

 64

log_off:

 The system is logging off the the user and sent to the main page of the system.

3.3 Sequence Diagrams

GUI: Sign Up & Log In

Page

GUI: Job Seeker Main

Page

GUI: Job Provider Main

Page
GUI: Admin Main Page

go_to_next_page() == "Jop Seeker"

go_to_next_page() == "Jop Providerr"

go_to_next_page() == "Admin"

goto_seekerjob_page()=Valid

goto_providerjob_page()=Valid

goto_portalmanage_page()=Valid

check_user

check_already_exist

create_user

view profile

update_profile

view_cv

update_cv

update_profile

view_career

update_career

view profile

pay_fee

view profile

edit_profile

Log Off

Log Off

Log Off

Actor1

username, password

goto_poll_page()=Valid

goto_poll_page()=Valid

goto_poll_page()=Valid

 65

 66

3.4 Activity Diagrams

3.4.1 Sign Up and Log In Activity Diagram

3.4.2 Create or Update Profile Activity Diagram

 67

3.4.3 Create or Update CV Activity Diagram

Choose

Create or

Update CV

Choose

function Receive the

Input

Update

Database

Access

Database

Output Result

User System

3.4.4 Search Job Activity Diagram

Choose

Search Job

Choose

function Access

Career

Receive the

Result

Receive

Keyword

Output Result

User System

 68

3.4.5 Apply Job Activity Diagram

Select Job

Choose

function Access

Career

Receive

Selected Job

Output Result

User System

Choose Apply

Job

3.4.6 Choose Career Web Page Activity Diagram

 69

3.4.7 Publish Job Offer Activity Diagram

3.4.8 Search Job Seeker Activity Diagram

 70

3.4.9 Accept Seeker Activity Diagram

3.4.10 Sent Poll Activity Diagram

 71

3.4.11 Create User Activity Diagram

3.4.12 Add or Delete Career Activity Diagram

 72

3.4.13 Add or Delete Advertisement Activity Diagram

3.4.14 Delete User Activity Diagram

 73

3.4.15 Sent Mail Activity Diagram

3.4.16 Select or Deselected Poll Activity Diagram

Choose

function

Output Result

User System

Display Poll

View Poll

Update

Database

Select/

Deselect Poll

 74

3.4.17 Log Off Activity Diagram

3.418 Menu Activity Diagram

 75

4.USER INTERFACE DESIGN

4.1 Main Page

 Below is the layout of the main page of our portal.

 76

4.2 Sign Up Pages

 Below are the sign up pages’ layout for both job seekers and job providers.

Job Seeker Sign Up Page

Job Provider Sign Up Page

 77

4.3 User Profile Main Pages

 The below layouts are showing the profile main pages of all portal users.

Job Seeker Main Page

Job Provider Main Page

 78

Administrator Main Page

4.3 CV Creation Page

 Below is the standard cv form on our portal.

 79

4.4 Job Search Results Page

 Job search results are shown like below with references of source career web pages.

4.5 Market Analysis Page

 This page contains general information for all users on our portal.

 80

5.SYNTAX SPECIFICATION

As every software development has its own syntax, we decided to determine our

own syntax specification for the Project. The specifications are listed below:

File format:

Since our project consists of web services we will work with XML database, SOAP

messages and WSDL components, which are also in XML format. So XML format and

syntax will be used in the files. The form of the SOAP messages are shown below:

Other than, we will have Java source codes. Since we are using webMethods to

develop our Project, we will hold to the formatting of their tools.

Variable names:

 If a variable name consists of more than one word, first letter of each word except the

first one will be capitalized. Global variables will be named with the prefix “g_”, and static

variables will be named with the prefix “s_”.

Function names:

If a function name consists of more than one word, ‘_’ will be put between words to

connect and form a one word function name.

 81

File names:

Files will be named in accordance with its content. Documentation related file names

will be initiated with “Doc_” prefix.

Commenting:

Commenting of code is essential for later understanding and maintenance of the code.

So, we decided to make commenting mandatory on implemetation of our modules.However,

it is not efficient to over-comment the code. Only the parts that can not be immediately

understood by looking at the code should be commented. Comments will be short , simple and

understandable.

6.TESTING ISSUES

6.1 Testing Plan and Strategy

To allow errors to be identified and removed, our code must be tested carefully. We also

took into consideration that we don’t have much time for testing. Therefore, we decided on

some testing strategies and methods. The generated code should have some characteristics in

order to be testable. These characteristics are listed below:

• Operability

• Observabilty

• Controllability

• Decomposability

• Simplicity

• Stability

• Understandability.

6.2 Testing Methods

 Firstly we will implement unit testing using white box technique. We will test each

module seperately. The modules which will be tested are:

• Sign-up & login

 82

• Profile & CV update

• Job search

• Job application

• Career job site selection & membership

• Payment

• Employee search

• Job posting

• User Management

• Poll Management

• Commercial Ads Management

Although we can find errors in modules by unit test, we must also make an integration test

in order to find errors due to integration of the modules. In this case, bottom-up integration

method will be used.

7.PROJECT SCHEDULE

7.1. Project Task Set and Workpakages

The tasks and the schedule of our project is determined in detail since we have a strict

deadline. Consequently our work packages are predicated on the reports that have to be

prepared and the scheduling is predicated on their deadlines.

 Our first work package (WP0) is based on understanding the project. Determining the

project scope and subtasks were included in this package. They can be derived from our

proposal report.

 The rest of the work packages are listed below:

WP1: Requirement Analysis

This workpackage includes mostly the researches and specifications about the project. The

tasks are listed below:

• Literature Survey

• Existing System Analysis

 83

• SOA&Web Services Research

• Decision of Services

• *DER: Project & Technology Overview Report

• Project Scheduling

• Data Modeling

• *DER: Metadata Report

• Requirement Specification

• Functional Requirements

• Non-functional Requirements

• System Requirements

• DFD Modeling

• Use Case Modeling

• Time & Effort Estimation

• *DER: Requirements Analysis Report

WP2: Administrator Side Design

 WP2, WP3, and WP4 and WP5 are based on designing. WP2 consists of graphical

user interface , database, and the process management fort he functions which is provided for

a System Administrator. Tasks are :

• User Management Module

• (Add/Delete User, announcements , information and feedback mails)

• Poll Management Module

• (Add /Delete/Update Polls to be sent to job seeker users)

• Commercial Adds Management Module

• (Add/Delete/Update commercial adds publishing on our portal)

WP3: Job Seeker Side Design

Work Package 3 includes designing the graphical user interface, the database, and the

process management for the functions which will be provided to a job seeker. Tasks are

indicated below:

• Sign up& Log in Modules

 84

• Profile & CV Update

• Job Search Module

• Job Application Module

• *DER: Initial Design Report

WP4: Job Provider Side Design

Work Package 4 is identical to WP3, except it includes the design of the job provider side.

• Sign up& Log in Modules

• Career-Job Site Selection & Membership Module

• Payment Module

• Employee Search

• Job Posting Module

• *DER: Initial Design Report

WP5: Final Design

Final design starts with the review of the initial design and continues with doing the last

modifications and adjustments on it. Tasks are indicated below:

• Initial Design Review

• Detailed GUI Design

• Detailed Database Design

• *DER: Final Design Report

Our implementation packages are consisting of the implementation of the designed

modules in design packages.

WP6: Admin Side Implementation

 The modules are again ;

• User Management Module

• (Add/Delete User, announcements, information and feedback mails)

• Poll Management Module

• (Add /Delete/Update Polls to be sent to job seeker users)

 85

• Commercial Adds Management Module

• (Add/Delete/Update commercial adds publishing on our portal)

WP7: Job Seeker Side Implementation

 The modules are again;

• Sign up& Log in Modules

• Profile & CV Update

• Job Search Module

• Job Application Module

WP8: Job Provider Side Implementation

 The modules are again ;

• Sign up& Log in Modules

• Career-Job Site Selection & Membership Module

• Payment Module

• Employee Search

• Job Posting Module

 Testing is made up of two modules , unit testing and integration testing at the end we

also hae to validate all system.

WP7: Unit Testing

 We will be working on different modules of the system throughout the Project so at

first we have to test every unit itself. Modules are the same with the implemented ones.

WP8: Integration Testing

 After finishing unit testing , we are going to integrate all parts and test the whole

system.

*(“DER :” stands for deliverable from)

Up to this point we have completed work packages WP0, WP1, WP2, WP3, WP4,

WP5 and submited milestone deliverables namely; proposal report, requirement analysis

report, initial design report and this is the fourth deliverable final design report. These

 86

workpackages simply involve understanding the Project and doing literature and market

surveys, defining software, hardware and system requirements. However, our system’s job

categorization and job search filters are not clearly stated on previous reports. A job seeker

will be able to enter a key word, select job location, and select job category while doing a job

search. So we have determined a categorization for the jobs depending on their work areas.

We have defined these categories as:

� Accounting/auditing

� Administrative and support services

� Advertising/marketing/public relations

� Aeorospace/aviation/defense

� Agriculture, forestry, &fishing

� Airlines

� Architectural services

� Arts, entertainment, and media

� Automotive/motor vehicle/parts

� Banking

� Biotechnology and pharmaceutical

� Buildings and grounds maintenance

� Business opportunity/investment required

� Career fairs

� Computer services

� Computers, hardware

� Computers, software

� Construction, mining and trades

� Consulting services

� Consumer products

� Creative/design

� Customer service and call center

� Education, training and library

� Electronics

� Employment placement agencies

� Energy/utilities

� Engineering

 87

� Environmental services

� Executive management

� Finance/economics

� Financial services

� Government and policy

� Healthcare

� Hospitality/tourism

� Human resources

� Information technology

� Installation, maintenance , and repair

� Insurance

� Internet/e-commerce

� Law enforcement/security services

� Legal

� Manufacturing and production

� Military

� Nonprofit

� Operations management

� Personal care and service

� Printing/editing/writing

� Product management/marketing

� Project/program management

� Purchasing

� Quality assurance/safety

� Real estate/mortgage

� Research & development

� Restaurant and food service

� Retail/wholesale

� Sales

� Science

� Sports and recreation/fitness

� Supply chain/logistic

� Telecommunications

� Textiles

 88

� Transportation

� Veterinary services

With this final report , we became having completed the analysis and design levels of

our Project.Moreover we have completed a prototype which is being able to show a basic

feature of our project. Our prototype can receive an xml file of a cv document of any job

seeker user on our portal with its all fields are filled and sends a new cv document to the

corresponding career web page with the needed fields are filled. The values of these needed

fields are inserted into the database of the corresponding source career web page.

It can be seen and understood more easily on the below figure :

When the user enters values to the all necessary fields and presses to the submit

button, the information is sent to our database and also a web service is called which creates

an xml document from the entered fields according to our document type and does the

mapping of our document type and corresponging career web page`s document type. Later,

within this service the information in the document type of the career web page is inserted

into their database.

However; next semester, the focus will be on implementation and testing issues. The

explained modules on workpackages will be implemented and tested. Our implementation

plan will be according to our gantt chart where we grouped the work packages by different

types of users on our portal. Every module for one of the user groups will be completed

before starting to develop any other module of a different user group. We will rather be

working on implementation of modules in groups of twos than as individuals. By this

grouping, it will be more easy to take control of every step in development of the whole

Project. To have a partner in the process will give us more energy and enthusiasm. And also

 89

the integration of parts will become less time consuming, so we can tolerate any delay that

would occur. The testing of each module will be done after the completion of that module.

The integration and whole system testing will occur later. Following this implementation

plan, we would have completed our Project and deployed by the June.

7.2. Gantt Chart

 You can see our Schedule for first semester (fig.1) and second semester(fig.2) as Gantt

Charts under Appendix.

 90

8. APPENDIX

Fig. 1

 91

Fig. 2

 92

9.REFERENCES:

[1] Wikipedia, http://en.wikipedia.org/wiki/Web_service

[2] Sun Developer Network, http://java.sun.com/developer/technicalArticles/WebServices/soa/

