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1.  OVERVIEW 
 

1.1.  ABOUT RADEX 
 

RadeX is a product of Tiran Software developed as our senior project. It’s capable of extracting useful information 

out of radiology report and stores them in database such that it’s easily searchable on demand. 

1.2.  PREREQUISITES  
 

1.2.1.  ES SENTI AL SO FTWAR E  

- JRE 1.5 or above 
- PostgreSql 

 

1.2.2.  RECO MMENDED  HAR DW AR E  

- 1.6Ghz and above CPU 

- 1Gb Ram 

- 500Mb Hard disk space 

2.  ARCHITECTURE 
 

2.1  PREPROCESSOR 
 

2.1.1.  THE TASK  

 
The main task of the preprocessor was to split reports into groups , groups into sentences and sentences into 

words. Then we added many capabilities such as simplifying sentences by eliminating some words or word phrases, 

combining words into word groups and setting some basic semantics for words which contains numbers or other 

special characters.  

2.1.2.  FUN CTIO NS  

 
The source code of the preprocessor is located under arac package within Preporcessor.java. Here are some of the 

important functions. 

2.1.2.1.  cumleleriAyir()  

 
Input(s):  File 
Output: List<Cumle> 
 
 
 
 
 



This function reads the report line by line and tokenizes it. Then for each token it does the following: 

- Try to find the root and suffixes of the word using zemberek 

- If zemberek fails, it tries to find a similar word using SpellChecker(if enabled). 

- Then, it tries again zemberek with the similar word. 

- It construct MyKelime object using the word and mark the word as recognized or unrecognized. 

2.1.2.2 KisimlariAyir() 

 
Input(s) : List<Cumle> 
Output:  none 

 
This function splits report into groups, baslik, klinik bilgi, bulgular and sonuclar.  

 

2.1.2.3.  HE LP ER  FU NC T I ONS  

 
These are the functions that simplify sentences and give some basic semantics to words. 

setBasicAnlam() : It gives semantics for the words Yuzde, Aralik , Olcum , Omur, Omur_Araligi, Kacinci, Sayisal. Note 

that these are the enumaretions in IsimAnlamTipi.  

 
firstTouch() : It does some miscellaneous tasks like converting “ya da” into “veya”. Also it gives semantisc for # 
cm,mm, and so on. 

  
 

Birlestir() : It reads gloss_birlestir.txt and combines words into word groups. It adds one single MyKelime object 
with isKelimeGrubu= true, and deletes the actual words from the sentence. 

   
oncekiyle_birlestir() : It is similar to birlestir(), but it reads oncekiyle_birlestir.txt and combines the words with the 
previous token. 

 
sonrakiyle_birlestir () : It is similar to oncekiyle_birlestir(). 

 
kimGitsin() :  It reads kim_gitsin.txt and removes the instances of these word(s) from the report. 

 
kimVeOncesiGitsin() : It’s similar to kimGitsin() but it can remove up to sentence start. 

   
kimVeSonrasiGitsin() : It’s similar to kimVeOncesiGitsin(). 

   
deDaIcerisinde() : This function combines the two words X içinde/içerisinde into Xde. (karaciğer içerisinde -> 

karaciğerde) 

2.1.2.4.  OT HER  

 

There are two other important functions, namely setLoggingOn(Boolean) and 

setSpellChecking(Boolean), which sets logging and spellchecking on/off respectively. 



2.2.  RULES PACKAGE  
 

In our approach to text mining for medical reports, we've seen that most of the sentences are semi-structured and 
appropriate to be parsed by regular expressions. In order to make use of this fact, we decided to parse each 
sentence by a different template. These templates are hard to directly code in a imperative language. For this 
purpose, we implemented our own parser generator. By help of it, we are able to write our templates(rules) in a 
declarative fashion. 
 
This package holds the class RuleBase, which is our parser generator, that takes a rule source.and generates the 
corresponding java code. 

 

2.2.1  THE FO R MAT  OF RULES  
 

Here is a sample rule  
 
 # mediastende ve her iki hiler bölgede kitle saptanmamıştır 

@@ 
.ret dbase.Problem_Bulgusu(dbase.Data) 
... 
(< ~sonEkDeDaMi() > { $i.bolge_niteleyici += this })* 
<sonEkDeDaMi() ~copMu()> { $i.bolge = this.govde() } 
( <baglacMi()> { $i++ } 
(< ~sonEkDeDaMi() | organMi() > { $i.bolge_niteleyici += this })* 
<sonEkDeDaMi() ~copMu()> { $i.bolge = this.govde() } 
)+ 
(<~copMu()> { $A.problem += this })* 
<problemMi()> { $A.problem += this.govde() } 
( <baglacMi()> { $A.problem += this } 
(<~copMu()> { $A.problem += this })* 
<problemMi()>{ $A.problem += this.govde() } 
)+ 
<anlamtipi:Y.var> { 

$A.sonuc = this.varlik; 
$A.kesinlik = this 

} 
 

1. there can be more than one rule in a rule source file, all the rules start with @@ 
2. in the next line the return value of this rule is stated by .ret, 

1. in the sample rule case dbase.Problem_Bulgusu is the actual class that this rule tries to match. 
2. the class in parantheses(dbase.Data) is the superclass of the actual class. 
3. finally this rule returns List<dbase.Data> on a successful match. 

3. Next line is '...' which signifies the start of the regular expression 
4. to match a Kelime in a Cumle the conditions between < and > are checked and the actions between { and } 

are executed. 
5. '~' signified NOT, '|' signified OR 
6. Whitespace between two conditions make up for AND 
7. the condition literals are either 

1. a boolean method in MyKelime class, like sonEkDeDaMi(). 
i. So if you add a boolean method in MyKelime class, you can use it for template matching 

directly 
2. an equality comparison of a field in MyKelime, 



i. equality operator is ':' 
ii. anlamtipi:Y.var is transformed to getAnlamtipi.equals(Y.var) 

1. So to be checked fields must have corresponding getter methods. 
iii. The left hand side of the comparison also might be a method call like 

getAnlamtipi():Y.var 
8. the action literals are as follows 

1. there are three variable references 
i. $i references the dbase.Data that is to be constructed 

ii. $p references the previous one 
iii. $A references all of them. 

2. $i++ signified that template matching should continue with the construction of a new dbase.Data. 
A new dbase.Data instance is added to the return list. 

3. this keyword refers to the MyKelime that matches with the current conditions. 
i. if it is used solely, getIcerik method of MyKelime is executed, so $i.problem = this means, 

set the value of problem field of current dbase.Data to the value returned by getIcerik 
method of the matched MyKelime. 

ii. You can append a method call to this, so you can set the current match to a different 
value like 

1. $i.problem = this.govde() 
9. the regular expression operators are similar to perl and java regular expressions 

1. + --> matches 1 or more occurrences 
2. * --> matches 0 or more occurrences 
3. ?  --> matches 0 or 1 occurrence. 

10. The template matcher is greedy; it always tries to match the first states as much as possible. 
 
 

2.2.2  ADDIN G A N EW  T EMP LAT E TO  RADEX  
 

the template source file should be put in src/rules/finalizerRules/sources 
it must have the extension .txt 
after the rule file is created main method of  RuleBase class has to be executed once as 
java rules.RuleBase 

 

2.2.3.  THE FOR MAT  O F GEN ER A T ED FI LES  
 

The generated java files are nothing but Nondeterministic Finite Automata simulations. All of the generated files 
extend the rules.NFA class, and have 2 public methods 
 
 a)  boolean matches(Cumle c) 
  This function checks if this NFA can match Cumle instance c; 
 
 b) List<dbase.Data> action() 
  This function returns the Data instances that the previous matches call matched. 
 
An example usage for checking whether a template matches a cumle 
 
 NFA<?> nfa = new rules.finalizerRules.mamo.Rule0(); 
 Cumle c = new Cumle(“sağ akçiğerde lezyon var”); 
 if(nfa.matches(s)){ 
  System.out.println(nfa.action); 
  



2.3.  LUCENEUSE  

 

2.3.1.  THE TASK  

 
This class is used for basically three facilities; 

- Indexing and google-like free-text searching reports  
- Obtaining similar reports of input report 
- Spell-checking for wrong written words 

 

2.3.2.  FUN CTIO NS  

 

2.3 .2 .1 .  I N D E XR E P O R T ()  

 
Input(s):  

reportID : ID of report that will be indexed 

bulgular : extracted information of report (needed for imilarity indexing) 

Output: none 

Usage: This function can be called without any declaration. 

 

2.3 .2 .2 .  S I M I L A R R E P O R T S()  

 
Input(s):  

reportID: ID of target report  

Output: Vector<String> of report Ids that is similar to target report. Extracted information of target report that has 

“var” or “anormal” property  in “sonuc” field, is also indexed and stored as a Lucene.Document.Field called 

“bulgular”. Report that will be search for its similar according to this field using vector space model.  

Usage: This function needs initialization of a LuceneUse object. 

2.3 .2 .3 .  Y A K I N KE L I M E ()  

 
Input(s):  

kelime: the word that will be checked 

Output: The word in lexicon that most similar to input 

Usage: Function does not need any initialization of class. 

 



 
 
2 .3 .2 .4 .  I N D E X SP E L L WO R D S ()  

 
Input(s): none 

Output: none 

Usage: This function is used to construct an index from gloss text files in order to use in spell-check.  

  

2.3 .2 .5 .  HE L P E R  F U N C T I O N S  

 

2.3 .2 .5 .1 .  I N D E X D O C S ( )  

 
Input(s):  

 writer: IndexWriter object initialized to construct an index for spell-check. 

 file: gloss file for lexcion to be indexed. 

Output: none 

Usage: It is used in indexSpellWords function to index multiple gloss files as spell-check index. 

 

 

2.3 .2 .5 .2 .  P R O C E S SB U L G U L A R ()  

 
Input(s):  

 bulgular: findings that will be formed during analysis phase off application 

Output: Regional and problem findings whose values of “sonuc” field are either “var” or “anormal”. 

Usage: It is used in indexReport function to index only extracted and meaningful information to enable finding 

similar report facility 

 

 

 

 

 

 



2.4.  COMPILATION  
 

Radex was developed as an eclipse project. Adding it to eclipse as a project is the easiest way to compile all the 

source files. 

To add it as a project to eclipse, follow these steps. 

1. If not installed, install eclipse 
2. Run eclipse 
3. From File menu, click New->Project 
4. Select "Java Project" 
5. Type "radex" in the Project name field. 
6. Select the radio box "Create project from existing source" 
7. Click "Browse", point to the radex source main directory, click OK. 
8. You're done, wish you a happy development. 

 

2.5.  FUTURE WORK  
 

Radex's performance of recall and performance is mostly affected by the use of templates. We have currently 30 

templates for the finding sections of the reports and 18 templates for the result sections of the reports. To boost its 

performance, new templates might be added as explained in the previous parts. 

 


