

 Middle East Technical University

 Department of Computer Engineering

-TURKUAZ PROJECT-

TIRAN SOFTWARE

INITIAL DESIGN REPORT

 RadeX

Tahir Bilal 1394741
Onur Deniz 1391002
Soner Kara 1395110
Mert Karadağlı 1395128

2

TABLE OF CONTENTS

1. INTRODUCTION...5

1.1. Motivation ...5

1.2. Project Topic ..5

1.3. Project Description..5

2. CURRENT STATUS ..6

2.1. What We Have Done So Far ...6

2.2. New Research ..6

2.2.1. Db4o ...6

2.2.2. WordNet ...6

2.2.3. JWNL ..7

3. DESIGN CONSTRAINTS ..7

3.1. Naming and Documentation constraints ...7

3.2. Time Constraints ..7

3.3. User Interface Constraints ...8

3.4. Performance Constraints..8

4. DATA DESIGN ...8

4.1. Database Tables ..8

4.1.1. Rapor..8

4.1.2. Problem ..9

4.1.3. Normal_bulgu .. 10

4.1.4. Islem .. 10

4.1.5. Ilac_tedavi ... 11

4.1.6. Kiyas .. 12

4.2. Er Diagram ... 13

5. ARCHITECTURAL DESIGN ... 14

5.1. Structural Modeling .. 14

5.1.1. Data Flow Diagrams ... 14

5.1.1.1. Level-0 .. 14

5.1.1.2. Level-1 “RadeX” .. 14

3

5.1.1.3. Level-2 “preprocess reports”.. 15

5.1.1.4. Level-2 “associate semantics” .. 15

5.1.1.5. Level-2 “learn and extract” .. 16

5.1.2. Data Dictionary... 17

5.2. Moduler Hieararchy ... 18

5.3. Module Explanations ... 19

5.3.1. Report Analyzer Component .. 19

5.3.1.1. PREPROCESSOR MODULE ... 19

5.3.1.2. SEMANTIC ASSOCIATOR MODULE .. 19

5.3.1.3. LEARNER ... 20

5.3.1.4. FINALIZER .. 20

5.3.1.5. SPELL CHECKER... 20

5.3.2. Database Searcher Component ... 21

5.3.2.1. Database Connector.. 21

5.3.2.2. ResultSet Reader .. 21

5.3.2.3. Displayer ... 21

5.4. Class Modeling.. 21

5.4.1. Package/Class Descriptions & Class Diagrams .. 21

5.4.1.1. “anlam” package ... 21

5.4.1.2. “arac” package ... 23

5.4.1.3. “database” package ... 24

5.4.1.4. “lexicon” package ... 25

5.4.1.5. “malumat” package ... 26

5.4.1.6. “radex” package .. 26

5.4.1.7. “yapi” package ... 26

5.4.1.8. “gui” package ... 29

5.5. Behavioral Modeling.. 30

5.5.1. Sequence Diagrams .. 30

5.5.1.1. “Analist” Sequence Diagram.. 30

5.5.1.2. “Sorgucu” Sequence Diagram ... 31

5.5.1.3. “Preprocessor” Sequence Diagram .. 32

5.5.1.4. “AnlamsalIliskilendir” Sequence Diagram .. 33

5.5.2. Activity Diagrams .. 34

6. INTERFACE DESIGN.. 35

6.2. User Interface Design .. 35

4

6.3. Method/Class Interfaces .. 37

6.3.1. “arac” package... 37

6.3.2. “database” package ... 40

6.3.3. “lexicon” package... 44

6.3.4. “radex” package.. 45

6.3.5. “yapi” package... 45

7. PROCEDURAL DESIGN... 46

7.1. PseudoCodes ... 46

7.1.1. “radex” package.. 46

7.1.2. “arac” package... 46

7.1.3. “database” package ... 47

8. FUTURE WORK ... 48

9. APPENDIX.. 49

9.1. Gantt Chart ... 49

10. REFERENCES... 50

5

1. INTRODUCTION

1.1. MOTIVATION

The invention of computers and the advancement in data storage technologies flourished the use of
electronic documents to store data. Since electronic documents have so much advantages over manuscripts
or typewritten documents, this was a profound technology revolution that had a huge impact in our lives.

Yet, electronic documents don’t reveal the information they have immediately, a human being still has to read
a free-text electronic document to comprehend its contents. This is a bottleneck for information
identification and association of related information. To be able to maximally make use of the electronic
platform, information should be easier to obtain, search and identify.

There is a great attempt in this trend in a number of ways. Semantic web technology can be given as an
illustrating example. Semantic web tries to extend the web to such an extent where content can be expressed
not only in natural language, but also in a format that can be read and used by software agents, thus
permitting them to find, share and integrate information more easily.

1.2. PROJECT TOPIC

Project topic is text-mining in Turkish radiology reports. Our radiology report analyzer is named RadeX, an
abbreviation for Radiology Data Extractor.

1.3. PROJECT DESCRIPTION

The main purpose of our project is to extract meaningful data out of free-text radiology reports, so that the
collected data can be easily manipulated and searched on demand. The clinical records and reports of
patients contain much potentially useful information in free text form that is not directly searchable. By

extracting useful data from clinical reports, records of patients can be held at databases, which will
drastically help the diagnosis of further or future clinical problems of patients. Moreover new correlations
about some illnesses or drugs such as a drug’s unnoticed side affect could be more easily discovered. Such
advancement will help the medical science and diagnosis a lot.

Text-mining on Turkish radiology reports is a challenging subject since there is not much research about
text-mining on Turkish texts. Additionally we will face with the complex structure of Turkish as well as
hundreds of medical terms. On the other hand, the project will be very handful for academic use and it is an
important research on automated medical information systems. In order to extract high quality data out of
free-text reports we have to choose the right text mining techniques such as specific natural language
processing and machine learning methods.

6

2. CURRENT STATU S

2.1. WHAT WE HAVE DONE SO FAR

Since the proposal date till now, we have done a lot of research about the topic, namely text mining, machine
learning and named entity recognition. Also we have done some progress on using helper tools such as
Zemberek.

Besides researching, we have also started implementation of preprocessor module. In fact, we have released
our first version, which is capable of extracting some basic information by looking meanings of certain
common verbs. Moreover, we have managed to connect TDK, query it, and use it together with WordNet.

 During this time, the architecture of the project became clearer. But there is still uncertainty on learning
module, which is actually the heart of the program. Currently we are examining open-source information
extraction programs that use machine learning methods. To sum up, we are trying to make a good design of
the project besides basic implementations and research.

2.2. NEW RESEARCH

2.2.1. DB4O

db4o (database for objects) is an open source and object oriented database for Java and .NET platforms.

Object oriented databases (object databases for short) differ from their relational counterparts in many
ways. In Object oriented databases, objects are stored as they are, no tedious mapping overhead of relational
databases is necessary. Moreover, object oriented queries don’t need to be written in SQL, just using the
expressions of the underlying language (Java or C# for db4o) is sufficient.

One main inadequacy the object oriented databases have is that they are only accessible from the programs
that know their structure of inner content. This makes them inconvenient for the programs that need their
data to be accessible by external applications.

Nevertheless, the advantages that they possess render OO databases extremely useful for some particular
applications. They are the remedy for the necessity of native persistence. In our case, our program has to
access to lots of data that has nothing to do with the outside world. We have several lexicons in our program
that should be accessed very frequently. Additionally considering we use machine learning methods, we need
to store a great number of parameter values related to neural networks or decision trees. We can’t just use
Java object serialization, since it would cause a huge memory consumption to search for a lexeme in a lexicon,
via deserializing all the objects.

According to [5] some of db4o’s customers are BMW, Boeing, Bosch, Intel, Ricoh and Seagate.

2.2.2. WORDNET

WordNet is a semantic lexicon for English language. It has a concept of synset, which designates a set of one
or more synonym words. Nouns, verbs, adjectives and adverbs in English are grouped into collections of
synsets, each expressing a different concept. Synsets are reciprocally linked by means of conceptual and
semantic relations. The resulting network of meaningful words can be navigated with a browser, besides it is
also publicly available for download. WordNet offers a very powerful ontology for English, so it is a useful
tool for natural processing research in English. Our project is regarding Turkish radiology reports. However

7

there is not any freely available WordNet like semantic lexicon for Turkish. This inspired the idea of first
translating a Turkish word into English and then exploiting the use of WordNet to get the part of speech tag
and the sense of the word.

WordNet was created and is currently maintained at the Cognitive Science Laboratory of Princeton

University. The development began at 1985, and the project received about $3 million of funding from
government agencies interested in machine translation [6].

2.2.3. JWNL

JWNL stands for Java WordNet Library. It is a free of charge and open source Java API for accessing WordNet.
It is well documented and requires the knowledge of a moderate number of functions and data types to make
use of. Hereby, it doesn’t take much time to start coding. This project is hosted at sourceforge.net [10].

3. DESIGN CONSTRAINTS

3.1. NAMING AND DOCUMENTATION CONSTRAINTS

Using understandable, consistent names for identifiers, proper commenting and documentation are
important issues for shared implementation as well as maintenance of the project.

Identifier names for variables, constants, functions and classes should be self describing, clear and
understandable. Again, for clarity purposes these names can be chosen as Turkish words, where appropriate.
Since we are going to use Java, we have to obey restrictions that Java implies. Identif ier names containing
multiple words should be written without using underscores, for example, instead of kelime_gruplarini_bul(),
we will use kelimeGruplariniBul(). If an identifier name is very long and we will use abbreviations for the
first terms, like ANNLearner, NERecognizer, etc.

Commenting is also another important issue. In the beginning of important functions we will include a small
pseudo code for that function as a comment. Separate sections of code in a single file should be easily
distinguished again by using proper commenting. The language for commenting is not important, both
Turkish and English can be used. The important thing is; commenting should be clear enough so that later we
can remember what those functions do.

We will also start documentation of the project when we start implementation. Documents should describe
every detail of the project. It should be understandable by anyone, even by those who has no idea about text
mining or any other technical stuff.

3.2. TIME CONSTRAINTS

We have only six months to finish our project, therefore we have to obey our Gantt chart as much as possible
in order to avoid possible delays. Preparation of the detailed design report and implementation of the first
prototype should be done in a month. In the following one and a half week debugging and necessary
performance tests for the prototype should be thoroughly performed.

Since we will implement more than one builds, we should take it very seriously to make the produced builds
have a stable state. Each build will be made as following the other ones; it would cause a huge waste of time
and effort if we come across a bug after the third or fourth build, whose root lies in the first build.

8

This one and a half month is very important for us since we should finalize our design and implement a demo
program having all the basic characteristics of our final project.

3.3. USER INTERFACE CONSTRAINTS

We are planning to have two different user models in our project. The first will be an admin-like user, who
will have the ability to upload new reports to be analyzed. The program should permit analyzing more than
one report at the same time. The admin should be able to correct the wrong results of an analysis in order to
prevent storing wrong information.

The second user will be a searcher. The searcher will do the search using specific criteria so that he/she will
reach the desired information easily. Our user interface should provide the necessary means to implement
these functionalities. Besides it shouldn’t restrict our design in a way that we have to change it.

3.4. PERFORMANCE CONSTARINTS

In text mining every single word should be equivalent to a meaning. This can be done in two ways. The first is
searching the lexicon; the other is searching in internet. Because it can take some time to connect to internet,
searching the lexicon should prior. Since we chose java as language of the program we will be able to use
DB4O. This will provide the program to reach the lexicon database faster.

4. DATA DESIGN

4.1. DATABASE TABLES

Our database tables’ structure had gone through some important revisions. The table named ‘Oneri’ is
removed. ‘Oneri’ table was used for storing the suggestions referred in the reports. Since a suggestion could
be either an operation or a medical treatment, this table requires multiple inheritance (to the tables ‘Islem’

and ‘Ilac_tedavi’). Its integrity constraints are not well-defined and they are tricky; both of the foreign keys it
possesses shouldn’t be empty, but one could be empty. This situation is hard to implement in a relational
database. Instead of this table, ‘Islem’ and ‘Ilac_tedavi’ tables store an additional field named ‘oneriMi’.

We added a new table ‘Kiyas’, which is explained below. Other than these changes the structure of our
database design remains fundamentally the same.

4.1.1. RAPOR

This table holds the base information about an analyzed document. The main attribute of this table is to hold
the unique id of the whole analyzed report. Besides, this table holds all the straightforward information
existing in a report that doesn’t need to be categorized into more specific entities like problems, findings, so
on.

Rapor_no Integer

Baslik String

Tarih Date

Doktorlar Varchar(40)

Hasta Varchar(20)

PRIMARY KEY (Rapor_no)

INDEX(Rapor_no)

9

 Rapor_no is the id of the analyzed report

 Baslik is the heading of the report.

 Tarih is the date that this report was committed to paper.

 Doktor is the concatenation of the name of the doctors who wrote this report.

 Hasta is the name of the patient that the report was written about.

Since sustaining the names of the patients and the doctors is not very crucial for the quality of information

extracted from a report, we didn’t made extra tables for storing values related to them. It would be easy to

integrate in our project, if requested. The table about the patients may have fields such as name, age, sex.

4.1.2. PROBLEM

This table holds detailed information about a medical problem/abnormal finding that subsists in the
document. It may be the case that the patient doesn’t suffer from the problem. We still hold information
about it in this table.

Problem_no Integer

Rapor_no Integer

Rapor_bolum Varchar(15)

Problem Varchar(20)
Bolge Varchar(20)

Alt_bolge Varchar(20)
 Derece Varchar(20)

Kesinlik Varchar(20)

Aciklayicilar Varchar(40)

Tespit_tarih Date

PRIMARY KEY(Problem_no)

FOREIGN KEY(Rapor_no) REFERENCES(Rapor)

INDEX(Rapor_no)

CONSTRAINT NOT NULL(Rapor_no), NOT NULL(Rapor_Bolum)

 Problem_no is the primary id of the table.

 Rapor_no is a foreign key to the Rapor table that designates the report in which this problem

subsists.

 Rapor_bolum field holds the section of the report that this problem subsists in.

 Problem field holds the name of this problem.

 Bolge field holds the body part on which this problem takes place, such as ‘breast’.

 Alt_bolge field holds the more specific body part, such as ‘areola of the left breast’.

 Kesinlik field holds the certainty of the assessment of the actuality of the problem.

 Derece field holds the severity of the problem.

 Aciklayacilar field is to store the descriptors of the problem concatenated by a whitespace. Most

of the problems in medical reports have at least one and at most 3 descriptors. So using a

separate table for this entity wouldn’t be a good choice.

 Tespit_tarih field holds the date the problem was detected.

10

4.1.3. NORMAL_BULGU

This table holds detailed information about a normal condition finding that doesn’t emphasize existence or
nonexistence of a problem, as depicted by the sentence ‘the heart size is normal’.

Bulgu_no Integer

Rapor_no Integer
Rapor_bolum Varchar(20)

Bulgu Varchar(20)

Nitelik Varchar(20)

Bolge Varchar(20)

Kesinlik Varchar(20)
 Tespit_tarih Date

PRIMARY KEY(Bulgu_no)

FOREIGN KEY(Rapor_no) REFERENCES(Rapor)

INDEX(Rapor_no)

CONSTRAINT NOT NULL(Rapor_no), NOT NULL(Rapor_Bolum)

 Bulgu_no is the primary id of the table.

 Rapor_no is a foreign key to the Rapor table that designates the report in which this problem

subsists.

 Rapor_bolum field holds the section of the report that this finding subsists in.

 Bulgu field holds the subject of the finding, such as ‘the heart size’.

 Nitelik field holds the predicate of the finding such as ‘is normal’, ‘is clear’, ‘is natural’. The ‘is’s

parts are just for illustration, they are not part of the value stored in Nitelik.

 Bolge field holds the body part that this finding is initially related such as ‘heart’.

 Kesinlik field holds the certainty of the finding

 Tespit_tarih field holds the date of the finding.

4.1.4. ISLEM

This table holds information about a technique/operation (ultrasound, chest x-ray, biopsy or radiograph)
that subsists in the radiology report.

Islem_no Integer

Rapor_no Integer

Rapor_bolum Varchar(20)

Islem_adi Varchar(20)

Baslangic_tarih Date

Sure Integer

Bolge Varchar(20)
Aygit Varchar(20)

 Aciklama Varchar(30)

OneriMi Boolean

PRIMARY KEY(Islem_no)

FOREIGN KEY(Rapor_no) REFERENCES(Rapor)

INDEX(Rapor_no)

CONSTRAINT NOT NULL(Rapor_no), NOT NULL(Rapor_Bolum)

11

 Islem_no is the primary id of the operation.

 Rapor_no is a foreign key to the Rapor table that designates the report in which this suggestion

was proposed.

 Rapor_bolum field holds the section of the report that this operation subsists in.

 Islem_adi field holds the name of this operation

 Baslangic_tarih field holds the date this operation started.

 Sure field holds the number of days the operation lasted, or will last approximately.

 Bolge field holds the body part/body organ that this operation was processed on like the ‘chest’ in

‘chest x-ray’.

 Aygit field holds about the device that the operation was carried out with, like x-ray.

o This field somewhat seems as if colliding with the Islem_adi field, but actually they are two

different things. To illustrate in the sentence ‘An ultrasound operation to confirm that

these are real cysts is required’ they both have the value ‘Ultrasound’. But the operation

does not have to contain a device name, as in the sentence ‘comparison with previous

studies is suggested’ or ‘biopsy of this mass could be made without any contingent side

effects’.

 Aciklama field holds some explanation about this operation.

 OneriMi field holds if this operation is a suggestion or not.

4.1.5. ILAC_TEDAVI

This table holds information about a medication treatment that subsists in the analyzed radiology report.

Ilac_tedavi_no Integer

Rapor_no Integer

Rapor_bolum Varchar(20)

Ilac Varchar(20)
Bolge Varchar(20)

Baslangic_tarih Date

Sure Integer

OneriMi Boolean

PRIMARY KEY(Ilac_tedavi_no)

FOREIGN KEY(Rapor_no) REFERENCES(Rapor)

INDEX(Rapor_no)

CONSTRAINT NOT NULL(Rapor_no), NOT NULL(Rapor_Bolum)

 Ilac_tedavi_no is the primary id of the operation.

 Rapor_no is a foreign key to the Rapor table that designates the report in which this suggestion

was proposed.

 Rapor_bolum field holds the section of the report that this operation subsists in.

 Islem_adi field holds the name of this operation

 Baslangic_tarih field holds the date this operation started.

 Sure field holds the number of days the operation lasted, or will last approximately.

 OneriMi field holds if this operation is a suggestion or not.

12

4.1.6. KIYAS

This table stores the comparison of a problem to an early phase. Not much of the problems have comparison
information associated with them, so holding this information in another table hopefully will save some
space.

Kiyas_no Integer

Problem_no Integer

Kiyas_tarih Date

Degisiklik

Varchar(30)

PRIMARY KEY(Kiyas_no)

FOREIGN KEY(Problem_no) REFERENCES(Problem)

INDEX(Problem_no)

CONSTRAINT NOT NULL(Problem_no)

 Kiyas_no is the primary id of the suggestion.

 Problem_no is a foreign key to the Problem table that designates the problem that was compared

to the information in this table.

 Kiyas_tarih field depicts the date of the phase of the problem that it is compared with.

 Degisiklik field stores the change that is referred in the report.

13

4.2. ER DIAGRAM

Here is the overall ER diagram of our database design. The attributes of the entities are omitted from the
figure since they are explained thoroughly at the previous section.

All the types except ‘Rapor’ should have all their instances contained by another type. This inference shows
that, actually the four remaining tables may be modeled as weak entity sets. However, the fields in the other
tables do not have key-like characteristics. To illustrate, we can’t introduce a key for ‘Islem’ table by using the
‘rapor_id’ and all of its attributes. So we must add a primary key field to ‘Islem’ table. Upon adding a primary

key field to a table, there is no more need to model it as a weak entity set.

14

5. ARCHITECTURAL DESIGN

5.1. STRUCTURAL MODELING

5.1.1. DATA FLOW DIAGRAMS

5.1.1.1. Level-0

5.1.1.2. Level-1 “RadeX”

15

5.1.1.3. Level-2 “preprocess reports”

5.1.1.4. Level-2 “associate semantics”

16

5.1.1.5. Level-2 “learn and extract”

Explanations for data flow diagrams are omitted, since we already described most of them in the analysis
report. But there are some important additions and modifications that need some attention.

First of all, we added Logical Report object in the new diagrams. This object is just the parsed form of the
physical report in the memory. Almost every module accesses this object.

Second major change is the addition of the Learner lvl-2 flow diagram, although it is not much detailed right
now. But, we are going to detail this part as we progress.

Finally, all of the data objects flowing throughout these diagrams are explained below, in 5.1.2 Data
Dictionary.

17

5.1.2. DATA DICTIONARY

Data Dictionary for Data Flow Diagrams (LVL 0-1-2)

Name Format Use area Description

Free-text reports Free-text with
certain sections

Analyzer class It’s the input for the
report analyzer module.

Formatted data XML Analyzer and Searcher
classes

It’s the information
extracted from the
report.

Query string String Searcher class It’s used to search a
string on database. It
may be a single word or
group of words.

Query result Data object, XML Searcher class Result of a query is
stored in a Data object.
Data object stores rows
Then it’s printed in XML
format.

Parsed logical report Report object In all classes Logical report holds
sections, sentences,
words and phrases of
corresponding physical
report.

Unknown word/term String snomeddeAra(),
lexicondaAra()

It’s the word sent to
lexicons and SNOMED
to gain information
about it.

Word with semantics Lexeme object MedicalLexicon,
SifatLexicon and
YuklemLexicon
classes,
snomeddeara(),
lexicondaAra()

It’s created as a result of
a successful query in
Lexicons, SNOMED, and
TDK. It holds semantic
information about
words.

Current/New
knowledge

- Learner class It forms the knowledge-
base. It’s updated when
learning algorithm
learns new knowledge.

Report sections RaporKisim object Preprocessor class It holds the sentences of
the corresponding
section in physical
report.

List of words Cumle object Preprocessor class It holds words of the
corresponding sentence
in physical report.

Words with POS MyKelime object Preprocessor class It’s created for every
word in the report. If
Zemberek recognizes
the word, it updates the
object with its POS, root
and suffixes.

18

5.2. MODULER HIEARARCHY

19

5.3. MODULE EXPLANATIONS

RadeX will consist of two main components: Report Analyzer and Database Searcher. We are planning to
separate these two modules into two different executables.

5.3.1. REPORT ANALYZER COMPONENT

This module is most complex part of the project. It basically receives free-text radiology reports, and
performs some text-mining operations to extract meaningful information. It consists of four sub-modules,
namely, preprocessor, semantic associator, learner and finalizer.

5.3.1.1. PREPROCESSOR MODULE

This is the first module of the program. It contains all the classes and functions to parse and process raw text.
Preprocessor module creates a report object (which we call logical report throughout this report)
corresponding to a raw (physical) report. Again, this module consists of different sub-modules and routines
each of which fills some fields of the logical report.

Section Splitter

Here, report will be divided into main sections: Tur, Klinik Bilgi, Teknik, Bulgular, Sonuc and Doktorlar. Each
section has a corresponding RaporKisim object in the logical report.

Sentence Splitter

As the name implies, this routine splits each RaporKisim object into its sentences. For each sentence, a new
Cumle object is created.

Tokenizer

This routine splits sentences into tokens. Then, each word will be sent to Word Processor.

Word Processor

Here is the routine, where Zemberek comes into play. Each word will be processed using Zemberek one by
one. If Zemberek recognizes the word, a corresponding MyKelime object is created with the POS, kok and
ekler fields filled. If not, these fields left empty for now.

5.3.1.2. SEMANTIC ASSOCIATOR MODULE

It is the module, where words gain meaning, i.e. their classes and ontological meanings are discovered.
Adjectives and predicates are also fit into certain groups according to their meanings.

This module consists of several query modules and named entity recognizer to achieve proper classification

of words.

Query Own Lexicon
This module consists of three sub-modules, Query MedicalLexicon, Query YuklemLexicon, and Query
SifatLexicon. In these modules, unknown medical terms, predicates and adjectives are queried in the existent
lexicons built by us. If query succeeds, a Lexeme object corresponding to that word is returned. This object
contains type/class information of the word as well as Turkish and English translations.

Query SNOMED
Here unknown terms are queried in SNOMED. If query succeeds, the word gains its category and ontological
place in SNOMED hierarchy.

20

Query TDK/Word net
This module is used when the above queries fail, i.e. the word is neither in our lexicons nor in SNOMED. Here
we try to associate meaning to a word using Word Net, with the help of TDK. Details can be found on New
Research section under Current Status.

Named Entity Recognizer
If we can build or find a suitable training corpus, we are planning to use this module for further classification.

5.3.1.3. LEARNER

Details of this module are not yet clear. But we are planning to use neural networks algorithms and decision
tree learning methods to enhance the quality of extracted information and to reach information that cannot
be extracted using other classification techniques.

Neural Networks Learner
This module will use neural networks algorithms to extract new information.

Decision Tree Learner
This module will use decision trees to extract new information.

5.3.1.4. FINALIZER

This module consists of following sub-modules.

Information Collector
After semantic associator and learner modules finish their jobs, all the extracted information will be
scattered among words and sentences and even report sections. This information should be collected
somehow before formatting to display. This module will start working here.

Data Formatter
This module is responsible for building XML formatted view of all collected information. Also it will construct
SQL statements for insertion.

Database Connector
This module will establish the connection between Report Analyzer and the database. Then, it will send all
the data with the SQL statements prepared by Data Formatter module.

5.3.1.5. SPELL CHECKER

Spell Checker

As the name implies, it consists of some sub-routines in order to check spellings of words, and also to find
close/similar words to recognize unknown words.

21

5.3.2. DATABASE SEARCHER COMPONENT

The second main module of the program is database search module. It gives the user the ability to search the
database by submitting a query. It consists of three sub-modules: Database Connector, ResultSet Reader and
Displayer.

5.3.2.1. DATABASE CONNECTOR

This module will establish the connection between Database Searcher and the database. It will prepare an
SQL query statement for the string entered by the user, and commit.

5.3.2.2. RESULTSET READER

Result of the query will be analyzed and an XML format will be created here.

5.3.2.3. DISPLAYER

Here, the prepared document will be displayed to the user using GUI.

5.4. CLASS MODELING

5.4.1. PACKAGE/CLASS DESCRIPTIONS & CLASS DIAGRAMS

We have divided our classes into eight packages, namely anlam, arac, database, gui, lexicon, malumat, radex,
yapi.

For a legend of class diagrams

 The green fields signify a public member.

 The red fields signify a private member.

 The yellow fields signify a protected member.

 fields with a superscript s (s) are static members.

 methods with a superscript C (C) are constructors.

5.4.1.1. “anlam” package

This package contains one interface with no methods: AnlamTipi, and four enumarations implementing
AnlamTipi. This package reveals our feature selection procedure for sense extraction of word in a radiology
report. After having analyzed the radiology reports, we came into the conclusion that all the predicates and
adjectives in the reports actually can be reduced to 15-20 different ones with actual different senses.

 Yet our feature selection procedure is not finished. The one we have made for adjectives (SifatAnlamTipi) is
premature, it is just a sketch. We also will dive into the same procedure for adverbs and connectives.
YuklemAnlamTipi is to store the meanings of predicates. Predicates in the reports are usually verbs, but
there are cases when they are nouns or adjectives. In that case, the sense of the predicate is ‘medikal’ and it is
found using IsimAnlamTipi.

22

23

5.4.1.2. “arac” package

This package contains the all tool functioned classes that we will implement in our program, namely
AnlamsalIliskilendirici (Semantic Associator), Ogrenci (Learner), Preprocessor, SpellChecker, Tdk, Finalizer,

NERecognizer, WordNet. The methods of Ogrenci apart from one are not there yet.

 The words we gathered in the feature selection for Turkish radiology reports have intuitive corresponding
English counterparts in WordNet. To illustrate, “body part” is a category in WordNet corresponding to
Turkish “organ bolgesi”. For “hastalık” the counterpart is “health problem”. To make use of WordNet we first
translate a Turkish word to English by using an external dictionary. Next we look for the synonyms and
hypernyms of the English words until we come across one of our categories.

24

5.4.1.3. “database” package

This package contains the corresponding java classes of the database tables that were explained in the
section 3.1. Other than those it contains two other classes: Data and Database.

Data is an abstract class that has one abstract method named toGrid. All the database table classes are

required to have a concrete implementation of this method. This method will be used as a helper to view a
dataset table as a JTable.

Database class is to abstract the database related functionalities of radex. Class diagrams for the database
package are below.

25

5.4.1.4. “lexicon” package

This package contains the data structures and classes that we use to implement our own lexicons.

 All of Lexicons do have a dbo.ObjectContainter property named db. That property holds the database

object to store the lexicon in the file system.

 Since there will be only one instance of a lexicon, they do not have a public constructor. Rather than
that, they have a public method getInstance() that returns the only instance of that lexicon.

 MedicalLexeme, YuklemLexeme, SifatLexeme are the classes that the lexicons store the instances of.

26

 Lexeme means a vocabulary entry in English, and doesn’t have a Turkish counterpart. It is different

than the yapi.MyKelime class in a number of ways. It doesn’t need to store the suffixes of a word. The
words ‘ruin’, ‘ruined, ‘ruining’ have all the same Lexeme ‘ruin’, whereas they are different words.

5.4.1.5. “malumat” package

This package is supposed to hold the knowledge bases that we will use. It will also be using db4o just like
lexicons do. Unfortunately, the content of this package is not available at the moment, surely will be
available at the final design report.

5.4.1.6. “radex” package

This package contains two classes namely Analist and Sorgucu which stands for Report Analyzer component
and Database Searcher component.

At the moment all these two classes have is the main method.

5.4.1.7. “yapi” package

This package exists in order to store the structures of linguistic entities. All the classes in this package
implement java.lang.Cloneable interface, and override default toString() methods. Moreover all of their
member variables are private and have setters and getters.

 Kelime is not a class that we created, it is part of Zemberek. Our own class is named MyKelime which

extends Kelime

 KelimeGrubu stands for Noun Phrase.

 Cumle stands for sentence.

 Yuklem stands for predicate.

 Kesinlik stands for exactness.

 RRapor is the class that holds all the information related to an analyzed radiology report.

 RaporKisim class is to store the different sections in a radiology report in different places.

27

28

29

5.4.1.8. “gui” package

This package stores the classes related to our graphical user interfaces.

30

5.5. BEHAVIORAL MODELING

5.5.1. SEQUENCE DIAGRAMS

5.5.1.1. “Analist” Sequence Diagram

31

5.5.1.2. “Sorgucu” Sequence Diagram

32

5.5.1.3. “Preprocessor” Sequence Diagram

33

5.5.1.4. “AnlamsalIliskilendir” Sequence Diagram

34

5.5.2. ACTIVITY DIAGRAMS

35

6. INTERFACE DESIGN

6.2. USER INTERFACE DESIGN

In this section, we will describe how the interaction between users and RadeX will take place. As we
described in our requirements analysis report, there will be two different user types: Report supplier
(admin) and searcher.

General functionalities (i.e. both for admin and searcher) of the interface are on “Dosya” and “Yardım” menus
in menu bar. “Dosya” includes “Çıkış” option which terminates the program. “Yardım” includes “Radex
hakkında” option, which gives the usage and version information about radex; “Tiran software hakkında”,
which gives information about developers of Radex.

Interactions between Admin and Report Analyzer component:

 In order to load report file/files or directory, user should choose “Sisteme rapor yükle” option from
“Dosya” menu shown in figure B.

 As it is seen on Figure A, user can choose one or more files or a folder to be loaded.

 Opening these reports; initial states (unprocessed) of reports will be inserted into “İşlenmemiş

raporlar” node of the “Dizin” of the tree view as shown in Figure B.

 Upon the user clicks “Analiz” button, the program will process the report (or reports); take the report
from “İşlenmemiş raporlar” and put into “İşlem sonuçları”. The highlighted leaf in “İşlenmemiş
raporlar” node will display the result (Figure C) of the chosen report.

 User may edit the text fields on desire.

 User must click “Kaydet” button to put the extracted data into database.

Figure A

36

Figure B

Figure C

37

Interactions between Searcher and Program:

 User searches the keywords via text field shown in figure D.

 Program will list the compatible result as listed in figure D.

Figure D

6.3. METHOD/CLASS INTERFACES

6.3.1. “arac” PACKAGE

static method TDK :: tdkSorgulaKelime

- input parameters : s – String

- return type : Vector<String>

 This method stores all the definitions of s in TDK in a vector and returns that vector.

 If there is no definition in TDK return value is null.

38

static method TDK :: tdkIngilizceyeCevir

- input parameters : s – String

- return type : String

 This method returns the english translation of the Turkish word s

 If translation is unsuccesull return value is null.

static method SpellChecker :: kelimeDuzelt

- input parameters : s – String

- return type : String

 This method tries to fix a possibly erroneously spelled Turkish word

 If fix is unsuccesull return value is the same string s.

static method SpellChecker :: yakinKelimeler

- input parameters : s – String

- return type : Vector<String>

 Here s is a jumble word written in Turkish medical terminology. This function tries to convert it to the

actual English or Latin equivalent.

 It returns a vector of possible retouched words indexed in the order of their contingency.

static method SpellChecker :: kokBul

- input parameters : s – String

- return type : Vector<String>

 This method tries to find the root of the jumble word or correctly converted word s.

 It returns a vector of possible roots indexed in the order of their contingency.

method Preprocesor :: Preprocessor

- input parameters : r – yapi.RRapor

 Preprocessor constructor takes a RRapor object r as a single argument and initialize its rapor field with r

method Preprocessor :: preprocess

- input parameters : None

- return type : None

 This method does preprocessing of the report rapor.

39

method AnlamsalIliskilendirici :: AnlamsalIliskilendirici

- input parameters : r – yapi.RRapor

 AnlamsalIliskilendirici constructor takes a RRapor object r as a single argument and initialize its rapor

field with r

method AnlamsalIliskilendirici :: iliskilendir

- input parameters : None

- return type : None

 This method does semantic association of the report rapor.

method Finalizer :: Finalizer

- input parameters : r – yapi.RRapor

 Finalyzer constructor takes a RRapor object r as a single argument and initialize its rapor field with r

method Finalizer :: databaseTablolariniOlusturVeDon

- input parameters : None

- return type : Vector<database.Data>

 This method constructs the database tables for the parameter passed to its constructor. Next, it returns

those tables in the form of a vector.

method NErecognizer :: NErecognizer

- input parameters : r - RRapor

 NErecongnizer constructor takes a RRApor object r as its only constructor.

method NErecognizer :: NErecognize

- input parameters : None

- return type : None

 This method tries to find out the senses of the word phrases

method WordNet :: getPos

- input parameters : s - String

- return type : String

 This method returns the pos tag of the English word s using Word Net.

40

method WordNet :: getSense

- input parameters : s - String

- return type : String

 This method returns the sense of the English word s using Word Net.

method WordNet :: getSense

- input parameters : s – Vector<String>

- return type : String

 This method returns the sense of the English words in vector s using Word Net.

6.3.2. “database” PACKAGE

abstract method Data :: toGrid

- input parameters : none

- return type : Vector<Object>

 This method returns a vector of all the members of the implementer class.

 This method is to be used as a helper to display the Data in a JTable .

static method Database :: getInstance

- input parameters : none

- return type : Database

 This method returns the only instance of the Database class

method Database :: setHost

- input parameters : h – String

- return type : none

 This method sets the host address of the physical database to be h.

41

method Database :: setUser

- input parameters : u – String

- return type : none

 This method sets the username for the connection to the physical database to u.

method Database :: setPass

- input parameters : p – String

- return type : none

 This method sets the password of the connection to the physical database to be p.

method Database :: bagliMi

- input parameters : None

- return type : boolean

 This method returns if the physical database connection is active.

method Database :: baglan

- input parameters : None

- return type : Boolean

 This method tries to open the connection to the host of the database.

 Returns

 true on success.

 false on failure.

method Database :: baglantiyiSonladir

- input parameters : None

- return type : None

 This method closes the connection to the host of the database.

42

method Database :: gomRapor

- input parameters : i - Rapor

- return type : None

 This method inserts the Rapor i to the vector holding the Rapor objects in this Database class.

 Beware that this method doesn’t insert i to the physical database directly, just stores it in the Database

class.

method Database :: gomIslem

- input parameters : i - Islem

- return type : None

 This method inserts the Islem i to the vector holding the Islem objects in this Database class.

 Beware …

method Database :: gomNormal_bulgu

- input parameters : i – Normal_bulgu

- return type : None

 This method inserts the Normal_bulgu i to the vector holding the Normal_bulgu objects in this Database

class.

 Beware …

method Database :: gomProblem

- input parameters : i - Problem

- return type : None

 This method inserts the Problem i to the vector holding the Problem objects in this Database class.

 Beware …

method Database :: gomKiyas

- input parameters : i - Kiyas

- return type : None

 This method inserts the Kiyas the vector holding the Kiyas objects in this Database class.

 Beware …

43

method Database :: gomIlac_tedavi

- input parameters : i - Islem

- return type : None

 This method inserts the Islem table i to the vector holding the ‘Islem’s in this Database class.

 Beware …

method Database :: gomIlac_tedavi

- input parameters : i - Islem

- return type : None

 This method inserts the Islem table i to the vector holding the ‘Islem’s in this Database class.

 Beware …

method Database :: gomData

- input parameters : v – Vector<Data>

- return type : None

 This method inserts the all the element Datas of v to this class.

method Database :: temizle

- input parameters : None

- return type : None

 This method empties all the vectors in this Database class holding any Data.

method Database :: queryRapor

- input parameters : None

- return type : None

 This method empties all the vectors in this Database class holding any Data.

method Database :: queryRapor

- input parameters : no - int

- return type : Vector<Data>

 This method queries the physical database for all the Data related to the Rapor having rapor_no no and

returns all the Data in a vector

44

method Database :: queryAnahtar

- input parameters : key - int

- return type : Vector<Data>

 This method queries the physical database for all the Data having some field containing the keyword key.

Next it returns the vector containing all the query resulted Data.

6.3.3. “lexicon” PACKAGE

method Lexicon :: init

- input parameters : none

- return type : none

 This method reads the lexicon file from the file system and does some necessary initialization.

method Lexicon :: put

- input parameters : l - Lexeme

- return type : none

 This method inserts the Lexeme l to this lexicon.

method Lexicon :: getTurkce

- input parameters : s - String

- return type : Lexeme

 This method searches the lexicon and returns the lexeme having its turkce field equal to s .

 If the lexeme does not exists in the lexicon, return value is null

method Lexicon :: getIngilizce

- input parameters : s - String

- return type : Lexeme

 This method searches the lexicon and returns the lexeme having its ingilizce field equal to s .

 If the lexeme does not exists in the lexicon, return value is null

45

method Lexicon :: getInstance

- input parameters :None

- return type : Lexicon

 This method returns the only instance of this lexicon.

(Actually the abstract Lexicon class doesn’t have this method, but since all of its subtypes have this method
it is written as if it is part of the Lexicon class.)

6.3.4. “radex” PACKAGE

method Sorgucu :: main

- input parameters : String []

- return type : None

 This function is the entry point of our Database Querier component.

method Analist :: main

- input parameters : String []

- return type : None

 This function is the entry point of our Report Analyzer/Information Extractor component.

6.3.5. “yapi” PACKAGE

The classes in this package don’t have any public methods, but just getters and setters for all of their
variables which are depicted by the class diagrams a section 4.2.2.7. Additionally they all override the default
toString and clone methods, to facilitate debugging and illustration purposes.

Since all these methods are native to Java they don’t require additional explanation.

46

7. PROCEDURAL DESIGN

7.1. PSEUDOCODES

Here are pseudo codes of some important functions.

7.1.1. “radex” PACKAGE

Analist :: main ()

 l <- Lexicon Instance

 d <- Database Instance

initialize l

baglan d

display GUI

for each report files

 create Rapor object rapor from path

 create Preprocessor object : p[r]

 preprocess rapor

 create AnlamsalIliskilendirici object ai from rapor

 iliskilendir rapor

 display rapor

 get editedresult from GUI

 learnFrom editedresult

 send result to d

 end

end

Sorgucu :: main()

 d <- Database instance

 baglan d

 display GUI

 for each string object s that user enters;

 query s from d

 get result

 display result

 end

end

7.1.2. “arac” PACKAGE

Preprocessor :: preprocess()

 kisimlariAyir islenmemisrapor

 foreach raporkisim:RaporKisim;

 cumleleriAyir

 for each cumle:Cumle

 kelimeleriAyir

 for each kelime:MyKelime

 check zemberek

 if kelime found in zemberek

 kelime:MyKelime <- kelime:Zemberek.Kelime

 end

47

 end

 end

end

AnlamsalIliskilendir :: iliskilendir()

 for each kelime:MyKelime

 look up l1:MedicalLexicon for kelime

 look up l2:SifatLexicon for kelime

 look up l3:YuklemLexicon for kelime

 if(kelime not found on lexicons)

 kelimeler <- yakinKelimeler(kelime)

 lookup WordNet for kelimeler

 if(kelime not found on WordNet)

 ingilizcekelime <- tdkIngilizceyeCevir(kelime)

 lookupWordNET ingilizcekelime

 convert wordnet word to lexicon entry

 add new entry to lexicon

 end

 yuklemleriBul

 kelimeGruplariniBul

 classifyNamedEntities

end

7.1.3. “database” PACKAGE

public void Database::aktar()

 if isBagli

 continue

 else

 baglan

for each member of Database class

 prepare the SQL statements

 commit SQL statements

end

public Vector<Data> Database::queryAnahtar(String keyword)

 d <- Database instance

 if d.isBagli

 continue

 else

 d.baglan

 create a vector V of Data

 for each table in Database

 prepare the SQL query statement

 ResultSet RS = commit the SQL statement

 If RS is not null

 Create a Data object D corresponding to table

 Read rows of RS

 Fill the members of D

 Add D to V

 Return V

end

48

public Vector<Data> Database::queryRapor (int key)

 d <- Database instance

 if d.isBagli

 continue

 else

 d.baglan

create a vector V of Data

prepare the SQL statement for key search

ResultSet RS = commit the SQL statement

 If RS is not null

 Create a Data object D corresponding to table

 Read rows of RS

 Fill the members of D

 end

 return V

end

8. FU TU RE WORK

First of all, we will continue to study on learning algorithms and named entity recognition problems. Besides
we will start to implement our modules, so that every component of the project will have some basic
functionality until the first prototype. Moreover we will start building our own lexicon, which will be
improved continuously. Another issue that we have to deal with is spellchecking algorithms.

After the prototype, implementation will accelerate and we will incrementally release new versions over and
over, until we are satisfied with the rate and quality of the extracted information.

49

9. APPENDIX

9.1. GANTT CHART

50

10. REFERENCES

1. Software Engineering A Practitioner’s Approach, 5th Edition , Roger S. Pressman

2. Schaum’s Outlines Software Engineering, David Gustafson

3. Component Oriented Software Engineering, Ali H. Doğru

4. Wikipedia , http://en.wikipedia.org/

5. db4o entry on Wikipedia, http://en.wikipedia.org/wiki/Db4o

6. db4o, http://www.db4o.com/

7. WordNet entry on Wikipedia, http://en.wikipedia.org/wiki/WordNet

8. WordNet, http://wordnet.princeton.edu/

9. TDK, http://www.tdk.gov.tr/

10. JWNL, http://sourceforge.net/projects/jwordnet

11. The Text Mining Handbook, Ronen Feldman / James Sanger

12. Database Management Systems, 2nd Edition, Raghu Ramakrishnan / Johannes Gerke

13. The Unified Modeling Language User Guide, G. Booch / J. Rumbaugh / I. Jacobson

http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Db4o
http://www.db4o.com/
http://en.wikipedia.org/wiki/WordNet
http://wordnet.princeton.edu/
http://www.tdk.gov.tr/
http://sourceforge.net/projects/jwordnet

