WINSTONSOFT

Detailed Design Report for

ACCIPP

CEng 491-CLASSIM Project

Elvan GULEN
Can HOSGOR
Nazif Ilker ERCIN
Cagla CIG

Fall 2007




Table of Contents

WinstonSoft | 2
Detailed Design Report for ACCIPP

1. Introduction 4
11 PrODIEM DETINITION ...t ceeesss e eesssss s esssss s sesssss s es s bbb nstens 4
1.2 PrOJECE GOAIS coceeeeeeeeeeeiii et cesesss e ceesiss s eessss s R 5
1.3 What Has BEEN DONE SO Fal..eceeiiieeceeiiiseseeessssssssseessssssssessssssssssssssssssssssessssssssssssssssssssssssssns 5

2. Design Constraints 9
2.1 TIME CONSEIAINTS.....reeeeeeeeeceesisseeeceeessseesecessssss s eesssss s sess s bbb R bR 9
2.2 LANGUAGE CONSTIAINTS. ...couuurrreeiemmeeeeeesisseeseeesssssseesseesssssssesssssssssessesessssss s esssssssessssssssss s ssssssssessssssssssssessssssns 9
2.3 DA CONSTIAINTS. ...oouuueeereeeeemeeeeceeisseeeeeeeessssseseessssss s cessssss s esssss s bR bR 10
24 PEIfOrMANCE CONSIIAINTS.....uureeereeeeeeesmssseeeseeeessssssssssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssees 10
2.5 USEr INtEIface CONSIIAINTS ......cevveveeeemsseeeseereeessesmsssssssssssesssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssees 10

3. Project Requirements 11
31 FUNCEIONAI REQUITEMENTES ...t ssessssssssssssssssssssssssssssssssssssssssssssssssesssssssessssssssssssssessess 11

311 CAPLUNNG PACKELS ..ot eetiiseeeeceisis s seessss s eesssss s sesssss s sessss s essss s esssss s 11
312 PrOPIOCESSING ceeeeumseeseeesumssesseesssssssssseesssssssesssessssss s essssss s essssss s bR kR AR bbb 11
3.1i3  FIIEEIING ettt ceeeis s eesss s esssss bbb 11
314 AUTO-SENSING ieetiireeeeeetiisseeseeeesssee s eessss s ssssess s ss sk R AR Rk 11
3.1.5 Processing Identified CONNECHIONS .....ovccuerreeeeeieeeeeeseeseeessesssssssessssssssssssssssssssssssssssssssssssasss 11
316 OULPUL MECNANISIMN.......ooeeceeeiesetesseseeeeisssessseessssss s ssssssss s sssssss s sssssss s ssssss s ssss s sssas 11
32 NON-FUNCLIONAI REQUITEMENTES.......eveeereeeeereeiiesesesessssesssssssssssssssssssssssessssssssssssssssssssssssssssessssssnessess 12
321 USADITITY ettt eessa bbb 12
3.2.2  POMADIITY covveeeeee ettt eeesiss s sessss s sesssss s s 12
3.2.3  REIADIIEYeeueeueueeereeereeesiiissecereceeeessessasssessesesesssssssssssesessssssssssssssssssss s sssssssssssss s sssssssssa s ssssssees 12
324 DOCUMENTATION. .coturietreereteeeeeetseeeiesseseesss s essss s ssess s ssss s ssssss s ssss s sss s sess b ebss s ss s ssssseseees 12
3.3 SOFtWAre REGQUITEMIENTS.......coouerreeeeeseesecesessseseesssssessseessssssesssesssssesssssssssss s sssssss s essssssesssssssssssssssssens 13
3.3 1 OPEIatiNgG SYSTOMcuu e eeeeiiseeeeeesesseesseeessas s sessssss s eesssss s esssss s es bbb b 13
3.3.2  EXTEINQl PACKAGES. .....ucuceceeereeiiiiissseesseeeesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnnssssssssessssees 13
34 Hardware REQUITEMENTS.........cooceeeuumeeeeeseseeseeessssssesssesssssssessssssssssssssssssssssssssessssssesssesssssssesssssssssssssssssess 13
341 MINIMUM HANAWATE ......ooorceeeeieeseceeessseseceessssessssessssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssessens 13
34.2 ReCcOMMENAEA HATAWATE ........ooieeeeeeneeeeieeseeeesssssesseeesssssssssssssssssssssssssssssssssssesssssssssssssssssssssssnns 13

4. User Interface Design 14

5. Database Design 17
51 Entity-Relationship DIagIamsS.....cerreennseeessssesessssssssssssssssssssssssssssssssssssssssssssssssssssssessssssessess 18
5.2 Data DESCIIPTIONS.......orveeerrreviersesssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssessssssesssss 24
5.3 ENTItY DESCIIPTIONS.....ouveeeerereeeereessssesssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessess 26
54 Creating ACCIPP Database. ... reeernreessisssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssss 30

6. Architectural Design 33
0.1 SEITUCTUIE CRATT oottt sessss s cesssss bbb bbbt 33
6.2 SYSTEM IMOAUIES ...ttt essesseesssesssss s sssssss s ssssss s ssssss s sssss s ssssss s s sssssns 34

6.2.1  DECOUET MOAUIE....ooieetiieeteeiiiseeeeeiiissses s sessss s sssssss s sssssss s sssss s ssss s esssss s ssssssns 34
6.2.2  AULO-SENSING MOAUIE.......coeeeeereets i sssss s sssssss st sssssssss st ssssssssssssssesssssssensess 36
6.2.3  OULPUL MOAUIES. ..ottt eeeessss s sessss s sesssss s sesssss s essss s ess s sss s sssssne 45
6.3 Data FIOW DIQQIAMS ......coeeeeeeeeereeeieseeissssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssesssssssesssssssssssssessess 47
6.3.1 Level O DFD Of DECOAET MOAUIE ..o eeeeeeeemmssssssesssssesssssssssssssssssssssssssssssssssssssssssssssens 47
6.3.2 Level O DFD of AUt0-SeNSING MOAUIE........eereceeeeeeeesrseeeseeeeeeeeesssssssssesssssesssssssssssssssssssssssssees 47
6.3.3  LEVE| O DFD OFf ACCIPP..........oooeeeeeeessseeeeeseeeesssssssssssessssessssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssees 47
6.34  Level 1 DFD Of DECOAET MOAUIE ..o eeceeeeissnsssesessesssessssssssssssssssssssssssssssssssssssssssssssees 48
6.3.5 Level 1 DFD of AUtO-SeNSING MOAUIE........orreeceeeeeiessseeeseseeeceeeeessssssssesssssssssssssssssssssssssssssssees 49
6.3.6  LEVEl 1 DFD Of ACCIPP..........cooeeeeeersseeeesseeeesssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssees 50
6.3.7  LeVel 2 DFD Of AULO SENSING ....irrrreeeeiemsmeresssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssees 51
6.3.8  LEVE| 2 DFD Of ACCIPP..... e eeeeeeeeeeceeimsesseeeesssssssseesssssssesssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 52
B4 DAtA DICHIONAIY cootteeeeeiieeeeceieseeceeesss e eessssssessecesssss e e ssss s bRk 53



WinstonSoft | 3
Detailed Design Report for ACCIPP

7. System Design 58
7.1 USE CASES..couumerrimeeeeimneeesisseesssssseesssssessessssssesss et sssss e bbb bbb 58

7. 11 USE CaSE DIAQIamS.......oecceeeumieeeeeessseseseessssssesssssssssssssssssssssssssssssssssssssssssssssssesssssssesssssssssssssssssssssessees 58

7. 1.2 USE CASE SCENAIIOS. ..ccuuuuerreeeummsesseesssssssssesssssssesssessssssesssessssssssssesssssssssssssssssssssessssssssssssssssssssssssssssseseees 60

T2 ClaSS DIAGIAMS..criceeiuieeseeeiimssseeessssssseseessssss s esssssssssseessssss s esssss sk ek 63
721 DECOAET MOQUIE....ceeeeeeeeeiiies i sesseeeeiss s sessssss s esssss s ssssss s esss s ess s essas s 63
722 AULO-SENSING MOAUIE......cceeeeeereeiieeeeetieese e eesssss s eesssss s sesssss s sssss st sesssss s 65
7.2.3  OULPUL MOAUIE oottt eeesiss s sesssss s esssss s ssssss st ess s 66

7.3 SEOUENCE DIagIamMS. .. ccceeeeemeeeeeeeussseeeessssssseseesssssssssssesssssssssssessssssssssesssssssssssesssssssssssssssssssssessssssssssssssssnas 68
7.3.1  Sequence Diagrams fOr OULPUL ............rrreceesesmsssessesseeesssssssssssesssssssssssssssssssssssssssssssssssssnnnns 68
7.3.2  Sequence Diagrams fOr DECOMEN. ... reeeieeeeeenresseeesssssssssessssssssssessssssssssesssssssssssssssassssee 69
7.3.3  Sequence Diagram fOr AULO-SENSING.....cccowwuuureeermrneseesssmessseesssssssssssssssssssssssssssssssssssssssessees 70

T A ACHIVITY DIAQTAMS....cceuieeceeiemmieeeeesesssesseessssssssessesssssssesssssssssssessessssss s essssss st essssss s essssssssssessssessssssssssnss 71
74.1  Activity Diagram Of DECOTET ... seeeeeessssssssssseessssssssssssssssssssssssssssssssssssssssssssssssssssssnnnns 71
74.2  Activity Diagram Of AULO-SENSING ........cccomrrrereeeeemsssssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 72

8. Testing Strategy and Procedures 73
8.1 TESHING SHATEGY .. rreriiecerssissecessssessessssssssssessssssessse st ssssssessssssassse st ssssassssssssasnasessssssssnne 73
8.2 TESHING PrOCEAUIE.......oooeereeeeetee et ecetss s sessssss s esssss s ssssss s sss s ss s e 75
821 UNIT TESTING cooureiineeeeineeeeeise et esisssssssassssesssssssssssssssssss s sssss s ssss s ssss s sss bbb sessens 75
8.2.2  INtEGratioN TESTING ..cccuuucrrereiccermiiaecersssisneesssssssssesssssssessssssssssssssssssssssssssssssssssssssssnsassssssssnnessees 75
8.2.3 Reliability and Effici@NCY TESTING....correeeerirrreeeeeseeesisesseeessssessssessssssesssssssssssssssssssssssssssssssssses 75

9. Syntax Specification 76
0.1 NAMUNG ClASSES.ccuurriierrnrreisessessssssssssssssssssssesssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 76
9.2 NAMING FUNCHIONS «..ooovreeeeieeceeiseeisessesisssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssseseess 76
9.3 NAMING VaTTaDIES.........ccvvveiriiiirsceereessiiissssesseessssssssass st sssssssssss st ssssssssssssssssssssssssssssssssssssssssses 77
94 COMMENT CONVENTIONS ....reeerereiimeeesisseeessseseesssssessssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssaseses 77
9.5 IMYSQL CONVENTIONS .....cetieiiireeeiiseeeeisseeesisssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssssssssssssessssssasesss 77
10.Project Schedule 78
101 GANEE CRATt..ooooeeieeeeeeeeseesesssssessasssssassssssssssessessssssssssessssssssssess e85 558580 78
11.Extra Features 78
12. Appendix 84
121 GANTE QAT ciiieieeeieeeeeeeeiseeeeeiess e eessssss e cessss s sess s bR b0 84

13.References 87




WinstonSoft | 4
Detailed Design Report for ACCIPP

1. Introduction

In general terms, a packet sniffer (also known as a network analyzer or protocol analyzer) is
a software or hardware that can monitor, state statistical information about and log traffic
passing over a digital network or part of a network. As data is being transferred over the
network in real time, the task of the sniffer is to capture ideally every packet and analyze its
content in accordance with the appropriate RFC document or other specification. Most
network analyzers allow port-specific tracking, i.e. they label protocol connections only by
looking at port numbers. However, the need to overcome the limitations of traditional
port-based protocol analysis arises since in today’s networks an increasing ratio of the
traffic (totaling roughly 5.6 million connections [1]) resist correct classification using
TCP/UDP port numbers. The reason for that increase is the rising desire to evade security
monitoring and policy enforcement.

1.1 Problem Definition

Relying on well-known port numbers such as 80 for HTTP may not always be possible since
applications may use arbitrary ports. The main reasons for that choice of usage are benign
reasons and malicious intent. Benign reasons result from lack of user privileges,
obfuscation, multiple versions; adversarial applications such as Skype bypassing firewalls.
On the other hand, malicious intent results from the desire to evade from security
monitoring like IRC bot-nets using ports other than the ones they are assigned to
(666x/TCP). The necessity to distinguish these arises from the prevalence of the problem
and has the consequence of the need for a need approach for dynamic analysis using auto
sensing mechanism that performs port independent network analysis.

The auto-identification/classification of common IP protocols software to be developed for
Siemens is a new system. It will be used as an application for capturing packets over the
network and identifying most of the widely used IP protocols such as FTP, POP3, SMTP,
and MSMSG. The project is designed to run on both Windows and common flavors of
UNIX thus it is platform independent. ACCIPP should be equipped with a user-friendly with
an intuitive, easy-to-operate GUI that will provide quick and comfortable operation.



WinstonSoft | 5
Detailed Design Report for ACCIPP

1.2 Project Goals

The project is aimed to satisfy the following goals:
> Identify the following protocols: FTP, POP3, SMTP, and MSMSG.
» Capture some popular file formats like avi, wmv, jpg etc. from the detected
protocols.
> Log instant messenger conversations.

Y

Give output in an appropriate format.
» Monitor and supervise network traffic for performance and security and
bandwidth usage.

Y

Gather and report network statistics and help troubleshoot network problems.

Y

Generate and view reports in tables and charts on network usage.

Y

Filter suspect content such as spam, and denial of service attacks from network
traffic.

Spy on other network users and collect sensitive information.

Debug client-server communications.

Show relevant information like IP, protocol, host or server name etc.

YV V V V

Determine when the identified protocol is no longer available in the flow
through the identified port.

Y

High performance and low-latency (Real-Time) detection capability.

Y

Recognize incomplete protocol sessions.

1.3 What Has Been Done So Far

» Obtained knowledge about the project:
By the help of the meetings with Siemens and feedback from the project assistant,
the project scope and goals were clarified.

» RFC documentations research has been done:
Widely used mail protocols which are SMTP, POP3, IMAP and NNTP were fully
examined. All specific arguments, keys, statuses, restrictions and commands were
learned. Besides, a general idea was gained about how the server hosts start the
protocol service and how the server and the client respond to the commands until
the connection is lost. Moreover, all the project members connected to mail services



WinstonSoft | 6
Detailed Design Report for ACCIPP

through the related protocols and tested how the protocol works. In addition to
these protocols, RFC documentation of FTP is also covered.

HTTP was started to be researched but since it is a comprehensive protocol, a small
part of it has been analyzed. Although the finalized design does not include the
detection of HTTP, the research can be regarded as to be intended for reference.

These studied information about the protocol specifications is useful for the Auto-
sensing mechanism of the project. Since Auto-Sensing Mechanism constitutes the
main part of the project, this research is extremely important for the future of
ACCIPP.

Network sniffer research has been done:

To observe how the Pcap files are handled by other sniffer programs, the project
was attached importance to network sniffer research. Through the guidance of
assistant and the representative of Classim, Wireshark Network Protocol Analyzer
was set up and capturing TCP protocols was managed to investigate the content of
the packets. Also SmartSniff was examined so that network traffic was observed with
another program.

Programs with similar features were analyzed:

TCPxtract and EtherPeg were analyzed. TCPxtract extracts files from network traffic
based on file signatures. This tool may help for extracting .jpeg, .doc, .avi or etc from
the packets. EtherPeg is a program that shows all the JPEG pictures going through
the network traffic.

Artificial Intelligence Concepts were studied:

Some Al techniques that can be used in Auto-Sensing mechanism are studied and
examined. The group members intensely worked on Support Vector Machines and
Hidden Markov Model and how these algorithms can be implemented on ACCIPP.
As a result each member has gained an understanding of related subjects which is
vital since the modules that require pattern recognition have been designed and are
going to be implemented by all team members.



WinstonSoft | 7
Detailed Design Report for ACCIPP

» Some project related papers and materials were read:
Until now, a huge amount of research has been conducted on the following topics:
i.  Clustering Classification,
ii.  No Port Network Protocols Detection,
iii.  Feature Extraction for Integrated Pattern Recognition Systems,
iv.  Network-Based Application Recognition and Distributed Network-Based
Application Recognition,
v. PortIndependent Protocol Identification.
vi.  Active Learning Techniques and Machine Learning
vii.  Network Packet Reordering

During that research the following materials have been examined:
I http://documents.wolfram.com/applications/neuralnetworks/NeuralNetworkT
heory/2.1.3.html
. http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/Clus_and_Class_po
pup.htm.
.  Garrett-Mayer E., Parmigiani G, “Clustering and Classification Methods for
Gene Expression Data Analysis”, 2004.
IV.  No Port Network Protocols Detection Presentation by Sevgi Yasar
V.  Feature Extraction for Integrated Pattern Recognition Systems by X. Wang
and K. K. Paliwal
VI.  Network-Based Application Recognition and Distributed Network-Based
Application Recognition by CISCO
VI.  Dreger H., Feldmann A, et.al, "Dynamic Application-Layer Protocol Analysis
for Network Intrusion Detection”
VII.  http://cs.northwestern.edu/~ychen/classes/cs450-s07/lectures/pia.ppt
IX.  http://www.icir.org/robin/papers/usenix06.p df
X.  Wang Y. Guohan L, Xing L., “A Study of Internet Packet Reordering”, 2004.
X Govind S, et.al, "Packet Reordering in Network Processors”, 2007.
XII.  Ilvesmaki M, “On Traffic Classification and Its Applications in the Internet”,
2005.
XII. MacKay DJ.C, "Information Theory, Inference, and Learning Algorithms”,
2003.
XIV.  Machine Learning Presentation by Tommi S. Jaakkola, MIT AI Lab.



WinstonSoft | 8
Detailed Design Report for ACCIPP

Prototype related operations were researched and studied:

Some prototype related subjects such as capturing and reading packets, then
filtering them according to some parameters and reordering them have been
studied. Other than this, since Auto-sensing Mechanism is vital for ACCIPP, some
related literature material has been analyzed.

Necessary 3" party libraries were researched:

libpcap was analyzed. This library is useful for capturing packets from the network
traffic and reading them. For the implementation of Auto-Sensing mechanism, in
case of the usage of Support Vector Machines, svmlight was found useful.
Additionally for the implementation of the GUL Qt is studied.

MSN protocol was examined using reverse engineering:

MSN protocol is not a proprietary protocol, so that the research could not be done
on the RFC documents. However, from different resources MSN Messenger Protocol
was examined. Most of the status and error commands were studied.

Design concepts have been finalized:

The design phase of the project has completely reached its maturity. Project
requirements and scope were defined clearly, so all of the data structures, classes
and data interactions within the program have already been determined. The
structure schemas have been studied and improved. New classes and data
structures have been designed as more and more concepts have become
understood, still preserving the previous class hierarchy.

Worked on prototype design and implementation:

Prototype of ACCIPP has been built with basic capabilities in Auto-Sensing
Mechanism, GUI and Database Module. However, the Database module has not
been integrated to the prototype. The prototype has been designed without any
consideration of cross-platform usage. It is implemented to work on Windows NT
operating system.

First of all, a prototype GUI was designed. It contains nearly all important operations
that the user can use to have control of the program. Since new functionalities will
be needed as the implementation continues, user interface module used in the



WinstonSoft | 9

Detailed Design Report for ACCIPP
prototype will gradually evolve into the user interface module that will be used in
the final product. This is the only module that may need modification in the
implementation phase of ACCIPP. GUI module of the prototype is implemented
using MFC and added to the prototype. As a result of the cross-platform
functionality of ACCIPP, in the final version of the product Qt will be used instead,
since Qt is a cross platform system, whereas MFC works only on Microsoft-based
operating systems as its name suggests.

On the other hand, for capturing network packets, a Pcap based tool namely
WinPcap was used. This tool is compatible with the unix versions of libpcap, so that
the project can have platform independency. With the help of WinPcap tool,
capturing module was implemented, and a primitive protocol recognizer for SMTP
was designed.

2. Design Constraints
Project constraints can be grouped like the following:
2.1 Time Constraints

Since senior project design is a two semester course, the project will have to be finished by
the end of May 2008. All design, implementation and testing must strictly meet this
deadline and complete in this 7 month period. Besides, there is going to be a prototype
demo that will be released by January 18™, 2008.

2.2 Language Constraints

For performance reasons, the language for the project is decided to be C++. Platform
independency and code portability is an implementation constraint, thus all C++ code for
this project will conform to ISO C++ standard. Development environment will be Visual
Studio C++ 6.0 for Windows port, and a suitable GCC based environment for Unix/Linux
ports. Qt library is planned to be used for the development of OS independent user
interface system.



WinstonSoft | 10
Detailed Design Report for ACCIPP

2.3 Data Constraints

A fair amount of primary storage space is required to hold various data structures used for
analyzing data flow over the network. If the user chooses to save some data for later
analysis, or the data cannot be processed in real time, the need for secondary storage
Space arises.

2.4 Performance Constraints

ACCIPP will be exposed to high network traffic while dealing with real-time incoming
packets. Under these circumstances, the number of packets arriving per unit time will be
quite large and average processing time given to a packet should be kept minimal. Since
ACCIPP intends to recognize a number of protocols, the user should select only a subset of
these in order to avoid starvation/packet drops. In a typical case where the number of
packets per second is around 100 and presuming that the user might be running other
applications, a maximum of 7-8 ms can be spent on each packet. Under such heavy load,
ACCIPP should rely on predefined rule-based recognition engine rather than the relatively
slow learning/training method.

In addition to this, since it will be possible to make some algorithms faster at the expense
of space by caching the results of expensive calculations rather than recalculating them on
demand, this approach will be followed and to do this, C++'s mutable keyword may be
used. On the other hand, at the expense of the percentage of packets detected, instead of
trying to process all the incoming packets, a lesser number of packets may be taken into
consideration and identified with better reliability and using less space and time.

2.5 User Interface Constraints

ACCIPP is not a user interface oriented application. Main work of the project is system
programming. However, the user interface still is important for being understood and
being used easily by the user. So the interface must be kept simple and easy to use. Names
of menus and other GUI/ elements will be easy to understand and straightforward.
Accessibility features must be taken into consideration for handicapped users.



WinstonSoft | 11
Detailed Design Report for ACCIPP

3. Project Requirements

Understanding the needs of the project, the project requirements should be specified.
During the determination of requirements analysis, the steps taken are as follows:

3.1 Functional Requirements

Below, the functional requirements for ACCIPP are explained briefly.

3.1.1 Capturing Packets

The input will be captured from a network device or taken as already existing Pcap files.
3.1.2 Preprocessing

The captured packets may need reordering and/or defragmentation. The preprocessing
mechanism handles these operations.

3.1.3 Filtering

The user of the system may not want to receive irrelevant data that s/he is not working on.
Thus the filtering mechanism is employed to filter the packets which are of concern. Filters
can be defined by several identities of connections such as IP addresses or protocol data.

3.1.4 Auto-Sensing

The system is expected to identify the packets without using port information. Auto-
Sensing mechanism takes action in this identification process using some Artificial

Intelligence algorithms.
3.1.5 Processing Identified Connections

The proper output for the analyzed protocol of the connection are sent to output
mechanism.

3.1.6 Output Mechanism

The data received from the system will be displayed as reports or user interface summaries.
If asked, more detailed information about the connection can be given as output.



WinstonSoft | 12
Detailed Design Report for ACCIPP

3.2 Non-Functional Requirements

In this section various non-functional requirements such as usability, portability, reliability
and documentation will be mentioned.

3.2.1 Usability

The program has to be easily adaptable for novice users, and powerful enough for
experienced users. Aimed at the independence of the end-user from complex keyboard
controls, user interface is designed to give access to the features by simple buttons or
menu items. User interface elements such as menu items and command buttons have to
be as clear and self-explanatory as possible. They should provide tooltips where applicable.
The resulting graphs should allow the user to obtain rapidly an overall grasp of the
material presented.

3.2.2 Portability

The software package is designed to be a cross platform product, therefore it should not
rely on machine and/or OS dependant functionality such as byte ordering and non-
standardized system calls. Consequently the program will be able to compile on different
computer systems without being altered.

3.2.3 Reliability

The software package is planned to be used in large and corporate networks, thus it is a
critical requirement that the software functions consistently under such circumstances.

3.2.4 Documentation

User documentation includes online help and user manual for the product. A hardcopy of
the user’s manual will also be provided with the software package.



WinstonSoft | 13
Detailed Design Report for ACCIPP

3.3 Software Requirements

In this section, the external software packages ACCIPP depends on will be presented.
3.3.1 Operating System

ACCIPP shall function on Windows versions starting from Windows 2000, and major Linux
distributions like Debian, RedHat etc.

3.3.2 External Packages

ACCIPP requires the presence of an external libpcap compatible packet sniffer and an
adequate network adapter in cases where real-time processing is deemed necessary.
svmlight, which is a library for implementing support vector machines, will be useful in
Auto-Sensing Mechanism. In addition to that, Qt library must be installed in order to have
user interface functionality.

3.4 Hardware Requirements

In this section, hardware requirements for the software project are presented.
3.4.1 Minimum Hardware

In order to have basic functionality, a system with 256 MB Memory, Pentium III class CPU,
10 MB Hard disk space is required.

3.4.2 Recommended Hardware

To be able to make full use of the auto-sensing facility and store statistical information in
the database backend, a system with at least 1 GB Memory, 2.5 Ghz Pentium IV class or
higher CPU, 5 GB Hard disk space is required.



WinstonSoft | 14
Detailed Design Report for ACCIPP

4. User Interface Design

The user interface lets the user see the connections on the system. When the program is
first opened, the connection list is empty. After that, user selects a Pcap file to process
offline a network device to process real-time. Then the user selects Start Capture from the
File menu and the program begins its work. As soon as new packets arrive, the program
populates the connection list. Until the protocol is fully recognized, the appropriate row in
the connection list is updated with the resolved protocol match values. During the process,
when the match percentage becomes greater than a predefined threshold value then the
protocol name and match percentage fields are filled with appropriate values. The program
continues processing until the connection is closed, thus this value may change several
times during the process. In case the program is unable to match the connection data with
any of the protocol patterns available, it shows Unknown as the protocol name. For each
connection the list pane shows the matched protocol name, match percentage value, IP
address of the local computer, local port number, IP address of the destination computer,
and remote port number, start and end times of the connection. For connections that are
not closed yet, the end time field is empty. Below is a sample screenshot of user interface
mentioned above:

i, WinstonSoft ACCIPP (Prototype) - |I:I|5|

File Edit View Toaols Window Help

Fitter |
Protocol | Match | Local Address | Local Port | Remote Address | Remate Port | Start Time | End Time |
POP3 0% 144122 11353 1234 2122212 44 110 18:01 18:.06
HTTP 25% 14412211353 4567 844411444 20 17:55 18.00
MSN B3% 14412211412 32324 216.19.207 56 1863 15:40 1745
Unlkriown 14412211413 2321 56.31.212.44 4662 16.43 -

Save .. Details

Figure : Main Window of ACCIPP Prototype Ul



WinstonS oft
Detailed Design Report for ACCIPP

Since a connection may match more than one protocol pattern, only the most matching
protocol is shown on the connection list. However, the user can click on a row to see its
match values with other protocols. If the protocol recognition is not complete yet (i.e. End
Time field is blank), the Short Summary Pane below the connection list shows only the
match percentage values with protocol patterns. Also, Save and Details buttons below the
short summary pane are disabled. However, when the protocol recognition is finished,
these buttons become enabled and the information of the identified protocol (“The
protocol cannot be identified!” or “Identified Connection: Protocol Name”) is shown
additional to the match percentage values. A related user interface screenshot is shown

below:
i#. WinstonSoft ACCIPP (Prototype) O] =|
File Edit View Taools Window Help
Fiter |
F‘rotucal I'U'Iatch Local Address Lcu::al F‘nrt Remote Address Remote F'urt Start Time End Tme
| 80% [ 144.122.11353

H'I'I'F‘ 89% 144 12211353 ‘I E-Er ‘IBDD
MSM B3% 14412211412 32324 215 1E|-2I}1 56 1853 15:40 17:45
Unkrown 14412211413 2321 h6.31.212.44 4662 16.43
|dentified Protocal : POP3
Connection catched as:

80% POP3

08%  SMTP

03%  MNTP

Save... Dietails

Figure : ACCIPP Prototype Ul(Short Summary Pane)

As you can see, the first connection is identified as POP3 and the buttons are enabled.
Additionally the final match percentages are shown in the Short Summary Pane. The save
button automatically stores the detailed information into the database. If the user wants to
see this detailed information about the selected connection, he/she can click the Details



WinstonSoft | 16
Detailed Design Report for ACCIPP
button. After that, the Long Summary Window pops up at right hand side of the main
window.
Clicking another connection from the connection pane does not affect the Long Summary
Window. That means, several Long Summary Windows can be displayed simultaneously.
An example screenshot of the user interface after clicking the details button is shown

below:
~1ol x|
ldentified Protocol : POP3
Connection catched as:
= (PEEES 08% SMTP
File  Edit View Tools Window  Help 03% NNTP
Fiter | 16.01.2008 18:43:28 » Ok.
16.01.2008 18:43:28 » user 144868 entered.
16.01.2008 18:43:28 » Ok
Potocol | Match | Local Address | Local Port | Remote Adi | 16,01 2003 18:43:29 > pass [N entered.
POP2 EE':.; 144122113.53 123—1 2222124 |45.01 2008 18:43:25 = Ok,
HTTF 83 14412211353 456/ 84.48.114.L " |16,01.2008 18:43:29 > Check Status.
MSN B35 14412211412 32324 216.15.207 168.01.2008 18:43:75 = Ok,
LUnknown 144.122.114.13 2321 56.31.212¢ 145.01.2008 18:43:29 = Lizt all mails.

16.01.2008 18:43:29 = Ok

16.01 2008 18:43:25 = Lizt 1. mail with itz unique ID.
16.01.2008 18:43:29 = Ok

16.01.2008 18:43:25 = List all mailz with their unigue ID.
16.01.2008 18:43:29 = Ok.

16.01.2008 18:43:259 » Clo=e connection.

16.01.2008 18:43:29 = Ok

|dentified Protocol : POP3
Connection catched as:

8% POP3 Read Mail 1
08% SMTP Read Mail 2
03% NNTP
Save | Close
Save... | Details |

Figure : ACCIPP Prototype Ul(Long Summary Popup Window)

The Summary Window includes links (blue underlined strings at the bottom of the window)
to the extracted data, which is a mail text in the given screenshot, on the selected
connection. The Save button on the Summary Window is used for saving the long
summary to the database. By using the close button, the Summary Window can be
dismissed.

Since the connection pane fills with a huge amount of information over time, the user may
want to filter information that is displayed in the connection pane. For example, the user
may want to see connections from a specific IP range, or connections that use a specific
protocol, or connections that are opened over a specified time interval. The filter field in



WinstonSoft | 17
Detailed Design Report for ACCIPP

the main window allows the user to enter a combination of these filters. For example, if the
user types “pop3” into the filter, only the connections that have pop3 as the highest match
percentage are displayed on the connection pane. The help menu includes documentation
for the exact syntax of expressions that can be entered into the filter field, along with other
help topics.
Some commands do not have a corresponding button shown on the main window.
Instead, these commands are available through the menu bar of the program. The menu
commands that are not enabled at the moment will be shown in grayed state. A short
informative text is displayed on the status bar when the mouse is hovered over a menu
item.
The exact menu commands are subject to change. However, some commands will certainly
be available in the final product. These commands are:

> File: Open Pcap File, Open Network Device, Start Capture, Stop Capture, Save as
Pcap, Close, Quit.
Edit: Copy to Clipboard, Clear All, Preferences.
View: Toolbar, Status Bar, Summary Pane.
Tools: Database Query, Statistics.
Window: Tile, Cascade, Arrange Icons.

YV VV V V

Help: Help Contents, About Program.

Detailed information about what these commands do can be found in the use-case
diagrams and the use case scenarios.

5. Database Design

ACCIPP comes with a database that the end user may use to get detailed statistical
information about both the detected and unknown connections. Also the end user will be
able to preview the details of the previously added connections in summary format. To do
this, a database is designed where protocols are mapped to related entities as shown
below:

Instant_Messaging: MSMSG

Email: POP3, SMTP

File_Transfer : FTP

Unknown: all protocols that have not been detected yet.



WinstonSoft | 18
Detailed Design Report for ACCIPP

In addition to this, also included in the database are the Connection entity where general
properties of all connections are stored and the File entity where the file-related properties
are stored.

5.1 Entity-Relationship Diagrams

ER Diagrams for ACCIPP Database




WinstonSoft | 19
Detailed Design Report for ACCIPP




WinstonSoft | 20
Detailed Design Report for ACCIPP

Q<>Q/

s 2

-— @ —-—

|
4>




WinstonSoft | 21
Detailed Design Report for ACCIPP

Relations




WinstonSoft | 22
Detailed Design Report for ACCIPP




WinstonSoft | 23
Detailed Design Report for ACCIPP

Entity Sets

file_id: AutoNumber
file_path: Text
comment : Text




WinstonSoft | 24
Detailed Design Report for ACCIPP

5.2 Data Descriptions

The attributes and the related data types for each table constituting the database are as
follows:

The attributes containing a key icon |ﬂh indicates the corresponding attribute or attribute
group being the primary key of the related table. In the design, the primary key of the
Connection table is set to AutoNumber data type, because as new connections are added
to the database, they are assigned a number and this number is equal to a primary key
value of one of the five tables each corresponding to a group of similar protocols. In
addition to this, the primary key of the File table is also of AutoNumber data type since
each row stands for a distinct file. These files are pointed to by the Instant_Messaging,
EMail and Unknown tables by means of foreign keys to store the files included in these five
connection types. The following are the figures formed using MS Access 2007® only to
visually illustrate the prototype database. However, the database system of the project is
going to be implemented using MySQL (see Section 5 4).

_] Connection '

X
Field Name Data Type Description <)

¥ connection_id AutoNumber E|
¥ | content _id Number

connection_date Date/Time

start_time Date/Time

end_time Date/Time

destination_ip Text

source_ip Text

protocol_name Text

comment Text

log_id Number
I _] Instant_Messaging X
? Field Name Data Type Description A
¥ connection_id Number E
¥ |message_id Number
¥ | attachment_id Number
| |message_log_id Number




WinstonSoft | 25
Detailed Design Report for ACCIPP

TR

connection id ‘Number

email_id ‘Number

¥ |attached_file_id Number

| |mail_text_id Number

| |mail_date ‘Date/Time

| |mail_to Text

|| mail_from ‘Text

| |cc Text

 bec Text

| [subject. Text
protocol_name ‘Text

‘Nata Tuno.
pata lvyp

‘Number
Number
‘Number
(Text

Fielc

connection_id ‘Number
unknown_id Number
|unknown_pcap_path ‘Text

mis

¥ file_id 'AutoNumber
| |file_path Text
| comment Text




WinstonSoft | 26
Detailed Design Report for ACCIPP

5.3 Entity Descriptions

Connection:

Connection entity is formed to store the necessary information to define a connection in a
general manner. No matter to which type of protocol it belongs, all types of connections
are stored in this table. The description for each attribute of the Connection entity can be
found below.

connection_id: This attribute is used to define each connection uniquely with the

content_id. Although connection id of the connection uniquely identifies each connection,
database management system assigns an integer valued identifier (of type AutoNumber)
to each connection to manage them easily.

content id: This attribute is used to define each part of each connection uniquely. This
attribute will be assigned automatically by ACCIPP. The aim is to be able to define more
than one content per connection.

connection_date: It is the date that the connection is grasped from the network traffic.
The value of the date attribute will be gathered from the system date and stored in
Date/Time format in the database.

start_time: It is the time that the program starts to work on the packets of the related
connection. The value of this attribute will be taken from the Pcap file header if the
program is working offline and from the system clock if the program is working online. The
value is stored in Date/Time format in the database.

end_time: It is the time that the program gets the last packet of the related connection
either offline or online. If the program is working online, the value of this attribute will be
gathered from the Pcap file header and from the system clock if the program is working
online. The value is stored in Date/Time format in the database.

destination_ip: This attribute contains the IP number of the destination network device
that the packets of the corresponding connection arrived. It is stored in the database in
Text format.

source_ip: This attribute contains the IP number of the source network device where the
packets of the corresponding connection are sent from. It is stored in the database in Text
format.

protocol_name: This attribute stores the name of the protocol that is detected by the
program. It is used to define to which protocol class (Instant_Messaging, Email,
File_Transfer) table the related connection will be added to. It is stored in the database in
Text format.



WinstonSoft | 27
Detailed Design Report for ACCIPP

comment: This attribute is used for miscellaneous information about the connection. It is
in Text format.

log_id: This attribute defines the file that contains the textual log of the related connection
entry. This file includes the flow of commands sent/received in a connection. The file itself

can be accessed through the related file_id of the Files entity. This attribute is stored in
Number format.

Instant Messaging:

If the detected connection is of the types MSMSG then the connection will be added to
this table with four attributes.

connection _id: This attribute defines each Instant_Messaging entry uniquely; therefore it is

a primary key of this entity. It is stored in the database in Number format. This is also a
foreign key to the Connections entity through the connection_id attribute.

message_id: This attribute is used to define each instant messaging entity belonging to
the same connection uniquely. This attribute will be assigned automatically by ACCIPP. The
aim is to be able to define more than one instant messaging instance per connection.
attachment id: This attribute defines the files sent using the related instant messaging

protocol. This is also a primary key as there may be more than one file sent with the
current connection. The contents of this file can be accessed through the file_id of the Files
entity. This attribute is stored in Number format.

message_log_id: This attribute defines the file that contains the textual log of the related
Instant_Messaging entry. The file itself can be accessed through the related file_id of the
Files entity. This attribute is stored in Number format.

EMail:

If the detected connection is of type POP3 or SMTP then the connection will be added to
this table with eleven attributes.

connection_id: This attribute defines each EMail entry uniquely; therefore it is a primary

key of this entity. It is stored in the database in Number format. This is also a foreign key to
the Connections entity through the connection_id attribute.

email_id: This attribute is used to define each e-mail entity belonging to the same
connection uniquely. This attribute will be assigned automatically by ACCIPP. The aim is to
be able to define more than one e-mail instance per connection.

attached file id: This attribute defines the files attached to the corresponding EMail. This
is also a primary key as there may be more than one file attached to the same Email entry.




WinstonSoft | 28
Detailed Design Report for ACCIPP

The contents of this file can be accessed through the file_id of the Files entity. This attribute
is stored in Number format.

mail_text id: This attribute defines the file that contains the textual content of the related
EMail. The file itself can be accessed through the related file_id of the Files entity. This
attribute is stored in Number format.

mail_date: This attribute defines the date when the related Email is sent. It is saved in
Date/Time format in the database.

mail_to: This attribute defines the e-mail address where the corresponding EMail sent to. It
is saved in the database in Text format.

mail_from: This attribute defines the e-mail address where the corresponding EMail
received from. It is saved in the database in Text format.

cc: This attribute defines the Carbon Copy receivers of the related EMail entry. It is saved in
the database in Text format.

bcc: This attribute defines the Blind Carbon Copy receivers of the related EMail entry. It is
saved in the database in Text format.

subject: This attribute is used to define the subject of the EMail message which briefly
describes what the mail is about. It is stored in the database in Text format.
protocol_name: Since there are multiple protocols related to this entity (POP3, SMTP), this
attribute defines the protocol name that the current connection is using. This attribute is
stored in Text format.

File Transfer:

If the detected connection is of type FTP then the connection will be added to this table
with four attributes.

connection_id: This attribute defines each File_Transfer entry uniquely; therefore it is a

primary key of this entity. It is stored in the database in Number format. This is also a
foreign key to the Connections entity through the connection_id attribute.

ftp_id: This attribute is used to define each File_Transfer entity belonging to the same
connection uniquely. This attribute will be assigned automatically by ACCIPP. The aim is to
be able to define more than one FTP instance per connection.

file_id: This attribute defines the file that is transferred along the corresponding
File_Transfer instance. The file itself can be accessed through the related file_id of the Files
entity. This attribute is stored in Number format.



WinstonSoft | 29
Detailed Design Report for ACCIPP
comment: This attribute includes additional information about the corresponding
File_Transfer instance such as date, time and size information about the files stored in the

server etc.

Unknown:

If the program cannot identify the protocol of a connection, it saves a Pcap file related to
that connection in the disk. Any connection that cannot be identified is added to this table
in the format below.

connection_id: This attribute defines each Unknown connection entry uniquely; therefore

it is a primary key of this entity. It is stored in the database in Number format. This is also a
foreign key to the Connections entity through the connection_id attribute.
unknown _id: This attribute is used to define each unknown entity belonging to the same

connection uniquely. This attribute will be assigned automatically by ACCIPP. The aim is to
be able to define more than one unknown protocol instance per connection.
unknown_Pcap_path: The program saves a Pcap file of the unidentified connection in the
disk for later offline/online operation. The path of this Pcap file is stored in the database
under this attribute. It is stored in the database in Text format.

File:

The files that are saved using the program is added to this table using the following
format. Instead of embedding the files to the database directly, it is preferred to put the
file_paths in the database so that the database does not itself allocate a large amount of
disk space. Additionally, in cases such as a lately classification of an unknown connection
does not enforce the database to move the related files from one place to another,
speeding up the process.

file_id: This attribute uniquely identifies a file that is saved using the program; therefore it
is a primary key for this entity. It is stored in the database in an AutoNumber format.
file_path: This attribute shows the path of the related file, which can be used to access the
file on the disk. It is stored in the database in Text format.

comment: This attribute includes additional information about the corresponding file such
as the codec information, names of the programs that the file can be opened with etc.



WinstonSoft | 30
Detailed Design Report for ACCIPP

5.4 Creating ACCIPP Database

CREATE DATABASE “accipp’™ /*!40100 DEFAULT CHARACTER SET latinl */;

/*CONNECTION*/
DROP TABLE IF EXISTS “accipp . connection’;
CREATE TABLE “accipp . connection™ (
‘connection id® int(10) unsigned NOT NULL auto increment,
‘connection date’ datetime NOT NULL,
"start time’ datetime NOT NULL,
‘end time’ datetime NOT NULL,
"source ip  varchar(20) NOT NULL,
"destination ip" wvarchar(20) NOT NULL,
‘protocol name’ varchar (10) NOT NULL,
‘comment varchar(50) NOT NULL,
"log id" int (10) unsigned NOT NULL,
‘content id’ int (10) unsigned NOT NULL,
PRIMARY KEY USING BTREE ( \connection_id\ , Content_id\ ),
KEY “log id® ( log id’"),
CONSTRAINT “log id' FOREIGN KEY ('log id') REFERENCES “file’
(*file id’) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*INSTANT MESSAGING*/

DROP TABLE IF EXISTS “accipp . instant messaging;

CREATE TABLE " accipp . instant messaging (
‘connection id" int(10) unsigned NOT NULL,
‘attachment id" int(10) unsigned NOT NULL,
‘message log id" int (10) unsigned NOT NULL,
‘protocol name’ varchar (10) NOT NULL,
‘message id’ int (10) unsigned NOT NULL,

PRIMARY KEY USING BTREE
("connection id’, "attachment id , ‘message id’),

KEY "attachment id" ( attachment id’),

KEY "message log id ( message log id'),

KEY "message id  ( connection id , message id"),

CONSTRAINT  ‘message id®  FOREIGN KEY (‘connection_id",
‘message id’) REFERENCES ‘connection’ (*connection id’,
‘content:id‘) ON DELETE CASCADE ON UPDATE CASCADE, -

CONSTRAINT “attachment id’ FOREIGN KEY (Tattachment id’)
REFERENCES "file® (\file_iCT\) ON DELETE CASCADE ON UPDATE CASCKDE,

CONSTRAINT ‘message log id® FOREIGN  KEY (‘message log id’)
REFERENCES “file' ('file id") ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*EMAIL*/

DROP TABLE IF EXISTS “accipp . email’;

CREATE TABLE “accipp . email’ (
‘connection id" int(10) unsigned NOT NULL,
"attached file id" int(10) unsigned NOT NULL,
‘mail text id’ int (10) unsigned NOT NULL,
‘mail date  datetime NOT NULL,

‘mail to  varchar(45) NOT NULL,



WinstonSoft | 31
Detailed Design Report for ACCIPP

‘mail from® wvarchar(45) NOT NULL,
“cc® varchar (45) NOT NULL,

"bce’ varchar (45) NOT NULL,

“subject’ wvarchar(45) NOT NULL,
‘protocol name® varchar (45) NOT NULL,
‘email id’ int(10) unsigned NOT NULL,

PRIMARY KEY USING BTREE
("connection id", "attached file id" , "email id’),

KEY “email id®~ ( connection id’, "email id"),

KEY ‘mail text id’ (‘mail text id’),

KEY "attached file id" ( attached file id"),

CONSTRAINT “attached file id" FOREIGN KEY ( attached file id")
REFERENCES "file® ( file id') ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT ‘connection id® FOREIGN KEY ("connection id")
REFERENCES “connection’ ( connection id') ON DELETE CASCADE ON

UPDATE CASCADE,
CONSTRAINT “email id® FOREIGN KEY (" connection id’, “email id")

REFERENCES “connection’ (' connection id’, ‘content id') ON DELETE
NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘mail_text_id\ FOREIGN KEY (\mail_text_id‘)
REFERENCES “file® (" file id") ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*FILE TRANSFER¥*/

DROP TABLE IF EXISTS "accipp . file transfer ;

CREATE TABLE ‘accipp’. file transfer’ (
‘connection id" int(10) unsigned NOT NULL,
“ftp id’ int (10) unsigned NOT NULL,
“file id’ int(10) unsigned NOT NULL,
‘comment® varchar(45) NOT NULL,

PRIMARY KEY ( connection id°, "ftp id"),

KEY “file id"> ( file id"), B

CONSTRAINT " ftp id  FOREIGN KEY ( connection id", “ftp id")
REFERENCES "connection” ( connection id’, “content id') ON DELETE

CASCADE ON UPDATE CASCADE,

CONSTRAINT "file id" FOREIGN KEY ( file id’) REFERENCES " file®
("file id’) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/ *UNKNOWN* /
DROP TABLE IF EXISTS “accipp . unknown;
CREATE TABLE “accipp . unknown® (
‘connection id’ int(10) unsigned NOT NULL,
‘unknown pcap path’ varchar(100) NOT NULL,
‘unknown id' int (10) unsigned NOT NULL,
PRIMARY KEY USING BTREE (' connection id’, unknown id’),
CONSTRAINT “unknown id® FOREIGN  KEY (*connection id’,
“unknown id’) REFERENCES ‘connection’ (*connection id",
‘content_id‘) ON DELETE CASCADE ON UPDATE CASCADE N
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*FILE*/
DROP TABLE IF EXISTS “accipp . file’;
CREATE TABLE ‘“accipp . file ™ (



WinstonSoft | 32
Detailed Design Report for ACCIPP

"file id® int(10) unsigned NOT NULL auto increment,
"file path’ wvarchar(50) NOT NULL,
‘comment® varchar (45) NOT NULL,
PRIMARY KEY USING BTREE ( file id")
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

The resultant database schema and the related relations are as follows:

Instant Messaging
¥ connaction_id
¥ message_id
¥ attachment_id

message_log_id

¥ rp_id
file_id
camment

EmMail
¥ connection_id
- . ¥ email_id
Connection / ¥ attached_file_id
¥ connection_id v mail_text_id
¥ content_id ! mail_date
connection_date mail_to !
start_time mail_from
end_time o
destimation_ip bee
source_ip subject \
protacol_name protocel_name
comment

-
Unknown

¥ connection_id
¥ unknown_id
unknown_p<ap_path

Figure : Database Relation Schema

File
log.id 7 file id
- file_path
File_Transfer comment
¥ connection_id




WinstonSoft | 33
Detailed Design Report for ACCIPP

6. Architectural Design

6.1 Structure Chart

The following is the structure chart that represents the module hierarchy of ACCIPP.

y
g w
3
&
=
- 2
= =
3 #
=
\ &
g 8
; 2
E =
(5]
e
-
g 2
_ul'ﬂ
¢ 5 &
/ w =
@ B
o £ aBk
= a5
g : 13
: \ EE !
i
=
34 i
2 F =
= g
g w
33
EE
e M | £
i g
&
a ('
ki
2
-

Capturing

Pcap File Reader | | Network Device




WinstonSoft | 34
Detailed Design Report for ACCIPP

6.2 System Modules

The ACCIPP program consists of three main modules that are Decoder, Auto-Sensing and
Output modules. Through the user interface, the user selects an input source (a Pcap file or
a network device) to process, and then gives the Start Capture command. After that,
network packets begin to enter our program through the Decoder module, and data flows
through the Decoder, Auto-Sensing and Output modules respectively. Together, these
modules let the user view information about network connections on a system. These
modules are going to be elaborated in the following sections.

6.2.1 Decoder Module

Decoder module is the base module of ACCIPP. After the user selects the input device and
makes the modules work by selecting ‘Start Capture’, decoder module takes action and
reads the packets from the input source by the Capturing Module. Afterwards, the
captured packets go into the Preprocessing Module where they are prepared for the
Auto-sensing Module. There, they are processed by some specific operations that will be
mentioned later on.

This module does not contain any learning mechanism as Auto-sensing Module does. The
data-flow is fairly straightforward. Even if this module seems to be very simple, it is a must
for the further modules.

Below the sub-modules of the Decoder Module is described:

6.2.1.1 Capturing Module

This module is responsible of capturing packets from the network. Packets can be obtained
from a Pcap File by the Pcap File Reader or from a network device by the Network Device
Reader. If the user chooses capturing packets from a Pcap file, offline process can be
achieved (a Pcap File can be processed in the future thanks to Pcap File Reader). Or if the
user chooses capturing packets from a network device, real-time processed can be
achieved. Namely, whenever a packet comes through a connection, Network Device
Reader captures the real-time incoming packets and then sends them to the
Preprocessing Module.



WinstonSoft | 35
Detailed Design Report for ACCIPP

6.2.1.2 Preprocessing Module

This module takes the captured packets and then applies a few operations on these
packets. These operations are handled by some sub-modules which are Filtering Module,
Reordering Module and Buffering Module.

Captured packets are first go into the Filtering Module. Here, they are handled according
to some filtering parameters. The packets coming from protocols other than TCP or UDP,
are eliminated because ACCIPP does not try to recognize protocols which does not come
from TCP or UDP. Besides, here some checksum comparison are performed on the
captured packets. If packets have invalid checksum values then they are eliminated too. In
detail, before sending the packet, the sender calculates the sum of the bytes and then adds
this information to the header. When the packet comes, sum of the bytes of the packet is
calculated one more time by our module and compare the checksum value in the header
with the value it's found. If they are not same, then it means the packet is broken or
incomplete. So the module discards the packet because there is no need to process on a
broken packet. After the operation of filtering is finished, the filtered packets are
transmitted to the next module.

When the filtered packets come into the Reordering Module, they are reordered
according to their TCP sequence number. This number can be found in the headers. Since
packets may come in an unordered way, Reordering Module should sort the packets to
make them same as the original data stream. For example; if the Filtering Module does
not eliminate the broken packets and if a packet does not include the TCP sequence
number by some reason, this module wouldn't be able to reorder these packets, and if the
packets cannot be reordered properly, then these packets cannot be processed correctly
by the Auto-Sensing Module. After the packets leave this module, they are redirected to
the next module.

After the packets are reordered they come into the Buffering Module. In this module,
packets are stored in buffers. They can be placed in a buffer one by one or in a buffer of
ten packets, or differently. The number of packets in a buffer is determined as necessary.
For ex; if a packet cannot be processed in real-time, it should stay in a buffer until it can go
into the protocol recognizers. Besides, for line oriented protocols such as POP3, the
packets that form a single line should stay in a buffer until the line is complete. After the
this Module finishes it work then these preprocessed packets are sent to the Auto-Sensing
Module. So generally, there is nothing left to do in the Decoder Module.



WinstonSoft | 36
Detailed Design Report for ACCIPP

6.2.2 Auto-Sensing Module

Port Independent Protocol Identification programs that are available at the market are
generally focused on signature matching (string matching). But there are many cases
where a string matcher can be fooled. For example; suppose that a file containing POP3
commands is downloaded from an FTP server. A POP3 string matcher, simply matches with
the file contents and incorrectly marks the FTP

FTP connection as POP3. In order to solve these kinds of problems, a better analysis on the
packet contents must be conducted. In ACCIPP these problems are overcome via SVM and
Rule-Based Al

Auto Sensing module is the part that does the actual protocol recognition. Protocol
recognition is done in three steps. The packet sequences coming from the Decoder
module first enter the Protocol Recognizers, and then results coming from the Protocol
Recognizers are collected and directed to the Protocol Decision Mechanism, where the
final decision about the protocol type of a connection is made. Finally, the collected data
enters the Feedback mechanism that updates Protocol Recognizer modules with the
newly collected information. The following sections contain detailed descriptions of the
sub-modules in the Auto-Sensing Module.

6.2.2.1 Protocol Recognizers

Protocol Recognizers is the common name given to a set of modules that are each
responsible for recognizing one specific protocol. These modules all share a common
interface and communicate with the top level auto-sensing module through this common
interface. However, they have no communication between each other. User can
enable/disable a protocol recognizer as he/she wishes, yet this does not affect other
recognizers as they are not aware of each other. Consequently, protocol recognizer
modules are planned to be implemented as “plug-ins” that users can add/remove
depending on their needs.

Although a protocol recognizer is designed to be stand-alone, there might be some
exceptions to this schema where a protocol recognizer may depend on another one. For
instance; most instant messaging applications use FTP for file transfers, and this makes the
instant messaging recognizer module depend on the FTP recognizer module.



WinstonSoft | 37
Detailed Design Report for ACCIPP

A protocol recognizer takes a packet sequence as input and runs the pattern matcher (that
will be an application of Support Vector Machines combined with Rule-Based Al) against the
contents of this packet sequence. The pattern matcher generates a value, called Match
Value, which indicates the match percentage of packet sequence with the protocol pattern.
The protocol recognizer is also responsible for extracting some protocol-specific
information, called Match Data, from the contents of packet sequence. Finally the protocol
recognizer outputs this match value and data pair to the Protocol Decision Mechanism.

> Protocol Classification using SVM

Packets belonging to a specific protocol have some characteristic features that can be used
to determine whether a given packet belongs to this protocol or not. In general, packets
that come from the same connection have some similarities to each other. For example,
packets coming from a text based protocol connection have mostly ASCII characters in
their payloads. These generalizations can be taken further and those ASCII characters can
be grouped into more subclasses and the comparison between these subclasses could be a
clue for protocol classification.

Classification is made possible using Support
Vector Machines. The SVM engine must be
trained beforehand, using example
classifications that are known to be correct. For
a n dimensional feature space, SVM internally
constructs n-1 dimensional hyper-planes, that
can be used to separate points that lie in either

side of the plane. Support Vector Machines

tries to construct the separating planes such

yperplane that the distance between the separating
planes and the closest points to the plane are
maximal. Therefore, the possible error made by classification will be minimized.
(Image taken from [3])
The Auto-Sensing module, extracts features (explained below) from packet header and
payload, and then converts them to floating point numbers. After the features are
extracted, they are combined together and represented in n dimensional vector form,
called "observation”. Then the SVM is used to classify the given observation vector, and
find the protocol associated with it.



WinstonSoft | 38
Detailed Design Report for ACCIPP

v ASCII / Total Ratio

This ratio is obtained by dividing the number of ASCII characters to the total number of
characters in the payload. It can take values between 0 and 1. This value gives an idea
about how much of the data that is transferred over the packet is plain text, and how
much is binary. A higher ASCII / Total ratio means that the packet contents are mostly
text, therefore the protocol used should be a text based one. For an entirely text based
protocol, such as SMTP or POP3 this ratio will be exactly 1, whereas for binary protocols
it will be lower, so it can be used as a differentiation feature for text and binary
protocols.

v" (ASCII) Letter / Decimal Numbers

This ratio obtained by dividing the number of letters to the decimal numbers used in
payload. This feature is useful when sub grouping the text based protocols. For
instance; POP3 commands are generally made up of letters, on the other hand the
commands coming from the SMTP server are generally made up off decimal numbers.
By this feature the protocol recognizer modules become close to say that “This is POP3”
or “This is SMTP”. In addition to this, this feature is helpful for correlating an unknown
protocol to the protocols that is autosensed by our program i.e. with saying “This
protocol is look like SMTP”.

Average Line Length

This value is obtained by counting the number of characters between nonconsecutive
\n pairs. Most protocols have a specific maximum line length limit; therefore this value
cannot exceed the maximum line limit of the belonging protocol. This feature can be
used to distinguish protocols.

Packet Latency (ms)

Packets coming through a connection have a time difference between each other,
namely packet latency. This difference can be used as a feature for protocol
identification. For instance; POP3 may have lower packet latency than SMTP. Actually,
the mean of packet latency for a specific protocol isn't stable; it can change according



WinstonSoft | 39
Detailed Design Report for ACCIPP

to traffic intensity. In a bursty traffic, the latency time can be effected negatively.
However, probably all average packet latencies for each protocol would be affected
nearly in the same way.

Since the network traffic has a carrying capacity (maximum packets/second), it is
unrealistic to think that the packet latency still stays same on average. While the
network traffic gets more crowded, the time difference between two packets from the
same connection may increase so slowly. Nevertheless, when the carrying capacity
reached and the number of connections tries to increase, the latency should be increase
so that the balance is saved. As a result, it is obvious that the packet latency as a feature
is dependent to the network traffic intensity. This problem can be solved by having two
different packet latency values; one is for smooth traffic and one for bursty traffic.

Number of Packets per Second (pps)

Number of packets / second as a feature is quite similar with the above feature but this
feature is more stable than the packet latency since it is more general. Protocols that
are used to transfer a large amount of data have a large pps, whereas IM protocols will
have lower pps. This feature is also going to be used for protocol identification.

Payload Size

This ratio is obtained by directly taking the payload size that is calculated at the
decoder module. For protocols that are used for transferring large amount of data for
example FTP, the average payload size will be relatively large. On the contrary,
protocols that are used for exchanging simple messages have a small payload size in
general, so it can be used as a differentiation feature for file transfer and IP protocols.

Class B Address of Remote IP

This value is obtained by taking the first two bytes of the remote IP address (i.e. 192.168
in 192.168.2.1). In real life; even if the client is allowed assign different local port
numbers, the servers it wants to interact with mostly have static IP addresses. These IP
addresses can be used to get a clue about what protocol the client intends to use. For
example, a connection between the user and MSN Messenger will typically have a
remote IP address of 207.46.**. Therefore, if no information else is available, one can



WinstonSoft | 40
Detailed Design Report for ACCIPP

guess that the protocol is MSN by looking at the first 2 bytes of the remote IP. One
important point is that, the two bytes should have equal significance on the result;
therefore they are included as two different features in the feature vector
representation.

> Rule Based Al

Since the specifications of the protocols we intend to analyze are known, expert systems
that are equipped with the information from the specifications can be designed quite
efficiently. Most of the protocols have client-server architecture. In other words, the client
issues a command and waits for the server's response. Therefore, the conversation
between the client and the server consists of command and response pairs.

Additionally, certain commands can only be issued at certain states (for example; the user
cannot issue the command to read his mail before performing a successful login with the
server) and the transition between these states is clearly defined. Even if, the
command/response strings can have some similarities with other protocols, the semantic
relation between these strings (for example, what arguments a command takes, and what
king of responses can follow this command) is almost unique for each protocol and this
criteria is important for differentiation.

A client command/server response has many possible outcomes, so there are many
possible transitions from the current state to the next state. So, in order to represent these
state transitions efficiently a finite state machine can be used. The Rule based module is an
implementation of the modified finite automata in that, it has memory (i.e., it can
remember more than just the current state). Therefore a transition from the current state to
a possible next state is allowed by checking with the semantic information remembered
throughout the connection. In addition to that, the finite automata should not have a
single initial state because we may not be able to capture a connection always from the
beginning. Also there is no single final state for the same reason.

The protocol recognizers that will be available in the final version of ACCIPP are explained
in detail below.



WinstonSoft | 41
Detailed Design Report for ACCIPP

6.2.2.1.1 FTP Recognizer Module

FTP works in a way that is similar to the SMTP. All client commands consist of four
uppercase letter command codes, and optional arguments separated by whitespace. The
server responds each command with a three digit response code followed by a variable
textual message. The textual message cannot be used for protocol matching. Any
command can have multi-line responses. If the server sends a hyphen (-) character
immediately after the response code, this indicates the beginning of a multi-line response
and the response ends after the first line without the hyphen is received.

A typical FTP session starts with a USER and PASS command pairs, where the user
authenticates into the system. After a successful login, the system enters transaction state,
where all commands are available. The success and failure of a command is indicated by
the first digit of the response code. If this number is 2, this indicates that the command was
successful. If this number is 4,5 this indicates failure. The first number is 1 when the
command cannot be issued directly, and the system stays in the waiting state.

One major difference of FTP from other protocols is that, it uses two separate connections
one for the commands (the actual FTP session aka control connection) and the other for
the data (file) transfer. The data connection carries arbitrary information, and thus cannot
be classified as a FTP connection. On the other hand, this connection is explicitly requested
by the control connection, through special commands (PORT and PASV). Therefore, by
analyzing the parameters of these commands and their responses on the control
connection, one can also identify the data connection. This special case will be handled by
the FTP recognizer module.

The below diagram (taken from [4]) displays the state transition of the FTP recognizer
module.

> Success

b Suceess —




WinstonSoft | 42
Detailed Design Report for ACCIPP

6.2.2.1.2 POP3 Recognizer

Pop3 recognizer module takes the packets one by one and retrieves the suitable
information that will be used for calculating the parameters for each feature in SVM, also
sends the payload to the finite state machine. There will be two match percentages; one
comes from SVM and the other from the finite state machine.

As it is explained in the SVM section, the features like payload size, ASCII / total, Class B
destination address are going to send to SVM. After SVM sends the match results for the
observations, they are combined with the match results with the ones coming from the
finite state machines and then they are sent to the decision mechanism.

After the TCP connection opened, the client and POP3 server exchange commands and
responses until the connection is closed. In POP3, there are 3 states as follows; the
authorization state, the transaction state and the update state. The relation between
responses and commands differ in each state. For example; in authorization state, the well
known “RETR arg” command isn't valid. So while forming the finite automata structure,
ACCIPP takes in to consideration these states. Besides, the arguments used after the
commands and the response possibilities according to them are considered too. For
example; if the client uses "LIST" command without any argument and if the server
response starts with “+OK" then it means multi-line response is waited and it goes
according to the proper state (to deal with older states it uses it's memory). On the other
hand, if the “LIST" command is used with a argument and then it is known that multi-line is
not expected. In other words, the arguments also have a big importance for the finite state

un

machine to decide which state to go. Moreover, the termination octet “." is significant for

un

the recognizer module to decide whether multi-lines finishes or not. If “." is used in a mail
body, the finite automata would decide which state to go with distinguishing the "." as the
termination octet or useless character in a mail body. Briefly, all specifications are

considered and added to the finite state automata properly.

So how the payload and these states are related and work? The payload of the packet put
into a payload vector line by line and treated line by line. At the start point, the appropriate
command/response goes into the proper state (generally if there is no packet lost and the
connection start packet is caught, then it starts from the authorization state.). When the
next packet comes, it is compared that whether the new command in the line can be
matched with the previous command’s outcome states. According to the comparison, it



WinstonSoft | 43
Detailed Design Report for ACCIPP

returns a match value and these entire match values produce the last match percentage
that will go into the decision mechanism (after combined with the match percentage
coming from SVM).

6.2.2.1.3 SMTP Recognizer

SMTP Recognizer module extracts features from the packet contents and prepares the
observation vector for the SVM recognizer. It then hands the packet contents to the rule-
based recognizer. The values from the SVM recognizer and the rule based recognize will be
combined to produce an overall match result.

The rule-based recognizer is relatively simple because of the nature of a typical SMTP
connection. Each command/response is in a separate line, and lines are terminated with a
\r\n pair. Therefore, a simple line buffering is made in the first place. The recognizer than
inspects the conversation line by line. A SMTP command consists of four uppercase letters
and optional arguments separated by space. A SMTP response consists of a three digit
response code and a textual representation of the response -which is irrelevant to the
matcher since it varies between server implementations. The RFC clearly defines which
responses can follow which commands.

The SMTP protocol does not allow multi-line responses but allows one multi-line
command that is the DATA command. After the client enters the DATA command, the
server responds with a 354 response code, and then the connection enters the
“intermediate state”. In this state, the client enters several lines but the server doesn't
respond until a line that contains a dot (.) by itself is entered.

A SMTP connection starts in the “authentication state”. Most SMTP servers require some
sort of authentication mechanism in order to avoid spam. The user authenticates him with
the EHLO command, or chooses to skip authentication by entering the HELO command.
Any other command that is entered in the authentication state is regarded invalid. After
the authentication is complete, the “transaction state” is entered. And the state transitions
perform according to the command first digit of the response code.



WinstonSoft | 44
Detailed Design Report for ACCIPP

Cmd != DATA

Begin o Success

Cmd==DATA

4.5
z
data 1.3
- Wait

State chart of the SMTP protocol, adapted from [5]

6.2.2.1.4 MSMSG Recognizer

As all the previous recognizer mechanisms explained above, MSMSG recognizer will also
use the command strings and the related parameters passed to these commands to detect
if the related packet is of type MSMSG. Some of the most important MSMSG specific
commands can be listed as below. As these commands sent/received within the same
connection,

Client Server
PNG : Client Ping QNG : Server's Response to PNG
QRY : Client's Response to CHL CHL : Client Challenge*
CAL :Inviting a user to a chat session JOI : Server's Response to PNG

*Client Challenge : Pings from the server

The commands sent/received ends with the newline, i.e \r\n except payload commands.
Payload commands are special kind of commands that have a chunk of data following the
newline. The size of this chunk of data (in bytes) is specified in the last parameter of the
command. This binary chunk does not contain newline at the end.

Since the recognizer works only to identify the protocol type, the chunk of data mentioned
above is ignored while the identification progress continues. However as soon as the
protocol is tagged as being of type MSMSG the need for miscellaneous information such
as message content, attached files etc. arises.



WinstonSoft | 45
Detailed Design Report for ACCIPP

Ruled-based Al mechanism of the recognizer of MSMSG uses the attributes explained
above to increment the match value. As all other recognizer modules, this recognizer also
uses the output of initial recognition mechanism implemented using Support Vector
Machines.

6.2.2.2 Protocol Decision Mechanism

The Protocol Decision Mechanism is responsible for collecting Match Value and Match
Data pairs from the Protocol Recognizers and choosing the protocol that has the highest
match with the packet sequence contents. For the time being, The Protocol Decision
Mechanism simply picks the protocol with the highest match value that exceeds a pre-
defined threshold value and labels the connection as this protocol. This threshold value
helps eliminating spurious matches, since it ensures that match values that are too small
will not be taken into consideration.

Protocol Recognizer modules are designed to run concurrently (presumably in separate
threads/processes) thus, Protocol Decision Mechanism must wait until all Protocol
Recognizers to complete their work until a decision can be made. This makes
implementing some sort of signaling mechanism between processes necessary.

After the Protocol Recognizer collects output from all Protocol Recognizers and chooses
the one with the highest match value it redirects this output to two different modules,
namely Feedback module and the Summatrizer.

6.2.2.3 Feedback Mechanism

The Feedback mechanism contributes to the automated learning part of the Protocol
Recognizer modules. After the Decision Module chooses the protocol with the highest
match value, Feedback mechanism updates the —found- protocol's SVM parameters by
using ‘train()’ function of the support vector machine. If the packet contents cannot be
recognized by any of the available protocol recognizers, the Decision Mechanism labels the
connection as “Unknown” and this connection bypasses the Feedback Mechanism. This
ensures that protocol patterns are not updated with wrong or defective information.
Eventually, optimal parameters will be reached.

6.2.3 Output Modules

After the packet sequences are processed in Auto-Sensing module, valuable information
along with the matching protocol names is extracted from these packets. Output modules
are responsible for producing human-readable output from the information coming from



WinstonSoft | 46
Detailed Design Report for ACCIPP

Auto-Sensing modules. Since the program is able to present it output in various manners,
there is a separate sub-module for each output format. Currently there are three output
modules, namely Summarizer module, Database module, and the User Interface
module.

6.2.3.1 Summarizer Module

This module takes the data from the Auto-Sensing Module and produces a summary that
is appropriate for the recognized protocol out of this data. For instance; the Summarizer
module will generate a report that contains the mail subject, sender and recipient names
and mail body for a recognized POP3 connection. This report also includes match
percentages that come from other protocol recognizers.

For an unknown connection; if the program can extract any information from the packet
contents, the report will include them along with the match percentages.

In case of a need for flow information of a connection, that is the commands sent/received
etc., the Summarizer Module will also be able to create a connection flow file in a proper
text format aimed for user-friendly representation of flow data. In addition to this, these
flow files each with a corresponding log_id will be stored in the database for further usage.

Summarizer Module is also in relation with the Database module, so that the user can
store and retrieve summaries in a central database.

6.2.3.2 Database Module

The Database module is responsible for performing all database operations requested by
the user or other components the system. The database module is used for reading,
adding, updating and deleting records in the central database.

When the user chooses to save a summary (for later retrieval) or wishes to see a past
summary, the Summarizer module accesses the Database through this module.
Additionally, the Database module is used to generate statistical information out of
database contents. The exact structure of database can be found in Data Design section.

6.2.3.3 User Interface Module

The user interface module is responsible for handling all interactions with the user and the
rest of the system. The user uses all functionality within other modules through the user
interface. The primary functions of this module are; presenting the user the results of
protocol recognition process, visualizing statistical information in charts, and letting the
user give commands to the program.



WinstonSoft | 47

Detailed Design Report for ACCIPP

6.3 Data Flow Diagrams

6.3.1 Level 0 DFD of Decoder Module

Offline Incoming Padiets

PCAP

/\

Decoder

Freprocessed Padets Packet Sequence|

R

Network Dewvice

Real-time Incoming Padets

6.3.2 Level 0 DFD of Auto-Sensing Module

Identified Connection

Input Fadket Sequance (_ Auto-Sensing

(=

6.3.3 Level 0 DFD of ACCIPP

Input (pcap}

Fadets |l ACCIPP II Processed Connection

Unknown Connection

Processed
Connection

—

Cutput [ Summary)




WinstonS oft ‘ 48

Detailed Design Report for ACCIPP

6.3.4 Level 1 DFD of Decoder Module

511LLLL|11L|

m Buuapioay w

SI=pEH

20314

.

139114 u
e

aauanbacg 1@Yaed

HUNYD pREgng —— ==
12PE PREpIo3Y Buuayng

sEpEd Bulwoou| swnyesy

ELIREN RITLTET

EpE4 :NjdE]
Bunnydeq

nEpEd Bulwocou| suyo

dY2d




WinstonSoft | 49
Detailed Design Report for ACCIPP

6.3.5 Level 1 DFD of Auto-Sensing Module

Train VM
QUTPUT
[Processed
Connection}

,.
-

{
nnectio
el

Feedback

Protocol Decision

Packet Content
FTP Recognizer
505G
Recognizer
SMTP Recognizer

5

o
o

=
=1

Preprocess

Sequence}

INPUT|Pac ket




WinstonS oft ‘ 50

Detailed Design Report for ACCIPP

6.3.6 Level 1 DFD of ACCIPP

g nssy
ArgLuwme;

\\\\\

JBTIIEWLLNG u/mu.m_u

S T
uSIpSUUCg
LALCUNU glEpE

pElsEnbE Y —__

USIDSUUCD PSIUSE|

/

LIS UELSS
Bursuag-oyny

sousnbes 13pEd
passsooMsi

frewnung

=

aseqeleq

-

sEpEd Buiwoou)

/m -

)

301A3(] HIONGIY

S130E-

E_EEE

SUIHT ™

ajy deag




6.3.7 Level 2 DFD of Auto Sensing

WinstonSoft | 51
Detailed Design Report for ACCIPP

In the below diagram, only the POP3 recognizer module is expanded. Since the other

recognition mechanisms have the same structure, they are not expanded further.

Train 5V

mater Valus — |

Para

Feedback

QUTPUT
[Processed

fon ——» Connection)

=ntifis

-;
o
5]

Protocel Decision
Mechanism

atch Value
Combinater

Expanded Protocol Recognizer Region (POP3)

| Packet Content

/’_

WM5M5G
Recognizer
SMTP Recognizer

Rule Based
Watcher

| FTP Recoqnizer

Faylosd of the Fadets

P
(e

Frag

Sequence}

INPUT(Packet




6.3.8 Level 2 DFD of ACCIPP

Cfflins

Pcap File """ Incoming

Fadets

WinstonS oft
Detailed Design Report for ACCIPP

Capturing ___*-H

Network Device Rzszl-tims
1

ncoming Padeets

Updated Protocol
Recognizer

Buffering

Feedback

Protocol Decision
Mechanism

ldentified

Conneclion

Summarizer

Data base /

""--\_\_\_\_\_\_\_\_

Filter

Filtered Faduets

Regrdering

FReordered Fadeets

Freproosssed Padists

Protocol
Recoqnizers

Summary Results

QUTPUT
[Summary}

52



WinstonSoft | 53
Detailed Design Report for ACCIPP

6.4 Data Dictionary

Name: Offline Incoming Packets

Aliases: Pcap File

Where & How used: Capturing (Input)

Description: These are the packets that come from a Pcap file that was generated
beforehand. These packets are processed in offline mode.

Name: Real-time Incoming Packets
Aliases: Network Device Packets
Where & How used: Capturing (Input)

Description: These are the packets that come from the network device instantaneously.
These packets are processed in real-time mode.

Name: Captured Packets
Aliases: None
Where & How used: Capturing (Output)

Filter (Input)
Description: After real time incoming packets and offline incoming packets enter the
Capturing module, they become Captured packets, which go into the Filter
module afterwards.

Name: Filtered Packets
Aliases: None
Where & How used: Filter (Output)

Reordering (Input)

Description: Captured packets that enter the Filter module and they are checked against
some filtering parameters. For example ACCIPP only deals with TCP and UDP
packets, therefore packets coming from other protocols like ICMP are
ignored. The filter module also performs some checksum comparison on the
captured packets, and discards packets with an invalid checksum value.
Packets that are processed in the Filter module enter the Reordering module
as Filtered Packets.



WinstonSoft | 54
Detailed Design Report for ACCIPP

Name: Reordered Packets

Aliases: None

Where & How used: Reordering (Output)

Buffering (Input)

Description: Network packets may not necessarily be transmitted in the order they are
meant to be received. So they need to be reordered in order to reassemble
the original data stream. After filtered packets arrive at the reordering
module, they are sorted according to their TCP sequence number that is
stored in packet headers. After packets are processed in the reordering
module, they are delivered to the Buffering module.

Name: Preprocessed Packets

Aliases: Buffered Chunk

Where & How used: Buffering (Output)

Protocol Recognizers (FTP Recognizer, POP3 Recognizer, SMTP
Recognizer, MSMSG Recognizer — Packet Content Handler part
of the recognizers) (Input)

Description: After packets are filtered and reordered, they enter the buffering module.
Here packets are stored consequently in buffers. If a packet cannot be
processed real-time, it needs to be buffered. So the packet stays in this buffer
until it gets processed by the protocol recognizers. Preprocessed packets that
leave the buffering module are finished with the decoder part of the program
and enter protocol recognizers such as FTP and POP3 concurrently where

they will be checked against protocol patterns.

Name: Extracted Parameters
Aliases: Parameter Values for SVM
Where & How used: Packet Content Handler (Output)

SVM (Input)
Description: Packet content handler retrieves the useful data from the packets to form
the features. For payload size, line length and other features, the values
calculated and send to SVM as extracted parameters.



WinstonSoft | 55
Detailed Design Report for ACCIPP

Name: Payload of the Packets
Aliases: None
Where & How used: Packet Content Handler (Output)

Rule Based Matcher (Input)
Description: Packet content handler retrieves the useful data from the packets and sends
the payload to Rule Based Matcher. Payload is compared with the states in
the finite automata and a match value is extracted.

Name: Match Value from SVM

Aliases: None

Where & How used: SVM (Output)

Match Value Combinator (Input)

Description: After the parameters are extracted from the observed packets, the
parameters go in the Support Vector Machine and a match value is extracted
and this value is sent to the Match Value Combinator to form the final match
value for that protocol recognizer.

Name: Match Value from Rule Based Matcher
Aliases: None
Where & How used: Rule Based Matcher (Output)

Match Value Combinator (Input)

Description: After the payload is compared with the proper states, the match percentage
is formed according to the match states and this percentage value sends to
the match value combinatory to be combined with the match value coming

from SVM.
Name: Match Value and Data
Aliases: None
Where & How used: Protocol Recognizers (FTP Recognizer, POP3 Recognizer, SMTP

Recognizer, MSMSG Recognizer) (Match Value Combinator part
of the recognizer modules)(Output)
Protocol Decision Mechanism (Input)
Description: After packets become processed in protocol recognizers, a match percentage
value and protocol specific data is produced in each protocol recognizer. This



WinstonSoft | 56
Detailed Design Report for ACCIPP

match percentage shows how much the packet contents match with the
protocol pattern, and data contains human-readable information such as mail
body and a log for each connection of protocols. Then these match values
and data enter Protocol Decision Mechanism.

Name: Identified Connection
Aliases: Processed Connection
Where & How used: Protocol Decision Mechanism (Output)

Summarizer (Input)
Feedback (Input)

Description: All match values are gathered by the protocol decision mechanism to decide
which protocol the connection resembles most. If the highest match value
exceeds a threshold value, then the connection becomes Identified
Connection, and this connection information goes into Summarizer to
prepare a connection summary. Besides, the connection data enters feedback
module so that pattern recognizers are able to update themselves by using

this data.
Name: Unknown Connection
Aliases: Processed Connection
Where & How used: Protocol Decision Mechanism (Output)

Summarizer (Input)

Description: All match values are gathered by the protocol decision mechanism to decide
which protocol the connection resembles most. If the highest match value
does not exceed a threshold value, then the connection becomes Unknown
Connection and the resolved connection information goes into Summarizer
to prepare a connection summary.

Name: Parameter Values
Aliases: Updated/Train SVM
Where & How used: Feedback (Output)

Description: For Identified Connections, the connection data enters the feedback
mechanism so that the associated protocol recognizer’s parameters in SVM is

updated.



WinstonSoft | 57
Detailed Design Report for ACCIPP

Name: Saved Data
Aliases: Summary Info
Where & How used: Summarizer (Output)

Database (Input)

Description: The summary prepared in the summarizer is stored into the Database. When
the user wishes to save the summary, it is transformed into an appropriate
format that is compatible with the database backend. This information can
later be retrieved from the database and the summary can be reproduced

using the retrieved data.

Name: Requested Data
Aliases: Old Summary Info
Where & How used: Database (Output)

Summarizer (Input)

Description: The user may want to retrieve an old summary from the database. In that
situation the data needs to be transferred from the database backend to the
summarizer module. This data is called requested data. By using this data, an
identical copy of the old summary can be reconstructed.

Name: Summary Results
Aliases: Output
Where & How used: Summarizer (Output)

Description: The data that is formed in an appropriate format in the summarizer module is
displayed to the user as summary results. These results also contain protocol
specific information coming from the protocol recognizers and match values

of the protocols.



WinstonSoft | 58
Detailed Design Report for ACCIPP

7. System Design
Use case, class, sequence and activity diagrams can be found in this section.

7.1 Use Cases

In this section, use case diagrams and scenarios can be found.
7.1.1 Use Case Diagrams
Menu and end-user use case diagrams are shown below.

7.1.1.1 Menu Use Case Diagram

«exiends

Capture Packets «2xtends

N &
BN
e

«includes

User Pattern
Recognition
Save Summary to
neanes \
«winciudes \\%
Prepare Summary

\

sinclude»

View Identification
Results

ead Summary from
Database



WinstonS oft
Detailed Design Report for ACCIPP

7.1.1.2 Use Case Diagram for the end-user

-«w- aants /

c.l!.ﬂd.




WinstonSoft | 60
Detailed Design Report for ACCIPP

7.1.2 Use Case Scenarios

Use case scenarios for the use case diagrams above are situated below.

7.1.2.1 Scenario for Use Case Diagram 1

Open Pcap File: The program can be used in either offline or real-time mode. In offline
mode, all the network packets are captured stored on a secondary storage device
beforehand. This command allows the user to select a previously generated Pcap file for
offline processing. After the user clicks this menu item, a standard open file dialog is
displayed where the user can either type the name of a file or browse through the file
system and choose it.

Open Network Device: This command is used to enter real-time mode. In real-time mode,
packets are not read from a Pcap file but they are captured from a network device. Since
they are not yet stored anywhere, they must be processed on-the-fly. After this menu item
is clicked, a dialog box containing the list of available network devices is presented to the
user. The user selects the network device he/she wants to examine and then closes the
dialog.

Save Pcap File: This menu command lets the user to choose a file on his/her disk to store
the captured packets in Pcap format. The user may want to do this in two scenarios: The
pattern recognition engine might not be completely trained and therefore does not work
at full capacity yet. The user chooses to save the packets as a Pcap file, so that he/she can
analyze them in the future when the pattern recognition engine performs relatively better.
Another case is that the user may wish to examine the contents of captured packets with
another Pcap compatible application, for instance WireShark. Therefore, apart from being
an intelligent protocol identification application, ACCIPP can also be used as a general
purpose packet sniffer.

Start Capture: This command allows the user to begin processing packets. Depending on
the input source selected previously, the program begins reading packets from either a
Pcap file or a network device. If the user has not selected an input source yet, this
command has no effect. As soon as new packets begin to arrive, they are redirected to the
pattern recognition engine and gradually, connections begin to appear on the Connection
List.



WinstonSoft | 61
Detailed Design Report for ACCIPP

Stop Capture: This command allows the user to stop processing packets. Even if new
packets arrive from the network device or there are further packets available in the Pcap
file, they will be discarded. Since those packets do not enter the pattern recognition
engine, they won't have any effect on the identifications results or the summary.

Clear All: This command allows the user to clear all the entries in the connection list pane
along with all summaries and identification data (such as match percentages and pattern
recognizer status) associated with them. When new packets arrive, they will be treated as
new connections and might be identified differently since the previous states of the
pattern recognizer is no longer available.

Copy to Clipboard: This command allows the user to copy the contents of Short Summary
Pane to the clipboard so that the user then may paste and use this information in other
applications.

Preferences: This command allows the user to change or view various settings of the
program. Such settings may include, but are not limited to: Appearance of user interface
elements (fonts, colors etc.), Whether or not the program starts upon system startup,
Configuration parameters for pattern recognition engine, and Enabling or Disabling some
protocol handlers (presumably for performance reasons).

View Menu: This menu includes commands to toggle visibility of some user interface
elements like Toolbar, Status bar and Summary Pane.

Database Query: This command allows the user to enter a query in order to see
information that is stored in the database. The database includes valuable information
captured from the protocol connections. For example; the database includes all received
mail through POP3 sessions. The user may want to query the database for listing the mails
that are received in a specific time interval, or the user may want to see all connection
events from a certain IP address, and so on. Database query command provides a link
between the user and the data captured through the capture engine.

Statistics: This command allows the user to generate statistical information from the
database. This information gives an overall grasp about the protocol connections to the
user. For example, the user may want to see which protocol is used most from a specific IP
address, how much bandwidth is used by protocols etc. The Statistics command is in close
relation with the Database Query mentioned above. This gives the user the chance to form
some highly customized statistical data from the database.

Window Menu: This menu includes commands for changing the positions and sizes of the
sub-windows. For example, when more than one Summary Window is visible, the user may
want to tile these windows in order to see all of them at once.



WinstonSoft | 62
Detailed Design Report for ACCIPP

Help Menu: This menu allows the user to access program documentation that helps the
user get used to the program.

7.1.2.2 Scenario for Use Case Diagram 2

View Identification Results:

The user can view details of connections such as source and destination IP addresses,
recognized protocol of each connection, connection start and end time, etc. More
importantly, if the process of protocol recognition is finished, he/she can see the resolved
transferred data through addresses regardless of the port information. This process
includes two major subroutines that are pattern recognition and capturing packets. For
capturing packets input must be selected by the user. The input can be a Pcap file (for
offline application) or a network device (for real-time application). If a problem occurs in
these subroutines or if the user does not select an input and does not attempt to catch
packets then it is impossible to view any identification results.

Save Summary to Database:

The user can save summaries, namely details of the connection and transferred data that
are shown in the summary window. This data is stored in the database. This process
includes the preparation of the summary. As it is obvious, the user cannot save a summary
before it is prepared. The user may want to do this action in several scenarios. For instance;
during the work of the program many connections occur and as time passes the number of
connections increases rapidly. The user may not be able to look at all summaries in a small
amount of time. So he/she may save some of them for analyzing later on. Another scenario
for this action is that the user may want to view statistical information and this action is
probably performed with the stored data. For example; he/she may want to compare who
uses which protocol most and etc.

View Past Summaries:

The user can view past summaries. Whenever the user wants to retrieve a summary from
the database, reading summary from the database must be performed. The scenarios for
this action presumably show similarities with the above action. As it is mentioned above,
the user may be obliged to view some summaries in the future because of limited time.
Besides, he/she may want to work over an old summary, so this action would satisfy the

user's will.



7.2 Class Diagrams

WinstonSoft | 63

Detailed Design Report for ACCIPP

Class diagrams for the Decoder and Output Modules and the related descriptions can be
seen below.

7.2.1 Decoder Module

PachketReader

pendingPadetCount: int

PcapPacketReader

fp: FILE *

isEmpty() : bool

+ getPendingPadetCount() : int {3 closeFile]) : void
+ readMultiplePadkets{int) . PadketSequence openFeapFile(char =) : boal
+ readSinglePadet]) | Padket
NetworkPacketReader
deviceBusy: bool
devicelD: int
reads
closeDevice() : void
openDevice(int) : bool
Packet PacketSequence
destlP: char]4] - padetCount: unsigned
destPort: short 1 - padets: Padwet®
payload: char* h .
payloadSize: unsigned + getDestiF() : char]4]
sequenceMumbser: int * getDestPort) : short
sourcelP: charf4] + getPadet{int) : Padet
sourceFort short + getPadetCount() . unsigned
time: Time + getSourcelPy) : charf4]
filtars + getSourcePort{) : short
+ writeToFile{FILE *} : void
PacketFilter -
acketBuffer
filterParameters: char® o e
filterType: int - moments FaoeE
! E |n CrderedPackets - gount; int
applyFilter[Padket) | bool . getDestiP(): charé] : ;T:C “fIHI
initialize{int, char *) : bool g Y " - dib oo
+ getDestPort{) : short
+ getPadet{int) : Padet + degueusFadet]) | Padet
+ getPadetCount() . unsigned + degueusPadietSequence(int) | PadketSequence
+ getSourcelPy) : charf4] + engueusPadet|Padiet) : void
+ getSourcePort]) : short + engususPadetSequence{FPadietSequence) @ void
+ orderPadets() : bool +
+

isFull{) : bool




WinstonSoft | 64
Detailed Design Report for ACCIPP

PacketReader is an abstract class that is responsible for reading packets from an
input source. It includes methods for reading either a single packet or multiple
packets at once. The pendingPacketCount member returns the unread packet count
waiting at the input source.

PcapPacketReader is derived from the PacketReader class and implements
functionality to read packets from a Pcap file.

NetworkPacketReader extends the base PacketReader class, and includes functions
to read packets from a network device.

Packet class is the data structure that is used to define a single packet. The member
variables of this class are filled by the object that reads the packet from the input
source.

PacketSequence is the collection class for packets that have the same source and
destination addresses and same ports. It includes methods that provide random
access to packets stored in the collection. This class is also responsible for dumping
its contents to a Pcap file.

PacketFilter is the class that is responsible for eliminating packets that are not TCP
or UDP, and the ones with invalid checksum values.

OrderedPackets extends the PacketSequence class to add functionality that orders
the packets in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a
predefined number of packets in a queue data structure.



WinstonSoft | 65
Detailed Design Report for ACCIPP

7.2.2 Auto-Sensing Module

GeneralClassifier

+ classify[Padet) : float

N

axtends
extends
FeatureExtractor

asciiTetsl: float
sveragelinelen: flost SVMClassifier RuleClassifier
classBAddr_1: unsigned char Cararmeters: float
classBAddr_2: unsigned char - [parameles Toa - cumentState: string

=tTime: inned lon: - 2oy p<string, string=
Issthdc__tTl*n_. unsigned long e dassity(Packet) - float memaory. map<string, string
letterDecimal: flost {:]7

extract) : vector<float=

+ dlassify[Padeet) : float
resethlemory() : void

packetsPerSecond: float
payloadSize: int
totalPadkets: int
totalTime: int

train{string, vector<float=) : void

+ extract() : vector<float>

MatchCombinator

rule: RuleClassifier
ruleldatch: float
swrm: SWIMClassifier
svmiatch: float

+ cdlassify{Padet) . void

> GeneralClassifier is the abstract class which the two main classification modules
namely SVMClassifier and RuleClassifier are derived from. It contains one pure
virtual function, classify, that takes a packet and returns a match value for that
packet.

» SVMClassifier is the class that performs the Support Vector Machine classification.
It contains functions to classify a given packet, save SVM parameters to file, or load
SVM parameters from file.

> FeatureExtractor is the class that extracts the features from a given packet. The
SVMClassifier module internally uses this class to create observation vectors from
packet header and payload.



WinstonSoft | 66
Detailed Design Report for ACCIPP
> RuleClassifier is the class that performs rule based matching on the packet
contents. It has a variable to hold current state of the state machine, and an
associative array to hold memory contents.
» MatchCombinator is the class that internally instantiates the classifier classes above
and generates an overall match value out of the values obtained from these classes.

7.2.3 Output Module

Summary

comment: vector<string=
connection|D: int
destination |P: string
filePaths: vector<string=
sgurcelP: string

includes

1 + getComment{) : string
Summarizer + getConnectionlD{) : int
+ getFilePaths]) . vector<string>
matchValus: double + setComment{string) : void
+

protocoiMame: string
summany: Summany

setFilePaths{int) : void

+ displaySummaryWindow{) : void
+ getMatchValue() : double
+ getProtocolMame() : string genemtes
+ sawveSummaryToFile{string) : wvoid
+ setMatchValue{double) : void o~ acosss
+ setProtocolMame{string) : void Database
+ updatell{string) : wvoid
ChartGe nerator - oconnecticnDate: Date
connectionlD: int
+ drawBarCharts() : void - cententlD: int
+ drawColumnsChart() : void - endTime: Time
+ drawPieCharts() : void - leglD: int
+ getChartType() : string - startTimea: Time
+ setChartType(string) : string
+ oconnectToDatabase() : void
+  insertSumman: S ummary) . void
+ readSummany{int) | Summany
+ updateDatabase{Surmrnary, int) : void
,J{\ I‘E\‘
FileTransfer EMail InstantMessaging Unknown
- ocomment: string - attschedFil=lD: int - attachmentlD: int - oconnection|D: int
- econnaction|D: int - bex sting - connectionlD: int - unknownlD: int
- filelD: int - oo string - massag=lD: int - unknownPcapPath: string
- ftplD: int - connectionlD: int - messageloglD: int
- emaillD: int - protomiName: int
- maillate: Date f includes
- mailFrom: string .
- mailTextID: im; inclugzs
- mailTa: string
- protococolMame: string
includes
| 1
includes
File
1
1 |- comment: string
- filzlD: int
1 |- filePath: string




WinstonSoft | 67
Detailed Design Report for ACCIPP

Summarizer class generates user-friendly summary of the connection data received
from the AutoSensing mechanism. When it receives a new connection, it calls
Summary class.

Summary class is actually a data structure for storing the summaries generated by
the Summarizer class. It calls ChartGenerator class only if requested by the user and
calls the Database class at all cases.

ChartGenerator generates bar, column and pie charts for visual interpretation of
summaries formed from the connection data received by the Summarizer class.
Database class establishes connection with the ACCIPP database and creates
queries in order to retrieve data from, insert data into and update fields of the
database. Its methods use these queries to add all connection data received and
eventually calls the EMail, InstantMessaging, FileTransfer and Unknown classes for
further classification of the connection data.

File Transfer class is a type of Connection class and is used for storing the file
transfer data over FTP.

EMail class is a type of a Connection class and is used for storing summaries related
to E-mail protocols such as POP3 and SMTP.

InstantMessaging class is a type of a Connection class and is used for storing
summaries related to the Instant Messaging protocol, i.e. MSN.

Unknown class is a type of a Connection class and is used for storing summaries
that cannot be classified into one of the four classes, i.e EMail, InstantMessaging
and FileTransfer. As the AutoSensing feedback mechanism operates, instances of the
Unknown class will eventually be deleted from the Unknown class and added to one
of the four other classes mentioned above.

File class is called whenever the need for storing the attached files and/or contents
of the EMail, InstantMessaging and FileTransfer classes arises.



WinstonSoft | 68
Detailed Design Report for ACCIPP

7.3 Sequence Diagrams

Sequence diagrams for Output and Decoder Mechanisms are below.

7.3.1 Sequence Diagrams for Output

S}r Summarizer Databaselcosss
M
User
displaySurnman/Window{)
summanyResults)
— saveSummeryToFile])
[1
insertSurnmany()
.
updateDatabase()
T
read Surnmany()
] ' -
formatSurmmany()

D" summaryResults)




WinstonSoft | 69
Detailed Design Report for ACCIPP

7.3.2 Sequence Diagrams for Decoder

i g
o =
= 1]
n n
n —
= =
=] [V
[ ]
g
i
Y
&
<
7
4
m
[V
I.II
=
8
[
E I —
_'.';.'
w
&
g
= =
=

PadietFilter

etl)

MNetworkPadetReader

Padk

readSingle

wvice()

PrapPadetReader
p=nD:
sucoessOrFailu

=nPca
sucoessCrFailu

PadketReader
-
L1
il
|:-| e |
L
|

pFil

[
=]




WinstonSoft | 70
Detailed Design Report for ACCIPP

7.3.3 Sequence Diagram for Auto-Sensing

combine()

chvalue()

axtract])




WinstonSoft | 71
Detailed Design Report for ACCIPP

7.4 Activity Diagrams

Activity diagrams for Decoder and Auto-Sensing Mechanisms can be found below.

7.4.1 Activity Diagram of Decoder

v

Invalid

® N

Mot TCR/UDP >

TCR/UDF

Reordering According
to Sequence Number

Mot Incrder

MNet Full Buffer

—

Full Buffer

®




WinstonSoft | 72
Detailed Design Report for ACCIPP

7.4.2 Activity Diagram of Auto-Sensing

‘ Unknown Connection

Identified Connection




WinstonSoft | 73
Detailed Design Report for ACCIPP

8. Testing Strategy and Procedures

As Edsger W. DUKSTRA states, "Program testing can be used to show the presence of bugs,
but never to show their absence!". Keeping this in mind, in order to have a program as free
of bugs as possible, it is a must to have a good testing plan. Testing is the vital tool for
quality assurance, validation and verification procedures. By validation it is meant if what
has been specified is what the user actually wanted whereas by verification it is meant if
the software is conformed and consistent with an associated specification. The testing
before development of the software consists of deciding upon a testing strategy and
future testing procedures. Although it is practically impossible to prove that no more errors
exist, the more errors will be found as more tests are conducted and the rate of finding
new errors will decrease as the testing process continues, to ensure the quality of the
developed software in terms of correctness, reliability and efficiency, testing plan and
procedures have been developed.

8.1 Testing Strategy

When designing test cases not regarding the database part, white box point of view has
been taken since the tester, actually being the team members, has access to the internal
data structures, code and algorithms. Thus, although ideally meaning to test every branch
in the code with every combination of input values, it is planned to do a reasonable
amount of testing while trying to cover a meaningful representation of the complete
picture. On the other hand when designing test cases regarding the database parts grey
box testing will be used since the tester has control over the input, inspects the value in a
MySQL database, and the output value, and then compares all three (the input, mysq|
value, and output), to determine if the data got corrupt on the database insertion or
retrieval.

Since ACCIPP has different layers and modules, testing phase should be conducted in a
bottom-up manner as the project is concerned as a whole. However, testing each module
in each layer separately requires a different testing strategy, i.e. top-down testing.



WinstonSoft | 74
Detailed Design Report for ACCIPP

Top-down

Top-down

Bottom-up

Top-down

Top-down

ol

Figure : Testing Strategy of ACCIPP



WinstonSoft | 75
Detailed Design Report for ACCIPP

8.2 Testing Procedure

The following procedures are applied in accordance with the testing strategy.
8.2.1 Unit Testing

In unit testing, minimal software component, i.e. module, is tested by white-box testing to
verify that the detailed design for the module has been correctly implemented. This way,
since the internal coding structure is visible, the tester is able to optimize the code and
decide upon which type of input is more helpful in testing the application effectively. As
each module or a sub-module is developed the unit testing will be carried out. Usually the
member who developed the specified module or sub-module is in charge. However as
being a software developer group, everybody is an end-tester to each module or sub-
module developed by the other group members.

8.2.2 Integration Testing

Integration tests are different from unit tests in that it includes the testing of flow of
operations, whole-part structure during lifetime and appropriate delegation and cascading
behavior using infrastructure conditions and failure scenarios. The general aim of this type
of testing is to determine if simultaneously running modules function together correctly.

8.2.3 Reliability and Efficiency Testing

Apart from testing of modules and the integration of these modules, the ability of ACCIPP
to perform its required functions under certain conditions for a specified period of time, i.e.
reliability, and algorithmic efficiency of ACCIPP will also be tested. Firstly, the purpose of
reliability testing is to discover potential problems with the design as early as possible and,
ultimately, provide confidence that the system meets its reliability requirements. The most
important reliability requirements in ACCIPP’s case are as follows:

» Identify FTP, POP3, SMTP and MSMSG protocols correctly,

» Capture some popular file formats like avi, wmyv, jpg etc. from the detected

protocols without error,

» Give accurate output in an appropriate format.
As a result, in reliability testing phase ACCIPP will be tested against these requirements. On
the other hand, efficiency is used to describe several desirable properties of an algorithm
or module, besides clean design, functionality, etc. Efficiency is generally contained in two



WinstonSoft | 76
Detailed Design Report for ACCIPP

properties: speed (the time it takes for an operation to complete), and space (the memory
or non-volatile storage used up by the construct). Since ACCIPP operates in real-time,
speed is of main concern in terms of efficiency. The speed of an algorithm is measured in
various ways and time complexity is going to be used to determine the Big-O of the
algorithms.

9. Syntax Specification

Projects are not daily, simple work. So any software project should be coded properly. The
word proper does not only stand for working good but also easy to read and understand,
add to, maintain and debug.

There may be cases where one project member may stop developing his/her part and
decide to return to it several weeks later or hand development over to another member. In
these cases both that member and the other developers will want to be able to understand
the code.

As a result, after consulting with all team members and compromising and incorporating
elements of everyone’s style a group of coding standards have been decided upon. These
standards help the readability and maintainability of the code by basically enforcing
syntactical constraints and forbidding the use of complex language functions/construct
that are quicker to write but affect the mentioned factors.

Consequently, with the help of the CVS and the following syntax specifications, these aims
are planned to be achieved.

9.1 Naming Classes

All classes will have names beginning with capitalized letters, and the classes with names
containing more than one word will have names where each word's first letter will be

capitalized. Some example class names are as follows: “"EMail”, “EMailProtocol”.
9.2 Naming Functions

The functions will be named so that each function name starts with a lower-case letter,
until a new word starts. Each new word in the variable name starts with a upper-case letter.
For example “"getConnectionld()” is suitable for a function name.



WinstonSoft | 77
Detailed Design Report for ACCIPP

9.3 Naming Variables

Appropriate choices for variable names are seen as the keystone for good style. Poorly-
named variables make code harder to read and understand. As a result, all variables begin
with a lower-cased word, and if consisting of multiple words, the rest is capitalized. Some

non

variable examples are: “protocolName”, “comment”.

9.4 Comment Conventions

Commenting is also a vital issue considering the understandability of the code. Since each
C++ class is defined in separate files, detailed information about each class is included at
the beginning of each file in the following format:

R AR R A R A R R ek

File Name:

Author:

Date/Time: (Date - DD/MM/YYYY , Time - HH:MM:SS)

Modified By:

Modified At: (Date - DD/MM/YYYY , Time - HH:MM:SS)

Description:

**********************************************************************************/

In addition to this, end of line comments which describe the code on that line only are
written in accordance with the following convention: [2]

xIncrement *= -1; // change horizontal direction
On the other hand, line comments that describe the purpose of a number of lines of code
are written in accordance with the following convention: [2]

// Move the point in the current direction
y +=ylncrement;
X += xIncrement;

9.5 MySQL Conventions

ACCIPP database and the related queries will be coded using MySQL, so some simple rules
for MySQL conventions have also been decided upon. Basically, these rules are:



WinstonSoft | 78
Detailed Design Report for ACCIPP

1. Avoid keywords in field names at all costs which will probably simplify the queries
and save rework later.

2. Use case sensitivity in MySQL statements where key words are always capitalized
and non-key words are cased as appropriate to the field names.

3. Using stored queries and procedures wherever possible since they are designed for
optimal use and will help us save time.

4. Field names consisting of a single word are lower-cased and the ones with multiple
words are also lower-cased with the words other than the first word being
capitalized.

10. Project Schedule

Gantt chart is used to visualize the schedule of ACCIPP including only the first term of the
project.

10.1 Gantt Chart

The Gantt chart of the project can be found in Appendix, 12.1.

11. Extra Features

ACCIPP, as defined throughout this design documentation, has the ability to capture,
preprocess, decode and by means of Auto-Sensing Mechanisms identify packets belonging
to four distinct network protocols both online over the network traffic and also offline
independent from the port number. The mentioned protocols are namely FTP, POP3, SMTP
and MSMSG. Apart from the problem definition stated, since according to the project
schedule which can be found in Section 10, protocol recognizers designed for Auto-
Sensing Mechanism and Output Module implementations will be complete by the end of
April 2008. Therefore, having already implemented both the decoder and the output
mechanism, addition of two more protocols for port dependent output extraction will be
both trivial and contributing to the completeness of the software in terms of protocol
variety. The extra features are as follows:

» Port based data extraction for IMAP.

» Port based data extraction for NNTP.



WinstonS oft
Detailed Design Report for ACCIPP

Firstly, IMAP is an EMail Protocol, therefore it can treated in the same way POP3 and SMTP
are treated, thus does not result in any modification in the ACCIPP database or ACCIPP
modules except for the Output Module. The mentioned modification occurs only in the
data extraction and summarizer parts. IMAP will not be handled by the Auto-Sensing
Mechanism to be identified and passing through the decoder module unchanged will be
input to the output module for data extraction and summary generation.

Secondly, since NNTP belongs to a whole new type of a protocol class, i.e. News class, both
the ACCIPP database and the output module needs to be modified. The additions to the
database are as follows and they can be simply added to the existing database with the

corresponding relationships be adjusted.

Entity-Relationship Diagrams:
ER Diagrams:

— -

|
-

U

L e

Relations:




WinstonSoft | 80
Detailed Design Report for ACCIPP

- =

Entity Sets:

News

connection id: Number
news id: Number
attached file id: Number
news_text_id: Number
group_name : Text
subject: Text

Data Descriptions:

[«E-_-.News,.

, Field Name l Data Type Description -~
Eﬁ] connec;(ionFid Number ‘
¥ |news_id Number
5?_—} attached _file_id Number
 news_text_id Number
~ group_name Text

'subject Text

Entity Descriptions:

News:

If the detected connection is of type NNTP, then the connection will be added to this table
with five attributes.

connection_id: This attribute defines each News entry uniquely, therefore it is a primary
key of this entity. It is stored in the database in Number format. This is also a foreign key to

the Connections entity through the connection_id attribute.



WinstonSoft | 81
Detailed Design Report for ACCIPP

news id: This attribute is used to define each news entity belonging to the same
connection uniquely. This attribute will be assigned automatically by ACCIPP. The aim is to
be able to define more than one news instance per connection.

attached file id: This attribute defines the files attached to the corresponding News post.

This is also a primary key as there may be more than one file attached to the same News
entry. The contents of this file can be accessed through the file_id of the Files entity. This
attribute is stored in Number format.

news_text id: This attribute defines the file that contains the textual content of the related
News post. The file itself can be accessed through the related file_id of the Files entity. This
attribute is stored in Number format.

group_name: This attribute is used to define the news group name that the news
message is sent to. The value of this attribute is stored in the database in Text format.
subject: This attribute is used to define the subject of the post which briefly describes what
the post is about. It is stored in the database in Text format.

Creation of Database:

/*NEWS* /

DROP TABLE IF EXISTS “accipp . news ;
CREATE TABLE “accipp . news (

‘connection id’ 1int(10) unsigned NOT NULL,

‘attached id" int(10) unsigned NOT NULL,

‘news _text id" int (10) unsigned NOT NULL,

"subject’ wvarchar(45) NOT NULL,

‘group name  varchar (45) NOT NULL,

‘news_id  int (10) unsigned NOT NULL,

PRIMARY KEY USING BTREE
('connection id", "attached id", "news id"),

KEY "attached id" ( attached id"),

KEY "news text id  ( news text id"),

KEY "news id’ ( connection id', ‘news _id’),

CONSTRAINT "news id’ FOREIGN KEY ( connection id', ‘"news id’)
REFERENCES "connection  ( connection id’, “content id ) ON DELETE
CASCADE ON UPDATE CASCADE,

CONSTRAINT \attached_id\ FOREIGN KEY (\attached_id\) REFERENCES

“file' ("file id') ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT ‘news_text id’ FOREIGN KEY (‘news text id")
REFERENCES ‘file' ("file id') ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;



WinstonSoft | 82

Detailed Design Report for ACCIPP

The resultant database schema and the related relations are as follows:

-
EMail
¥ connection_id
v email_id
¥ attached_tile_id
mail_text_id
mail_date
mail_to
mail_from
«
bcc
Connection s
'V connection_id protocol_name
¥ content_id /
connection_date News
start_time ¥ connection_id
end_time ¥ news_id
destination_ip ¥ attached_file_id
source_ip news_text_id
protocol_name group_name 2
comment subject File
¥ file_id

log_id
\_‘ Ins ; file_path
¥ connection_id comment

¥ message_id
¥ attachment_id
message_log_id

( File_Transfer )
¥ connection_id
¥ ftp_id
file_id
comment

( Unknown

¥ connection_id

¥ unknown_id
unknown_pcap_path

Output Module:
Having stated the necessary modifications in the database module, the changes in the
output module can be found below.



WinstonSoft | 83
Detailed Design Report for ACCIPP

Summary

- oomment: vedcor<siring>
- connectionlD: int

- destination|P: string

- filePaths: vector<string=
- sourcelP: string

includes
1 |+ getComment]): string
Summarizer + getConnectionID{) : int
+ getFilePaths() . vector=string>
- matchValus: dz”_GIE + setComment(string) : void
= Lilineslh Sl ST +  setFilePaths(int) : void
- summary: Summary
+ displaySumman/Window() : void
+ gethMatchWValue() : double genemtes
+ getProtocolMame() : string
+ saveSummaryToFile(string) : void o
+ setMatchValue{double) : void scosss
+ setProtocolMame(string) : void ChartGenerator Database
+ updatellistring) : void
+ drawBarCharts(): void - xnna:t!:nDst—:.: bziz
+ drawColumnsChart() : void - m"“fc"“',& [
+ drawPieCharts(): void - mnts_ntID: ”-!t
+ getChartType(): string ° IE"n;‘I;IT:jt LEi=
+ setChartTypelsting] : string e .
+ connectToDatabase() : void
+ insertSummarny{Summary) : void
/:7+ readSummary{int) : Summary
-/,.V + updateDatabase{Summary, int) : void
N : .
Hews \ FileTransfer EMail InstantMessaging Unknown
- attachedFilelD: int | |- Yoomment: string - attachedFilzlD: int - attachmentlD: int - ionlD: int
- connectionlD: int = nnectionlD: int || |- oo sting - connectionID: int - unkngownlD: int
- groupMame: sting - [il=lD: int - o ostring - messagelD: int - unknownPcapFath: string
- newslD: int - BfolD: int - connection|D: int - messageloglD: int
- newsTextlD: int - emaillD: int - protococlName: int
subject string - mailDate: Date f( includes
- mailFrom: sfring .
- mailTextiD: int includes
includes - mailTo: string
- protococlMame: sting
I
includes includes 1
1 File
1 - 1
- oomment: siring
1 - filelD: int
- filePath: string

The addition to the class diagram in the figure above is circled. The related data dictionary
addition is below.
» News class is a class and is used for storing summaries related to News protocols

such as NNTP.



WinstonSoft | 84

Detailed Design Report for ACCIPP

12. Appendix

12.1 Gantt Chart

(N3] NI vo yareasay

L00ZZHVED LODZLEGL Guuzauibuy ssiznay 1z
(v19vd
NvA13) sienaed Buuayng

L0022 20 LO0E LA 6F pue Buuzyy 1of yarzzsay 4
(H33
‘N2l s18y9Eg Bumiquiag

I0022420 LO0ZLA 6k pue Buyapig soy yoreasay Bl
(D) seueign

L00Z'LLSZ 00T LL L Azssazay Buaeasay 2
(¥19vd) siaoed

L002°LL8L L00T LA T Buunjdes oy yuessay m
(N N13) sieded

0021462 L00ZLLG0  paleiay Jaeloid uo yareasay o
(30 19w (ReadoL
‘Bagayigisaunes e

LA A A R o suwesbioug Buzdeuy il
(NvAT3 ‘W)

L00Z°0L8Z  LO0Z0L ) YAERSEY IS HONIAN i
(y3x)

10020442 L0020 80 il ue L2Ieasay D4y g
(v19v)

L00Z°0L8Z  L00Z'01'80 dLNN Ue YprEasz 34 !
{3

1002'0L8Z  100Z'0L 80 £40d U0 LAEISIY 744 m
(w2l

0020182 10020190 JLINS UD LIEBsEY 944 o
sdanuny [BeUa

L002°01°20 100201 10 nagy aBpapouy Buiieg §

800Z'H0'CL  L00Z'0L'LD Yaueasay g

0021002 LODZ O 10 syoday Apyzan !

8002'L0°LL L0220 10 uoday uisa eud g

L00Z'LLOE 00T LE 50 podsy ubisa(q ey g

L00E 170 10020190 Moday sisieuy spswainbay ¥

20020420 L0020 10 neday [esadoig £

BO0Z°L00Z L00Z0L'L0 uopguawnzog slorg g

1 o 002'10°0Z  L00Z°0L'LO uausbouey yalorg |

Lon [wo o [awe Jow Joo Jao [we [we [wa [wo Joe [oz [og [ow [ow | oms | n

g00g fencer |

100g qusse |

1007 pqueton|

100 299R0




WinstonSoft | 85

suoisaIn O el [ ]

Detailed Design Report for ACCIPP

M ¢ sulpesq {} aseyd N—1

e —— | _ T T e TR T =
M B00ZHOFD LODT T T UDIEUBS3I] UUB] 15114 &
I 07 L0EL  JO0Z'LLGL _._n.ﬂ-,-—n—mnu,._n:uw_n._m g
— DY VIOV
0021090 20022k AL adfoloid InS Suiuswajdu "8
— (90 AT 2dhherang
0022060 JOOZ'LL'9Z Bujsuas-oiny Gunuaws)du) 9
—_— {430 anpopy
LOOZ'ZL L LODEEL DL Buuayyng Bunusiuzdu S
(— (N3 BInpoi
I00ZZVOL L00Z2LED uBpIgy BUnuBWIA|duw| v
“ 519w snpoyy
0022060 JODEEL L0 Buuaid Bunuswa)duw) o
- (W) 2inpoyy
i L00ZHVEZ L00ZLL6L  Buumdep Bunuawsidw i
e adhyonoig
1007ZV9) 10T LG 1zpoaaq Bunuswadw) I
i 0022194 L0DTLLEL  Empowsaposaq Bubisag (3
ﬂ [00ZZV'60 LO0E LTk IN9 &y Buwbisag &
i #npoy)
800Z°H00Z  L0DZ LM G0 Buisuag-ciny Bubisag i
i S00T L0 L00T LSO vonmuawadwy pue ubisag Z
I 800Z'L0°EL JODZZL AL (HIATI IS vo yaessaY I 9z
(y19vd
I ‘W) DSILA U0 yaeasay
QO0ELOEL  FODEZE LL Buuzaubug ssizaay oz
I _ | (w13
! _ _ BO0ZHDEL LODEEHLF  W3I@EV UD yprEessy Dy 7
| [ (¥19%3 ‘W) venubossy
m LO0EZH 08 EODEZL 0L WEJR U0 Yleasay Il
m “ sERY)
" LO0ZTVET LODELLOZ dALIH uo yaieasay D4y A
[un [wn Jaw Jaw [au Jao oo | i [ st [z [wso [ose [mz [org [ovsn [ovwo | 6ove . e
9007 Atenuep _ 1007 SBquazag _ 1007 Jaquiaraly _ 1002 199000




WinstonS oft ‘ 86

Detailed Design Report for ACCIPP

auagsEIN O e ]
qu 4 aulpead ¢ EE gy —
! “ _ _ WO Ol [t B ot i I
— | | | e g8
L | | W B AT I ISR P B (B @
— ! | ! Wkl ik (LB L "
[ _ ” ” BRI BOE S LE ] P B N30 [ 8
| [He2 Y13 0 e
| [ I [ T 5006 BN ST Bugen | Szumsiyg e ppam iy s
! i SO0 G006 o LT T 5T By usgmaeL "
| FUTOIIE  BNTIONE {HST) AT B LN P
| OB WRE s Buifingsgpurdupiay, [+
| : - “ TP AT N R
[ I | s = o .
| I WOTOYI MO Ty T 1 O AR R i
| _ HOOE B0 BOSE £ 4k [ ik meegmay, b s P
. ] i WOOE 3'5E Mt WIS A S 1 g W
xr ] | WO B IR maz o sl Iy mepeyy ey w2
I d _ TV HT TR 1P B st g rz
| [ _ _ GMTRONE  EOTRONE  (HEW VIO eSURMADDiLamy -
i | “ “ WOOE OB POGE i OE (a1 i i ek iz
| — _ | WENE W o Tl e i
| ] | | SMTEVEE  BOPOED [ e g B B
[ i— [ [ WIEWKE BT LA NG Uy Bl
_ _.| “ (v T H AN YR
1 | | | fr ek 1) L T L= TR H L] m
i { |. ! P MR TR W e
| | H _ WOOE W3S L gL AR L LTISAT D3R aul
[ | | SNCENST  BNCIDSD WAL L
i i A i FETRIE0 BNETLONE [0 AT SRS "
| | i — 00T 652 B0 T0GE =) [ Bt
| | | S WOLE 'SR AT T BE Il AL o
m b 4 TR EMETONE sanuboIm Mg i
| | i 4 WL RN DS ss-ainy DU o
i i i | . OTIVEE BT g W rac ey i
_ I W DT 8T mz [ #prpeoyy Buzmpeney B
H | _ _ ] SOOT TS L [mw TR g Buaemey 1
| | [ [ - 0T T05T BN T0 Bk (N enpap Busrydes 8
“ m [ el WOIEE T ey Bupssaig 5
.| W EAEE WRE T ddrd 3 B sy r
] [ I muzdeg) dope £
{ v BN TIEE L LN 260 T 0 1
{ UL R e
[aoer [oaoen [aen Javsz Jover Jower Joren Jovur [over [ [oooe Jooue [oover Jovo Jovee Jovm [avee Javn Jaom R . .
BLE T B0 i | £0tE 1y | S0 | ) - i




WinstonSoft | 87
Detailed Design Report for ACCIPP

13. References

[1] Dreger H., Feldman A, etal, “Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection”

[2] http://virtual.parkland.ed u/sbadman/00000007 Fall/SuperSymplifiedCSyntaxSpecification.htm
[3] www.dtreg.com/svm.htm

4] http://www.fags.org/rfcs/rfc959.html

[5] http://www.ietf.org/rfc/rfc0821.txt


http://www.dtreg.com/svm.htm
http://www.faqs.org/rfcs/rfc959.html

