Fall 2007

WINSTONSOFT
Initial Design Report for
ACCIPP
CEng 491-CLASSIM Project
Cagla CIG
Nazif flker ERCIN O
Elvan GULI?_N
Can HOSGOR

Table of Contents

WinstonSoft | 2
Initial Design Report for ACCIPP

1. Introduction 4
11 PrODIEM DETINITION ...t ceeesss e eesssss s esssss s sesssss s es s bbb nstens 4
1.2 PrOJECE GOAIS coceeeeeeeeeeeiii et cesesss e ceesiss s eessss s R 5
1.3 What Has BEEN DONE SO Fal...eceeiiieceeiiiseeeeessssssseseesssssssssessssssssssssssssssssssessssssssssssssssssssssssssns 6
14 FUBUTE W OTK coovtteeeieceeeiieeceeiisseeeesesssssssssesss s eesessse s sesssss s bbb ks bbb 9

2. Design Constraints 10
2.1 TIME CONSEIAINTS....ieeeeeeemeeeeeeesseeseeessss e eessssssesseeesssss e eessssss e esbess s bR AR 10
2.2 LAaNGUAGE CONSTIAINTS.....ouuuerreeeuemeeeeeesesseeseeessssseeseeesssssseesesessessessssssnseees 10
2.3 DAt CONSTIAINTS....ooouueeereiiinececeiiiseeeeesisssseeessssssssessesssssssssesesssss s ssss s bbb 10
24 PEIrfOrMANCE CONSIIAINTS.....uureerreeeeressmmssseseeeeesssessssssssssssessees 11
2.5 USer INtEIrface CONSIIAINTS ..c...ceveeveeeemseeeeeeereressesmssssssssssesssees 11

3. Project Requirements 11
31 FUNCEIONAI REQUITEMENTES ..ottt sssessssssss s ssssssssssssssssssssssssssssssssssssesssssssesssssssesssssssensess 11

311 CAPLUNNG PACKELS ..ot eeeesissssseessssssesssesssss s sesssss s sessss s sesssss s esssss s sssssnnns 12
312 PrOPIOCESSING cceeeumseeseeesumsseeseesssssssssseesssssssssssessssss s eesssss s essssss bR kR ARk 12
313 FIIEEIING ettt eessss s eesss sk 12
314 AUTO-SENSING ieetiireeeeeetiiseeeseetiss s eesssss s eesssss s se s ek 12
3.1.5 Processing Identified CONNECHIONSoocccuuurreeeieeeceeeisseesesessesssssssessssssssssssssssssssssssssssssssssessases 12
316 OULPUL MECNANISIM.c.....cooeeceeeieseeetes e ceessssessseesssss s sesssss s ssssess s sssssss s ssssss s ssssss s sssas 12
32 NON-FUNCLIONAI REQUITEMENTES. ... sesisessssissessssssnessess 13
3201 USADITITY ettt 13
3.2.2 POTTADIIITY corveeeeeee et eeeeess s ceesss s esssss bbb 13
3.2.3 R@IADIITY oottt esss s es s bRt 13
324 DOCUMENTATION. cccottreeireceiieeceieseeeieseeessis s essss s ssssss s sbss s sess s b s bbb bt 13
33 SOFtWATIE REGQUITEMENTS.........ooieerrreeeeeessessiseessssssesses s sssssssssssssssssssssssssssssssssssssesssssssssssssssssssssnnsssssess 14
3.3 1 OPEIatiNgG SYSTOMcuu e eeeeeiseeseeesess e eeessss s sesssss s sesssss s esssss s es s b s s es s 14
3.3.2 EXEEINQAl PACKAGES...o et eceesis s seessss s sesssss s sssssss s es s sss e ess s et 14
34 Hardware REQUITEMENTS.........ccovvreveirsieessssesesssssssssssssssesssnenes 14
341 MINIMUM HAMAWATEcoooeeeceeeimeeeeceeissseseeeesssssessesesssssssssssssssssessssesssss s sssssss s sesssssssssssssssssssssssssssans 14
34.2 ReCcOMMENAEA HATAWATEcreeeeeeeeeeeeiieeseeeeiisssesseesssssessscesssss s sssssss s sssssssssssssssssssssssssssssnns 14

4. User Interface Design 15

5. Database Design 19
51 Entity-RelatioNShip DIGIamS.....cerceensseeenssssessessssssessess 20
5.2 D ata DESCIIPTIONS......oorveeerrrreeeseesessessesssssssesssessssssssssssssssssssssssssssesssssseseess 26
53 ENTItY DESCIIPTIONS. ..oounveeereeeeeeeeesiseseeissesesssssssessseseess 28
54 Creating ACCIPP Database. ... rmiureeeeeessiisissssssssseesssssssmsssssssssssssssssssssssssssssssssssssssnnssssssess 33

6. Architectural Design 37
B.1 SEIUCTUIE CRATT oo seeeseesssssss s ssssssssssss s sssssss s sssess s 37
6.2 SYSTEM IMOAUIES ...ttt seessssseesssssssss s sssssss s ssssss s ssssss s ss s ss s s s s 38

6.2.1 DECOUET MOAUIE.....orretiicereeiieceeiiisssesesessi s sessss s ssesssss s ssssssss s sssss s ssssss s ssssssnns 38
6.2.2 AUTO-SENSING MOAUIE.......eeereeeereees s sssssesssssssssssssssssssssssssssssssss st ssssssssssssssesssssssessess 40
6.2.3 OULPUL MOAUIES.....ooeteceeeiieceetiisseseseesis s sessss s ssssssssssssssssss s sessss s sssess s sessss st 42
6.3 Data FIOW DiI@gramS ... rceeeeienseeessssensssessnssssssssssssssssssssens 44
6.3.1 Level O DFD Of DECOAET MOQUIE..........ccceeeeeemeesereeeeeiimssssssssssssessees 44
6.3.2 Level O DFD of Auto-Sensing MOAUIE.........orrceeisneceeiesessssssssssssssssssssessssssssssssssssssssens 44
6.3.3 LEVE| O DFD OFf ACCIPP.........oeeeeeeeemmrseeesesceeessesssssssssssssssssssssssssees 44
6.34 Level 1 DFD Of DECOAET MOQUIE........coceeeeeemeeseeeeeeseinmssssssessssesesses 45
6.3.5 Level 1 DFD of AUtO-SeNSING MOAUIE........eereceeeeieiirsseeeeeeeceeeeesssssssssesssssessssssssssssssessssssssseees 46
6.3.6 LEVEI 1 DFD OFf ACCIPP.........ooeeeeeeeemrseeeeeseeeessssmssssssesssesssssssssssssssssssssssssees 47
6.3.7 LEVE| 2 DFD OFf ACCIPP.........oeeeeeeeeessseeeeeeeeeesssssssssesessesssssssssssssssssssssssssses 48
6.4 DAta DICHONAIY cooouveeereeeeerreeessesessssssessssesssesssssssessess 49

WinstonSoft | 3
Initial Design Report for ACCIPP

7. System Design 54
7.1 USE CASES...ovvuurerrriererssessissssssssssessesssssssssssssssssessesssssssesssssssssssesesssssnasssssssssssesssssssssnssssssssssessssssssneesssoses 54

7. 11 USE CaSE DIAQIamS.......oecceeeumieeeeeessseseseessssssesssesssssssesssssssssssssssssssssessees 54
71,2 USE CASE SCRNMATIOS. coocrvrvvviveesmmmeseesssssssssssssmsssssesssmmssasssssssssssesssnaneecs 56

T2 ClaSS DIAGIAMS..criceeiuieeseeeiimssseeessssssseseessssss s esssssssssseessssss s esssss sk ek 60
721 DECOUET MOUUIE.....erreririiiinrececeeeeseesiiissssssesssssesssssessssssssssssssssssssssssnsessssssssssesssssnsssssssssssssssssnnnnss 60
722 OULPUL MOAUIE ..ottt eeeeiss s esssss s ssssss bbbk sb s 62

7.3 SEOUENCE DIagIamMS. .. cceeeeumeeeceeeessseseessssssssssesssssssssssssssssssssssesssssssss s ssssssssssssssssssssssesssssssssssesssssssssesssssnns 64
7.3.1 Sequence Diagrams fOr OULPULrrreceesesmssssensesseeesssssssssssesssssssssssssssssssssssssssssssssssssnnnns 64
7.3.2 Sequence Diagrams fOr DECOGE..........reeceeesimsssessessessns 65

TA ACHIVITY DIAGTAMS....couuuiereiceuemmieeseeeessesseessssssseseessssssseesssssssssses s essssss s esss s s s ees s ssss st 66
741 Activity Diagram Of DECOTET ... vecceeeeeesreeereeeeeeessssssssssesseesssnnns 66
74.2 Activity Diagram Of AULO-SENSINGcmrrrereeeemmmssssssesssessnns 67

8. Testing Strategy and Procedures 68
8.1 TESHING STrATEGY .. ceuuueereeieceeiieeeeie et ssisseessis e sesss s sbss s ssss s bbb 68
8.2 TESHING PrOCEAUNE.......oooeeeeeeeees et eeetis s sessss s esss s ssssss s s b kbbbt 70
821 UNIE TOSHING ceeveeeureereeeeessseeseeeesssessseessssss s sssssss s sesssss s ssss s bs sk bRk b 70
8.2.2 INTEGratiON TESHING c.cceeeeueeeeeeeeeeeieeeeiieeeiiseseesssessssssssesssssesessss s ssssssssssssssssesssssssssssssssssssssssssssssssses 70

9. Syntax Specification 70
0.1 NAMUNG ClASSES.cuureiiermnnreeessssessesssssssssssssssssesssesssssssssssssssssssssssesssssssssssssssssssssns 71
9.2 NAMING FUNCHIONS «.coovvreeeeeeeeceiieeeeisesesisesessssssssssssssssesseseess 71
0.3 NAMUNG VATADIES........oooeeeereeees et cessss s sessssss s sssssss s sssssss bbb sssss s ssssssee 71
94 COMMENT CONVENTIONS......oomricrrreeesecerssissesessssssnssssssssssnssssssssnsesssssssssssssssssssssessssssssssnessssssssnsseessssens 72
0.5 MYSQL CONVENTIONS....oouerreeeiummeeseeesiusseseeessssssessessssssssesssessssssesssesssssssssssssssssssessssssssssssssssssssssessssssssssssssssssssnas 72
10.Project Schedule 73
101 GANTE CRAMcirereiriiiieccceeessseissssessseeessssssssssssee s ssssssssssss s 73
11. Appendix 74
111 GANEE CRATT.iiieieeeieeeevsesesssssessassssssssssssssssessessssssssesesssssssssses e85 74
12.References 77

WinstonSoft | 4
Initial Design Report for ACCIPP

1. Introduction

In general terms, a packet sniffer (also known as a network analyzer or protocol analyzer) is
a software or hardware that can monitor, state statistical information about and log traffic
passing over a digital network or part of a network. As data is being transferred over the
network in real time, the task of the sniffer is to capture ideally every packet and analyze its
content in accordance with the appropriate RFC document or other specification. Most
network analyzers allow port-specific tracking, i.e. they label protocol connections only by
looking at port numbers. However, the need to overcome the limitations of traditional
port-based protocol analysis arises since in today’s networks an increasing ratio of the
traffic (totaling roughly 5.6 million connections [1]) resist correct classification using
TCP/UDP port numbers. The reason for that increase is the rising desire to evade security

monitoring and policy enforcement.
1.1 Problem Definition

Relying on well-known port numbers such as 80 for HTTP may not always be possible since
applications may use arbitrary ports. The main reasons for that choice of usage are benign
reasons and malicious intent. Benign reasons result from lack of user privileges,
obfuscation, multiple versions; adversarial applications such as Skype bypassing firewalls.
On the other hand, malicious intent results from the desire to evade from security
monitoring like IRC bot-nets using ports other than the ones they are assigned to
(666x/TCP). The necessity to distinguish these arises from the prevalence of the problem
and has the consequence of the need for a need approach for dynamic analysis using auto
sensing mechanism that performs port independent network analysis.

The auto-identification/classification of common IP protocols software to be developed for
Siemens is a new system. It will be used as an application for capturing packets over the

network and identifying most of the widely used IP protocols such as HTTP, NNTP, POP3,

WinstonSoft | 5
Initial Design Report for ACCIPP

IMAP, SMTP, WTP, SIP, FTP etc. The project is designed to run on both Windows and
common flavors of UNIX thus it is platform independent. ACCIPP should be equipped with
a user-friendly with an intuitive, easy-to-operate GUI that will provide quick and

comfortable operation.

1.2 Project Goals

The project is aimed to satisfy the following goals:

» Identify the protocols such as SMTP, NNTP, POP3, IMAP etc.

» Capture some popular file formats like avi, wmv, jpg etc. from the detected
protocols.

» Log instant messenger conversations.

» Give outputin an appropriate format.
Monitor and supervise network traffic for performance and security and
bandwidth usage.

» Gather and report network statistics and help troubleshoot network problems.

» Generate and view reports in tables and charts on network usage.

Filter suspect content such as spam, and denial of service attacks from network

traffic.

» Spy on other network users and collect sensitive information.

» Debug client-server communications.

» Show relevant information like IP, protocol, host or server name etc.

» Determine when the identified protocol is no longer available in the flow
through the identified port.

» High performance and low-latency (Real-Time) detection capability.

» Recognize incomplete protocol sessions.

WinstonSoft | 6
Initial Design Report for ACCIPP

1.3 What Has Been Done So Far

» Obtained knowledge about the project:
By the help of the meetings with Siemens and feedback from the project assistant,

the project scope and goals were clarified.

» RFC documentations research has been done:
Widely used mail protocols which are SMTP, POP3, IMAP, NNTP were fully
examined. All specific arguments, keys, statuses, restrictions and commands were
learned. Besides, a general idea was gained about how the server hosts start the
protocol service and how the server and the client respond to the commands until
the connection lost. Moreover, all the project members connected to mail services
through the related protocols and tested how the protocol works.
HTTP protocol was started to be researched but since it is a comprehensive
protocol, a small part of it has been analyzed.
These studied information about the protocol specifications are useful for the Auto-
sensing mechanism of the project. Since Auto-Sensing Mechanism constitutes the
main part of the project, this research is extremely important for the future of

ACCIPP.

> Network sniffer research has been done:
To observe how the Pcap files are handled by other sniffer programs, the project
was attached importance to network sniffer research. Through the guidance of
assistant and the representative of Classim, Wireshark Network Protocol Analyzer
was set up and capturing TCP protocols was managed to investigate the content of
the packets. Also SmartSniff was examined so that network traffic was observed the

with another program.

WinstonSoft | 7
Initial Design Report for ACCIPP

» Programs with similar features were analyzed:
TCPxtract and EtherPeg were analyzed. TCPxtract extracts files from network traffic
based on file signatures. This tool may help for extracting jpeg, .doc, .avi or etc from
the packets. EtherPeg is a program that shows all the JPEG pictures going through

the network traffic.

» Some project related papers and materials were read:
Until now, a huge amount of research has been conducted on the following topics:
I Clustering Classification,
II. No Port Network Protocols Detection,
. Feature Extraction for Integrated Pattern Recognition Systems,
IV. Network-Based Application Recognition and Distributed Network-Based
Application --Recognition
V. PortIndependent Protocol Identification.
During that research the following materials have been examined:
I http://documents.wolfram.com/applications/neuralnetworks/NeuralNetworkT
heory/2.1.3.html
I. http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/Clus_and_Class_po
pup.htm.
. "Clustering and Classification Methods for Gene Expression Data Analysis”,
Garrett-Mayer E., Parmigiani G., 2004.
IV. No Port Network Protocols Detection Presentation by Sevgi Yasar
V. Feature Extraction for Integrated Pattern Recognition Systems by X. Wang
and K. K. Paliwal
VL. Network-Based Application Recognition and Distributed Network-Based

Application Recognition by CISCO

WinstonSoft | 8
Initial Design Report for ACCIPP

VI. Dreger H., Feldmann A, et.al, "Dynamic Application-Layer Protocol Analysis
for Network Intrusion Detection”
VII. http://cs.northwestern.edu/~ychen/classes/cs450-s07/lectures/pia.ppt
IX. http://www.icir.org/robin/papers/usenix06.pdf

Prototype related operations were researched and studied:

The prototype must include capturing and reading packets, then filtering them
according to some parameters and reordering them. Other than this, a simple Auto-
sensing Mechanism should be implemented. For these requests, necessary research

was conducted.

Necessary libraries were researched:
libpcap was analyzed. This library is useful for capturing packets from the network

traffic and reading them.

MSN protocol was examined using reverse engineering:
MSN protocol is not a proprietary protocol, so that the research couldn’t be done
on the RFC documents. However, from different resources MSN Messenger Protocol

was examined and still is. Most of the status and error commands were studied.

Worked on prototype design and implementation:

First of all, a prototype GUI was designed. It contains nearly all important operations
that the user can have the control of the program. Also, an initial prototype of the
project was designed and started to be developed. For capturing network packets, a
Pcap based tool namely WinPcap was used. This tool is compatible with the unix

versions of libpcap, so that the project can have platform independency. With the

WinstonSoft | 9
Initial Design Report for ACCIPP

help of WinPcap tool, capturing module was implemented, and a primitive protocol

recognizer for SMTP was designed.

1.4 Future Work

The design phase of the project has almost reached its maturity. Project requirements and
scope were defined clearly, so most of the data structures, classes and data interactions
within the program have already been determined. In the future, these structure schemas
are going to be studied and improved constantly. The existing class hierarchy will be
preserved with possible improvements, as well as new classes and data structures might be

designed in the future as more and more concepts become understood.

The exact structure and functionality of the Auto-Sensing module needs conducting some
further research. The project assistant recommended some academic papers and online
materials about pattern recognition algorithms (especially the Support Vector Machines
and Hidden Markov Model). These documents are going to be deeply studied so that each
member will have an understanding of related subjects since the modules that require

pattern recognition are going to be designed and implemented by all team members.

Currently all mail-related protocols that the program is to support have been studied.
Recognizers of these protocols are almost finished and incorporated into the prototype. In
the future, more protocols namely HTTP, XMPP(Jabber), YMSG, MSN and SIP are going to

be studied, and recognizers about these protocols are going to be implemented.

A preliminary user interface for the program was designed. First of all, this user interface
module will be added to the prototype. After feedback about functionality and appearance

of this user interface is received from project supervisors and testers; the user interface will

WinstonSoft | 10
Initial Design Report for ACCIPP

go under some modifications so that the user interface module used in the prototype will

gradually evolve into the user interface module that will be used in the final product.

2. Design Constraints
Project constraints can be grouped like the following:

2.1 Time Constraints

Since senior project design is a two semester course, the project will have to be finished by
the end of May 2008. All design, implementation and testing must strictly meet this
deadline and complete in this 7 month period. Besides, there is going to be a prototype
demo that will be released by January 2008. There is roughly one and an half months to

finish the ACCIPP design and prepare the demo.

2.2 Language Constraints

For performance reasons, the language for the project is decided to be C++. Platform
independency and code portability is an implementation constraint, thus all C++ code for
this project will conform to ISO C++ standard. Development environment will be Visual
C++ for Windows port, and a suitable GCC based environment for Unix/Linux ports. Qt
library is planned to be used for the development of OS independent user interface

system.

2.3 Data Constraints

A fair amount of primary storage space is required to hold various data structures used for
analyzing data flow over the network. If the user chooses to save some data for later
analysis, or the data cannot be processed in real time, the need for secondary storage

space arises.

WinstonSoft | 11
Initial Design Report for ACCIPP

2.4 Performance Constraints

ACCIPP will be exposed to high network traffic while dealing with real-time incoming
packets. Under these circumstances, the number of packets arriving per unit time will be
quite large and average processing time given to a packet should be kept minimal. Since
ACCIPP intends to recognize a large number of protocols, the user should select only a
subset of these in order to avoid starvation/packet drops. In a typical case where the
number of packets per second is around 100 and presuming that the user might be
running other applications, a maximum of 7-8 ms can be spent on each packet. Under such
heavy load, ACCIPP should rely on predefined rule-based recognition engine rather than

the relatively slow learning/training method.

2.5 User Interface Constraints

ACCIPP is not a user interface oriented application. Main work of the project is system
programming. However, the user interface still is important for being understood and
being used easily by the user. So the interface must be kept simple and easy to use. Names
of menus and other gui elements will be easy to understand and straightforward.

Accessibility features must be taken into consideration for handicapped users.

3. Project Requirements

Understanding the needs of the project, the project requirements should be specified.

During the determination of requirements analysis, the steps taken are as follows :
3.1 Functional Requirements

Below, the functional requirements for ACCIPP are explained briefly.

WinstonSoft | 12
Initial Design Report for ACCIPP

3.1.1 Capturing Packets
The input will be captured from a network device or taken as already existing Pcap files.
3.1.2 Preprocessing

The captured packets may need reordering and/or defragmentation. The preprocessing

mechanism handles these operations.
3.1.3 Filtering

The user of the system may not want to receive irrelevant data that s/he is not working on.
Thus the filtering mechanism is employed to filter the packets which are of concern. Filters

can be defined by several identities of connections such as IP addresses or protocol data.
3.1.4 Auto-Sensing

The system is expected to identify the packets without using port information. Auto-
Sensing mechanism takes action in this identification process using some Artificial

Intelligence algorithms.
3.1.5 Processing Identified Connections

The proper output for the analyzed protocol of the connection are sent to output

mechanism.
3.1.6 Output Mechanism

The data that is received from the system, will be displayed as reports or user interface
summaries. If asked, more detailed information about the connection can be given as

output.

WinstonSoft | 13
Initial Design Report for ACCIPP

3.2 Non-Functional Requirements

In this section various non-functional requirements such as usability, portability, reliability

and documentation will be mentioned.
3.2.1 Usability

The program has to be easily adaptable for novice users, and powerful enough for
experienced users. User interface elements such as menu items and command buttons
have to be as clear and self-explanatory as possible. They should provide tooltips where
applicable. The resulting graphs should allow the user to obtain rapidly an overall grasp of

the material presented.
3.2.2 Portability

The software package is designed to be a cross platform product, therefore it should not
rely on machine and/or OS dependant functionality such as byte ordering and non-
standardized system calls. Consequently the program will be able to compile on different

computer systems without being altered.
3.2.3 Reliability

The software package is planned to be used in large and corporate networks, thus it is a

critical requirement that the software functions consistently under such circumstances.

3.2.4 Documentation

User documentation includes online help and user manual for the product. A hardcopy of

the user’s manual will also be provided with the software package.

WinstonSoft | 14
Initial Design Report for ACCIPP

3.3 Software Requirements

In this section, the external software packages ACCIPP depends on will be presented.
3.3.1 Operating System

ACCIPP shall function on Windows versions starting from Windows 2000, and major Linux

distributions like Debian, RedHat etc.
3.3.2 External Packages

ACCIPP requires the presence of an external libpcap compatible packet sniffer and an
adequate network adapter in cases where real-time processing is deemed necessary.

In addition to that, Qt library must be installed in order to have user interface functionality.
3.4 Hardware Requirements

In this section, hardware requirements for the software project are presented.
3.4.1 Minimum Hardware

In order to have basic functionality, a system with 256 MB Memory, Pentium III class CPU,

10 MB Hard disk space is required.
3.4.2 Recommended Hardware

To be able to make full use of the auto-sensing facility and store statistical information in
the database backend, a system with at least 1 GB Memory, 2.5 Ghz Pentium IV class or
higher CPU, 4 GB Hard disk space is required.

WinstonSoft | 15
Initial Design Report for ACCIPP

4. User Interface Design

The user interface lets the user see the connections on the system. When the program is
first opened, the connection list is empty. After that, user selects a Pcap file to process
offline a network device to process real-time. Then the user selects Start Capture from the
File menu and the program begins its work. As soon as new packets arrive, the program
populates the connection list. Until the protocol is fully recognized, the appropriate row in
the connection list is updated with the resolved protocol match values. During the process,
when the match percentage becomes greater than a predefined threshold value then the
protocol name and match percentage fields are filled with appropriate values. The program
continues processing until the connection is closed, thus this value may change several
times during the process. In case the program is unable to match the connection data with
any of the protocol patterns available, it shows Unknown as the protocol name. For each
connection the list pane shows the matched protocol name, match percentage value, IP
address of the local computer, local port number, IP address of the destination computer,
and remote port number, start and end times of the connection. For connections that are
not closed yet, the end time field is empty. Below is a sample screenshot of user interface

mentioned above:

WinstonSoft | 16
Initial Design Report for ACCIPP

. WinstonSoft ACCIPP (Prototype) - | Ellﬂ

File Edit View Tools Window Help

Fiter |
Protocol | Match | Local Address | Local Pot | Remote Address | Remote Port | Start Time | End Time |
FOP3 a0% 144.122.113.53 1234 212221244 110 18:01 18:06
HTTP 25% 14412211353 4567 84 44 114 44 a0 17:59 18:00
MSN 63% 144.122.114.12 12324 216.19.20756 1863 15:40 1745
Unknown 14412211413 2321 563121244 4662 16.43 -

Save... Dietails

Figure : Main Window of ACCIPP Prototype Ul

Since a connection may match more than one protocol pattern, only the most matching
protocol is shown on the connection list. However, the user can click on a row to see its
match values with other protocols. If the protocol recognition is not complete yet (i.e. End
Time field is blank), the Short Summary Pane below the connection list shows only the
match percentage values with protocol patterns. Also, Save and Details buttons below the
short summary pane are disabled. However, when the protocol recognition is finished,
these buttons become enabled and the information of the identified protocol (“The
protocol cannot be identified!” or “Identified Connection: Protocol Name”) is shown
additional to the match percentage values. A related user interface screenshot is shown

below:

WinstonS oft
Initial Design Report for ACCIPP

{4, WinstonSoft ACCIPP (Prototype) - |EI|5|
File Edit View Tools Window Help

Fiter |
F‘rotocol Match Local .Po.ddress Local Port Remote Address Remote Port Start Time End Tme
H'I_I'F' EEFJ:. 14-4122113 53 ﬂfE-E1 844411444 'I 55 'IEDD
MSN 61% 14412211412 32324 216.15.207 56 'IEES 15:40 1745
Unknown 14412211413 231 h6.31.212.44 4662 16.43 -

|dentified Protocal : POP3
Connection catched as:

0% POP3
08% SMTP
03% NNTP

Save... Dietails

Figure : ACCIPP Prototype Ul(Short Summary Pane)

As you can see, the first connection is identified as POP3 and the buttons are enabled.
Additionally the final match percentages are shown in the Short Summary Pane. The save
button automatically stores the detailed information into the database. If the user wants to
see this detailed information about the selected connection, he/she can click the Details
button. After that, the Long Summary Window pops up at right hand side of the main
window.

Clicking another connection from the connection pane does not affect the Long Summary

Window. That means, several Long Summary Windows can be displayed simultaneously.

An example screenshot of the user interface after clicking the details button is shown

below:

{4 WinstonSoft ACCIPP (Prototype)

File Edit Wiew Tools Window

Help

Fiter |

Protocol | Match | Local Address

Local Port | Remote Ad

FOP3 B0 14412211353
HTTF BS% 14412211353
MSHN GI% 14412211412
Unknown 14412211413

1234
4567
32324
2321

222212
24.44114.¢
216.19.207
56.31.212.¢

|dentified Protocol : POP3
Connection catched as:

80% POP3
08% SMTP
03% NNTP

B summary Window =19l

WinstonSoft | 18
Initial Design Report for ACCIPP

Local Adress:

WinstonSoft

Identified Protocol: POP3

Remote Adress: 21222 12.44
Start Time: 18:01

End Time: 18:06

From: ceng.winstonsoft@gmail.com
To: e139509@metu_edu tr
CC:

BCC:

Subject: About Project

Date: Fri, 30 Mov 2007 07:44:01
Attachments: none

Mail Body:

We have a meeting for the design report. Please.
response as soon as possible

144122 113.53

Save | Close

Save... | Details |

Figure : ACCIPP Prototype Ul(Long Summary Popup Window)

The save button on the Summary Window is used for saving the long summary to the

database. By using the close button, the Summary Window can be dismissed.

Since the connection pane fills with a huge amount of information over time, the user may

want to filter information that is displayed in the connection pane. For example, the user

may want to see connections from a specific IP range, or connections that use a specific

protocol, or connections that are opened over a specified time interval. The filter field in

the main window allows the user to enter a combination of these filters. For example, if the

user types “"pop3” into the filter, only the connections that have pop3 as the highest match

percentage are displayed on the connection pane. The help menu includes documentation

for the exact syntax of expressions that can be entered into the filter field, along with other

help topics.

WinstonSoft | 19
Initial Design Report for ACCIPP

Some commands do not have a corresponding button shown on the main window.
Instead, these commands are available through the menu bar of the program. The menu
commands that are not enabled at the moment will be shown in grayed state. A short
informative text is displayed on the status bar when the mouse is hovered over a menu
item.
The exact menu commands are subject to change. However, some commands will certainly
be available in the final product. These commands are:

> File: Open Pcap File, Open Network Device, Start Capture, Stop Capture, Save as
Pcap, Close, Quit.
Edit: Copy to Clipboard, Clear All, Preferences.
View: Toolbar, Status Bar, Summary Pane.
Tools: Database Query, Statistics.

Window: Tile, Cascade, Arrange Icons.

YV V V VYV V

Help: Help Contents, About Program.

Detailed information about what these commands do can be found in the use-case

diagrams and the use case scenarios.

5. Database Design

ACCIPP comes with a database that the end user may use to get detailed statistical
information about both the detected and unknown connections. Also the end user will be
able to preview the details of the previously added connections in summary format. To do
this, a database is designed where protocols are mapped to related entities as shown
below:

Web_Page: HTTP

Instant_Messaging: MSN, YMSG, JABBER, SIP

News: NNTP

WinstonS oft
Initial Design Report for ACCIPP

Email: IMAP, POP3, SMTP
Unknown: all protocols that have not been detected yet.
In addition to this, also included in the database are the Connection entity where general

properties of all connections are stored and the File entity where the file-related properties

are stored.

5.1 Entity-Relationship Diagrams

ER Diagrams for ACCIPP Database

WinstonSoft | 21

Initial Design Report for ACCIPP

-

.

-
/-

.

tg/

WinstonSoft | 23
Initial Design Report for ACCIPP

Relations

WinstonSoft | 24
Initial Design Report for ACCIPP

Entity Sets

WinstonSoft | 25
Initial Design Report for ACCIPP

Connection

Web_Page

Instant Messaging

connection_id: AutoNumber
connection_date: Date/Time
start_time: Date/Time
end_time: Date/Time
destination_ip: Text
source_ip: Text
protocol_name: Text
comment: Text

web_page_id: AutoNumber

web_page file id: Number
web_page text id: Number

message_id: AutoNumber
attachment_id: Number

message_log_id: Number
protocel_name: Text

News

EMail

Unknown

news id: AutoNumber
attached file id: Number
news_text_id: Number
group_name: Text
subject: Text

email id: AutoNumber
attached file id: Number
mail_text_id: Number
mail_date: Date/Time
mail_to: Text

mail_from: Text

cc: Text

bee: Text

subject: Text
protocol_name: Text

unknown id: AutoNumber
unknown_pcap_path: Text

File

file_id: Auto Number

file_path: Text
comment: Text

WinstonSoft | 26
Initial Design Report for ACCIPP

5.2 Data Descriptions

The attributes and the related data types for each table constituting the database are as
follows:

The attributes containing a key icon ™ indicates the corresponding attribute or attribute
group being the primary key of the related table. In the design, the primary key of the
Connection table is set to AutoNumber data type, because as new connections are added
to the database, they are assigned a number and this number is equal to a primary key
value of one of the five tables each corresponding to a group of similar protocols. In
addition to this, the primary key of the File table is also of AutoNumber data type since
each row stands for a distinct file. These files are pointed to by the Web_Page,
Instant_Messaging, News, EMail and Unknown tables by means of foreign keys to store the
files included in these five connection types. The following are the figures formed using MS

Access 2007® only to visually illustrate the prototype database. However, the database

system of the project is going to be implemented using MySQL (see Section 4.1.4).

|] Connection \ »
Fielﬂ Mame Data Type Description i
AutoMumber E
connection_date Date/Time
start_time Date/Time
end_time Date/Time
destination_ip Text
source_ip Text
protocol_name Text
comment Text
| =3 Weh_Pagé"‘-.‘\ x
Field Name Data Type Description <
web page id Mumber =l
¥ \web page file_id Mumber

web page text id Number

Field Name

il cssage ic
¥ | attachment_id
message log_id

protocol_name

(4 Field Mame

dlrews ic

7| attached_file_id
news_text_id
Eroup_name
subject

7 (-

i attached_file_id

|| mail_text_id

| mail_date

| mail_to

| mail_from

. cC

| |bec

| |subject
protocol_name

MNumber
Mumber
Mumber
Text

Data Type

MNumber
Mumber
MNumber
Text
Text

Mumber
Mumber
MNumber
Date/Time
Text

Text

Text

Text

Text

Text

Data Type Description -

Description

WinstonSoft | 27
Initial Design Report for ACCIPP

F s

4 Field Mame Data Type Description -

Field Mame

Description

N
-

s

. noun i Number
|unknnwnjcapjath Text

(4 Field Mame Data Type Description -

Lilil= ic AutoMumber

_ﬁ|EJ}IEth Text
comment Text

WinstonSoft | 28
Initial Design Report for ACCIPP

5.3 Entity Descriptions

Connection:

Connection entity is formed to store the necessary information to define a connection in a
general manner. No matter to which type of protocol it belongs, all types of connections
are stored in this table. The description for each attribute of the Connection entity can be
found below.

connection_id: This attribute is used to define each connection uniquely. Although

connection id of the connection uniquely identifies each connection, system assigns an
integer valued identifier to each connection to manage them easily.

connection_date: It is the date that the connection is grasped from the network traffic.
The value of the date attribute will be gathered from the system date and stored in
Date/Time format in the database.

start_time: It is the time that the program starts to work on the packets of the related
connection. The value of this attribute will be taken from the Pcap file header if the
program is working offline and from the system clock if the program is working online. The
value is stored in Date/Time format in the database.

end_time: It is the time that the program gets the last packet of the related connection
either offline or online. If the program is working online, the value of this attribute will be
gathered from the Pcap file header and from the system clock if the program is working
online. The value is stored in Date/Time format in the database.

destination_ip: This attribute contains the IP number of the destination network device
that the packets of the corresponding connection arrived. It is stored in the database in
Text format.

source_ip: This attribute contains the IP number of the source network device where the
packets of the corresponding connection are sent from. It is stored in the database in Text

format.

WinstonSoft | 29
Initial Design Report for ACCIPP

protocol_name: This attribute stores the name of the protocol that is detected by the
program. It is used to define to which protocol class(Web_Page, Instant_Messaging, News,
Email) table the related connection will be added to. It is stored in the database in Text
format.

comment: This attribute is used for miscellaneous information about the connection. It is

in Text format.

Web_Page:
If the detected connection is of type HTTP, then the connection will be added to this table

with only three attributes.

web _page id: This attribute defines each Web_Page connection uniquely, therefore it is
the primary key of this entity. It is stored in the database in Number format. This is also a
foreign key to the Connections entity through the connection_id attribute.

web page file id: This attribute defines the files attached to the corresponding

Web_Page. This is also a primary key as there may be more than one file attached to the
same Web_Page entry. The contents of this file can be accessed through the file_id of the
Files entity. This attribute is stored in Number format.

web_page_text_id: This attribute defines the file that contains the textual content of the
related Web_Page. The file itself can be accessed through the related file_id of the Files

entity. This attribute is stored in Number format.

Instant Messaqing:

If the detected connection is of the types MSN, YMSG, JABBER, SIP, then the connection
will be added to this table with four attributes.

message_id: This attribute defines each Instant_Messaging entry uniquely, therefore it is a

primary key of this entity. It is stored in the database in Number format. This is also a

foreign key to the Connections entity through the connection_id attribute.

WinstonSoft | 30
Initial Design Report for ACCIPP

attachment id: This attribute defines the files sent using the related instant messaging
protocol. This is also a primary key as there may be more than one file sent with the
current connection. The contents of this file can be accessed through the file_id of the Files
entity. This attribute is stored in Number format.

message_log_id: This attribute defines the file that contains the textual log of the related
Instant_Messaging entry. The file itself can be accessed through the related file_id of the
Files entity. This attribute is stored in Number format.

protocol_name: Since there are multiple protocols related to this entity (MSN, YMSG,
JABBER, SIP), this attribute defines the protocol name that the current connection is using.

This attribute is stored in Text format.

News:

If the detected connection is of type NNTP, then the connection will be added to this table
with five attributes.

news id: This attribute defines each News entry uniquely, therefore it is a primary key of
this entity. It is stored in the database in Number format. This is also a foreign key to the
Connections entity through the connection_id attribute.

attached file id: This attribute defines the files attached to the corresponding News post.

This is also a primary key as there may be more than one file attached to the same News
entry. The contents of this file can be accessed through the file_id of the Files entity. This
attribute is stored in Number format.

news_text id: This attribute defines the file that contains the textual content of the related
News post. The file itself can be accessed through the related file_id of the Files entity. This
attribute is stored in Number format.

group_name: This attribute is used to define the news group name that the news

message is sent to. The value of this attribute is stored in the database in Text format.

WinstonSoft | 31
Initial Design Report for ACCIPP

subject: This attribute is used to define the subject of the post which briefly describes what

the post is about. It is stored in the database in Text format.

EMail:

If the detected connection is of type IMAP, POP3, SMTP, then the connection will be added
to this table with ten attributes.

email id: This attribute defines each EMail entry uniquely, therefore it is a primary key of
this entity. It is stored in the database in Number format. This is also a foreign key to the
Connections entity through the connection_id attribute.

attached file_id: This attribute defines the files attached to the corresponding EMail. This

is also a primary key as there may be more than one file attached to the same Email entry.
The contents of this file can be accessed through the file_id of the Files entity. This attribute
is stored in Number format.

mail_text_id: This attribute defines the file that contains the textual content of the related
EMail. The file itself can be accessed through the related file_id of the Files entity. This
attribute is stored in Number format.

mail_date: This attribute defines the date when the related Email is sent. It is saved in
Date/Time format in the database.

mail_to: This attribute defines the e-mail address where the corresponding EMail sent to. It
is saved in the database in Text format.

mail_from: This attribute defines the e-mail address where the corresponding EMail
received from. It is saved in the database in Text format.

cc: This attribute defines the Carbon Copy receivers of the related EMail entry. It is saved in
the database in Text format.

bcc: This attribute defines the Blind Carbon Copy receivers of the related EMail entry. It is

saved in the database in Text format.

WinstonSoft | 32
Initial Design Report for ACCIPP

subject: This attribute is used to define the subject of the EMail message which briefly
describes what the mail is about. It is stored in the database in Text format.

protocol_name: Since there are multiple protocols related to this entity (IMAP, POP3,
SMTP), this attribute defines the protocol name that the current connection is using. This

attribute is stored in Text format.

Unknown:

If the program cannot identify the protocol of a connection, it saves a Pcap file related to
that connection in the disk. Any connection that cannot be identified, is added to this table
in the format below.

unknown _id: This attribute defines each Unknown connection entry uniquely, therefore it

is a primary key of this entity. It is stored in the database in Number format. This is also a
foreign key to the Connections entity through the connection_id attribute.

unknown_Pcap_path: The program saves a Pcap file of the unidentified connection in the
disk for later offline/online operation. The path of this Pcap file is stored in the database

under this attribute. It is stored in the database in Text format.

File:

The files that are saved using the program is added to this table using the following
format. Instead of embedding the files to the database directly, it is preferred to put the
file_paths in the database so that the database does not itself allocate a large amount of
disk space. Additionally, in cases such as a lately classification of an unknown connection
does not enforce the database to move the related files from one place to another,
speeding up the process.

file_id: This attribute uniquely identifies a file that is saved using the program, therefore it

is a primary key for this entity. It is stored in the database in an AutoNumber format.

WinstonSoft | 33
Initial Design Report for ACCIPP

file_path: This attribute shows the path of the related file, which can be used to access the
file on the disk. It is stored in the database in Text format.
comment: This attribute includes additional information about the corresponding file such

as the codec information, names of the programs that the file can be opened with etc.

5.4 Creating ACCIPP Database

CREATE DATABASE “accipp’™ /*!40100 DEFAULT CHARACTER SET latinl */;

/*CONNECTION*/
DROP TABLE IF EXISTS “accipp . connection’;
CREATE TABLE “accipp . connection’ (
‘connection id® int(10) unsigned NOT NULL auto increment,
‘connection date’ datetime NOT NULL,
"start time’ datetime NOT NULL,
‘end time datetime NOT NULL,
"source ip varchar(20) NOT NULL,
"destination ip" varchar(20) NOT NULL,
‘'protocol name’ varchar (10) NOT NULL,
‘comment® varchar(50) NOT NULL,
PRIMARY KEY USING BTREE (‘connection_id‘)
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*WEB_PAGE*/
DROP TABLE IF EXISTS ‘accipp’. 'web page’;
CREATE TABLE "accipp . web page (
‘web page id’ int(10) unsigned NOT NULL auto increment,
‘web page file id" int(10) unsigned NOT NULL,
‘'web page text id’ int(1l0) unsigned NOT NULL,
PRIMARY KEY USING BTREE (web page id", web page file id’),

KEY “web page file id" ('web page file id"),

KEY "web page text id (web page text id'),

CONSTRAINT “"web page text id" FOREIGN KEY (web page text id’)
REFERENCES "file® (" file id') ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT “"web page file id FOREIGN KEY (web page file id’)
REFERENCES “file~ (\file_id\) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT "web page id® FOREIGN KEY (web page id') REFERENCES
‘connection’ (connection id') ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/* INSTANT MESSAGING* /

DROP TABLE IF EXISTS “accipp . instant messaging ;

CREATE TABLE " accipp . instant messaging (
‘message_id 1int (10) unsigned NOT NULL auto increment,

WinstonSoft | 34
Initial Design Report for ACCIPP

‘attachment id" int(10) unsigned NOT NULL,
‘message log id" 1int (10) unsigned NOT NULL,

‘protocol name’ varchar (10) NOT NULL,

PRIMARY KEY USING BTREE (message id , attachment id"),

KEY "attachment id" (attachment id’),

KEY "message log id" (message log id"),

CONSTRAINT ‘message log id’ FOREIGN KEY (‘message log id")
REFERENCES "file® (\file_id\) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT "attachment id® FOREIGN KEY ("attachment id")
REFERENCES " file® (\file_id\) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT "message id FOREIGN KEY (message id') REFERENCES
‘connection’ (connection id’) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/ *NEWS* /
DROP TABLE IF EXISTS “accipp . news ;
CREATE TABLE “accipp . news (
‘news_id int (10) unsigned NOT NULL auto increment,
‘attached id" int(10) unsigned NOT NULL,
‘news _text id" int(10) unsigned NOT NULL,
“subject® varchar(45) NOT NULL,
‘group name varchar (45) NOT NULL,
PRIMARY KEY USING BTREE (‘news_id‘,‘attached_id‘),

KEY "attached id" (attached id"),

KEY "news text id" (news text id"),

CONSTRAINT \news_text_id : FOREIGN KEY (" news_text_id 0
REFERENCES "file® (\file_id\) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT \attached_id\ FOREIGN KEY (\attached_id\) REFERENCES
“file” (\file_id\) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT ‘news_id‘ FOREIGN KEY (‘news_id‘) REFERENCES
‘connection’ (connection id") ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*EMAIL*/
DROP TABLE IF EXISTS "accipp . email ;
CREATE TABLE “accipp . email” (
"email id’ int(10) unsigned NOT NULL auto_ increment,
‘attached file id" int(10) unsigned NOT NULL,
‘mail text id" int (10) unsigned NOT NULL,
‘'mail date’ datetime NOT NULL,
‘mail to varchar(45) NOT NULL,
‘mail from varchar(45) NOT NULL,
cc’ varchar (45) NOT NULL,
"bce varchar (45) NOT NULL,
“subject’ varchar(45) NOT NULL,
‘protocol name’ varchar (45) NOT NULL,
PRIMARY KEY USING BTREE (\email_id\, ‘attached_file_id‘) ’

WinstonSoft | 35
Initial Design Report for ACCIPP

KEY "mail text id (mail text id"),

KEY "attached file id" (attached file id"),

CONSTRAINT “attached file id" FOREIGN KEY (attached file id")
REFERENCES "file (file id) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT ‘email id’ FOREIGN KEY ("email id") REFERENCES
‘connection’ (‘connection id') ON DELETE CASCADE ON UPDATE
CASCADE,

CONSTRAINT ‘mail text id® FOREIGN KEY (‘mail text id")
REFERENCES "file® (" file id') ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/ *UNKNOWN * /

DROP TABLE IF EXISTS “accipp . unknown;

CREATE TABLE “accipp . unknown' (
‘unknown id’ int (10) unsigned NOT NULL auto increment,
‘unknown Pcap path® varchar(100) NOT NULL,

PRIMARY KEY ("unknown id "),
CONSTRAINT “unknown id"~ FOREIGN KEY (unknown id’) REFERENCES
‘connection’ (connection id’) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

/*FILE*/
DROP TABLE IF EXISTS "accipp . file’;
CREATE TABLE ‘“accipp . file ™ (
"file id" int (10) unsigned NOT NULL auto increment,
"file path’ wvarchar(50) NOT NULL,
‘comment® varchar (45) NOT NULL,
PRIMARY KEY USING BTREE (file id")
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

WinstonSoft | 36
Initial Design Report for ACCIPP

The resultant database schema and the related relations are as follows:

Web_Page
¥ web_page._id
¥ web_page_file_id
web_page_text_id

%
Instant_Messaging
¥ message_id

¥ attachment_id : H.’[e
message_log_id A 9 fileid

protocol_name

file_path
comment

;
News
¥ news_id
¥ attached file_id
(news_text_id
Connection group_name
¥ connection_id subject
connection_date
start_gme (—
end_time ool =
destination_i V email_id
source i i ¥ attached _file_id
s mail_text_id
protocol_name

mail_date
comment S
mail_to

mail_from

o«

bec

subject
protocol_name

Unknown
¥ unknown_id
unknown_pcap_path

WinstonSoft | 37
Initial Design Report for ACCIPP

6. Architectural Design

6.1 Structure Chart

The following is the structure chart that represents the module hierarchy of ACCIPP.

WinstonSoft | 38
Initial Design Report for ACCIPP

6.2 System Modules

The ACCIPP program consists of three main modules that are Decoder, Auto-Sensing and
Output modules. Through the user interface, the user selects an input source (a Pcap file or
a network device) to process, and then gives the Start Capture command. After that,
network packets begin to enter our program through the Decoder module, and data flows
through the Decoder, Auto-Sensing and Output modules respectively. Together, these
modules let the user view information about network connections on a system. These

modules are going to be elaborated in the following sections.

6.2.1 Decoder Module

Decoder module is the base module of ACCIPP. After the user selects the input device and
make the modules work by selecting ‘Start Capture’, decoder module takes action and
reads the packets from the input source by the Capturing Module. Afterwards, the
captured packets goes into the Preprocessing Module where they are prepared for the
Auto-sensing Module. There, they are processed by some specific operations that will be
mentioned later on.

This module does not contain any learning mechanism as Auto-sensing Module does. The
data-flow is fairly straightforward. Even if this module seems to be very simple, it is a must
for the further modules.

Below the sub-modules of the Decoder Module is described:

6.2.1.1 Capturing Module
This module is responsible of capturing packets from the network. Packets can be obtained

from a Pcap File by the Pcap File Reader or from a network device by the Network Device
Reader. If the user chooses capturing packets from a Pcap file, offline process can be
achieved (a Pcap File can be processed in the future thanks to Pcap File Reader). Or if the
user chooses capturing packets from a network device, real-time processed can be

achieved. Namely, whenever a packet comes through a connection, Network Device

WinstonSoft | 39
Initial Design Report for ACCIPP

Reader captures the real-time incoming packets and then send them to the Preprocessing

Module.

6.2.1.2 Preprocessing Module
This module takes the captured packets and then applies a few operations on these

packets. These operations are handled by some sub-modules which are Filtering Module,
Reordering Module and Buffering Module.

Captured packets are first go into the Filtering Module. Here, they are handled according
to some filtering parameters. The packets coming from protocols other than TCP or UDP,
are eliminated because ACCIPP does not try to recognize protocols which does not come
from TCP or UDP. Besides, here some checksum comparison are performed on the
captured packets. If packets have invalid checksum values then they are eliminated too. In
detail, before sending the packet, the sender calculates the sum of the bytes and then adds
this information to the header. When the packet comes, sum of the bytes of the packet is
calculated one more time by our module and compare the checksum value in the header
with the value it's found. If they are not same, then it means the packet is broken or
incomplete. So the module discards the packet because there is no need to process on a
broken packet. After the operation of filtering is finished, the filtered packets are
transmitted to the next module.

When the filtered packets come into the Reordering Module, they are reordered
according to their TCP sequence number. This number can be found in the headers. Since
packets may come in an unordered way, Reordering Module should sort the packets to
make them same as the original data stream. For example; if the Filtering Module does
not eliminate the broken packets and if a packet does not include the TCP sequence
number by some reason, this module wouldn’t be able to reorder these packets, and if the
packets cannot be reordered properly, then these packets cannot be processed correctly
by the Auto-Sensing Module. After the packets leave this module, they are redirected to

the next module.

WinstonSoft | 40
Initial Design Report for ACCIPP

After the packets are reordered they come into the Buffering Module. In this module,
packets are stored in buffers. They can be placed in a buffer one by one or in a buffer of
ten packets, or differently. The number of packets in a buffer is determined as necessary.
For ex; if a packet cannot be processed in real-time, it should stay in a buffer until it can go
into the protocol recognizers. Besides, for line oriented protocols such as POP3, the
packets that form a single line should stay in a buffer until the line is complete. After the
this Module finishes it work then these preprocessed packets are sent to the Auto-Sensing

Module. So generally, there is nothing left to do in the Decoder Module.

6.2.2 Auto-Sensing Module

Auto Sensing module is the part that does the actual protocol recognition. Protocol
recognition is done in three steps. The packet sequences coming from the Decoder
module first enter the Protocol Recognizers, and then results coming from the Protocol
Recognizers are collected and directed to the Protocol Decision Mechanism, where the
final decision about the protocol type of a connection is made. Finally, the collected data
enters the Feedback mechanism that updates Protocol Recognizer modules with the
newly collected information. The following sections contain detailed descriptions of the
sub-modules in the Auto-Sensing Module.

6.2.2.1 Protocol Recognizers

Protocol Recognizers is the common name given to a set of modules that are each
responsible for recognizing one specific protocol. These modules all share a common
interface and communicate with the top level auto-sensing module through this common
interface. However, they have no communication between each other. User can
enable/disable a protocol recognizer as he/she wishes, yet this does not affect other
recognizers as they are not aware of each other. Consequently, protocol recognizer
modules are planned to be implemented as “plug-ins” that users can add/remove

depending on their needs.

WinstonSoft | 41
Initial Design Report for ACCIPP

Although a protocol recognizer is designed to be stand-alone, there might be some
exceptions to this schema where a protocol recognizer may depend on another one. For
instance; most instant messaging applications use HTTP for file transfers, and this makes
the instant messaging recognizer module depend on the HTTP recognizer module.

A protocol recognizer takes a packet sequence as input and runs the pattern matcher (that
will probably be a derivative of Support Vector Machines and/or Hidden Markov Model)
against the contents of this packet sequence. The pattern matcher generates a value, called
Match Value, which indicates the match percentage of packet sequence with the protocol
pattern. The protocol recognizer is also responsible for extracting some protocol-specific
information, called Match Data, from the contents of packet sequence. Finally the protocol

recognizer outputs this match value and data pair to the Protocol Decision Mechanism.

6.2.2.2 Protocol Decision Mechanism
The Protocol Decision Mechanism is responsible for collecting Match Value and Match

Data pairs from the Protocol Recognizers and choosing the protocol that has the highest
match with the packet sequence contents. For the time being, The Protocol Decision
Mechanism simply picks the protocol with the highest match value that exceeds a pre-
defined threshold value and labels the connection as this protocol. This threshold value
helps eliminating spurious matches, since it ensures that match values that are too small
will not be taken into consideration.

Protocol Recognizer modules are designed to run concurrently (presumably in separate
threads/processes) thus, Protocol Decision Mechanism must wait until all Protocol
Recognizers to complete their work until a decision can be made. This makes
implementing some sort of signaling mechanism between processes necessary.

After the Protocol Recognizer collects output from all Protocol Recognizers and chooses
the one with the highest match value it redirects this output to two different modules,

namely Feedback module and the Summarizer.

WinstonSoft | 42
Initial Design Report for ACCIPP

6.2.2.3 Feedback Mechanism
The Feedback mechanism contributes to the automated learning part of the Protocol

Recognizer modules. After the Decision Module chooses the protocol with the highest
match value, Feedback mechanism updates the protocol pattern in the corresponding
Protocol Recognizer Module. If the packet contents cannot be recognized by any of the
available protocol recognizers, the Decision Mechanism labels the connection as
“Unknown” and this connection bypasses the Feedback Mechanism. This ensures that

protocol patterns are not updated with wrong or defective information.

6.2.3 Output Modules

After the packet sequences are processed in Auto-Sensing module, valuable information
along with the matching protocol names is extracted from these packets. Output modules
are responsible for producing human-readable output from the information coming from
Auto-Sensing modules. Since the program is able to present it output in various manners,
there is a separate sub-module for each output format. Currently there are three output
modules, namely Summarizer module, Database module, and the User Interface
module.

6.2.3.1 Summarizer Module

This module takes the data from the Auto-Sensing Module and produces a summary that
is appropriate for the recognized protocol out of this data. For instance; the Summarizer
module will generate a report that contains the mail subject, sender and recipient names
and mail body for a recognized POP3 connection. This report also includes match
percentages that come from other protocol recognizers.

For an unknown connection; if the program can extract any information from the packet
contents, the report will include them along with the match percentages.

Summarizer Module is also in relation with the Database module, so that the user can

store and retrieve summaries in a central database.

WinstonSoft | 43
Initial Design Report for ACCIPP

6.2.3.2 Database Module
The Database module is responsible for performing all database operations requested by

the user or other components the system. The database module is used for reading,
adding, updating and deleting records in the central database.

When the user chooses to save a summary (for later retrieval) or wishes to see a past
summary, the Summarizer module accesses the Database through this module.
Additionally, the Database module is used to generate statistical information out of

database contents. The exact structure of database can be found in Data Design section.

6.2.3.3 User Interface Module
The user interface module is responsible for handling all interactions with the user and the

rest of the system. The user uses all functionality within other modules through the user
interface. The primary functions of this module are; presenting the user the results of
protocol recognition process, visualizing statistical information in charts, and letting the

user give commands to the program.

6.3 Data Flow Diagrams

WinstonSoft | 44

Initial Design Report for ACCIPP

6.3.1 Level 0 DFD of Decoder Module

PCAP

Hetwork Dewvice

Offline Incoming Padets

Decoder _\ Freprooessed Fadets Packet Sequence|

J

Real-time Incoming Padets

6.3.2 Level 0 DFD of Auto-Sensing Module

Input

Padket Sequence

Identified Connection

"

Auto-Sensing j

6.3.3 Level 0 DFD of ACCIPP

Input [pcap) Fadiets

Unknown Connection

Processed
Connecticn

|l ACCIPP II Processed Connection

—

Cutput { Summary}

WinstonS oft ‘ 45

Initial Design Report for ACCIPP

6.3.4 Level 1 DFD of Decoder Module

511LLLL|11L|

m Buuapioay w

SI=pEH

20314

.

139114 u
e

aauanbacg 1@Yaed

HUNYD pREgng —— ==
12PE PREpIo3Y Buuayng

sEpEd Bulwoou| swnyesy

ELIREN RITLTET

EpE4 :NjdE]
Bunnydeq

nEpEd Bulwocou| suyo

dY2d

WinstonSoft | 46

Initial Design Report for ACCIPP

6.3.5 Level 1 DFD of Auto-Sensing Module

{uogoauuog
passanoid)
inding

1aziuBooay
|ooojoid pajepdny

LWSIUELY22|9Y
uos1oa (o000l d

HoEqpaad

1aziubooay

d3|awr -

1aziubooay d4i5

I_WM_Em.DUWI oS A

137U bBo a8y NE A

i S}=PE4 pEsEs0ds

180 A LHRE] i 1aTiuboaay Jyl| N

1aziuBaaay J1NN

J3TIL Bo 239 d1INS

sazubooay ¢dod,

1aziubooay 411H

d

{@ouanbag
1=y 0edlLNdHNI

WinstonS oft ‘ 47

Initial Design Report for ACCIPP

6.3.6 Level 1 DFD of ACCIPP

gn==y
Argunung

JATUIELWILWING sE0

uoosuuco

UARCLNU BIER

RENES /

faewnung

=

pasanbey— | SSEQEIE(]

USIPSUULSD PSIIUSPE|

/

WISIUEL D3]]
Buisuag-oyny

N

sousnbag 130Eed
passs0osdaig

=

saped Buiwoou)

/m S

)

301AIQ] HIONIN

a=pEd

E_EE:_

SUNHO ™

2|y deoay

6.3.7 Level 2 DFD of ACCIPP

Cfflins
Pcap File " Incoming
Fadets
Netwaork Device Real-time

[Incoming Facets

Updated Protocol
Recognizer

1
i
(]
M
in

Feedback

[ata base /

WinstonS oft
Initial Design Report for ACCIPP

Capturing

Filter

Filtzred Faouets

Recrdering

Buffering

Freprocessed Faoiets

Protocol
Recoqnizers

Protocol Decision
Mechanism

Summarizer

Results

Summan

QUTPUT
[Summary}

48

WinstonSoft | 49
Initial Design Report for ACCIPP

6.4 Data Dictionary

Name: Offline Incoming Packets
Aliases: Pcap File
Where & How used: Capturing (Input)

Description: These are the packets that come from a Pcap file that was generated

beforehand. These packets are processed in offline mode.

Name: Real-time Incoming Packets
Aliases: Network Device Packets
Where & How used: Capturing (Input)

Description: These are the packets that come from the network device instantaneously.

These packets are processed in real-time mode.

Name: Captured Packets
Aliases: None
Where & How used: Capturing (Output)

Filter (Input)
Description: After real time incoming packets and offline incoming packets enter the
Capturing module, they become Captured packets, which go into the Filter

module afterwards.

Name: Filtered Packets
Aliases: None
Where & How used: Filter (Output)

Reordering (Input)

WinstonSoft | 50
Initial Design Report for ACCIPP

Description: Captured packets that enter the Filter module and they are checked against
some filtering parameters. For example ACCIPP only deals with TCP and UDP
packets, therefore packets coming from other protocols like ICMP are
ignored. The filter module also performs some checksum comparison on the
captured packets, and discards packets with an invalid checksum value.

Packets that are processed in the Filter module enter the Reordering module

as Filtered Packets.

Name: Reordered Packets
Aliases: None
Where & How used: Reordering (Output)

Buffering (Input)

Description: Network packets may not necessarily be transmitted in the order they are
meant to be received. So they need to be reordered in order to reassemble
the original data stream. After filtered packets arrive at the reordering
module, they are sorted according to their TCP sequence number that is
stored in packet headers. After packets are processed in the reordering

module, they are delivered to the Buffering module.

Name: Preprocessed Packets
Aliases: Buffered Chunk
Where & How used: Buffering (Output)

Protocol Recognizers (HTTP Recognizer, POP3 Recognizer,
SMTP Recognizer, NNTP Recognizer, IMAP Recognizer, MSN
Recognizer, YMSG Recognizer, SIP Recognizer, JABBER

Recognizer) (Input)

WinstonSoft | 51
Initial Design Report for ACCIPP

Description: After packets are filtered and reordered, they enter the buffering module.
Here packets are stored consequently in buffers. If a packet cannot be
processed real-time, it needs to be buffered. So the packet stays in this buffer
until it gets processed by the protocol recognizers. Preprocessed packets that
leave the buffering module are finished with the decoder part of the program
and enter protocol recognizers such as HTTP and POP3 concurrently where

they will be checked against protocol patterns.

Name: Match Value and Data
Aliases: None
Where & How used: Protocol Recognizers (HTTP Recognizer, POP3 Recognizer,

SMTP Recognizer, NNTP Recognizer, IMAP Recognizer, MSN
Recognizer, YMSG Recognizer, SIP Recognizer, JABBER
Recognizer) (Output)

Protocol Decision Mechanism (Input)

Description: After packets become processed in protocol recognizers, a match percentage
value and protocol specific data is produced in each protocol recognizer. This
match percentage shows how much the packet contents match with the
protocol pattern, and data contains human-readable information such as mail
body for POP3 protocol. Then these match values and data enter Protocol

Decision Mechanism.

Name: Identified Connection
Aliases: Processed Connection
Where & How used: Protocol Decision Mechanism (Output)

Summarizer (Input)

Feedback (Input)

WinstonSoft | 52
Initial Design Report for ACCIPP

Description: All match values are gathered by the protocol decision mechanism to decide
which protocol the connection resembles most. If the highest match value
exceeds a threshold value, then the connection becomes Identified
Connection, and this connection information goes into Summarizer to
prepare a connection summary. Besides, the connection data enters feedback

module so that pattern recognizers are able to update themselves by using

this data.
Name: Unknown Connection
Aliases: Processed Connection
Where & How used: Protocol Decision Mechanism (Output)

Summarizer (Input)

Description: All match values are gathered by the protocol decision mechanism to decide
which protocol the connection resembles most. If the highest match value
does not exceed a threshold value, then the connection becomes Unknown
Connection and the resolved connection information goes into Summarizer

to prepare a connection summary.

Name: Updated Recognizer Data
Aliases: Updated Protocol Recognizer
Where & How used: Feedback (Output)

Description: For Identified Connections, the connection data enters the feedback
mechanism so that the associated protocol recognizer is able to update itself
with the new information. The exact method to form the updated recognizer

data has not been decided yet.

WinstonSoft | 53
Initial Design Report for ACCIPP

Name: Saved Data
Aliases: Summary Info
Where & How used: Summarizer (Output)

Database (Input)

Description: The summary prepared in the summarizer is stored into the Database. When
the user wishes to save the summary, it is transformed into an appropriate
format that is compatible with the database backend. This information can
later be retrieved from the database and the summary can be reproduced

using the retrieved data.

Name: Requested Data
Aliases: Old Summary Info
Where & How used: Database (Output)

Summarizer (Input)
Description: The user may want to retrieve an old summary from the database. In that
situation the data needs to be transferred from the database backend to the
summarizer module. This data is called requested data. By using this data, an

identical copy of the old summary can be reconstructed.

Name: Summary Results
Aliases: Output
Where & How used: Summarizer (Output)

Description: The data that is formed in an appropriate format in the summarizer module is
displayed to the user as summary results. These results also contain protocol
specific information coming from the protocol recognizers and match values

of the protocols.

WinstonSoft | 54
Initial Design Report for ACCIPP

7. System Design

Use case, class, sequence and activity diagrams can be found in this section.

7.1 Use Cases

In this section, use case diagrams and scenarios can be found.
7.1.1 Use Case Diagrams
Menu and end-user use case diagrams are shown below.

7.1.1.1 Menu Use Case Diagram

aextends

View Identification «indudes»

Results \
/ «incdudes
Pattern
Recognition
Save Summary to
(irdudﬂbx

\

«indude‘\%

WinstonS oft
Initial Design Report for ACCIPP

7.1.1.2 Use Case Diagram for the end-user

-«w- aants /

WinstonSoft | 56
Initial Design Report for ACCIPP

7.1.2 Use Case Scenarios

Use case scenarios for the use case diagrams above are situated below.

7.1.2.1 Scenario for Use Case Diagram 1

Open Pcap File: The program can be used in either offline or real-time mode. In offline
mode, all the network packets are captured stored on a secondary storage device
beforehand. This command allows the user to select a previously generated Pcap file for
offline processing. After the user clicks this menu item, a standard open file dialog is
displayed where the user can either type the name of a file or browse through the file
system and choose it.

Open Network Device: This command is used to enter real-time mode. In real-time mode,
packets are not read from a Pcap file but they are captured from a network device. Since
they are not yet stored anywhere, they must be processed on-the-fly. After this menu item
is clicked, a dialog box containing the list of available network devices is presented to the
user. The user selects the network device he/she wants to examine and then closes the
dialog.

Save Pcap File: This menu command lets the user to choose a file on his/her disk to store
the captured packets in Pcap format. The user may want to do this in two scenarios: The
pattern recognition engine might not be completely trained and therefore does not work
at full capacity yet. The user chooses to save the packets as a Pcap file, so that he/she can
analyze them in the future when the pattern recognition engine performs relatively better.
Another case is that the user may wish to examine the contents of captured packets with
another Pcap compatible application, for instance WireShark. Therefore, apart from being
an intelligent protocol identification application, ACCIPP can also be used as a general
purpose packet sniffer.

Start Capture: This command allows the user to begin processing packets. Depending on

the input source selected previously, the program begins reading packets from either a

WinstonSoft | 57
Initial Design Report for ACCIPP

Pcap file or a network device. If the user has not selected an input source yet, this
command has no effect. As soon as new packets begin to arrive, they are redirected to the
pattern recognition engine and gradually, connections begin to appear on the Connection
List.

Stop Capture: This command allows the user to stop processing packets. Even if new
packets arrive from the network device or there are further packets available in the Pcap
file, they will be discarded. Since those packets do not enter the pattern recognition
engine, they won't have any effect on the identifications results or the summary.

Clear All: This command allows the user to clear all the entries in the connection list pane
along with all summaries and identification data (such as match percentages and pattern
recognizer status) associated with them. When new packets arrive, they will be treated as
new connections and might be identified differently since the previous states of the
pattern recognizer is no longer available.

Copy to Clipboard: This command allows the user to copy the contents of Short Summary
Pane to the clipboard so that the user then may paste and use this information in other
applications.

Preferences: This command allows the user to change or view various settings of the
program. Such settings may include, but are not limited to: Appearance of user interface
elements (fonts, colors etc.), Whether or not the program starts upon system startup,
Configuration parameters for pattern recognition engine, and Enabling or Disabling some
protocol handlers (presumably for performance reasons).

View Menu: This menu includes commands to toggle visibility of some user interface
elements like Toolbar, Status bar and Summary Pane.

Database Query: This command allows the user to enter a query in order to see
information that is stored in the database. The database includes valuable information
captured from the protocol connections. For example; the database includes all received

mail through POP3 sessions. The user may want to query the database for listing the mails

WinstonSoft | 58
Initial Design Report for ACCIPP

that are received in a specific time interval, or the user may want to see all connection
events from a certain IP address, and so on. Database query command provides a link
between the user and the data captured through the capture engine.

Statistics: This command allows the user to generate statistical information from the
database. This information gives an overall grasp about the protocol connections to the
user. For example, the user may want to see which protocol is used most from a specific IP
address, how much bandwidth is used by protocols etc. The Statistics command is in close
relation with the Database Query mentioned above. This gives the user the chance to form
some highly customized statistical data from the database.

Window Menu: This menu includes commands for changing the positions and sizes of the
sub-windows. For example, when more than one Summary Window is visible, the user may
want to tile these windows in order to see all of them at once.

Help Menu: This menu allows the user to access program documentation that helps the

user get used to the program.

7.1.2.2 Scenario for Use Case Diagram 2

View Identification Results:

The user can view details of connections such as source and destination IP addresses,
recognized protocol of each connection, connection start and end time, etc. More
importantly, if the process of protocol recognition is finished, he/she can see the resolved
transferred data through addresses regardless of the port information. This process
includes two major subroutines that are pattern recognition and capturing packets. For
capturing packets input must be selected by the user. The input can be a Pcap file (for
offline application) or a network device (for real-time application). If a problem occurs in
these subroutines or if the user does not select an input and does not attempt to catch

packets then it is impossible to view any identification results.

WinstonSoft | 59
Initial Design Report for ACCIPP

Save Summary to Database:

The user can save summaries, namely details of the connection and transferred data that
are shown in the summary window. This data is stored in the database. This process
includes the preparation of the summary. As it is obvious, the user cannot save a summary
before it is prepared. The user may want to do this action in several scenarios. For instance;
during the work of the program many connections occur and as time passes the number of
connections increases rapidly. The user may not be able to look at all summaries in a small
amount of time. So he/she may save some of them for analyzing later on. Another scenario
for this action is that the user may want to view statistical information and this action is
probably performed with the stored data. For example; he/she may want to compare who
uses which protocol most and etc.

View Past Summaries:

The user can view past summaries. Whenever the user wants to retrieve a summary from
the database, reading summary from the database must be performed. The scenarios for
this action presumably show similarities with the above action. As it is mentioned above,
the user may be obliged to view some summaries in the future because of limited time.
Besides, he/she may want to work over an old summary, so this action would satisfy the

user’s will.

7.2 Class Diagrams

WinstonSoft | 60

Initial Design Report for ACCIPP

Class diagrams for the Decoder and Output Modules and the related descriptions can be

seen below.

7.2.1 Decoder Module

PachketReader

pendingPadetCount: int

PcapPacketReader

fp: FILE*

closeFilel) : void
openPcapFile{char *) : bool

NetworkPacketReader

deviceBusy:
devicelD: int

closeDevice() : void
openDevice(int) :

bool

PacketSequence

+ getPendingPadetCount{) : int
+ readMultiplePadiets(int) | PadetSeguence
+ rmeadSinglePadet]) | Padet
reads
Packet
destlP: char]4] -
destPort: short T -
payload: char® v
payloadSize: unsigned w
sequenceMumbsr: int w
sourcelP: char[4] i
sourcePort: short i
tima: Time i
filters i
+
PachketFilter

filterParameters: char ®
filterType: int

applyFilter[Padket) : bool
initialize{int, char *} : bool

padetCount: unsigned
padkets: Padet *

gethestIP[) : char[4]
gethestPort]) : short
getPadket(int) | Padet
getPadetCount() : unsigned
getSourcelP{) : char[4]
getSourcePort]) : short
writeToFile(FILE =) : void

COrderedPachkets

+ o+ 4+

gethestIP[) : char[4]
gethestPort]) : short
getPadet{int) : Padket
getPadetCount() : unsigned
getSourcelP{) : char[4]
getSourcePort]) : short
orderPadets() : bool

PacketBuffer

contents: Padet =
count: int

+ o+

degueusPadeet() | Padet
dequeuseFadietSequence(int) | PadetSeguence
engueusFPadet{Padet) | void
engueusFadetSequence|PadietSequence) : void
isEmpty(} : bool

isFull() : bool

WinstonSoft | 61
Initial Design Report for ACCIPP

PacketReader is an abstract class that is responsible for reading packets from an
input source. It includes methods for reading either a single packet or multiple
packets at once. The pendingPacketCount member returns the unread packet count
waiting at the input source.

PcapPacketReader is derived from the PacketReader class and implements
functionality to read packets from a Pcap file.

NetworkPacketReader extends the base PacketReader class, and includes functions
to read packets from a network device.

Packet class is the data structure that is used to define a single packet. The member
variables of this class are filled by the object that reads the packet from the input
source.

PacketSequence is the collection class for packets that have the same source and
destination addresses and same ports. It includes methods that provide random
access to packets stored in the collection. This class is also responsible for dumping
its contents to a Pcap file.

PacketFilter is the class that is responsible for eliminating packets that are not TCP
or UDP, and the ones with invalid checksum values.

OrderedPackets extends the PacketSequence class to add functionality that orders
the packets in the sequence based on their sequence number.

PacketBuffer implements a simple FIFO queue mechanism that is able to store a

predefined number of packets in a queue data structure.

WinstonSoft | 62
Initial Design Report for ACCIPP

7.2.2 Output Module

Summary

- comment: vector<string=
- connecticnlD: int

- destinationlP: string

- filePaths: vector<strings
- sourcelP: string

includes
1 |+ getComment() : string
Summarizer + getConnection|Dy) : int
+ getFilePaths() : vector<string=
= mEEEIE dELI-EE + setComment(string) : woid
- PprofocolName: string + setFilePaths(int) : void
- summary: Summary
+ displaySummanyWindow() : void
+ getMatchValue() | doukle
+ getProtocolMame() : string generates
+ saveSummarny ToFile{string) : void
+ setMatchValue(double) : void 0. acoEss
+ setProtocolNamestring) : void h Database
+ updateUl{string) : void
ChartGenerator - connectionDate: Date
- connedtionld: int
+ drawBarCharts() : void - endTime: Tims
+ drawColumnsChart) : void - starTime: Time
+ drawPieCharts{) : void
+ getChartType() : string + connectToDatsbase() : void
+ setChartTypelstring) : string + insertSummary{Summary) : void
+ readSummary(int) | Summany
+ updateDatabase(Summary, int) : void
EMail WebPage InstantMessaging News Unknown
- sitachedFilell: int - webPageFilelD: int - attachmentiD: int - sttachedFilelD: int - unknownlD: int
- beo string - webPagelD: int - messagelD: int - groupName: string - unknownPcapPath: string
- oo shing - webPageTextID: int - messageloglD: int - newslD: int
- emailll: int - protocociMame: int - newsTexdlD: int
- mailDatz: Date - subject: string

- mailFrom: string
- mailTextlD: int includes .

- mailTo: string includes
- protocolMame: string

includes

includes File

- oomment: string
- fil=lD: int
- filePath: string

WinstonSoft | 63
Initial Design Report for ACCIPP

Summarizer class generates user-friendly summary of the connection data received
from the AutoSensing mechanism. When it receives a new connection, it calls
Summary class.

Summary class is actually a data structure for storing the summaries generated by
the Summarizer class. It calls ChartGenerator class only if requested by the user and
calls the Database class at all cases.

ChartGenerator generates bar, column and pie charts for visual interpretation of
summaries formed from the connection data received by the Summarizer class.
Database class establishes connection with the ACCIPP database and creates
queries in order to retrieve data from, insert data into and update fields of the
database. Its methods use these queries to add all connection data received and
eventually calls the EMail, WebPage, InstantMessaging, News and Unknown classes
for further classification of the connection data.

EMail class is a type of a Connection class and is used for storing summaries related
to E-mail protocols such as POP3, IMAP and SMTP.

WebPage class is a type of a Connection class and is used for storing summaries
related to Web Page protocols such as HTTP.

InstantMessaging class is a type of a Connection class and is used for storing
summaries related to Instant Messaging protocols such as MSN, YMSG and JABBER.
News class is a type of a Connection class and is used for storing summaries related
to News protocols such as NNTP.

Unknown class is a type of a Connection class and is used for storing summaries
that cannot be classified into one of the four classes, i.e EMail, WebPage,
InstantMessaging and News. As the AutoSensing feedback mechanism operates,
instances of the Unknown class will eventually be deleted from the Unknown class

and added to one of the four other classes mentioned above.

WinstonSoft | 64
Initial Design Report for ACCIPP

> File class is called whenever the need for storing the attached files and/or contents

of the EMail, WebPage, InstantMessaging and News classes arises.

7.3 Sequence Diagrams

Sequence diagrams for Output and Decoder Mechanisms are below.

7.3.1 Sequence Diagrams for Output

S}r Summarizer [atabasefcosss
AN

Usar

displaySurnman/Window{)

summaryResults])

— saveSummenyToFile()
[]

insertSurnmany()

.
updateDatabase])
T
read Surnmany()

[] - -

formatSurmmany()
D" summaryResults)

WinstonSoft | 65
Initial Design Report for ACCIPP

7.3.2 Sequence Diagrams for Decoder

i g
o =
= 1]
n n
n —
= =
=] [V
[]
g
i
Y
&
<
7
4
m
[V
I.II
=
8
[
E I —
_'.';.'
w
&
g
= =
=

PadietFilter

etl)

MNetworkPadetReader

Padk

readSingle

wvice()

PrapPadetReader
p=nD:
sucoessOrFailu

=nPca
sucoessCrFailu

PadketReader
-
L1
il
|:-| e |
L
|

pFil

[
=]

WinstonSoft | 66
Initial Design Report for ACCIPP

7.4 Activity Diagrams

Activity diagrams for Decoder and Auto-Sensing Mechanisms can be found below.

7.4.1 Activity Diagram of Decoder

=

Inwalid

® -

Mot TCR/UDP >

TCR/UDF

Reordering According
to Sequence Humber

Mot Incrder

Mot Full Buffer

—

Full Buffer

®

WinstonSoft | 67
Initial Design Report for ACCIPP

7.4.2 Activity Diagram of Auto-Sensing

‘ Unknown Connection

Identified Connectiocn

WinstonSoft | 68
Initial Design Report for ACCIPP

8. Testing Strategy and Procedures

As Edsger DUKSTRA states, "Program testing can be used to show the presence of bugs,
but never to show their absence!". Keeping this in mind, in order to have a program as free
of bugs as possible, it is a must to have a good testing plan. Testing is the vital tool for
quality assurance, validation and verification procedures. By validation it is meant if what
has been specified is what the user actually wanted whereas by verification it is meant if
the software is conformed and consistent with an associated specification. The testing
before development of the software consists of deciding upon a testing strategy and
future testing procedures. Although it is practically impossible to prove that no more errors
exist, the more errors will be found as more tests are conducted and the rate of finding
new errors will decrease as the testing process continues, to ensure the quality of the
developed software in terms of correctness, reliability and efficiency, testing plan and

procedures have been developed.
8.1 Testing Strategy

When designing test cases not regarding the database part, white box point of view has
been taken since the tester, actually being the team members, has access to the internal
data structures, code and algorithms. Thus, although ideally meaning to test every branch
in the code with every combination of input values, it is planned to do a reasonable
amount of testing while trying to cover a meaningful representation of the complete
picture. On the other hand when designing test cases regarding the database parts grey
box testing will be used since the tester has control over the input, inspects the value in a
MySQL database, and the output value, and then compares all three (the input, mysq|
value, and output), to determine if the data got corrupt on the database insertion or

retrieval.

WinstonSoft | 69
Initial Design Report for ACCIPP

Since ACCIPP has different layers and modules, testing phase should be conducted in a
bottom-up manner as the project is concerned as a whole. However, testing each module

in each layer separately requires a different testing strategy, i.e. top-down testing.

Tcpdownl | | | |

|

Bottom-up

Figure : Testing Strategy of ACCIPP

WinstonSoft | 70
Initial Design Report for ACCIPP

8.2 Testing Procedure

The following procedures are applied in accordance with the testing strategy.
8.2.1 Unit Testing

In unit testing, minimal software component, i.e. module, is tested by white-box testing to
verify that the detailed design for the module has been correctly implemented. This way,
since the internal coding structure is visible, the tester is able to optimize the code and
decide upon which type of input is more helpful in testing the application effectively. As
each module or a sub-module is developed the unit testing will be carried out. Usually the
member who developed the specified module or sub-module is in charge. However as
being a software developer group, everybody is an end-tester to each module or sub-

module developed by the other group members.
8.2.2 Integration Testing

Integration tests are different from unit tests in that it includes the testing of flow of
operations, whole-part structure during lifetime and appropriate delegation and cascading
behavior using infrastructure conditions and failure scenarios. The general aim of this type

of testing is to determine if simultaneously running modules function together correctly.

9. Syntax Specification

Projects are not daily, simple work. So any software project should be coded properly. The
word proper does not only stand for working good but also easy to read and understand,
add to, maintain and debug.

There may be cases where one project member may stop developing his/her part and

decide to return to it several weeks later or hand development over to another member. In

WinstonSoft | 71
Initial Design Report for ACCIPP

these cases both that member and the other developers will want to be able to understand
the code.

As a result, after consulting with all team members and compromising and incorporating
elements of everyone’s style a group of coding standards have been decided upon. These
standards help the readability and maintainability of the code by basically enforcing
syntactical constraints and forbidding the use of complex language functions/construct
that are quicker to write but affect the mentioned factors.

Consequently, with the help of the CVS and the following syntax specifications, these aims

are planned to be achieved.
9.1 Naming Classes

All classes will have names beginning with capitalized letters, and the classes with names
containing more than one word will have names where each word's first letter will be

nou

capitalized. Some example class names are as follows: “News", “NewsProtocol”.

9.2 Naming Functions

The functions will be named so that each function name starts with a lower-case letter,
until a new word starts. Each new word in the variable name, starts with a upper-case letter.

For example "getConnectionld()” is suitable for a function name.
9.3 Naming Variables

Appropriate choices for variable names are seen as the keystone for good style. Poorly-
named variables make code harder to read and understand. As a result, all variables begin
with a lower-cased word, and if consisting of multiple words, the rest is capitalized. Some

non

variable examples are: “protocolName”, “comment”.

WinstonSoft | 72
Initial Design Report for ACCIPP

9.4 Comment Conventions

Commenting is also a vital issue considering the understandability of the code. Since each
C++ class is defined in separate files, detailed information about each class is included at

the beginning of each file in the following format:
/**

File Name:

Author:

Date/Time: (Date - DD/MM/YYYY , Time - HH:MM:SS)
Modified By:

Modified At: (Date - DD/MM/YYYY , Time - HH:MM:SS)
Description:

**/
In addition to this, end of line comments which describe the code on that line only are
written in accordance with the following convention: [2]
xIncrement *= -1; // change horizontal direction
On the other hand, line comments that describe the purpose of a number of lines of code

are written in accordance with the following convention: [2]

// Move the point in the current direction
y +=yIncrement;

X += xIncrement;

9.5 MySQL Conventions

ACCIPP database and the related queries will be coded using MySQL, so some simple rules
for MySQL conventions have also been decided upon. Basically, these rules are:
1. Avoid keywords in field names at all costs which will probably simplify the queries

and save rework later.

WinstonSoft | 73
Initial Design Report for ACCIPP

2. Use case sensitivity in MySQL statements where key words are always capitalized
and non-key words are cased as appropriate to the field names.

3. Using stored queries and procedures wherever possible since they are designed for
optimal use and will help us save time.

4. Field names consisting of a single word are lower-cased and the ones with multiple
words are also lower-cased with the words other than the first word being

capitalized.

10. Project Schedule

Gantt chart is used to visualize the schedule of ACCIPP including only the first term of the

project.

10.1 Gantt Chart

The Gantt chart of the project can be found in Appendix, 11.1.

WinstonSoft | 74

Initial Design Report for ACCIPP

11. Appendix
11.1 Gantt Chart

(N¥ATT) NS U0 yeasaY
L00ZTLE0 LO0TLLGE Buusaubuy aszaay 1z

(¥19v5

‘WA sieszed Buuaping
L00ETHE0 0DZLL6E pue Buusyg oy yauessay 0z

EERY]

D) s@peq Buuquog
L00ZZHE0 L00Z'LL 6L pue GuuapiQ o yaieasay Bl

(ND) seveign)
L00Z'HVSE 0D LETH fuessanap Buiyaiessay il

(193] s1ped
L00E'LEBE Z0DELLEL Guunjdes oy yessay 1

(9D ‘Ny13) sietleg
J00Z'LH6Z J0DZ'LLSD palejay 1aaloid uo ydieasay gl

(43 19Yd) (Reinddl

‘B sy gjsamies g sepung
L00F°LE8L Z0DEHEE0 g swesiosg Buzdeuy 5l

— g3 W)
L00Z°0482 Z0DZ0b Gk HIIEBSTY Jaj 3 HIoMEN fl

T (A
L002°04 82 L0DZ'0M 80 YN UG Y2RasEY D4 £l

T)
L00Z'0LBZ L0DZ'0L B0 o LNN U0 yareassy 34y 48

() vt
L00Z'04 82 £0DZ'0M 80 £d0d e Easdy D4y b

() w2l
0020497 Z00Z'0L 80 LS U0 YIEsSaY Dy 0

i sidaauny [eeuag

_ J00Z0420 002010 wogqyaBpapouy Buiieg

_ 800210 L00Z0K'10 yoseasay

| B00ZLO0Z L00Z DK 10 spodsy Apyzan

_ B00ZL0LL L00ZZL10 podsy ubisaq) [2ul4

“ L00ZLL0E LODZ'LL SO padsy ubisag ey

_ JO0Z'LL T J00Z 0L B0 wodsy siskEuy suswannbay

_ 0020420 0020440 yodax esadalg

_ B00Z°'L0°0Z L00Z'0L'LD uonEBwnaag 1asloig
i B00Z'M0°0Z LO0Z0LLO swsbeuey paloiy
Lon [wo [z [ow oo [oo [ao [ve [we [wa [wo Joe [oz [oo oo [ow o oy | s .
9007 Aenuer _ L00Z Jequizaag _ 007 Jaquenop) _ L00Z 890120

WinstonSoft | 75

Initial Design Report for ACCIPP

suoisaI wel [
un € suipeaq 4} sseud —
e — =
) _ “ TG, INTIrE | sdAPiog oweqbudomaeg -
Il Q0ZL0EL JO0TLLEL uopeussalg 1aloig "
o) ViOvS)
i 0021090 200220 AL edAleloid |ng Bunuawajdw) i3
T (D Wy E) adholang
! IO0ZZVE0 L00Z'10 92 Gusueg-oimy Bunuawe)du) 9
pr— m [Inpoyy
mozzeal soozziok Buusyng Buuswsidu &
r— (Nwr13) =Inpely
0022191 J00ZZLED Buuspig Bunuews)dw ¥
i (F19%3) sInpoly
L00E'ZL 60 RDOEZHEQ Guwaiji4 Bunuews|di) fis
[} (W) Bnpoly
!] i i L00E° 4L °GE 2D0EHE 6L Buunyde Bunuawz|duw A
e — adhyoroig
IR0ZTZL9L 1002 LLGE 1aposag) Bunuswsayduy e
- L00z2HaL L0Z'LEEL Enpopyaposaq Buwbissg 13
) IO0ZZHED LODT HLEL InNg &) Buwbisag &2
e —) PN
| . B00Z'LO0Z 2007 4b G0 Buisuag-oiny Bubisag 8
l 007'L0°07 J0T'LL'GD :a:ﬂ.ruc_.:m_arc_ pue =m_m¢ﬁ_ iz
: | 9002 LOEL JODZZE AL (M IS Uo yeesay J4Y 9z
_ (W19vH
.I WD) DSIA U0 yaumasay
| 9002 LOEL L00ZTH L4 Buuzaubuz asiznay 62
_I _ _ (A1)
i 1 | S00Z LOEL ZDDETLLL Y3BEVT Uo Yueasay 54y ;4
| C— (v19v3 ‘)l vonubooey
m A00ZZN 0L ZD0ZTL 0L WENEL U0 YERSaY o
| l)
“ LODETHEE IDDELL'9E dl[H U0 yueasay 34 Fid
[vom [ww Jae [aw [an [aon [aw _ _._.mm [vwe Jua Juws o [oz [os [ow [ow |wowr N . s
8007 Aenuep _ 1008 sequizae] _ 1007 Jequisran _ L00Z 4899120

WinstonSoft | 76

Initial Design Report for ACCIPP

(41 NYATE V19V ‘NwD)

x| STTETE | ETTRETD dar
| 30029008 800Z€0°ZL (4l anpoyJojeisusg Heyd
| B00ZS00E B00ZE0LL (NwD)mopuipy dndod Atewwng
| (O 800Z'50°0€ B00Z'E0LL (NWATT)aued rwwng Hous
| (D S00Z500F B00ZEDLL (195) MopUIA LIEW
| e —————————— 800Z'S0°0 S00ZT'E0L4 N9 Buuawsaydw) 5
S — BTN NN IO)
_ ' ! B00ZS00E BOOZE0'LL anpoy| 4aeqpas 4
m I_ H (4211 NYATA V19D ‘N D)
_ ! ! 200Z900E BOOTE0'LL WSILIELESY| LUOISIDa] 090301
o B00ZS060 800ZF0'SE (N¥D ‘N¥AT3) y3EEvT
_] 80025060 B00Z0'ST (v19%D W) dis
N 200Z'+0'ST 800Z'+0QL (v19%3 "Ny D) DSHA
O 200Z+0SZ 800Z+00L (411 NYAT3) NSHI
o (T NYATE Y IDWD NYD)
B00Z#00L BOOZE0DL dLIH
BO0TE0GL B00ZZOST (3ol vl
800Z€09L B00ZZ0'ST (¥ 19¥3) d LN
B00TE00E BOOTEQ'LD (NwAT3) EdOd
BOOZTE0QL BOOZZOST (NvD) dLWs
800Z'S0°60 900Z'Z0°SE sezuBoday [090j01d [
S00Z°S0°0C S00Z'Z0SE Buisues o3ny Bupuawaidw) E]
00T Z0GT BOOTZOBL [Ep)snpoy Guuayng
00T Z06Z B00ZTZO'8L (NvAERINPoy Buuspioay
B00TZ0GE B0OTZOBL (Igwalempoy 2314
BO0ZZ0GT BOOTZ0'BL (Nvokenp oy Buunides
80022062 S00Z'Z0°84 1podaq Buguswadw) 5
200Z'S00C S00ZZ0'8H ddin2v Bupuawsadw) 5
B00Z'90'GL BOOZTZOBL spodsy A3 AR
800Z'90°G} S00Z'Z0°84 uogejuawnsog jasfold Bl
200Z'90°G} S00Z'Z08H wewabeuey 102loid 0
9060 | 9020 5092 SO6L SOZL | SOS0 #OBZ OLZ | POWL | WOA0 £OLE | EOME | S0/ | €00l £0€0 | Z0GZ | Z0°8) 7 s 7 e 7 .
80z aunp 9002 Ao | 200z Iudy 200Z Y2IEH |

WinstonSoft | 77
Initial Design Report for ACCIPP

12. References

[1] Dreger H., Feldman A, et.al, “Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection”

[2] http://virtual.parkland.ed u/sbadman/00000007 Fall/SuperSymplifiedCSyntaxSpecification.htm

