
 

WINSTONSOFT  

Initial Design Report for 

ACCIPP 
 

CEng 491-CLASSIM Project 

 

 

Çağla ÇIĞ 

Nazif Ġlker ERÇĠN 

Elvan GÜLEN 

Can HOġGÖR 

 

Fall 2007 

 



WinstonSoft  

Initial Design Report for ACCIPP 

2 

 

Table of Contents 

1. Introduction ........................................................................................................................... 4 
1.1 Problem Definition ...............................................................................................................................................4 
1.2 Project Goals ...........................................................................................................................................................5 
1.3 What Has Been Done So Far ...........................................................................................................................6 
1.4 Future Work .............................................................................................................................................................9 

2. Design Constraints ..............................................................................................................10 
2.1 Time Constraints................................................................................................................................................. 10 
2.2 Language Constraints ...................................................................................................................................... 10 
2.3 Data Constraints ................................................................................................................................................. 10 
2.4 Performance Constraints................................................................................................................................ 11 
2.5 User Interface Constraints ............................................................................................................................. 11 

3. Project Requirements.........................................................................................................11 
3.1 Functional Requirements ............................................................................................................................... 11 

3.1.1 Capturing Packets ........................................................................................................................................ 12 
3.1.2 Preprocessing ................................................................................................................................................. 12 
3.1.3 Filtering.............................................................................................................................................................. 12 
3.1.4 Auto-Sensing .................................................................................................................................................. 12 
3.1.5 Processing Identified Connections ...................................................................................................... 12 
3.1.6 Output Mechanism ...................................................................................................................................... 12 

3.2 Non-Functional Requirements .................................................................................................................... 13 
3.2.1 Usability ............................................................................................................................................................. 13 
3.2.2 Portability ......................................................................................................................................................... 13 
3.2.3 Reliability........................................................................................................................................................... 13 
3.2.4 Documentation .............................................................................................................................................. 13 

3.3 Software Requirements................................................................................................................................... 14 
3.3.1 Operating System......................................................................................................................................... 14 
3.3.2 External Packages ......................................................................................................................................... 14 

3.4 Hardware Requirements................................................................................................................................. 14 
3.4.1 Minimum Hardware .................................................................................................................................... 14 
3.4.2 Recommended Hardware ........................................................................................................................ 14 

4. User Interface Design .........................................................................................................15 
5. Database Design..................................................................................................................19 

5.1 Entity-Relationship Diagrams ...................................................................................................................... 20 
5.2 Data Descriptions............................................................................................................................................... 26 
5.3 Entity Descriptions............................................................................................................................................. 28 
5.4 Creating ACCIPP Database............................................................................................................................ 33 

6. Architectural Design...........................................................................................................37 
6.1 Structure Chart .................................................................................................................................................... 37 
6.2 System Modules ................................................................................................................................................. 38 

6.2.1 Decoder Module ........................................................................................................................................... 38 
6.2.2 Auto-Sensing Module ................................................................................................................................ 40 
6.2.3 Output Modules ............................................................................................................................................ 42 

6.3 Data Flow Diagrams ......................................................................................................................................... 44 
6.3.1 Level 0 DFD of Decoder Module........................................................................................................... 44 
6.3.2 Level 0 DFD of Auto-Sensing Module................................................................................................ 44 
6.3.3 Level 0 DFD of ACCIPP............................................................................................................................... 44 
6.3.4 Level 1 DFD of Decoder Module........................................................................................................... 45 
6.3.5 Level 1 DFD of Auto-Sensing Module................................................................................................ 46 
6.3.6 Level 1 DFD of ACCIPP............................................................................................................................... 47 
6.3.7 Level 2 DFD of ACCIPP............................................................................................................................... 48 

6.4 Data Dictionary ................................................................................................................................................... 49 



WinstonSoft  

Initial Design Report for ACCIPP 

3 

 
7. System Design......................................................................................................................54 

7.1 Use Cases ............................................................................................................................................................... 54 
7.1.1 Use Case Diagrams ...................................................................................................................................... 54 
7.1.2 Use Case Scenarios ...................................................................................................................................... 56 

7.2 Class Diagrams .................................................................................................................................................... 60 
7.2.1 Decoder Module ........................................................................................................................................... 60 
7.2.2 Output Module .............................................................................................................................................. 62 

7.3 Sequence Diagrams .......................................................................................................................................... 64 
7.3.1 Sequence Diagrams for Output ............................................................................................................ 64 
7.3.2 Sequence Diagrams for Decoder.......................................................................................................... 65 

7.4 Activity Diagrams ............................................................................................................................................... 66 
7.4.1 Activity Diagram of Decoder .................................................................................................................. 66 
7.4.2 Activity Diagram of Auto-Sensing ....................................................................................................... 67 

8. Testing Strategy and Procedures ....................................................................................68 
8.1 Testing Strategy.................................................................................................................................................. 68 
8.2 Testing Procedure.............................................................................................................................................. 70 

8.2.1 Unit Testing ..................................................................................................................................................... 70 
8.2.2 Integration Testing ...................................................................................................................................... 70 

9. Syntax Specification ...........................................................................................................70 
9.1 Naming Classes................................................................................................................................................... 71 
9.2 Naming Functions ............................................................................................................................................. 71 
9.3 Naming Variables............................................................................................................................................... 71 
9.4 Comment Conventions ................................................................................................................................... 72 
9.5 MySQL Conventions ......................................................................................................................................... 72 

10. Project Schedule ..................................................................................................................73 
10.1 Gantt Chart............................................................................................................................................................ 73 

11. Appendix ...............................................................................................................................74 
11.1 Gantt Chart............................................................................................................................................................ 74 

12. References.............................................................................................................................77 

 



WinstonSoft  

Initial Design Report for ACCIPP 

4 

 

1. Introduction 

In general terms, a packet sniffer (also known as a network analyzer or protocol analyzer) is 

a software or hardware that can monitor, state statistical information about and log traffic 

passing over a digital network or part of a network. As data is being transferred over the 

network in real time, the task of the sniffer is to capture ideally every packet and analyze its 

content in accordance with the appropriate RFC document or other specification. Most 

network analyzers allow port-specific tracking, i.e. they label protocol connections only by 

looking at port numbers. However, the need to overcome the limitations of traditional 

port-based protocol analysis arises since in today‟s networks an increasing ratio of the 

traffic (totaling roughly 5.6 million connections [1]) resist correct classification using 

TCP/UDP port numbers. The reason for that increase is the rising desire to evade security 

monitoring and policy enforcement. 

1.1 Problem Definition 

Relying on well-known port numbers such as 80 for HTTP may not always be possible since 

applications may use arbitrary ports. The main reasons for that choice of usage are benign 

reasons and malicious intent. Benign reasons result from lack of user privileges, 

obfuscation, multiple versions; adversarial applications such as Skype bypassing firewalls. 

On the other hand, malicious intent results from the desire to evade from security 

monitoring like IRC bot-nets using ports other than the ones they are assigned to 

(666x/TCP). The necessity to distinguish these arises from the prevalence of the problem 

and has the consequence of the need for a need approach for dynamic analysis using auto 

sensing mechanism that performs port independent network analysis.  

The auto-identification/classification of common IP protocols software to be developed for 

Siemens is a new system. It will be used as an application for capturing packets over the 

network and identifying most of the widely used IP protocols such as HTTP, NNTP, POP3, 



WinstonSoft  

Initial Design Report for ACCIPP 

5 

 

IMAP, SMTP, WTP, SIP, FTP etc. The project is designed to run on both Windows and 

common flavors of UNIX thus it is platform independent. ACCIPP should be equipped with 

a user-friendly with an intuitive, easy-to-operate GUI that will provide quick and 

comfortable operation. 

1.2 Project Goals 

The project is aimed to satisfy the following goals: 

 Identify the protocols such as SMTP, NNTP, POP3, IMAP etc. 

 Capture some popular file formats like avi, wmv, jpg etc. from the detected 

protocols. 

 Log instant messenger conversations. 

 Give output in an appropriate format. 

 Monitor and supervise network traffic for performance and security and 

bandwidth usage. 

 Gather and report network statistics and help troubleshoot network problems. 

 Generate and view reports in tables and charts on network usage. 

 Filter suspect content such as spam, and denial of service attacks from network 

traffic. 

 Spy on other network users and collect sensitive information. 

 Debug client-server communications. 

 Show relevant information like IP, protocol, host or server name etc. 

 Determine when the identified protocol is no longer available in the flow 

through the identified port. 

 High performance and low-latency (Real-Time) detection capability. 

 Recognize incomplete protocol sessions. 

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

6 

 

1.3 What Has Been Done So Far 

 Obtained knowledge about the project: 

By the help of the meetings with Siemens and feedback from the project assistant, 

the project scope and goals were clarified. 

 

 RFC documentations research has been done: 

Widely used mail protocols which are SMTP, POP3, IMAP, NNTP were fully 

examined. All specific arguments, keys, statuses, restrictions and commands were 

learned. Besides, a general idea was gained about how the server hosts start the 

protocol service and how the server and the client respond to the commands until 

the connection lost. Moreover, all the project members connected to mail services 

through the related protocols and tested how the protocol works.  

HTTP protocol was started to be researched but since it is a comprehensive 

protocol, a small part of it has been analyzed. 

These studied information about the protocol specifications are useful for the Auto-

sensing mechanism of the project. Since Auto-Sensing Mechanism constitutes the 

main part of the project, this research is extremely important for the future of 

ACCIPP. 

 

 Network sniffer research has been done: 

To observe how the Pcap files are handled by other sniffer programs, the project 

was attached importance to network sniffer research. Through the guidance of 

assistant and the representative of Classim, Wireshark Network Protocol Analyzer 

was set up and capturing TCP protocols was managed to investigate the content of 

the packets. Also SmartSniff was examined so that network traffic was observed the 

with another program. 

 



WinstonSoft  

Initial Design Report for ACCIPP 

7 

 

 Programs with similar features were analyzed: 

TCPxtract and EtherPeg were analyzed. TCPxtract extracts files from network traffic 

based on file signatures. This tool may help for extracting .jpeg, .doc, .avi or etc from 

the packets. EtherPeg is a program that shows all the JPEG pictures going through 

the network traffic. 

 

 Some project related papers and materials were read: 

Until now, a huge amount of research has been conducted on the following topics:  

I. Clustering Classification,  

II. No Port Network Protocols Detection,  

III. Feature Extraction for Integrated Pattern Recognition Systems, 

IV. Network-Based Application Recognition and Distributed Network-Based 

Application --Recognition 

V. Port Independent Protocol Identification. 

During that research the following materials have been examined: 

I. http://documents.wolfram.com/applications/neuralnetworks/NeuralNetworkT

heory/2.1.3.html 

II. http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/Clus_and_Class_po

pup.htm.  

III. “Clustering and Classification Methods for Gene Expression Data Analysis”, 

Garrett-Mayer E., Parmigiani G., 2004.  

IV. No Port Network Protocols Detection Presentation by Sevgi Yaşar  

V. Feature Extraction for Integrated Pattern Recognition Systems by X. Wang 

and K. K. Paliwal 

VI. Network-Based Application Recognition and Distributed Network-Based 

Application Recognition by CISCO 



WinstonSoft  

Initial Design Report for ACCIPP 

8 

 

VII. Dreger H., Feldmann A., et.al, “Dynamic Application-Layer Protocol Analysis 

for Network Intrusion Detection”  

VIII. http://cs.northwestern.edu/~ychen/classes/cs450-s07/lectures/pia.ppt  

IX. http://www.icir.org/robin/papers/usenix06.pdf 

 

 Prototype related operations were researched and studied: 

The prototype must include capturing and reading packets, then filtering them 

according to some parameters and reordering them. Other than this, a simple Auto-

sensing Mechanism should be implemented. For these requests, necessary research 

was conducted. 

 

 Necessary libraries were researched: 

libpcap was analyzed. This library is useful for capturing packets from the network 

traffic and reading them.  

 

 MSN protocol was examined using reverse engineering: 

MSN protocol is not a proprietary protocol, so that the research couldn‟t be done 

on the RFC documents. However, from different resources MSN Messenger Protocol 

was examined and still is. Most of the status and error commands were studied.  

 

 Worked on prototype design and implementation: 

First of all, a prototype GUI was designed. It contains nearly all important operations 

that the user can have the control of the program. Also, an initial prototype of the 

project was designed and started to be developed. For capturing network packets, a 

Pcap based tool namely WinPcap was used. This tool is compatible with the unix 

versions of libpcap, so that the project can have platform independency. With the 



WinstonSoft  

Initial Design Report for ACCIPP 

9 

 

help of WinPcap tool, capturing module was implemented, and a primitive protocol 

recognizer for SMTP was designed.  

1.4 Future Work 

 

The design phase of the project has almost reached its maturity. Project requirements and 

scope were defined clearly, so most of the data structures, classes and data interactions 

within the program have already been determined. In the future, these structure schemas 

are going to be studied and improved constantly. The existing class hierarchy will be 

preserved with possible improvements, as well as new classes and data structures might be 

designed in the future as more and more concepts become understood. 

 

The exact structure and functionality of the Auto-Sensing module needs conducting some 

further research. The project assistant recommended some academic papers and online 

materials about pattern recognition algorithms (especially the Support Vector Machines 

and Hidden Markov Model). These documents are going to be deeply studied so that each 

member will have an understanding of related subjects since the modules that require 

pattern recognition are going to be designed and implemented by all team members.  

 

Currently all mail-related protocols that the program is to support have been studied. 

Recognizers of these protocols are almost finished and incorporated into the prototype. In 

the future, more protocols namely HTTP, XMPP(Jabber), YMSG, MSN and SIP are going to 

be studied, and recognizers about these protocols are going to be implemented.  

 

A preliminary user interface for the program was designed. First of all, this user interface 

module will be added to the prototype. After feedback about functionality and appearance 

of this user interface is received from project supervisors and testers; the user interface will 



WinstonSoft  

Initial Design Report for ACCIPP 

10 

 

go under some modifications so that the user interface module used in the prototype will 

gradually evolve into the user interface module that will be used in the final product. 

2. Design Constraints 

Project constraints can be grouped like the following: 

2.1 Time Constraints 

Since senior project design is a two semester course, the project will have to be finished by 

the end of May 2008. All design, implementation and testing must strictly meet this 

deadline and complete in this 7 month period. Besides, there is going to be a prototype 

demo that will be released by January 2008. There is roughly one and an half months to 

finish the ACCIPP design and prepare the demo.  

2.2 Language Constraints 

For performance reasons, the language for the project is decided to be C++. Platform 

independency and code portability is an implementation constraint, thus all C++ code for 

this project will conform to ISO C++ standard. Development environment will be Visual 

C++ for Windows port, and a suitable GCC based environment for Unix/Linux ports. Qt 

library is planned to be used for the development of OS independent user interface 

system. 

2.3 Data Constraints 

A fair amount of primary storage space is required to hold various data structures used for 

analyzing data flow over the network. If the user chooses to save some data for later 

analysis, or the data cannot be processed in real time, the need for secondary storage 

space arises. 



WinstonSoft  

Initial Design Report for ACCIPP 

11 

 

2.4 Performance Constraints 

ACCIPP will be exposed to high network traffic while dealing with real-time incoming 

packets. Under these circumstances, the number of packets arriving per unit time will be 

quite large and average processing time given to a packet should be kept minimal. Since 

ACCIPP intends to recognize a large number of protocols, the user should select only a 

subset of these in order to avoid starvation/packet drops. In a typical case where the 

number of packets per second is around 100 and presuming that the user might be 

running other applications, a maximum of 7-8 ms can be spent on each packet. Under such 

heavy load, ACCIPP should rely on predefined rule-based recognition engine rather than 

the relatively slow learning/training method. 

2.5 User Interface Constraints 

ACCIPP is not a user interface oriented application. Main work of the project is system 

programming. However, the user interface still is important for being understood and 

being used easily by the user. So the interface must be kept simple and easy to use. Names 

of menus and other gui elements will be easy to understand and straightforward. 

Accessibility features must be taken into consideration for handicapped users.  

 

3. Project Requirements 

Understanding the needs of the project, the project requirements should be specified. 

During the determination of requirements analysis, the steps taken are as follows :  

3.1 Functional Requirements 

Below, the functional requirements for ACCIPP are explained briefly.  



WinstonSoft  

Initial Design Report for ACCIPP 

12 

 

3.1.1 Capturing Packets 

The input will be captured from a network device or taken as already existing Pcap files.  

3.1.2 Preprocessing 

The captured packets may need reordering and/or defragmentation. The preprocessing 

mechanism handles these operations.  

3.1.3 Filtering 

The user of the system may not want to receive irrelevant data that s/he is not working on. 

Thus the filtering mechanism is employed to filter the packets which are of concern. Filters 

can be defined by several identities of connections such as IP addresses or protocol data.  

3.1.4 Auto-Sensing 

The system is expected to identify the packets without using port information. Auto-

Sensing mechanism takes action in this identification process using some Artificial 

Intelligence algorithms. 

3.1.5 Processing Identified Connections 

The proper output for the analyzed protocol of the connection are sent to output 

mechanism. 

3.1.6 Output Mechanism 

The data that is received from the system, will be displayed as reports or user interface 

summaries. If asked, more detailed information about the connection can be given as 

output. 



WinstonSoft  

Initial Design Report for ACCIPP 

13 

 

3.2 Non-Functional Requirements 

In this section various non-functional requirements such as usability, portability, reliability 

and documentation will be mentioned. 

3.2.1 Usability 

The program has to be easily adaptable for novice users, and powerful enough for 

experienced users. User interface elements such as menu items and command buttons 

have to be as clear and self-explanatory as possible. They should provide tooltips where 

applicable. The resulting graphs should allow the user to obtain rapidly an overall grasp of 

the material presented.  

3.2.2 Portability 

The software package is designed to be a cross platform product, therefore it should not 

rely on machine and/or OS dependant functionality such as byte ordering and non-

standardized system calls. Consequently the program will be able to compile on different 

computer systems without being altered. 

3.2.3 Reliability 

The software package is planned to be used in large and corporate networks, thus it is a 

critical requirement that the software functions consistently under such circumstances. 

3.2.4  Documentation 

User documentation includes online help and user manual for the product. A hardcopy of 

the user’s manual will also be provided with the software package. 



WinstonSoft  

Initial Design Report for ACCIPP 

14 

 

3.3 Software Requirements 

In this section, the external software packages ACCIPP depends on will be presented. 

3.3.1 Operating System 

ACCIPP shall function on Windows versions starting from Windows 2000, and major Linux 

distributions like Debian, RedHat etc. 

3.3.2 External Packages 

ACCIPP requires the presence of an external libpcap compatible packet sniffer and an 

adequate network adapter in cases where real-time processing is deemed necessary. 

In addition to that, Qt library must be installed in order to have user interface functionality. 

3.4 Hardware Requirements 

In this section, hardware requirements for the software project are presented. 

3.4.1 Minimum Hardware 

In order to have basic functionality, a system with 256 MB Memory, Pentium III class CPU, 

10 MB Hard disk space is required. 

3.4.2 Recommended Hardware 

To be able to make full use of the auto-sensing facility and store statistical information in 

the database backend, a system with at least 1 GB Memory, 2.5 Ghz Pentium IV class or 

higher CPU, 4 GB Hard disk space is required.  



WinstonSoft  

Initial Design Report for ACCIPP 

15 

 

4. User Interface Design 

The user interface lets the user see the connections on the system. When the program is 

first opened, the connection list is empty. After that, user selects a Pcap file to process 

offline a network device to process real-time. Then the user selects Start Capture from the 

File menu and the program begins its work. As soon as new packets arrive, the program 

populates the connection list. Until the protocol is fully recognized, the appropriate row in 

the connection list is updated with the resolved protocol match values. During the process, 

when the match percentage becomes greater than a predefined threshold value then the 

protocol name and match percentage fields are filled with appropriate values. The program 

continues processing until the connection is closed, thus this value may change several 

times during the process. In case the program is unable to match the connection data with 

any of the protocol patterns available, it shows Unknown as the protocol name. For each 

connection the list pane shows the matched protocol name, match percentage value, IP 

address of the local computer, local port number, IP address of the destination computer, 

and remote port number, start and end times of the connection. For connections that are 

not closed yet, the end time field is empty. Below is a sample screenshot of user interface 

mentioned above:  



WinstonSoft  

Initial Design Report for ACCIPP 

16 

 

 

Figure : Main Window of ACCIPP Prototype UI 

Since a connection may match more than one protocol pattern, only the most matching 

protocol is shown on the connection list. However, the user can click on a row to see its 

match values with other protocols. If the protocol recognition is not complete yet (i.e. End 

Time field is blank), the Short Summary Pane below the connection list shows only the 

match percentage values with protocol patterns. Also, Save and Details buttons below the 

short summary pane are disabled. However, when the protocol recognition is finished, 

these buttons become enabled and the information of the identified protocol (“The 

protocol cannot be identified!” or “Identified Connection: Protocol Name”) is shown 

additional to the match percentage values. A related user interface screenshot is shown 

below: 

  



WinstonSoft  

Initial Design Report for ACCIPP 

17 

 

 

Figure : ACCIPP Prototype UI(Short Summary Pane) 

 

As you can see, the first connection is identified as POP3 and the buttons are enabled. 

Additionally the final match percentages are shown in the Short Summary Pane. The save 

button automatically stores the detailed information into the database. If the user wants to 

see this detailed information about the selected connection, he/she can click the Details 

button. After that, the Long Summary Window pops up at right hand side of the main 

window.  

Clicking another connection from the connection pane does not affect the Long Summary 

Window. That means, several Long Summary Windows can be displayed simultaneously.   

 

An example screenshot of the user interface after clicking the details button is shown 

below: 



WinstonSoft  

Initial Design Report for ACCIPP 

18 

 

 

Figure : ACCIPP Prototype UI(Long Summary Popup Window) 

 

The save button on the Summary Window is used for saving the long summary to the 

database. By using the close button, the Summary Window can be dismissed.  

Since the connection pane fills with a huge amount of information over time, the user may 

want to filter information that is displayed in the connection pane. For example, the user 

may want to see connections from a specific IP range, or connections that use a specific 

protocol, or connections that are opened over a specified time interval. The filter field in 

the main window allows the user to enter a combination of these filters. For example, if the 

user types “pop3” into the filter, only the connections that have pop3 as the highest match 

percentage are displayed on the connection pane. The help menu includes documentation 

for the exact syntax of expressions that can be entered into the filter field, along with other 

help topics. 



WinstonSoft  

Initial Design Report for ACCIPP 

19 

 

Some commands do not have a corresponding button shown on the main window. 

Instead, these commands are available through the menu bar of the program. The menu 

commands that are not enabled at the moment will be shown in grayed state. A short 

informative text is displayed on the status bar when the mouse is hovered over a menu 

item. 

The exact menu commands are subject to change. However, some commands will certainly 

be available in the final product. These commands are: 

 File: Open Pcap File, Open Network Device, Start Capture, Stop Capture, Save as 

Pcap, Close, Quit. 

 Edit: Copy to Clipboard, Clear All, Preferences. 

 View: Toolbar, Status Bar, Summary Pane. 

 Tools: Database Query, Statistics. 

 Window: Tile, Cascade, Arrange Icons. 

 Help: Help Contents, About Program. 

Detailed information about what these commands do can be found in the use-case 

diagrams and the use case scenarios. 

5. Database Design 

ACCIPP comes with a database that the end user may use to get detailed statistical 

information about both the detected and unknown connections. Also the end user will be 

able to preview the details of the previously added connections in summary format. To do 

this, a database is designed where protocols are mapped to related entities as shown 

below: 

Web_Page: HTTP 

Instant_Messaging: MSN, YMSG, JABBER, SIP 

News: NNTP 



WinstonSoft  

Initial Design Report for ACCIPP 

20 

 

Email: IMAP, POP3, SMTP 

Unknown: all protocols that have not been detected yet. 

In addition to this, also included in the database are the Connection entity where general 

properties of all connections are stored and the File entity where the file-related properties 

are stored. 

5.1 Entity-Relationship Diagrams 

ER Diagrams for ACCIPP Database 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

21 

 

 

 

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

22 

 

 

 

 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

23 

 

Relations 

 



WinstonSoft  

Initial Design Report for ACCIPP 

24 

 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

25 

 

Entity Sets 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

26 

 

5.2 Data Descriptions 

The attributes and the related data types for each table constituting the database are as 

follows: 

The attributes containing a key icon  indicates the corresponding attribute or attribute 

group being the primary key of the related table. In the design, the primary key of the 

Connection table is set to AutoNumber data type, because as new connections are added 

to the database, they are assigned a number and this number is equal to a primary key 

value of one of the five tables each corresponding to a group of similar protocols. In 

addition to this, the primary key of the File table is also of AutoNumber data  type since 

each row stands for a distinct file. These files are pointed to by the Web_Page, 

Instant_Messaging, News, EMail and Unknown tables by means of foreign keys to store the 

files included in these five connection types. The following are the figures formed using MS 

Access 2007® only to visually illustrate the prototype database. However, the database 

system of the project is going to be implemented using MySQL (see Section 4.1.4).  

 

 

 

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

27 

 

 

 

 

 

 

 

 

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

28 

 

5.3 Entity Descriptions 

Connection: 

Connection entity is formed to store the necessary information to define a connection in a 

general manner.  No matter to which type of protocol it belongs, all types of connections 

are stored in this table. The description for each attribute of the Connection entity can be 

found below.  

connection_id: This attribute is used to define each connection uniquely.  Although 

connection id of the connection uniquely identifies each connection, system assigns an 

integer valued identifier to each connection to manage them easily. 

connection_date: It is the date that the connection is grasped from the network traffic. 

The value of the date attribute will be gathered from the system date and stored in 

Date/Time format in the database. 

start_time: It is the time that the program starts to work on the packets of the related 

connection. The value of this attribute will be taken from the Pcap file header if the 

program is working offline and from the system clock if the program is working online. The 

value is stored in Date/Time format in the database. 

end_time: It is the time that the program gets the last packet of the related connection 

either offline or online. If the program is working online, the value of this attribute will be 

gathered from the Pcap file header and from the system clock if the program is working 

online. The value is stored in Date/Time format in the database. 

destination_ip: This attribute contains the IP number of the destination network device 

that the packets of the corresponding connection arrived. It is stored in the database in 

Text format. 

source_ip: This attribute contains the IP number of the source network device where the 

packets of the corresponding connection are sent from. It is stored in the database in Text 

format. 



WinstonSoft  

Initial Design Report for ACCIPP 

29 

 

protocol_name: This attribute stores the name of the protocol that is detected by the 

program. It is used to define to which protocol class(Web_Page, Instant_Messaging, News, 

Email) table the related connection will be added to. It is stored in the database in Text 

format. 

comment:  This attribute is used for miscellaneous information about the connection. It is 

in Text format. 

 

Web_Page: 

If the detected connection is of type HTTP, then the connection will be added to this table 

with only three attributes. 

web_page_id: This attribute defines each Web_Page connection uniquely, therefore it is 

the primary key of this entity. It is stored in the database in Number format. This is also a 

foreign key to the Connections entity through the connection_id attribute. 

web_page_file_id: This attribute defines the files attached to the corresponding 

Web_Page. This is also a primary key as there may be more than one file attached to the 

same Web_Page entry. The contents of this file can be accessed through the file_id of the 

Files entity. This attribute is stored in Number format. 

web_page_text_id: This attribute defines the file that contains the textual content of the 

related Web_Page. The file itself can be accessed through the related file_id of the Files 

entity. This attribute is stored in Number format. 

 

Instant_Messaging: 

If the detected connection is of the types MSN, YMSG, JABBER, SIP, then the connection 

will be added to this table with four attributes. 

message_id: This attribute defines each Instant_Messaging entry uniquely, therefore it is a 

primary key of this entity. It is stored in the database in Number format. This is also a 

foreign key to the Connections entity through the connection_id attribute. 



WinstonSoft  

Initial Design Report for ACCIPP 

30 

 

attachment_id:  This attribute defines the files sent using the related instant messaging 

protocol. This is also a primary key as there may be more than one file sent with the 

current connection. The contents of this file can be accessed through the file_id of the Files 

entity. This attribute is stored in Number format. 

message_log_id: This attribute defines the file that contains the textual log of the related 

Instant_Messaging entry. The file itself can be accessed through the related file_id of the 

Files entity. This attribute is stored in Number format. 

protocol_name: Since there are multiple protocols related to this entity (MSN, YMSG, 

JABBER, SIP), this attribute defines the protocol name that the current connection is using. 

This attribute is stored in Text format. 

 

News: 

If the detected connection is of type NNTP, then the connection will be added to this table 

with five attributes. 

news_id: This attribute defines each News entry uniquely, therefore it is a primary key of 

this entity. It is stored in the database in Number format. This is also a foreign key to the 

Connections entity through the connection_id attribute. 

attached_file_id: This attribute defines the files attached to the corresponding News post. 

This is also a primary key as there may be more than one file attached to the same News 

entry. The contents of this file can be accessed through the file_id of the Files entity. This 

attribute is stored in Number format. 

news_text_id: This attribute defines the file that contains the textual content of the related 

News post. The file itself can be accessed through the related file_id of the Files entity. This 

attribute is stored in Number format. 

group_name:  This attribute is used to define the news group name that the news 

message is sent to. The value of this attribute is stored in the database in Text format.  



WinstonSoft  

Initial Design Report for ACCIPP 

31 

 

subject: This attribute is used to define the subject of the post which briefly describes what 

the post is about. It is stored in the database in Text format. 

 

EMail: 

If the detected connection is of type IMAP, POP3, SMTP, then the connection will be added 

to this table with ten attributes. 

email_id: This attribute defines each EMail entry uniquely, therefore it is a primary key of 

this entity. It is stored in the database in Number format. This is also a foreign key to the 

Connections entity through the connection_id attribute. 

attached_file_id: This attribute defines the files attached to the corresponding EMail. This 

is also a primary key as there may be more than one file attached to the same Email entry. 

The contents of this file can be accessed through the file_id of the Files entity. This attribute 

is stored in Number format. 

mail_text_id: This attribute defines the file that contains the textual content of the related 

EMail. The file itself can be accessed through the related file_id of the Files entity. This 

attribute is stored in Number format. 

mail_date: This attribute defines the date when the related Email is sent. It is saved in 

Date/Time format in the database. 

mail_to: This attribute defines the e-mail address where the corresponding EMail sent to. It 

is saved in the database in Text format. 

mail_from: This attribute defines the e-mail address where the corresponding EMail 

received from. It is saved in the database in Text format. 

cc: This attribute defines the Carbon Copy receivers of the related EMail entry. It is saved in 

the database in Text format. 

bcc: This attribute defines the Blind Carbon Copy receivers of the related EMail entry. It is 

saved in the database in Text format. 



WinstonSoft  

Initial Design Report for ACCIPP 

32 

 

subject: This attribute is used to define the subject of the EMail message which briefly 

describes what the mail is about. It is stored in the database in Text format.  

protocol_name: Since there are multiple protocols related to this entity (IMAP, POP3, 

SMTP), this attribute defines the protocol name that the current connection is using. This 

attribute is stored in Text format. 

 

Unknown: 

If the program cannot identify the protocol of a connection, it saves a Pcap file related to 

that connection in the disk. Any connection that cannot be identified, is added to this table 

in the format below. 

unknown_id: This attribute defines each Unknown connection entry uniquely, therefore it 

is a primary key of this entity. It is stored in the database in Number format. This is also a 

foreign key to the Connections entity through the connection_id attribute. 

unknown_Pcap_path: The program saves a Pcap file of the unidentified connection in the 

disk for later offline/online operation. The path of this Pcap file is stored in the database 

under this attribute. It is stored in the database in Text format. 

 

File: 

The files that are saved using the program is added to this table using the following 

format. Instead of embedding the files to the database directly, it is preferred to put the 

file_paths in the database so that the database does not itself allocate a large amount of 

disk space. Additionally, in cases such as a lately classification of an unknown connection 

does not enforce the database to move the related files from one place to another, 

speeding up the process. 

file_id: This attribute uniquely identifies a file that is saved using the program, therefore it 

is a primary key for this entity. It is stored in the database in an AutoNumber format.  



WinstonSoft  

Initial Design Report for ACCIPP 

33 

 

file_path: This attribute shows the path of the related file, which can be used to access the 

file on the disk. It is stored in the database in Text format. 

comment: This attribute includes additional information about the corresponding file such 

as the codec information, names of the programs that the file can be opened with etc.  

5.4 Creating ACCIPP Database 

CREATE DATABASE `accipp` /*!40100 DEFAULT CHARACTER SET latin1 */; 

 

/*CONNECTION*/ 

DROP TABLE IF EXISTS `accipp`.`connection`; 

CREATE TABLE  `accipp`.`connection` ( 

  `connection_id` int(10) unsigned NOT NULL auto_increment, 

  `connection_date` datetime NOT NULL, 

  `start_time` datetime NOT NULL, 

  `end_time` datetime NOT NULL, 

  `source_ip` varchar(20) NOT NULL, 

  `destination_ip` varchar(20) NOT NULL, 

  `protocol_name` varchar(10) NOT NULL, 

  `comment` varchar(50) NOT NULL, 

  PRIMARY KEY  USING BTREE (`connection_id`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*WEB_PAGE*/ 

DROP TABLE IF EXISTS `accipp`.`web_page`; 

CREATE TABLE  `accipp`.`web_page` ( 

  `web_page_id` int(10) unsigned NOT NULL auto_increment, 

  `web_page_file_id` int(10) unsigned NOT NULL, 

  `web_page_text_id` int(10) unsigned NOT NULL, 

  PRIMARY KEY  USING BTREE (`web_page_id`,`web_page_file_id`), 

  KEY `web_page_file_id` (`web_page_file_id`), 

  KEY `web_page_text_id` (`web_page_text_id`), 

  CONSTRAINT `web_page_text_id` FOREIGN KEY (`web_page_text_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `web_page_file_id` FOREIGN KEY (`web_page_file_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `web_page_id` FOREIGN KEY (`web_page_id`) REFERENCES 

`connection` (`connection_id`) ON DELETE CASCADE ON UPDATE CASCADE 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*INSTANT_MESSAGING*/ 

DROP TABLE IF EXISTS `accipp`.`instant_messaging`; 

CREATE TABLE  `accipp`.`instant_messaging` ( 

  `message_id` int(10) unsigned NOT NULL auto_increment, 



WinstonSoft  

Initial Design Report for ACCIPP 

34 

 

  `attachment_id` int(10) unsigned NOT NULL, 

  `message_log_id` int(10) unsigned NOT NULL, 

  `protocol_name` varchar(10) NOT NULL, 

  PRIMARY KEY  USING BTREE (`message_id`,`attachment_id`), 

  KEY `attachment_id` (`attachment_id`), 

  KEY `message_log_id` (`message_log_id`), 

  CONSTRAINT `message_log_id` FOREIGN KEY (`message_log_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `attachment_id` FOREIGN KEY (`attachment_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `message_id` FOREIGN KEY (`message_id`) REFERENCES 

`connection` (`connection_id`) ON DELETE CASCADE ON UPDATE CASCADE 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*NEWS*/ 

DROP TABLE IF EXISTS `accipp`.`news`; 

CREATE TABLE  `accipp`.`news` ( 

  `news_id` int(10) unsigned NOT NULL auto_increment, 

  `attached_id` int(10) unsigned NOT NULL, 

  `news_text_id` int(10) unsigned NOT NULL, 

  `subject` varchar(45) NOT NULL, 

  `group_name` varchar(45) NOT NULL, 

  PRIMARY KEY  USING BTREE (`news_id`,`attached_id`), 

  KEY `attached_id` (`attached_id`), 

  KEY `news_text_id` (`news_text_id`), 

  CONSTRAINT `news_text_id` FOREIGN KEY (`news_text_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `attached_id` FOREIGN KEY (`attached_id`) REFERENCES 

`file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `news_id` FOREIGN KEY (`news_id`) REFERENCES 

`connection` (`connection_id`) ON DELETE CASCADE ON UPDATE CASCADE 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*EMAIL*/ 

DROP TABLE IF EXISTS `accipp`.`email`; 

CREATE TABLE  `accipp`.`email` ( 

  `email_id` int(10) unsigned NOT NULL auto_increment, 

  `attached_file_id` int(10) unsigned NOT NULL, 

  `mail_text_id` int(10) unsigned NOT NULL, 

  `mail_date` datetime NOT NULL, 

  `mail_to` varchar(45) NOT NULL, 

  `mail_from` varchar(45) NOT NULL, 

  `cc` varchar(45) NOT NULL, 

  `bcc` varchar(45) NOT NULL, 

  `subject` varchar(45) NOT NULL, 

  `protocol_name` varchar(45) NOT NULL, 

  PRIMARY KEY  USING BTREE (`email_id`,`attached_file_id`), 



WinstonSoft  

Initial Design Report for ACCIPP 

35 

 

  KEY `mail_text_id` (`mail_text_id`), 

  KEY `attached_file_id` (`attached_file_id`), 

  CONSTRAINT `attached_file_id` FOREIGN KEY (`attached_file_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE, 

  CONSTRAINT `email_id` FOREIGN KEY (`email_id`) REFERENCES 

`connection` (`connection_id`) ON DELETE CASCADE ON UPDATE 

CASCADE, 

  CONSTRAINT `mail_text_id` FOREIGN KEY (`mail_text_id`) 

REFERENCES `file` (`file_id`) ON DELETE CASCADE ON UPDATE CASCADE 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*UNKNOWN*/ 

DROP TABLE IF EXISTS `accipp`.`unknown`; 

CREATE TABLE  `accipp`.`unknown` ( 

  `unknown_id` int(10) unsigned NOT NULL auto_increment, 

  `unknown_Pcap_path` varchar(100) NOT NULL, 

  PRIMARY KEY  (`unknown_id`), 

  CONSTRAINT `unknown_id` FOREIGN KEY (`unknown_id`) REFERENCES 

`connection` (`connection_id`) ON DELETE CASCADE ON UPDATE CASCADE 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

/*FILE*/ 

DROP TABLE IF EXISTS `accipp`.`file`; 

CREATE TABLE  `accipp`.`file` ( 

  `file_id` int(10) unsigned NOT NULL auto_increment, 

  `file_path` varchar(50) NOT NULL, 

  `comment` varchar(45) NOT NULL, 

  PRIMARY KEY  USING BTREE (`file_id`) 

) ENGINE=InnoDB DEFAULT CHARSET=latin1; 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

36 

 

The resultant database schema and the related relations are as follows: 

 

 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

37 

 

6. Architectural Design 

6.1 Structure Chart 

The following is the structure chart that represents the module hierarchy of ACCIPP. 



WinstonSoft  

Initial Design Report for ACCIPP 

38 

 

6.2 System Modules 

The ACCIPP program consists of three main modules that are Decoder, Auto-Sensing and 

Output modules. Through the user interface, the user selects an input source (a Pcap file or 

a network device) to process, and then gives the Start Capture command. After that, 

network packets begin to enter our program through the Decoder module, and data flows 

through the Decoder, Auto-Sensing and Output modules respectively. Together, these 

modules let the user view information about network connections on a system. These 

modules are going to be elaborated in the following sections. 

6.2.1 Decoder Module 

Decoder module is the base module of ACCIPP. After the user selects the input device and 

make the modules work by selecting „Start Capture‟, decoder module takes action and 

reads the packets from the input source by the Capturing Module. Afterwards, the 

captured packets goes into the Preprocessing Module where they are prepared for the 

Auto-sensing Module. There, they are processed by some specific operations that will be 

mentioned later on.  

This module does not contain any learning mechanism as Auto-sensing Module does. The 

data-flow is fairly straightforward. Even if this module seems to be very simple, it is a must 

for the further modules.  

Below the sub-modules of the Decoder Module is described: 

6.2.1.1 Capturing Module 

This module is responsible of capturing packets from the network. Packets can be obtained 

from a Pcap File by the Pcap File Reader or from a network device by the Network Device 

Reader. If the user chooses capturing packets from a Pcap file, offline process can be 

achieved (a Pcap File can be processed in the future thanks to Pcap File Reader) . Or if the 

user chooses capturing packets from a network device, real-time processed can be 

achieved. Namely, whenever a packet comes through a connection, Network Device 



WinstonSoft  

Initial Design Report for ACCIPP 

39 

 

Reader captures the real-time incoming packets and then send them to the Preprocessing 

Module. 

6.2.1.2 Preprocessing Module 

This module takes the captured packets and then applies a few operations on these 

packets. These operations are handled by some sub-modules which are Filtering Module, 

Reordering Module and Buffering Module.  

Captured packets are first go into the Filtering Module. Here, they are handled according 

to some filtering parameters. The packets coming from protocols other than TCP or UDP, 

are eliminated because ACCIPP does not try to recognize protocols which does not come 

from TCP or UDP. Besides, here  some checksum comparison are performed on the 

captured packets. If packets have invalid checksum values then they are eliminated too. In 

detail, before sending the packet, the sender calculates the sum of the bytes and then adds 

this information to the header. When the packet comes,  sum of the bytes of the packet is 

calculated one more time by our module and compare the checksum value in the header 

with the value it‟s found. If they are not same, then it means the packet is broken or 

incomplete. So the module discards the packet because there is no need to process on a 

broken packet.  After the operation of filtering is finished, the filtered packets are 

transmitted to the next module. 

When the filtered packets come into the Reordering Module, they are reordered 

according to their TCP sequence number. This number can be found in the headers. Since 

packets may come in an unordered way, Reordering Module should sort the packets to 

make them same as the original data stream.  For example; if the Filtering Module does 

not eliminate the broken packets and if a packet does not include the TCP sequence 

number by some reason, this module wouldn‟t be able to reorder these packets, and if the 

packets cannot be reordered properly, then these packets cannot be processed correctly 

by the Auto-Sensing Module. After the packets leave this module, they are redirected to 

the next module. 



WinstonSoft  

Initial Design Report for ACCIPP 

40 

 

After the packets are reordered they come into the Buffering Module. In this module, 

packets are stored in buffers. They can be placed in a buffer one by one or in a buffer of 

ten packets, or differently. The number of packets in a buffer is determined as necessary. 

For ex; if a packet cannot be processed in real-time, it should stay in a buffer until it can go 

into the protocol recognizers. Besides, for line oriented protocols such as POP3, the 

packets that form a single line should stay in a buffer until the line is complete. After the 

this Module finishes it work then these preprocessed packets are sent to the Auto-Sensing 

Module. So generally, there is nothing left to do in the Decoder Module.  

6.2.2 Auto-Sensing Module 

Auto Sensing module is the part that does the actual protocol recognition. Protocol 

recognition is done in three steps. The packet sequences coming from the Decoder 

module first enter the Protocol Recognizers, and then results coming from the Protocol 

Recognizers are collected and directed to the Protocol Decision Mechanism, where the 

final decision about the protocol type of a connection is made. Finally, the collected data 

enters the Feedback mechanism that updates Protocol Recognizer modules with the 

newly collected information. The following sections contain detailed descriptions of the 

sub-modules in the Auto-Sensing Module. 

6.2.2.1 Protocol Recognizers 

Protocol Recognizers is the common name given to a set of modules that are each 

responsible for recognizing one specific protocol. These modules all share a common 

interface and communicate with the top level auto-sensing module through this common 

interface. However, they have no communication between each other. User can 

enable/disable a protocol recognizer as he/she wishes, yet this does not affect other 

recognizers as they are not aware of each other. Consequently, protocol recognizer 

modules are planned to be implemented as “plug-ins” that users can add/remove 

depending on their needs.  



WinstonSoft  

Initial Design Report for ACCIPP 

41 

 

Although a protocol recognizer is designed to be stand-alone, there might be some 

exceptions to this schema where a protocol recognizer may depend on another one. For 

instance; most instant messaging applications use HTTP for file transfers, and this makes 

the instant messaging recognizer module depend on the HTTP recognizer module.  

A protocol recognizer takes a packet sequence as input and runs the pattern matcher (that 

will probably be a derivative of Support Vector Machines and/or Hidden Markov Model) 

against the contents of this packet sequence. The pattern matcher generates a value, called 

Match Value, which indicates the match percentage of packet sequence with the protocol 

pattern. The protocol recognizer is also responsible for extracting some protocol-specific 

information, called Match Data, from the contents of packet sequence. Finally the protocol 

recognizer outputs this match value and data pair to the Protocol Decision Mechanism. 

6.2.2.2 Protocol Decision Mechanism 

The Protocol Decision Mechanism is responsible for collecting Match Value and Match 

Data pairs from the Protocol Recognizers and choosing the protocol that has the highest 

match with the packet sequence contents. For the time being, The Protocol Decision 

Mechanism simply picks the protocol with the highest match value that exceeds a pre-

defined threshold value and labels the connection as this protocol. This threshold value 

helps eliminating spurious matches, since it ensures that match values that are too small 

will not be taken into consideration. 

Protocol Recognizer modules are designed to run concurrently (presumably in separate 

threads/processes) thus, Protocol Decision Mechanism must wait until all Protocol 

Recognizers to complete their work until a decision can be made. This makes 

implementing some sort of signaling mechanism between processes necessary.  

After the Protocol Recognizer collects output from all Protocol Recognizers and chooses 

the one with the highest match value it redirects this output to two different modules, 

namely Feedback module and the Summarizer. 



WinstonSoft  

Initial Design Report for ACCIPP 

42 

 
6.2.2.3 Feedback Mechanism 

The Feedback mechanism contributes to the automated learning part of the Protocol 

Recognizer modules. After the Decision Module chooses the protocol with the highest 

match value, Feedback mechanism updates the protocol pattern in the corresponding 

Protocol Recognizer Module. If the packet contents cannot be recognized by any of the 

available protocol recognizers, the Decision Mechanism labels the connection as 

“Unknown” and this connection bypasses the Feedback Mechanism. This ensures that 

protocol patterns are not updated with wrong or defective information.  

6.2.3 Output Modules 

After the packet sequences are processed in Auto-Sensing module, valuable information 

along with the matching protocol names is extracted from these packets. Output modules 

are responsible for producing human-readable output from the information coming from 

Auto-Sensing modules. Since the program is able to present it output in various manners, 

there is a separate sub-module for each output format. Currently there are three output 

modules, namely Summarizer module, Database module, and the User Interface 

module. 

6.2.3.1 Summarizer Module 

This module takes the data from the Auto-Sensing Module and produces a summary that 

is appropriate for the recognized protocol out of this data. For instance; the Summarizer 

module will generate a report that contains the mail subject, sender and recipient names 

and mail body for a recognized POP3 connection. This report also includes match 

percentages that come from other protocol recognizers.  

For an unknown connection; if the program can extract any information from the packet 

contents, the report will include them along with the match percentages.  

Summarizer Module is also in relation with the Database module, so that the user can 

store and retrieve summaries in a central database. 



WinstonSoft  

Initial Design Report for ACCIPP 

43 

 
6.2.3.2 Database Module 

The Database module is responsible for performing all database operations requested by 

the user or other components the system. The database module is used for reading, 

adding, updating and deleting records in the central database.  

When the user chooses to save a summary (for later retrieval) or wishes to see a past 

summary, the Summarizer module accesses the Database through this module. 

Additionally, the Database module is used to generate statistical information out of 

database contents. The exact structure of database can be found in Data Design section.  

6.2.3.3 User Interface Module 

The user interface module is responsible for handling all interactions with the user and the 

rest of the system. The user uses all functionality within other modules through the user 

interface. The primary functions of this module are; presenting the user the results of 

protocol recognition process, visualizing statistical information in charts, and letting the 

user give commands to the program. 

  



WinstonSoft  

Initial Design Report for ACCIPP 

44 

 

6.3 Data Flow Diagrams 

6.3.1 Level 0 DFD of Decoder Module 

 

6.3.2 Level 0 DFD of Auto-Sensing Module 

 

 
 

6.3.3 Level 0 DFD of ACCIPP 

 

 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

45 

 

6.3.4 Level 1 DFD of Decoder Module 

 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

46 

 

6.3.5 Level 1 DFD of Auto-Sensing Module  



WinstonSoft  

Initial Design Report for ACCIPP 

47 

 

6.3.6 Level 1 DFD of ACCIPP 

 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

48 

 

6.3.7 Level 2 DFD of ACCIPP 

 
 
 
 
 
 
 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

49 

 

6.4 Data Dictionary 

 

Name:    Offline Incoming Packets 

Aliases:   Pcap File 

Where & How used: Capturing (Input) 

Description:  These are the packets that come from a Pcap file that was generated 

beforehand. These packets are processed in offline mode. 

 

Name:    Real-time Incoming Packets 

Aliases:   Network Device Packets 

Where & How used: Capturing (Input) 

Description:  These are the packets that come from the network device instantaneously. 

These packets are processed in real-time mode. 

 

Name:    Captured Packets 

Aliases:   None 

Where & How used: Capturing (Output) 

    Filter (Input) 

Description:  After real time incoming packets and offline incoming packets enter the 

Capturing module, they become Captured packets, which go into the Filter 

module afterwards. 

 

Name:    Filtered Packets 

Aliases:   None 

Where & How used: Filter (Output) 

    Reordering (Input) 



WinstonSoft  

Initial Design Report for ACCIPP 

50 

 

Description:  Captured packets that enter the Filter module and they are checked against 

some filtering parameters. For example ACCIPP only deals with TCP and UDP 

packets, therefore packets coming from other protocols like ICMP are 

ignored. The filter module also performs some checksum comparison on the 

captured packets, and discards packets with an invalid checksum value. 

Packets that are processed in the Filter module enter the Reordering module 

as Filtered Packets. 

 

Name:    Reordered Packets 

Aliases:   None 

Where & How used: Reordering (Output) 

    Buffering (Input) 

Description:  Network packets may not necessarily be transmitted in the order they are 

meant to be received. So they need to be reordered in order to reassemble 

the original data stream. After filtered packets arrive at the reordering 

module, they are sorted according to their TCP sequence number that is 

stored in packet headers. After packets are processed in the reordering 

module, they are delivered to the Buffering module. 

 

Name:    Preprocessed Packets 

Aliases:   Buffered Chunk 

Where & How used: Buffering (Output) 

Protocol Recognizers (HTTP Recognizer, POP3 Recognizer, 

SMTP Recognizer, NNTP Recognizer, IMAP Recognizer, MSN 

Recognizer, YMSG Recognizer, SIP Recognizer, JABBER 

Recognizer) (Input) 



WinstonSoft  

Initial Design Report for ACCIPP 

51 

 

Description:  After packets are filtered and reordered, they enter the buffering module. 

Here packets are stored consequently in buffers. If a packet cannot be 

processed real-time, it needs to be buffered. So the packet stays in this buffer 

until it gets processed by the protocol recognizers. Preprocessed packets that 

leave the buffering module are finished with the decoder part of the program 

and enter protocol recognizers such as HTTP and POP3 concurrently where 

they will be checked against protocol patterns. 

  

Name:    Match Value and Data 

Aliases:   None 

Where & How used: Protocol Recognizers (HTTP Recognizer, POP3 Recognizer, 

SMTP Recognizer, NNTP Recognizer, IMAP Recognizer, MSN 

Recognizer, YMSG Recognizer, SIP Recognizer, JABBER 

Recognizer) (Output)  

    Protocol Decision Mechanism (Input)  

Description:  After packets become processed in protocol recognizers, a match percentage 

value and protocol specific data is produced in each protocol recognizer. This 

match percentage shows how much the packet contents match with the 

protocol pattern, and data contains human-readable information such as mail 

body for POP3 protocol. Then these match values and data enter Protocol 

Decision Mechanism. 

 

Name:    Identified Connection 

Aliases:   Processed Connection 

Where & How used: Protocol Decision Mechanism (Output) 

    Summarizer (Input) 

    Feedback (Input) 



WinstonSoft  

Initial Design Report for ACCIPP 

52 

 

Description: All match values are gathered by the protocol decision mechanism to decide 

which protocol the connection resembles most. If the highest match value 

exceeds a threshold value, then the connection becomes Identified 

Connection, and this connection information goes into Summarizer to 

prepare a connection summary. Besides, the connection data enters feedback 

module so that pattern recognizers are able to update themselves by using 

this data. 

 

Name:    Unknown Connection 

Aliases:   Processed Connection 

Where & How used: Protocol Decision Mechanism (Output) 

    Summarizer (Input) 

Description: All match values are gathered by the protocol decision mechanism to decide 

which protocol the connection resembles most. If the highest match value 

does not exceed a threshold value, then the connection becomes Unknown 

Connection and the resolved connection information goes into Summarizer 

to prepare a connection summary.  

 

Name:    Updated Recognizer Data 

Aliases:   Updated Protocol Recognizer  

Where & How used: Feedback (Output) 

Description: For Identified Connections, the connection data enters the feedback 

mechanism so that the associated protocol recognizer is able to update itself 

with the new information. The exact method to form the updated recognizer 

data has not been decided yet.  

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

53 

 

Name:    Saved Data 

Aliases:   Summary Info 

Where & How used: Summarizer (Output) 

    Database (Input) 

Description: The summary prepared in the summarizer is stored into the Database. When 

the user wishes to save the summary, it is transformed into an appropriate 

format that is compatible with the database backend. This information can 

later be retrieved from the database and the summary can be reproduced 

using the retrieved data. 

 

Name:    Requested Data 

Aliases:   Old Summary Info 

Where & How used: Database (Output) 

    Summarizer (Input) 

Description: The user may want to retrieve an old summary from the database. In that 

situation the data needs to be transferred from the database backend to the 

summarizer module. This data is called requested data. By using this data, an 

identical copy of the old summary can be reconstructed. 

 

Name:    Summary Results 

Aliases:   Output 

Where & How used: Summarizer (Output) 

Description: The data that is formed in an appropriate format in the summarizer module is 

displayed to the user as summary results. These results also contain protocol 

specific information coming from the protocol recognizers and match values 

of the protocols. 

  



WinstonSoft  

Initial Design Report for ACCIPP 

54 

 

7. System Design 

Use case, class, sequence and activity diagrams can be found in this section. 

7.1 Use Cases 

In this section, use case diagrams and scenarios can be found. 

7.1.1 Use Case Diagrams 

Menu and end-user use case diagrams are shown below. 

7.1.1.1 Menu Use Case Diagram 

  



WinstonSoft  

Initial Design Report for ACCIPP 

55 

 
7.1.1.2 Use Case Diagram for the end-user  

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

56 

 

7.1.2 Use Case Scenarios 

Use case scenarios for the use case diagrams above are situated below. 
 

7.1.2.1 Scenario for Use Case Diagram 1 

 

Open Pcap File: The program can be used in either offline or real-time mode. In offline 

mode, all the network packets are captured stored on a secondary storage device 

beforehand. This command allows the user to select a previously generated Pcap file for 

offline processing. After the user clicks this menu item, a standard open file dialog is 

displayed where the user can either type the name of a file or browse through the file 

system and choose it.  

Open Network Device: This command is used to enter real-time mode. In real-time mode, 

packets are not read from a Pcap file but they are captured from a network device. Since 

they are not yet stored anywhere, they must be processed on-the-fly. After this menu item 

is clicked, a dialog box containing the list of available network devices is presented to the 

user. The user selects the network device he/she wants to examine and then closes the 

dialog. 

Save Pcap File: This menu command lets the user to choose a file on his/her disk to store 

the captured packets in Pcap format. The user may want to do this in two scenarios: The 

pattern recognition engine might not be completely trained and therefore does not work 

at full capacity yet. The user chooses to save the packets as a Pcap file, so that he/she can 

analyze them in the future when the pattern recognition engine performs relatively better. 

Another case is that the user may wish to examine the contents of captured packets with 

another Pcap compatible application, for instance WireShark. Therefore, apart from being 

an intelligent protocol identification application, ACCIPP can also be used as a general 

purpose packet sniffer. 

Start Capture: This command allows the user to begin processing packets. Depending on 

the input source selected previously, the program begins reading packets from either a 



WinstonSoft  

Initial Design Report for ACCIPP 

57 

 

Pcap file or a network device. If the user has not selected an input source yet, this 

command has no effect. As soon as new packets begin to arrive, they are redirected to the 

pattern recognition engine and gradually, connections begin to appear on the Connection 

List. 

Stop Capture: This command allows the user to stop processing packets. Even if new 

packets arrive from the network device or there are further packets available in the Pcap 

file, they will be discarded. Since those packets do not enter the pattern recognition 

engine, they won‟t have any effect on the identifications results or the summary. 

Clear All: This command allows the user to clear all the entries in the connection list pane 

along with all summaries and identification data (such as match percentages and pattern 

recognizer status) associated with them. When new packets arrive, they will be treated as 

new connections and might be identified differently since the previous states of the 

pattern recognizer is no longer available. 

Copy to Clipboard: This command allows the user to copy the contents of Short Summary 

Pane to the clipboard so that the user then may paste and use this information in other 

applications. 

Preferences: This command allows the user to change or view various settings of the 

program. Such settings may include, but are not limited to: Appearance of user interface 

elements (fonts, colors etc.), Whether or not the program starts upon system startup, 

Configuration parameters for pattern recognition engine, and Enabling or Disabling some 

protocol handlers (presumably for performance reasons). 

View Menu: This menu includes commands to toggle visibility of some user interface 

elements like Toolbar, Status bar and Summary Pane. 

Database Query: This command allows the user to enter a query in order to see 

information that is stored in the database. The database includes valuable information 

captured from the protocol connections. For example; the database includes all received 

mail through POP3 sessions. The user may want to query the database for listing the mails 



WinstonSoft  

Initial Design Report for ACCIPP 

58 

 

that are received in a specific time interval, or the user may want to see all connection 

events from a certain IP address, and so on. Database query command provides a link 

between the user and the data captured through the capture engine. 

Statistics: This command allows the user to generate statistical information from the 

database. This information gives an overall grasp about the protocol connections to the 

user. For example, the user may want to see which protocol is used most from a specific IP 

address, how much bandwidth is used by protocols etc. The Statistics command is in close 

relation with the Database Query mentioned above. This gives the user the chance to form 

some highly customized statistical data from the database.  

Window Menu: This menu includes commands for changing the positions and sizes of the 

sub-windows. For example, when more than one Summary Window is visible, the user may 

want to tile these windows in order to see all of them at once.  

Help Menu: This menu allows the user to access program documentation that helps the 

user get used to the program.  

7.1.2.2 Scenario for Use Case Diagram 2 

 

View Identification Results:   

The user can view details of connections such as source and destination IP addresses, 

recognized protocol of each connection, connection start and end time, etc. More 

importantly, if the process of protocol recognition is finished, he/she can see the resolved 

transferred data through addresses regardless of the port information. This process 

includes two major subroutines that are pattern recognition and capturing packets. For 

capturing packets input must be selected by the user. The input can be a Pcap file (for 

offline application) or a network device (for real-time application). If a problem occurs in 

these subroutines or if the user does not select an input and does not attempt to catch 

packets then it is impossible to view any identification results. 

 



WinstonSoft  

Initial Design Report for ACCIPP 

59 

 

Save Summary to Database: 

The user can save summaries, namely details of the connection and transferred data that 

are shown in the summary window. This data is stored in the database. This process 

includes the preparation of the summary. As it is obvious, the user cannot save a summary 

before it is prepared. The user may want to do this action in several scenarios. For instance; 

during the work of the program many connections occur and as time passes the number of 

connections increases rapidly. The user may not be able to look at all summaries in a small 

amount of time. So he/she may save some of them for analyzing later on. Another scenario 

for this action is that the user may want to view statistical information and this action is 

probably performed with the stored data. For example; he/she may want to compare who 

uses which protocol most and etc. 

View Past Summaries: 

The user can view past summaries. Whenever the user wants to retrieve a summary from 

the database, reading summary from the database must be performed. The scenarios for 

this action presumably show similarities with the above action. As it is mentioned above, 

the user may be obliged to view some summaries in the future because of limited time. 

Besides, he/she may want to work over an old summary, so this action would satisfy the 

user‟s will.  

  



WinstonSoft  

Initial Design Report for ACCIPP 

60 

 

7.2 Class Diagrams 

Class diagrams for the Decoder and Output Modules and the related descriptions can be 

seen below. 

7.2.1 Decoder Module 

 
 
 
 



WinstonSoft  

Initial Design Report for ACCIPP 

61 

 

 

 PacketReader is an abstract class that is responsible for reading packets from an 

input source. It includes methods for reading either a single packet or multiple 

packets at once. The pendingPacketCount member returns the unread packet count 

waiting at the input source. 

 PcapPacketReader is derived from the PacketReader class and implements 

functionality to read packets from a Pcap file. 

 NetworkPacketReader extends the base PacketReader class, and includes functions 

to read packets from a network device. 

 Packet class is the data structure that is used to define a single packet. The member 

variables of this class are filled by the object that reads the packet from the input 

source. 

 PacketSequence is the collection class for packets that have the same source and 

destination addresses and same ports. It  includes methods that provide random 

access to packets stored in the collection. This class is also responsible for dumping 

its contents to a Pcap file. 

 PacketFilter is the class that is responsible for eliminating packets that are not TCP 

or UDP, and the ones with invalid checksum values. 

 OrderedPackets extends the PacketSequence class to add functionality that orders 

the packets in the sequence based on their sequence number.  

 PacketBuffer implements a simple FIFO queue mechanism that is able to store a 

predefined number of packets in a queue data structure. 

 
 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

62 

 

7.2.2 Output Module 

 
 
 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

63 

 

 Summarizer class generates user-friendly summary of the connection data received 

from the AutoSensing mechanism. When it receives a new connection, it calls 

Summary class. 

 Summary class is actually a data structure for storing the summaries generated by 

the Summarizer class.  It calls ChartGenerator class only if requested by the user and  

calls the Database class at all cases. 

 ChartGenerator generates bar, column and pie charts for visual interpretation of 

summaries formed from the connection data received by the Summarizer class.  

 Database class establishes connection with the ACCIPP database and creates 

queries in order to retrieve data from, insert data into and update fields of the 

database. Its methods use these queries to add all connection data received and 

eventually calls the EMail, WebPage, InstantMessaging, News and Unknown classes 

for further classification of the connection data. 

 EMail class is a type of a Connection class and is used for storing summaries related 

to E-mail protocols such as POP3, IMAP and SMTP. 

 WebPage class is a type of a Connection class and is used for storing summaries 

related to Web Page protocols such as HTTP. 

 InstantMessaging class is a type of a Connection class and is used for storing 

summaries related to Instant Messaging protocols such as MSN, YMSG and JABBER.  

 News class is a type of a Connection class and is used for storing summaries related 

to News protocols such as NNTP. 

 Unknown class is a type of a Connection class and is used for storing summaries 

that cannot be classified into one of the four classes, i.e EMail, WebPage, 

InstantMessaging and News. As the AutoSensing feedback mechanism operates, 

instances of the Unknown class will eventually be deleted from the Unknown class 

and added to one of the four other classes mentioned above. 



WinstonSoft  

Initial Design Report for ACCIPP 

64 

 

 File class is called whenever the need  for storing the attached files and/or contents 

of the EMail, WebPage, InstantMessaging and News classes arises. 

7.3 Sequence Diagrams 

Sequence diagrams for Output and Decoder Mechanisms are below. 

7.3.1 Sequence Diagrams for Output 

 

 
 
 

  



WinstonSoft  

Initial Design Report for ACCIPP 

65 

 

7.3.2 Sequence Diagrams for Decoder 

  



WinstonSoft  

Initial Design Report for ACCIPP 

66 

 

7.4 Activity Diagrams 

Activity diagrams for Decoder and Auto-Sensing Mechanisms can be found below. 

7.4.1 Activity Diagram of Decoder 

 



WinstonSoft  

Initial Design Report for ACCIPP 

67 

 

7.4.2  Activity Diagram of Auto-Sensing 

 



WinstonSoft  

Initial Design Report for ACCIPP 

68 

 

8. Testing Strategy and Procedures 

As Edsger DIJKSTRA states, "Program testing can be used to show the presence of bugs, 

but never to show their absence!". Keeping this in mind, in order to have a program as free 

of bugs as possible, it is a must to have a good testing plan. Testing is the vital tool for 

quality assurance, validation and verification procedures. By validation it is meant if what 

has been specified is what the user actually wanted whereas by verification it is meant if 

the software is conformed and consistent with an associated specification. The testing 

before development of the software consists of deciding upon a testing strategy and 

future testing procedures. Although it is practically impossible to prove that no more errors 

exist, the more errors will be found as more tests are conducted and the rate of finding 

new errors will decrease as the testing process continues, to ensure the quality of the 

developed software in terms of correctness, reliability and efficiency, testing plan and 

procedures have been developed. 

8.1 Testing Strategy 

When designing test cases not regarding the database part, white box point of view has 

been taken since the tester, actually being the team members, has access to the internal 

data structures, code and algorithms.  Thus, although ideally meaning to test every branch 

in the code with every combination of input values, it is planned to do a reasonable 

amount of testing while trying to cover a meaningful representation of the complete 

picture. On the other hand when designing test cases regarding the database parts grey 

box testing will be used since the tester has control over the input, inspects the value in a 

MySQL database, and the output value, and then compares all three (the input, mysql 

value, and output), to determine if the data got corrupt on the database insertion or 

retrieval. 



WinstonSoft  

Initial Design Report for ACCIPP 

69 

 

Since ACCIPP has different layers and modules, testing phase should be conducted in a 

bottom-up  manner as the project is  concerned as a whole. However, testing each module 

in each layer separately requires a different testing strategy, i.e. top-down testing. 

 

Figure : Testing Strategy of ACCIPP 

 



WinstonSoft  

Initial Design Report for ACCIPP 

70 

 

8.2 Testing Procedure 

The following procedures are applied in accordance with the testing strategy.  

8.2.1 Unit Testing 

In unit testing, minimal software component, i.e. module, is tested by white-box testing to 

verify that the detailed design for the module has been correctly implemented. This way, 

since the internal coding structure is visible, the tester is able to optimize the code and 

decide upon which type of input is more helpful in testing the application effectively. As 

each module or a sub-module is developed the unit testing will be carried out. Usually the 

member who developed the specified module or sub-module is in charge. However as 

being a software developer group, everybody is an end-tester to each module or sub-

module developed by the other group members. 

8.2.2 Integration Testing 

Integration tests are different from unit tests in that it includes the testing of flow of 

operations, whole-part structure during lifetime and appropriate delegation and cascading 

behavior using infrastructure conditions and failure scenarios. The general aim of this type 

of testing is to determine if simultaneously running modules function together correctly.  

9. Syntax Specification 

Projects are not daily, simple work. So any software project should be coded properly. The 

word proper does not only stand for working good but also easy to read and understand, 

add to, maintain and debug. 

There may be cases where one project member may stop developing his/her part and 

decide to return to it several weeks later or hand development over to another member. In 



WinstonSoft  

Initial Design Report for ACCIPP 

71 

 

these cases both that member and the other developers will want to be able to understand 

the code. 

As a result, after consulting with all team members and compromising and incorporating 

elements of everyone‟s style a group of coding standards have been decided upon. These 

standards help the readability and maintainability of the code by basically enforcing 

syntactical constraints and forbidding the use of complex language functions/construct 

that are quicker to write but affect the mentioned factors. 

Consequently, with the help of the CVS and the following syntax specifications, these aims 

are planned to be achieved.  

9.1 Naming Classes  

All classes will have names beginning with capitalized letters, and the classes with names 

containing more than one word will have names where each word‟s first letter will be 

capitalized. Some example class names are as follows: “News”, “NewsProtocol”.  

9.2 Naming Functions 

The functions will be named so that each function name starts with a lower-case letter, 

until a new word starts. Each new word in the variable name, starts with a upper-case letter. 

For example “getConnectionId()” is suitable for a function name.  

9.3 Naming Variables 

Appropriate choices for variable names are seen as the keystone for good style. Poorly-

named variables make code harder to read and understand. As a result, all variables begin 

with a lower-cased word, and if consisting of multiple words, the rest is capitalized. Some 

variable examples are: “protocolName”, “comment”. 



WinstonSoft  

Initial Design Report for ACCIPP 

72 

 

9.4 Comment Conventions 

Commenting is also a vital issue considering the understandability of the code. Since each 

C++ class is defined in separate files, detailed information about each class is included at 

the beginning of each file in the following format: 

/********************************************************************************** 

File Name: 

Author: 

Date/Time: (Date - DD/MM/YYYY , Time - HH:MM:SS) 

Modified By: 

Modified At: (Date - DD/MM/YYYY , Time - HH:MM:SS) 

Description: 

**********************************************************************************/ 

 

In addition to this, end of line comments which describe the code on that line only are 

written in accordance with the following convention: [2] 

xIncrement *= -1;   // change horizontal direction  

On the other hand, line comments that describe the purpose of a number of lines of code 

are written in accordance with the following convention: [2] 

 

      // Move the point in the current direction 

      y += yIncrement; 

      x += xIncrement; 

9.5 MySQL Conventions 

ACCIPP database and the related queries will be coded using MySQL, so some simple rules 

for MySQL conventions have also been decided upon. Basically, these rules are:  

1. Avoid keywords in field names at all costs which will probably simplify the queries 

and save rework later. 



WinstonSoft  

Initial Design Report for ACCIPP 

73 

 

2. Use case sensitivity in MySQL statements where key words are always capitalized 

and non-key words are cased as appropriate to the field names. 

3. Using stored queries and procedures wherever possible since they are designed for 

optimal use and will help us save time. 

4. Field names consisting of a single word are lower-cased and the ones with multiple 

words are also lower-cased with the words other than the first word being 

capitalized. 

10. Project Schedule 

Gantt chart is used to visualize the schedule of ACCIPP including only the first term of the 

project. 

10.1 Gantt Chart 

The Gantt chart of the project can be found in Appendix, 11.1. 

  



WinstonSoft  

Initial Design Report for ACCIPP 

74 

 

11. Appendix 

11.1 Gantt Chart 



WinstonSoft  

Initial Design Report for ACCIPP 

75 

 

 



WinstonSoft  

Initial Design Report for ACCIPP 

76 

 

  



WinstonSoft  

Initial Design Report for ACCIPP 

77 

 

12. References 

[1]    Dreger H., Feldman A., et.al,   “Dynamic Application-Layer Protocol Analysis for 

Network Intrusion Detection”  

[2] http://virtual.parkland.edu/sbadman/00000007Fall/SuperSymplifiedCSyntaxSpecification.htm  


