

INITIAL DESIGN REPORT

 DECEMBER

 2008

BUGRA OKTAY

GIZEM KILIÇ

GÜVEN ISCAN

ÖZKAN AKMAN

Table of Contents

1. INTRODUCTION

1.1 Purpose of the Document
1.2 Scope of the Document

2. PROJECT DESCRIPTION

2.1 Detailed Problem Definition and Project Features
2.1 Design Constraints and Limitations
2.3 Design Goals and Objectives

3. HARDWARE AND SOFTWARE REQUIREMENTS

3.1 Hardware Choices

3.2 Software Choices

4. ARCHITECTURAL OVERVIEW AND INTERFACE DESIGN

4.1 Architectural Overview

5. DETAILED DESIGN

5.1 Data Flow Diagrams

5.2 Use Case Diagrams

5.3 Sequence Diagram

6.CONCLUSION

1. INTRODUCTION

1.1 Purpose of the Document

The main purpose of this document is supplying an initial design to our project.

This document is prepared to show the design process in the project. These processes are

not the certain processes, they can be changed, but the main lines of the project will take

part in this report.

The final processes will be shown in our final report.

1.2 Scope of the Document

The document comprises of our hardware and software requirements, environment, user

interfaces, architectural design, project procedures, UML modelings(diagrams), development

schedule and planned future works.

The aim of the diagrams are to visualize the details of the project.

2. PROJECT DESCRIPTION
Our project is to design and implement a device to control a patient’s health situation. In the

project, some sensors will be used to reach the values of the patient.

2.1 Detailed Problem Definition and Project Features

In the project, the patient will carry some sensors on his body, and the data came from the

sensors will be transferred via bluetooth. After transferring the data, they will be sent to

internet by using GPRS. We are going to create a small database to know the patient’s health

situation.

The features to be provided;

1. Object-oriented programming

2. Data transfer

3. Database

4. Simple, easily understandable user interface

2.2 Design Constraints and Limitations

We are preparing this project for the project of our department. So, the basic limitation is

time. The final date is June, 2009 and from now, we have just six months. The only job we

must do is not this project, we have some other jobs, so the time is really a limited time for

this project. Besides the final deadline, we have so much intermediate deadlines, and these

are taking so much time too.

We have some hard times because we can not find any sensor to get data. We are still trying

to find but we think, if we can not fint any sensor to use, we will give the data to the device

ourselves as input. Searching for sensors really took so much time.

The security is the other main constraint. We will use encryption to supply the security. We

will discuss this in the future steps of the project.

Performance is the other constraint. Because of the project’s main issue is health, the result

of a little latence of transfer of data can create big problems. So, the project should show a

great performance.

2.3 Design Goals and Objectives

USABILITY: The device should be easily usable by everyone. Someone who don’t know so

much about computer can use the program, because anyone can be a patient and he should

be watched. We can not set a computer knowledge requirement for this kind of job.

RELIABILITY: This is a key concern for a project. There shouldn’t be any bugs. The program

should not be killed by the buggy codes.

SECURITY: Because of the online usage of the program, it should be secure. During the usage

of the program, it should not be affected by the threads or anything else.

PORTABILITY: The project will be used in Windows operating system because of its more

common usage.

3. HARDWARE AND SOFTWARE REQUIREMENTS

3.1 Hardware Choices

PIC

In our project, we will study with an embedded system, so we will need a pic. We will get a

PIC from our department, which is PIC18F252.

This pic satisfies our needs with its 28 pins, 32K Program Memory, 1536 bytes of Data
Memory (RAM), 256 bytes of EEPROM Data Memory and embedded analogto-
digital converter.

3.2 Software Choices

As mentioned earlier, the project has three main parts. In the first part, we deal with the

sensors and their connection with the pic board. The second part’s main concern is the

mobile applications and data transfer via Bluetooth between the source device containing

the sensors and the receiver device (most probably a mobile phone) which would publish

the data. And this brings us to the third and the final part which is based on this action of

publishing data over the web for the ones interested with this data. For all of these phases of

the project, not despising the hardware side’s weight, we would need to use some software

as well as we develop some software.

3.2.1 Phase One: Sensors and the Pic

In the first part of the project, most of the time, we would be dealing with maintaining the

connection and obtaining the flow of data between the output ports of the different sensors

that we would use and the microcontroller that has a Bluetooth transceiver on it.

To be able to work on data the sensors give, without no doubt, we would first need to learn

the way which each and every one of the sensors output the data. After having the

connection between the output ports of the sensors and the analog or digital ports of the

microcontroller, we would pack the data collected over the ports and push them to the

Bluetooth device connected.

The important thing is, all through these parts of work on the microcontroller we would

need some language and some software to communicate with it and have absolute control

over it. We can use PIC C, PIC Basic or PIC Assembly as a language and a proper compiler to

be able to obtain the hex files that will tell the microcontroller what to do in a way that it

would understand. Apart from those, we may also need simulators and debuggers to detect

the errors, make tests easier and in a simultaneous way.

We are planning to code in PIC C and PIC Assembly languages when needed.

An assembly language is a low-level language for programming computers. It implements a

symbolic representation of the numeric machine codes and other constants needed to

program a particular CPU architecture. This representation is usually defined by the

hardware manufacturer, and is based on abbreviations (called mnemonics) that help the

programmer remember individual instructions, registers, etc. As an appropriate example, PIC

Assembly language is specific to Programmable Interface Controller architecture.

The most popular development tool for PIC Programming is MPLAB IDE by Microchip.

MPLAB Integrated Development Environment (IDE) is a free, integrated gcc-based toolset for

the development of embedded applications employing Microchip's PIC and

dsPIC microcontrollers. The MPLAB IDE runs as a 32-bit application on Microsoft Windows,

and includes several free software components for application development, hardware

http://en.wikipedia.org/wiki/Low-level_language
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Mnemonic#Assembly_mnemonics
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Microchip_Technology
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microsoft_Windows

simulation and debugging. MPLAB also serves as a single, unified graphical user interface for

additional Microchip and third party software and hardware development tools.

Both Assembly and C programming languages can be used with MPLAB. Others may be

supported through the use of third party programs. Support for MPLAB and tutorials can be

found easily on the web. However, MPLAB does not support Linux, Unix, or Macintosh based

operating systems.

There are also some open source development tools. The following are available for the PIC

family under the GPL or other free software or open sources licenses:

FreeRTOS is a real-time operating system for embedded devices, being ported to

several microcontrollers. It is distributed under the GPL with an optional exception. The

exception permits users' proprietary code to remain closed source while maintaining the

kernel itself as open source, thereby facilitating the use of FreeRTOS in commercial

applications. The exception also prevents users from comparing FreeRTOS with other RTOSs,

except with permission from the author.

GPUTILS is free and available from the GPUTILS website.

GPSIM is an Open Source simulator for the PIC microcontrollers featuring hardware modules

that simulate specific devices that might be connected to them, like LCDs.

SDCC supports 8-bit PIC micro controllers (PIC16, PIC18). Currently, throughout the SDCC

website, the words, "Work is in progress", are frequently used to describe the status of

SDCC's support for PICs.

KTechlab is a free IDE for programming PIC Microcontroller. It allows one to write the

program in C, Assembly, Microbe (a BASIC-like language) and using Flow Chart Method.

For debugging and simulations, we also have various options:

First of all, MPLAB includes a software emulator for PICs. However, software emulation of a

microcontroller will always suffer from limited simulation of the device's interactions with its

target circuit.

Proteus VSM is a commercial software product developed by Labcenter Electronics which

allows simulation of many PIC micro devices along with a wide array of peripheral

devices. This method can help bridge the gap between the limited peripheral support

offered by the MPLAB simulator and traditional in-circuit debugging/emulating. The product

interfaces directly with MPLAB to offer a schematic display of signals and peripheral devices.

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Macintosh
http://en.wikipedia.org/wiki/GPL
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Embedded_devices
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GPUTILS
http://en.wikipedia.org/wiki/Gpsim
http://en.wikipedia.org/wiki/Liquid_crystal_display
http://en.wikipedia.org/wiki/Small_Device_C_Compiler
http://www.ktechlab.org/
http://en.wikipedia.org/wiki/Assembly_language
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.labcenter.co.uk/

KTechLab has a circuit simulator for KDE which features simulating some types of PIC

microcontrollers besides many other analog and digital parts.

Piklab is a free and open source IDE for developing PIC software on KDE which is able to

simulate and debug PIC software using another free and open source tool called gpsim as

backend.

Process, Details and Issues:

The sensors will periodically -10 seconds or less for critical sensors and 60 seconds or more

for the others- produce outputs which are going to be collected and checked by the PIC

program and then the packed data will be transmitted to the Bluetooth device connected.

Throughout this flow of data from the sensors to the BT device, there will be pauses and

triggering processes caused by alarm conditions. One of the most important alarm

conditions is occurred when the critical sensors output a value outside of the predetermined

range. Another one will happen when the patient hits the button integrated on the module

having the sensors, PIC and BT device. One other example may be the situation when one or

more of the sensors run out of power and stop giving outputs. In an alarm condition, PIC will

interrupt the process and send an appropriate alarm code via BT immediately.

During the normal flow of the data there are some points to focus on. Firstly, the format of

the sensors data should be standardized. Each sensor may have a different format for

outputs and even different output types. One may need an analog pin while the other one

requires digital. The PIC program that we will develop will handle all of the possible

conditions and transform these unformatted inputs taken from the sensors to a

standardized form and then pack them. We need to be more specific about the sensor

output types and formats at this point. However, thanks to the company that we had

contacted for information about an all-in-one device containing some of the sensors that we

would include in our project, we have no further information for now. But we are working on

a way of gathering the necessary information without the sensors. We are planning to

emulate the sensors in a realistic manner. Another point is the size of the input and the

output of PIC. The size should be adjusted for the optimal progressing of the device. By this,

we mean the output transmitted to the BT device should be packed so that the size of the

packet should not exceed a threshold value but should contain enough data. The frequency

of transmitting data and the average time cost of one transfer over BT should be calculated

to obtain the cost. The priority issues while having the sensors data is another point to be

considered important. The data from vital sensors should be given more priority both in data

collection and packaging parts of this phase. Since the size will matter, we need to add the

vital data to the packages before any other.

http://www.ktechlab.org/
http://piklab.sourceforge.net/
http://gpsim.sourceforge.net/

3.2.2 Phase Two: Mobile Application and Bluetooth

In this second and the most challenging part of the project, we will dive into a world that we

are not familiar with. Mobile Applications were always out of our scope until this project.

The other important point is the Bluetooth connection requirement of this application.

Neither the standalone mobile application design part nor the Bluetooth data transfer part is

a piece of cake so we know that we should read, learn and work more for this particular

phase.

Mobile software is designed to run on handheld computers, personal digital
assistants (PDAs), enterprise digital assistants (EDAs), smart phones and cell phones. For
mobile software development, we would need lots of options when it has come to
development platforms.

The dominant mobile software platform is Java (in its incarnation as "J2ME" / "Java ME" /

"Java 2 Micro Edition"). J2ME runs atop a Virtual Machine (called the KVM) which allows

reasonable, but not complete, access to the functionality of the underlying phone.

The JSR process serves to incrementally increase the functionality that can be made available

toJ2ME, while also providing Carriers and OEMs the ability to prevent access, or limit access

to provisioned software.

This extra layer of software provides a solid barrier of protection which seeks to limit

damage from erroneous or malicious software. It also allows Java software to move freely

between different types of phone (and other mobile device) containing radically different

electronic components, without modification. The price that is paid is a modest decrease in

the potential speed of the game and the inability to utilize the entire functionality of a phone

(as Java software can only do what this middle-man layer supports.)

Because of this extra security and compatibility, it is usually a quite simple process to write

and distribute Java mobile applications (including games) to a wide range of phones. Usually

all that is needed is a freely available JDK (Java Development Kit) for creating Java software

itself, the accompanying Java ME tools for packaging and testing mobile software, and space

on a web server (web site) to host the resulting application once it is ready for public release.

Symbian is very powerful for general purpose development. The Symbian based S60

platform is strongly supported by Nokia with some support from other device

manufacturers. In Japan NTT DoCoMo's Symbian based MOAP platform is also well

supported by a number of manufacturers (Fujitsu, Sony Ericsson

Japan, Mitsubishi and Sharp amongst others). It should be noted, however, that MOAP is not

an open development platform. Another Symbian based platform, UIQ, is less well

supported (principally by Sony Ericsson and Motorola).

http://en.wikipedia.org/wiki/Handheld_computer
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Enterprise_digital_assistant
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Cellphones
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/J2ME
http://en.wikipedia.org/wiki/Virtual_Machine
http://en.wikipedia.org/wiki/JSR
http://en.wikipedia.org/wiki/J2ME
http://en.wikipedia.org/wiki/Carrier
http://en.wikipedia.org/wiki/OEM
http://en.wikipedia.org/wiki/JDK
http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/S60_platform
http://en.wikipedia.org/wiki/S60_platform
http://en.wikipedia.org/wiki/S60_platform
http://en.wikipedia.org/wiki/MOAP
http://en.wikipedia.org/wiki/Fujitsu
http://en.wikipedia.org/wiki/List_of_Sony_Ericsson_products#NTT_DoCoMo
http://en.wikipedia.org/wiki/List_of_Sony_Ericsson_products#NTT_DoCoMo
http://en.wikipedia.org/wiki/List_of_Sony_Ericsson_products#NTT_DoCoMo
http://en.wikipedia.org/wiki/Mitsubishi
http://en.wikipedia.org/wiki/Sharp_Corporation
http://en.wikipedia.org/wiki/Sony_Ericsson
http://en.wikipedia.org/wiki/Motorola

iPhone and iPod touch development with the iPhone SDK is ideal for quickly developing

applications for users of the iPhone. iPhone apps must be cleared for approval to Apple

before being listed on the app store. The programming language used is Objective C, based

on the C programming language. Currently, the iPhone SDK is only available on Mac OS X

10.5.

Lazarus is ideal for prototyping and quickly developing database powered applications. Also

useful for porting Object Pascal software to mobiles. Can access the native APIs when

translated headers are available.

BREW is ideal for deploying applications for deployment on CDMA-based networks (also

supports GPRS/GSM models) with a deployed Brew Content Platform especially if OTA app

deployment is desired. Little penetration in Europe.

Python is ideal for initial prototyping and concept testing when functionality falls outside

Java ME.

Recently announced by the Open Handset Alliance, whose 34 members

include Google, HTC, Motorola, Qualcomm, and T-Mobile, Android is a new Linux-based

platform currently available only as a developer pre-release. Although it does not yet have

any fielded implementations, its support by 34 major software, hardware and telecoms

companies makes it likely that it will be rapidly adopted from 2008. The Linux kernel is used

as a hardware abstraction layer (HAL). Application programming is exclusively done in Java.

You need the Android specific Java SDK. Besides the Android Java Libraries it is possible to

use normal Java IDEs.

4. ARCHITECTURAL OVERVIEW AND INTERFACE DESIGN

4.1 Architectural Overview

If we look at the system as a whole it is easy to observe that, it is distributed, and consists of

different platforms to develop software. This makes the partitioning of the system easier,

but brings the difficulty to specialize in multiple programming paradigms. The abstract

architecture of the whole system can be seen in the below figure.

http://en.wikipedia.org/wiki/Open_Handset_Alliance
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/High_Tech_Computer_Corporation
http://en.wikipedia.org/wiki/Motorola
http://en.wikipedia.org/wiki/Qualcomm
http://en.wikipedia.org/wiki/T-Mobile

As can be seen from the figure also, there is not a center point for the whole system where

everything is managed. In fact the system can be viewed as a series data transfers starting

from the sensors and ending in the web server.

Data flow is the primary process, thus in the figure which is the abstract system only data

transfer parts are shown. There are additional parts employed in each of the points where

data passes through.

Three different programming platforms will be used to achieve the final product, first is PIC

programming, second is mobile application programming, and the last one is web

programming. Platforms are quite diverged from each other.

Microcontroller programming part consists of three major parts. In the first part where

measurements of the sensors are sent, there should be a robust PIC program to establish a

reliable serial connection between the sensors and microcontroller. After that received data

should be compressed in an efficient way to be ready to send. In the last part data is put into

the ports of microcontroller hence bluetooth device can read and send it to the mobile

phone. All of these tasks will be coded in C, MPLab the official IDE of the Microchip provides

this feature.

Mobile programming part is the first part where received data is evaluated. Because in the

previous parts data was only received, packaged and sent. Our mobile program will check

the values in the data package and will run script codes to send notifications to the doctor

and relatives of the patient. We’ll use built-in methods of J2ME to supply this. But mobile

program will contain more vital parts than this. It should receive data from the Bluetooth

device and send it readily to web server via GPRS.

Web programming part includes also database programming, otherwise it’d be impossible to

monitor the conditions of each patient for such a big system. Data stored in the web server

will be combined with a user-friendly web interface to provide users (doctors, patients, and

their relatives) an easy way to monitor the latest conditions.

4.2 Interface Design

The system, if looked at the big picture, is based on the transferring and monitoring of data.

Thus presentation of data (consists of vital values of the patient) is of great importance. Two

separate interfaces would be implemented one for the mobile program and the other for

the website.

Since screen size and properties of a mobile phone is limited, the interface in the program

will be simpler. A generic representation of this interface is in the below figure.

The user can select in which way he/she is going to view the data from the upper part, when

stats is selected measurements are displayed line by line in time order. Values bigger or

smaller than threshold values are differently colored.

In the graph mode the values will be displayed in a graph, there will be two lines to indicate

min and max norms. In this symbolic graph below, green line denotes the max norm value

and the red line denotes the min norm value.

Measurements of sensor 1

Measurements of sensor 2

Measurements of sensor 3

Stats Graph

Data displayed here

The web server’s interface will contain a form application. Initially it will have a login screen

when page is displayed.

If the user is a patient or relative of a patient a screen similar to the one in the mobile

program is displayed, since these users can monitor only one patient’s data.

Otherwise if the account is owned by a doctor he/she will have more options. In the

notifications section the doctor can view the patients with alarm conditions. It can also be

displayed by selecting the patient but notifications will be quick link for the doctor.

Patient list will be expandable/shrinkable so that it will not take a large place in the page if

desired. The right frame of the page will also be similar to the page which patient/relatives

view. Data fetched from the database can be displayed either in numbers or graphs.

0

0,5

1

1,5

2

2,5

3

3,5

Value

User name

Password

Login

5. DETAILED DESIGN

 ARCHITECTURAL OVERVIEW

5.1 DATA FLOW DIAGRAMS

DFD LEVEL 0

 Level 0 DFD

LEVEL: 1 EMBEDDED MODULE DFD

 Level 1 Embedded Module DFD

LEVEL: 1 MOBILE APPLICATION

 Level 1 Mobile Application DFD

LEVEL: 1 WEB APPLICATION DFD

 Level 1 Web Application DFD

LEVEL: 2 MICROCONTROLLER DFD

 Level 2 Microcontroller DFD

5.2 Use Case Diagrams

 Patient Use Case Diagram

 Doctor Use Case Diagram

 Relatives Use Case Diagram

5.3 Sequence Diagram

 Sequence Diagram

6. CONCLUSION

We prepared this Initial Design Report to create a bridge between the design and

implementation parts of the project.

First, we determine the hardware and software requirements and find the best choice of

hardware. After searching about them, we create our diagrams which will be reliable guides

for the next phases of the project.

We believe that, this report will help us for the future of the project, especially for the

Detailed Design Report which is one of the important reports for the process of the project.

