

08 Fall

[R e a l m L a b I n c .]

Atasay Gökkaya | 1448661
 Cemre Güngör | 1448737
 Erbil Karaman | 1395144
 Yiğit Boyar | 1448463

Spring 09

[RealmCrash] – Test Specification Report

[RealmCrash] – Test Specification Report

2

[RealmLab Inc.]

Table of Contents

1. INTRODUCTION ... 3
1.1 Objectives ... 3
1.2 Scope of the Document .. 3
1.3 Major Constraints .. 4

1.3.1 Time ... 4
1.3.2 Staff .. 4
1.3.3 Hardware ... 4
1.3.4 Software ... 4

2. TESTING PLAN .. 4
2.1 Overview ... 4
2.2 Testing Strategies and Methodologies ... 5

2.2.1 Unit Testing... 5
2.2.2 Integration Testing .. 6
2.2.3 System Testing .. 6
2.2.4 Acceptance Testing and Quality Assurance ... 8

3. TESTING TOOLS ... 8
3.1 Zend_Test ... 9
3.2 Selenium RC ... 9
3.3 BuildBot .. 9
3.4 Nagios ..10

4. TESTING SCHEDULE .. 10
4.1 Continuous Testing ...10
4.2 General Version Testing Schedule ..11
4.3 Testing Implementation Schedule ..11

5. REFERENCES .. 11

[RealmCrash] – Test Specification Report

3

[RealmLab Inc.]

1. INTRODUCTION
RealmCrash is a social gaming framework, which is abstracted from a single

realm and can be extracted to multiple themes. This framework lets users to

connect and share virtual activities. This is a Massively Multiplayer Online Game

concept where different realms interact with each other within their own reality,

which is RealmGroups in our definition. This platform is currently reachable

from Facebook and iPhone as a prototype, and will be reachable from most

popular social networks.

It is obvious that this system, given its goals, needs carefully chosen and

adequately run testing methodologies.

1.1 Objectives

Since RealmLab employs an agile approach, RealmCrash gets developed with a
very fast pace. New features are added and code gets refactored all the time with
continuous integration. The speed of development combined with the small
group size, that leads to each member having a wide area of responsibility,
makes efficient testing an important necessity.

Because of our constraints, we can't aim to solve all the bugs. We use data driven
development and exception driven development to fix the problems in order of
scale and severity.

The objectives of our testing process is to keep RealmCrash functional at all
times, and to effectively utilize our resources to keep balance between fixing
bugs and doing new development.

We will have several different concerns while testing, such as:

 the independent modules behaving correctly (unit testing)
 the independent modules (and external entities) communicating correctly

with each other (integration testing)
 all requirements are met for a satisfactory end product (validation

testing)
 the product runs properly under high load and with lots of users (stress

testing)

1.2 Scope of the Document

This document will explain the measures RealmLab is taking to make
RealmCrash a well-functioning, robust and well-maintained project. To do this,
we will elaborate on

 what we will test
 what are our constraints while testing
 how will we handle severe, user-facing bugs
 how will we find internal bugs of lower severity

[RealmCrash] – Test Specification Report

4

[RealmLab Inc.]

 the automated tools that help us conduct testing
 how our testing relates to our schedule
 how team members are responsible for different tests

1.3 Major Constraints

1.3.1 Time

Since the project is being developed at our remaining time from studies, it hasn't
been possible to devote full-time attention to RealmCrash except our winter
coding camp in February. A fully-functioning version of RealmCrash is as of date
already running on the internet, so our time constraints apply mainly to the
remaining work, namely Turkcell integration.

1.3.2 Staff

RealmLab consists of four people, thus each of us has a wide area of

responsibility. While this makes development more robust because of low

overhead, it also creates the risk of code not being much peer-reviewed.

Although we tried to overcome this by pair-programming the more important

parts of our project, the low overlap between the work of different team

members constitutes a constraint.

1.3.3 Hardware

RealmCrash is a web-bases application thus neither client- nor server-side

hardware are relevant.

1.3.4 Software

The server-side of RealmCrash is relatively easier to test, as the servers are in

our own control and observation. However a large part of code is client-side. Not

only the JavaScript functionality, but the whole frontend of the project is bound

for testing within lots of different environments. Our biggest constraint in this

aspect is the different rendering engines of different browsers of different

platforms. Luckily Facebook, the platform that we run on, actively encourages

users to upgrade to A-grade browsers, so we do not expect to encounter lots of

rendering bugs.

2. TESTING PLAN

2.1 Overview

Proper testing plan is crucial for RealmLab’s success. We have partially
integrated planning into our development and deployment lifecycle since we
practice Agile development. This semi-automated process is driven by
developers. In a constantly changing environment it’s best to keep efforts as
effective as possible. Creating global rules for testing in such an environment
blocks productivity and creativity opportunities. So we concentrate more on
atomic testing cases. Below you can find more information about those.

[RealmCrash] – Test Specification Report

5

[RealmLab Inc.]

2.2 Testing Strategies and Methodologies

2.2.1 Unit Testing

Unit testing is a very suitable testing methodology for Agile teams. We try to
cover the core elements with Unit Tests. The PHP framework that we are using
(Zend Framework) supplies a tool called PHPUnit. It’s a derivative of JUnit
framework. It organizes the tests into cases, which consist of many independent
tests with public methods. To create fixtures we use the setUp() and tearDown()
methods of PHPUnit. Fixtures are a very good way of isolating independent test
cases. They are destroyed after each test. The assertions work pretty much the
same way that they work in JUnit and are the standard way of confirming
expected values.

Besides Zend Framework integrated this suit into its own MVC so that many
additional capabilities are available to test Zend Framework applications. It’s
enough to extend Zend_Test_PHPUnit_ControllerTestCase for this purpose. This
class is exteremly powerful and gives us 5 new assertion classes to test the actual
sandboxed form of our web application.

Those are:

CSS Selector Assertions and XPath Assertions to verify artifacts in the
response content even if they contain JavaScript/AJAX.

Redirect Assertions to test if the routing works the way its defined in the
controller. Often routing depends on stored user profile and request parameters,
so this is very handy to match cases where it would be so hard to test with any
other methodology.

Response Header Assertions to verify response headers sent back to client or
Facebook Proxy. In Facebook Proxy case, there are certain response headers that
they do not accept, so this is a good way to catch such cases.

Request Assertions to test routing based on request parameters. The MVC
structure of Zend Framework works with routing pattern based on GET
parameters. User defined dispatchers can change the behavior and it becomes
very hard to test. We wrote a state machine request dispatcher for certain cases,
and this assertion class makes it very easy to test our dispatcher rules.

For projects that relay on remote interfaces (DB, Web Services, Email etc.)
Mocking is a very useful method. PHPUnit supplies Mock Object creation
interfaces that enable us to write very sophisticated Test cases. With mock
objects many side effects of a function can be hide from the tester. Isolation
yields to less false-positives and it’s significantly important since our
deployments heavily relay on those tests.

To be able to run the Unit Tests we use the command line tool

phpunit <TestCaseName>

[RealmCrash] – Test Specification Report

6

[RealmLab Inc.]

It runs the given test case and reports to STDOUT. This is very useful for our
automated testing needs.

Even if the test first/implement later is widely considered as a standard in TDD
(Test Driven Development), we decided not to go strictly that way until we
clarify the base API. In an environment that we are not totally familiar and
constantly changing, we believe that starting implementation as soon as possible
with minimal design shows us where we gave wrong decisions so that we can
change as fast as we can to make the design better. We see that worked very well
for us up to now, and we gained enough experience to continue with
better/robust design. So we are trying to move in the direction that we test more
before we implement.

Another important point that we had discovered is to be able to write effective
Test Cases, we need to have good encapsulation and code craftsmanship.
Functions that are too long and do multiple things together are more vulnerable
than small and simple functions since it’s harder to test.

As a result, unit testing yields reduced number of bugs in production code,
reduced development time in long tail, repeatedly testable functionalities, re-
producible test cases, more freedom for developers on others code if they are
well covered, better overall software design, measurable development efforts
and well integrated automated deployment environments.

2.2.2 Integration Testing

Instead of re-inventing everything, we use a lot of external technologies
wherever we need. Most of them are web services so can be easily mocked
(during Unit Testing). However Mocking assumes that those services work
without any problem. In real life, unfortunately that is not the case. Usually the
documents are out of date or the services are not as robust as they can be. We try
to encapsulate every integration point to a well designed adapter/manager class,
so that we can catch any abnormalities.

Our approach is very similar to Big Bang approach, where we let our tests run in
test environment with real users, and we watch for exceptions and logs from
adapter classes for the integration points. This is called Exception Driven
approach and pretty new in this area. We use Splunk to watch exceptions and
logs, and those are automatically indexed so that we can search by certain
parameters to dig into the problem.

This is the fastest way to do Integration Testing and becoming more and more
popular in start-up world that does Agile development. Facebook also uses this
technique in a very similar way.

2.2.3 System Testing

System testing constitutes the tests that are run just after Integration tests. After
Integration testing, the software modules are validated to communicate with
each other correctly at least as described within those tests. System testing, in
fact, is conducted on a complete, integrated system to see if the combination of
modules comply with the specified requirements. Its goal is to detect any defects

[RealmCrash] – Test Specification Report

7

[RealmLab Inc.]

within the software modules, connections between modules and also the system
as a whole.

As we had described in our previous design reports the RealmCrash system is
composed of several layers and helper modules that are used for functional
computations or operations. Since System testing has several types (can be
automated or not) that are used to detect the defects on Functional Requirement
Specification and/or System Requirement Specification throughly, we decided to
implement necessary important System testing types, such as Usability testing,
Load and Stress testing, and Scalability testing. The reasons to use these
methodologies, our approaches and plans are described below in detail.

2.2.3.1 Usability Testing

RealmCrash needs to be very usable, as we follow our idea, a user without any
coding skills and without a predisposition to games (i.e. in gaming literature,
from blue ocean) should be able to create his or her own game using our system.
To be able to do that for an initial setup, we requested several people from
different backgrounds to participate in our Usability tests. We watched people
both on eye (psychological behaviors) and automatically (measuring the time
they spent on the atomic activities). We have greatly improved our system from
the results of these tests.

2.2.3.2 Load and Stress Testing

Although Load and Stress testing are concerned with different aspects of testing,
we decided to approach them together as they are strongly related. Load testing
is basically putting extensive demand on a system and measuring its response.
On the other hand, Stress testing is concerned with the robustness, availability
and error handling of a system under heavy load.

RealmCrash's mission is to bring millions of users from different Social Networks
together to let them engage in their favorite worlds, realms. To achieve this goal,
RealmCrash needs to stand safe under very heavy load and scale out when
needed. Standing safe means responding deterministically and being robust in
our context.

We have examined several Load testing suites and tools. We plan to use
Selenium suite to automate our Load testing across many platforms. Selenium
has a Firefox (browser) extension IDE to generate test cases for web applications
and other tools to run those tests and to distribute tests on multiple servers.

We plan to assert the response of our system under heavy load for Stress testing.
We can use Selenium tests for verifying the correctness of the responses under
high demand.

2.2.3.3 Scalability Testing

We think that Scalability testing is also very important for providing our users a
reliable and qualitative service under very high demands. Scalability testing is
concerned with measuring a systems capability and righteousness to scale up or

[RealmCrash] – Test Specification Report

8

[RealmLab Inc.]

scale out in terms of any non-functional capability, like user load supported per
server, number of connections, data volume etc.

RealmCrash will scale out for processing power according to a metric which will
define the necessity of scaling. We are using Amazon Web Services - Elastic
Computing Cloud virtual server instances. AWS provides the necessary services
to use and scale out our system when necessary. The Scalability tests will allow
us to detect possible defects during scaling.

2.2.4 Acceptance Testing and Quality Assurance

As we have described that we are using Extreme Programming, one of the Agile
Software Development methodologies, we believe that the quality of the service
is very important and a release should be accepted or not using a functional
testing of a user story that was defined by the software development team
during the implementation phase.

2.2.4.1 Alpha - Beta Testing

We have released alpha and beta versions of our system components, namely a
game instance, and our creator. Alpha release was held within our project group
and close friends, which in original takes place in developers' site as we did.
Then we have released public beta versions of these components and shared
them with our friends and game experts. We have improved the usability
features and fixed several functional defects in our system thanks to our public
beta users and their kindness to give us very helpful feedback.

2.2.4.2 User Acceptance Testing

We have created several user Acceptance tests involving several user stories
such as creating a game using our generator, and playing or doing some actions
within a game that is running our game engine, etc. These tests are simple and
give a boolean result, either accepted or rejected, no degree of success or failure.
If all of the tests are accepted than it will assure the quality of our service
(release). If we think that the current tests are not enough for judging the quality
of our system, we will define extra user stories to test our quality.

3. TESTING TOOLS
Continuos integration is a key concept for us which we need to achieve as soon
as possible. To reach continuos integration, automated testing is a must since
any unstable commit should be prevented from going to the production
repository.

To test server side PHP codes, we will use Zend_Unit, which is a unit testing
abstraction based on PHP Unit; which is widely used in many php projects. We
also need to test client side codes since most of the usability functionality is
implemented in client side. For client side test, we will use selenium server.

We need a centralized mechanism to control testing tools; which are subject to
grow in number. For this task, we will use BuildBot, which is a widely used open
source compile/test cycle software.

[RealmCrash] – Test Specification Report

9

[RealmLab Inc.]

3.1 Zend_Test

 (http://framework.zend.com/manual/en/zend.test.html)

Zend_Test provides tools to facilitate unit testing of your Zend Framework
applications. It only provides MVC testing tools but since we also use MVC, it
works for us.

This testing utility also provides interface to mimic user requests via controller
but since we use facebook, our sessions are dependent on facebook; controllor
testing will be a little tricky.

3.2 Selenium RC

 (http://seleniumhq.org/projects/remote-control/)

Selenium Remote Control (RC) is a test tool that allows you to write automated
web application UI tests in any programming language against any HTTP website
using any mainstream JavaScript-enabled browser.

Selenium Remote Control is great for testing complex AJAX-based web user
interfaces under a Continuous Integration system. It works on 3 major browsers,
namely firefox, internet explorer and safari. To use it, you start a selenium server
which you can connect via php, java and some other programming languages.

To use selenium RC with continuous integration, we will wake up two virtual
machine instances, one mac and one windows XP. On these instances, two
selenium servers will run which are controlled by Build Bot. Any written UI test
will be run on firefox, safari and internet explorer 7 & 8.

A sample Selenium test written in Java looks like as follows:

selenium.open("/");
selenium.type("Bugzilla_login", "admin");
selenium.type("Bugzilla_password", "admin");
selenium.click("log_in");
selenium.waitForPageToLoad("30000");
selenium.click("link=Reports");
selenium.waitForPageToLoad("30000");

3.3 BuildBot

(http://buildbot.net)

The BuildBot is a system to automate the compile/test cycle required by most
software projects to validate code changes. By automatically rebuilding and
testing the tree each time something has changed, build problems are pinpointed
quickly, before other developers are inconvenienced by the failure.

[RealmCrash] – Test Specification Report

10

[RealmLab Inc.]

We will integrate buildbot to our svn with a hook. When an employee commits
some code, this hook will wake up buildbot to run test cases. If any of the test
cases fail, buildbot sends an email to the commit owner and to our mail group
with a list of people to blame.

3.4 Nagios

(http://www.nagios.org/)

Nagios is not a testing tool but a production monitoring software via which we
will be sure our production environment works fine.

We will setup a Nagios instance on server which will monitor database,
memcached and server instances. If any of these components have problems (e.g.
high db load, high cpu/io load, memcached down etc); it will either restart the
component or run the rescue script we provide it. Nagios also has capabilities
like sending sms, email which will inform us as soon as disaster occurs.

4. TESTING SCHEDULE

4.1 Continuous Testing

We have 3 playground groups, namely dev, test and production. All codes are
developed on dev. When decide to deploy them on prod, all codes are first moved
to test which has almost same settings with production. If it works fine, codes are
pushed to production.

Dev environment is controlled by BuildBot and production is monitored by
Nagios.

BuildBot runs tests using Zend_Test and Selenium RC on dev when a new commit
is sent to svn. When we decide to push a new release to production, we first push
it to test environment and tell BuildBot to run tests on test environment. If
everything is fine, code is pushed to production and BuildBot runs tests on
production.

Since we run unit tests periodically on dev, there is a very low probability of
having a failure on release but our test-move structure saves us from
deployment crisis which is quite common in web projects.

[RealmCrash] – Test Specification Report

11

[RealmLab Inc.]

4.2 General Version Testing Schedule

General Version Test Dates Completed

RealmCrash Engine and Sample Game

(Alpha Tests)
10.1.2009 - 15.2.2009 Yes

RealmCrash Engine and Sample Game

(Beta Tests)
16.2.2009 - … Continues

RealmCrash Creator (Alpha Tests) 1.5.2009 - 7.5.2009 Yes

RealmCrash Creator (Beta Tests) 8.5.2009 - … Continues

4.3 Testing Implementation Schedule

Automated or half-automated testing schemes that are implemented/going to be

implemented are as follows. We do not mention our other periodic/release

driven tests (user acceptance tests, alpha – beta tests) here that were explained

above.

Testing Methodology Start Date Completed

Unit Testing 15.2.2009 Half Coverage, continues

Integration Testing 6.4.2009 Half Coverage, continues

Usability Testing (System) 7.5.2009
Yes, will continue with

new functionalities

Load and Stress Testing (System) 30.6.2009 No

Scalability Testing (System) 10.7.2009 No

5. REFERENCES
 Wikipedia, http://en.wikipedia.org/

http://en.wikipedia.org/

