Sirius Software

Duygu Yapa 1449222

Ayse Turan 1449164

Duygu Altinok 1502095

Elif Kamer Karatas 1448836

THE STRIDER

[Final Design Report]

19.1.2009

Contents

1.

INTRODUCTION ...t et 5
1.1. Purpose of the Document ... 5
1.2, Project TOPIC ..ouuiuiiii 5
1.3, Project DefINition o.euiei e 5
L4 ProJECt SCOPE ..oviviiii i 5
DESIGN CONSIDERATIONS ...ttt e e e et ettt e eeeeeaaas 6
2.1. Constraints and LIMItationsocuiuinitii ettt ae e 6
2L L THINI® et e e 6
21,2, PerfOIIMANCE . ..\ttt e e e et e 6
2.2. Design Goals and Objectives...............oooiiiiiiiiii 7
2,21, POPaDAlILYoo.oo oo oo 7
2.2.2. Usability. ... 7
2.2.3. REBaBIlity ...\ oo, 7
2.2.4. Approach and Modelingo...coiiiio oo 7
CURRENT STATUS ...ttt ettt e e 8
3.1 CUITENE SEALE ..ottt et e e 8
3.2. Prototype Implementation ... 8
LIBRARIES AND TOOLS ...ttt e et e e 8
4.1. Languages and Platforms.................... 8
AL JAVA oo, 8
A2 EClPS. oo, 9
A3 NEtBEANS. ..ttt e 10
4.2. Geographical Information Systems..................ooooiiii 10
421 GEOTO0IS ottt 10
4.3. Graphics Libraries. ... 10
4.4, Other Tools and Librariescoouiiiiii e 10
A L XML L 10
42 MYSQL oo i}

USER INTERFACE DESIGN 11

5.1, Main WINAOW . ..o 13
5.2 FIlE MIEIIU .. 13
5.3 TerTain MIEIIU .. vttt e et 14
5 Weather MENU. . ..o 16
5.5. Equipment Menu....... ... 16
5.6 Help MENU ... 18
5.7. Member Information Paneloiiiiiiii 19
5.8. Constraints Panel....... ... 21
5.9. 3D Visualization of the Mountain Panel ..ot 22
5.10. Get Activity Plan Window ... 23
ARCHITECTURAL DESIGN ...ttt et e et e e 24
6.1. Package and Class Desigh............oooiiiiiiiiiiiii 24
6.1.1. strider package ... 24
6.1.2. strider.defined Types package ... 25
6.1.3. strider.gis Package 27
6.1.4. strider.planner Packageoo 27
6.1.5. strider.gui Package...............ooiiiii 29
6.1.6. strider.gui.helpers Package...................o 29
6.1.7. strider.gui.helpers.member Package 30
6.1.8. strider.gui.helpers.equipment Package...................... 31
6.1.9. strider.gui.helpers.project Package ... 32
6.1.10. strider.gui.helpers.weather Package 33
6.1.11. strider.gui.helpers.visualization Package 34
6.1.12. strider.gui.helpers.simulation Package ... 34
6.1.13. strider.gui.windows Package ... 35
6.2. Method and Class INTErfacesvninieieiiii e 45
6.2.1. strider package ..., 45
6.2.2. strider.gis package ... 45
6.2.3. strider.planner package ... 45
6.2.4. strider.gui.helpers.member package..................... 46
6.2.5. strider.gui.helpers.equipment package....................... 47
6.2.6. strider.gui.helpers.project package ... 47

6.2.7. strider.gui.helpers.weather package 48

6.2.8. strider.gui.helpers.visualization package 48
6.2.9. strider.gui.helpers.simulation package 49
6.2.10. strider.gui.windows package..................... 50

6.3. Design of Expedition Plan.................oooii 57
6.3.1. Considerations 0N M@aPSoouiiuiiiiiiiiii e 57
6.3.2. Considerations on route planning....................... 59
6.3.3. Algorithmic design for route.................... 61
6.3.4. Design of camping plan ... 72
6.3.5. Design of food&water planning 73
6.3.6. Design of time planning ... 73
6.3.7. Design of equipment planning...................... 75
6.3.8. Design of carriage planningo 78

6.4. Functional Modeling ... 79
6.4.1. Data Flow Diagrams.ooiiiiiiiiiii 79
6.4.2. Data DICHONAryo 84

6.5. DAtA DIESIGNo.oo oo 92
6.5.1. Database DESIEN.o.oitit i ettt e ee oo 92
6.5.2. File and Folder Formats and Syntaxcoooiiiiiiiiiii 96

6.6. Behavioral Design............oooo 101

6.6.1. Strider General Behavior 101

6.6.2. Member OPerationscouiiiiiiiiiii i 102

6.6.3. Chosen Member Operationsoccouiiiiiiiiiiiiiiiiiiiii e 105

6.6.4. Project Operations..............ooiiiiiiiiiiiiii 108
6.6.5. Equipment Operationsooiiiiiiiii 112
6.6.6. Map OPErationsco.iiiiiiiiiiiii 115
6.6.7. Weather Operationsoooiiiiiiiiiiiiiiiii e 117
6.6.8. Visualization Operationsooooiiiiiiiiiiiiiiii 119
CONCLUSION L e e e e 120
AP PEN DX o e e 121
REFEREN CE S . . e et e e e e e eaes 122

1. INTRODUCTION

1.1. Purpose of the Document

This report is written to show final design of Strider software by Strider project team. The
headings and parts of this document are divided appropriately by grouping relevant subjects
of whole system. Project group has tried to give the definition and design of the software
system by dividing subsystems and showing the relations with each other. Also, the initial
design report is detailed and the future work of that report has done in this report. In
addition, the other necessary issues like implementation details and specifications are

handled.

1.2. Project Topic
The topic of this project is planning a climb for mountaineering clubs. Project name is

Strider. Strider is being developed by a team of Sirius Software.

1.3. Project Definition

The software basically finds a route on a terrain for mountaineers. It will provide the best
activity plan for reaching a selected mountain peak by taking into account the specified constraints.
In addition, it makes a visualization of the terrain and a simulation of the route. Software
uses some kind of information from mountaineers, database and website to make all of

these facilities.

1.4. Project Scope
The scope of the project has been described in the Requirement Analysis Report. Here, a

brief of the scope will be given.

The software should be used by instructor mountaineer, because only instructor can

know about the capabilities of the mountaineers in a club or decide to the date of an activity

This guy has some responsibilities and abilities on the software;

e He should give the climbers’ information in the club to the system any time and
this information will be kept in system until an instructor delete or update them.

e Before running system for getting an activity plan, he should give terrain
information to the system by giving a “.dted” or “.dem” format map, the region
(ex; Ankara, Turkey) and optionally vector map and satellite image.

e He can give some constraints like safest route, time and distance constraints and
checkpoints.

e He can mark the avalanche or rock falling risk places on the visualization of the
terrain at our user-friendly graphical user interface.

e He can make a walk-through on terrain by useful buttons.

After giving a map, program will show a visualization of the terrain. Then he can run the
program. The program gives an activity plan (optionally in a report) which includes climbing
route, estimated duration of climbing, food and equipment list, emergency equipment list
and camping plan. He can see a simulation of the route on the terrain, if he wants. The

additional features will be described in the rest of this document.

2.DESIGN CONSIDERATIONS

2.1. Constraints and Limitations

2.1.1. Time

The project should be completed until July 2009. In addition a demo of this project
should be prepared until the end of January 2009. The detailed project schedule is given as a

Gantt chart in Appendix.

2.1.2. Performance
Performance is an important issue and makes us anxious, because finding an optimum

way in a terrain with lots of constraints which have different priorities is a hard problem.

Hence we will try different solutions for this problem to reach the best performance. In

addition, the visualization and simulation part we will use efficient ways.

2.2. Design Goals and Objectives

2.2.1. Portability
We have thought about this issue and decided to use portable languages and tools. In
other words, this was a constraint to choose libraries and toolkits. So, we will try to make

software portable on Windows and Linux platforms.

2.2.2. Usability

We have tried to design user friendly software and correspond to mountaineers needs. In
this context, we have made interviews with professional mountaineers and obtained their
ideas about planning a climb. We have examined how much we make this software useful
for mountaineers. At the end, we canceled some unnecessary and absurd parts from the
project. For example, we canceled rafting or skiing experience of climbers because a climber
never carries rafting or skiing equipments when he goes to climbing even if he has these
kinds of experiences. We also added some extra features that make software better for

users like visualization of the terrain.

2.2.3. Reliability

As we mentioned before, we have made our studies in wide range. So, we have thought
almost all aspects of the climbing issue. We have taken up references from the
mountaineers Hasan Hiiseyin BOGAZ and Tung¢ FINDIK and the book of “Zirvelerin
Ozgirligl”. Besides we have searched lots of libraries, tools and algorithms for the

implementation part and selected the most appropriate ones for our project.

2.2.4. Approach and Modeling

Because of the complexity of our project, we have decided to use Object Oriented
Approach. This approach models our system so makes the design more understandable and

the Object Oriented Design elaborates the models to produce implementation

specifications. For representing these models, we use Unified Modeling Language (UML) that

has a number of different notations for representing models.

3.CURRENT STATUS

3.1. Current State

We have started to use tools and libraries. We have used Geotools libraries and
implement some features. We have read vector maps and visualize them. We have added
some features to visualization part like zooming and moving. We have designed graphical
user interface and database. On the other hand, when we designed the packages and classes
of the project in Architectural Design part, we have determined the methods of classes and

defined them.

3.2. Prototype Implementation

The prototype of Strider will contain an understandable graphical user interface with its
main features. In addition to these, gui will be able to get map formats and show a 3D
visualization of the terrain. For the visualization part the Geotools libraries will be used and
this part will have futures. We considered that these features will be zooming in, zooming
out on map and moving on it. There may be mouse events on map for showing coordinate
information of any point of map, and geting start, end coordinates, chechkpoint, avalanche/

rock falling risky places.

4. LIBRARIES AND TOOLS

4.1. Languages and Platforms

4.1.1. Java

Java is a programming language originally developed by Sun Microsystems and released

in 1995 as a core component of Sun Microsystems' Java platform. The language derives

much of its syntax from C and C++ but has a simpler object model and fewer low-level
facilities. Java applications are typically compiled to bytecode that can run on any Java
virtual machine (JVM) regardless of computer architecture. The syntax of Java is largely
derived from C++. Unlike C++, which combines the syntax for structured, generic, and object-
oriented programming, Java was built almost exclusively as an object oriented language. All
code is written inside a class and everything is an object, with the exception of the intrinsic
data types (ordinal and real numbers, boolean values, and characters), which are not classes
for performance reasons. [1] We preferred Java for its high-level object orientation, its rich
IDEs, wide developer support and documentation, wide library choices; but the our main
reason was that we wanted to use GeoTools which is a Java library. Also for our project's

visualization & simulation parts, Java was the best choice for its available libraries.

4.1.2. Eclipse

Eclipse is a software platform comprising extensible application frameworks, tools and a
runtime library for software development and management. It is written primarily in Java to
provide software developers and administrators an integrated development environment
(IDE). In its default form it is meant for Java developers, consisting of the Java Development
Tools (JDT). Users can extend its capabilities by installing plugins written for the Eclipse
software framework, such as development toolkits for other programming languages, and
can write and contribute their own plug-in modules. Language packs provide translations
into over a dozen natural languages. It was easy for us to decide to use Eclipse as it's the
most powerful Java IDE; it has dozens of plugins to support our work, it has automatic code
generation as well as easy usage such as showing and explaining runtime, compile-time and
code mistakes. Also Eclipse is easy to use with “svn” as well as it provides the Eclipse
Workbench - views, editors, perspectives, wizards; Equinox OSGi - a standard bundling
framework, Core platform - boot Eclipse, run plug-ins, the Standard Widget Toolkit (SWT) - a
portable widget toolkit, JFace - viewer classes to bring model view controller programming

to SWT, file buffers, text handling, text editors etc.[2]

4.1.3. NetBeans

A free, open-source Integrated Development Environment for software developers. The
NetBeans IDE provides several new features and enhancements, such as rich PHP, JavaScript
and Ajax editing features, improved support for using the Hibernate web framework and the
Java Persistence API, and tighter GlassFish v3 and MySQL integration. [3] We used NetBeans
for designing our GUI interfaces; as we use Java by far NetBeans is the best choice for

interface design for its easy usage and developer-friendly.

4.2. Geographical Information Systems

4.2.1. GeoTools

GeoTools is an open source (LGPL) Java code library which provides standards compliant
methods for the manipulation of geospatial data, for example to implement Geographic
Information Systems (GIS). [4] We decided to use GeoTools as we needed a GIS library and
GeoTools provides all GIS capabilites. Moreover , as we use Java ; GeoTools & Java

combination would be powerful enough.

4.3. Graphics Libraries

We decided to use GeoTools' graphic capabilities for our project's visualization and
simulation parts, since we mostly use GeoTools for the other parts of our project. However,

we may use NasaWorld Wind libraries for visualization parts because of its useful features.

4.4, Other Tools and Libraries

4.4.1. XML

Extensible Markup Language (XML) provides a foundation for creating documents and
document systems. XML operates on two main levels: first, it provides syntax for document
markup; and second, it provides syntax for declaring the structures of documents. XML's

simplicity is its key selling point, perhaps even its strongest feature. Our team have plenty of

10

reasons to use XML : simplicty , extensibility ,interopability.For the simplicity , XML's rigid set
of rules helps make documents more readable to both humans and machines. XML
document syntax contains a fairly small set of rules, making it possible for our team to get
started right away. For the extensibility; XML is extensible in two senses. First, it allows
developers to create their own DTDs, effectively creating 'extensible' tag sets that can be
used for multiple applications. Second, XML itself is being extended with several additional
standards that add styles, linking, and referencing ability to the core XML set of capabilities.
XML complements Java, a force for interoperability, very well, and a considerable amount of
early XML development has been in Java. A generic application programming interface (API)

for parsers, the Simple APl in XML (SAX), is freely available. [5]

4.4.2. MySql

MySQL database is the world's most popular open source database because of its fast
performance, high reliability, ease of use, and dramatic cost savings. Our team preferred
MySQL for its easy usage and mostly for its Java compability. [6] Since MySQL is also a Sun
Microsystems product ; not only Java has JDBC support for SQL , also the combination of

Java & MySQL is a very powerful combination due to its high performance.

5.USER INTERFACE DESIGN

We have made some changes and additions to our user interface. Here is a list of those

changes and additions:

e Since we are assuming that the users of our software will be instructor
mountaineers who has the enough information about equipments, we have
thought that they should be able to access the equipments in the system before
making the plan. Here, accessing the equipments means, listing the equipments in
the system, defining new equipments or removing out-dated or unused
equipments from the system permanently. For this purpose, we have added an

“Equipment Menu”.

11

e We have changed “Terrain Menu” a little bit. Instead of pressing “Add Shape File”
to add a shape file and “Add Satellite Image” to add a satellite image etc, user will
just press “Add Map” and he/she will be able to specify all map types. We have
removed “Browse Data” menu item for this reason. Since specifying country and
city information was in “Browse Data” window, we have moved them to
“Constraints” panel in main window. During our research on GIS we have learned
that the elevation data file or shape file should not be necessarily unique. There
can be more than one elevation maps or shape files for the same terrain. Before
learning this, we were assuming that there will be exactly one elevation map and
at most shape file or satellite image for a terrain. Seeing the assumption we made
was wrong, we changed this part also. Now, user can specify as many maps as
he/she wants and he/she can remove any map (including elevation maps) from
the project. However, if user tries to get activity without specifying any elevation

map the software will not generate any an activity plan.

e We have moved choosing member for an activity option from “See all Members”
window to main window as we thought this would be more convenient. If user
presses “Choose Member” button in the Main Window, a new window listing the
unchosen members in the system will appear instead of “See all Members”
window. Here, user will be able to choose more than one member by selecting all

and pressing “Ok” button.

e We have made changes in taking weather information part. At the beginning we
were taking weather information from the internet only. We have added an
option for user to specify the necessary information manually in case of lack of
internet connection or lack of information. If user does not specify any

information, we will use default values and warn the user for this situation.

Again, there may be some changes in the design of user interface at the next steps of the
project. User screens may be designed to be more user-friendly as the need arises. However,

the functionalities the screens serve will remain more or less stable.

12

In the following sections, we will explain the main points of our graphical user interface.

5.1. Main Window

File. Terrain Weather Equipment Help

i Member Information 3D Visualization of the
Ettsen Mewtets for Climbing: [Rotats Left | Rotate Right | Zoom In || Zoom out |
Member D i Mame Surname
il [Tung Findik.
5 Elif Kamer Karatas
3 Duygu ¥apa
3 Duygu Attinck
7 Ayse Turan
lember Operations
—C
|:| Safest Houte |:| Shortest Route
[] Longest Time Walked Per Day [] Minimizing Time
[] Longest Distance Cimbed Per Day ["] Longest Distance Walked Per Day
-Time & Place
Weather
Start date : = 0 || (2008 |w
® Set Manually
) Get From Internet —
Country = Longitude Latitude Elewvation
petleathec ki 1210713 441128 10201 m
v

‘ Get Activity Plan ‘ Exit ‘

Figure 5.1. Main Window of Strider

In Figure 5.1, you see the main window of our software. It consists of a menubar including
File, Terrain, Weather, Equipment and Help menus, Member Information, Constraints and

3D Visualization of the Mountain Panels and Get Activity Plan and Exit buttons.

5.2. File Menu

From File Menu, the following options can be chosen:

e New Project: If “New Project” is clicked; after closing the old one, a new project will

be open with default values.

13

e Open Project: If “Open Project” is clicked after closing the current one, a file chooser
for opening a “.srs” file will appear. Clicking the desired project with “.srs” extension,

and “Open”, the project will be open.

e Save Project: If “Save Project” is clicked, a file chooser for saving the current project
will appear and writing the name and clicking “Save” will save the project to the

desired location.

e Exit: When “Exit” is clicked, if the current project has not saved recently, first an
option pane that asks whether to save the project before exiting or not, will appear.
According to chosen option, Strider will exit either with saving the project or without

saving it.

5.3. Terrain Menu

From Terrain Menu, the following options can be chosen:

e Add Map : If this option is chosen, a filechooser which shows files with extensions
“dted”, "dem”, “shp” and “geotiff” will appear as shown in Figure 5.2. Selecting a
map and pressing “Add Map” will add the selected file to project. The effect of

adding a map to the project will also be seen in visualization.

14

|| Add Map

Look In:] harita drnekleri

o O—
M. n—

i

G

[10.2.1.1043901.dem [) mtfd2.dem
[30.1.1.1282760.dem [| mthb4.dem
E| marat.dem E| mitkcS.dem
D maraf.dem
[} marb2.dem
|_j mcgcd.dem
B mish1.dem

D mitmc2.dem

[044121a1.dem

[} tgro2100bIk00.5hp
[} tgro2100sidu.shp

[y taro2100trt.shp
[} tgro2100vot0o.shp

File Hame: marbZ.dem

Files of Type: |Map Files

Add Map

Cancel

Figure 5.2.Add Map Window

Remove Map(s) : If this option is chosen, a window including the list of project maps

will appear (Figure 5.3). Selecting one or more maps from the list and pressing

“Remove Selected Map(s)” will remove the specifed maps from the project. The

effect of removing map(s) from the project will also be seen in visualization.

| 5| e Mép(s..]

Project Maps :
Type File Mame Folder Name
Elevation Data map.dted CilUsers\ayse\Deskiop\d20iharita drne...
Shape File map.shp C:\Userslayse\Deskiop\420tharita Grne....
Satallte Image p.geotiff C:\Userslayse\Deskiop\420tharita Grne....

Remove Selected Map(s)

Close

Figure 5.3.Remove Map(s) Window

15

5.4. Weather Menu

In Weather Menu there is only one option : “See Weather Information”. If this option is
chosen, then the current weather data of the project will be shown to the user (Figure 5.4).

Pressing “OK” will redirect to the main window. (Figure 5.1)

él WEEth'EI' Infgrmaﬁgn = | IE' : |i| Weather Information E@ﬁ
Weather Information- P e Sl
Season: WINTER Sicai Waiar | Rain
@ rainy
Pressure (kPa): 102.3 — T -
L Pressure (kPa): | D.—{) not rainy

Lowest Temperature ('C); -5 - Temperature
Highest Temperature ('C): 3 Lowest Temperature (C): | -5

Highest Temperature ("C}: BE
Wind Direction : MarthEast

~Wind-
Wind Speed (kmih) 2 Wind Speed (kmh): E:
iy fe WindDirection: |North |

oK
Update ‘ ‘ Cancel

Figure 5.4. See Weather Window Figure 5.5. Update Weather Window

5.5. Equipment Menu

In this menu, there is only one option : “Equipment Operations”. Choosing that option

triggers a window, containing the list of equipments in the system, opening (Figure 5.6).

16

i {ﬂ Equipmen?gmgun;—

All Eguipments :
Equipment D Name Weight () Used for Walking | Used for Climbing | Used for Camping | Used for Emerge.. Season isPersonal

1 Descender a7 NO YES NO NO WINTER, SUMMER YES -
2 Belay Device 102 NO YES NO NO WINTER, SUMMER |YES

3 Ascender 725 NO YES NO MO WINTER, SUMMER __|YES

4 Rope Clamp 180 NO YES NO s} WINTER, SUMMER__[NO

5 Pulley 265 NO YES NO [YES WINTER, SUMMER YES 3
6 Rescue Pullsy 180 NO YES NO [YES WINTER, SUMMER YES T
T Harnesses 350 NO YES NO NO WINTER, SUMMER YES

8 Helmet 340 YES YES NO [YES WINTER, SUMMER [YES

9 RockShoe 545 YES YES NO [YES VWINTER, SUMMER __ |YES

10 Boots 2000 YES YES NO [YES WINTER: YES =

| Add New Equipment Remove | | Update | | Close

Figure 5.6. Equipment Operations Window

From “Equipment Operations” window user can choose the following options:

e Add New Equipment: If this option is chosen, a window to define a new equipment

will appear (Figure 5.7). Filling the fields and pressing “OK” will add the newly defined

equipment to the system after doing necessary error checks, and redirect to

“Equipment Operations” window.

| 5| Add New Equipment R

. |é| Update Equipment

el o

]

Name :

Weight (g): |

—Season

-Mew Eguipment Information

@ personal eqguipment

'D group equipment

weinter |:| SUmMmer

L]
L]

—Us=sed for

walking |:| camping

climbing |:| emergency

|DK||C.anceII

—-Selected Equipment Information-

MName helmet

Weight (g} |340

i@ personal equipment

(o) group eguipment

—Season

winter SUmmer

—Used for

[#] hwatking [] camping
climbing Bmergency

Figure 5.7. Add Equipment Window

Figure 5.8. Update Equipment Window

17

5.6. Help Menu

removing an equipment, user will stay in “Equipment Operations” window.

equipment will appear (Figure 5.8).

to main window (Figure 5.1).

From Help Menu, the following Options can be chosen:

[£| About Stnder

without closing the main window.

about the developers of Strider will appear (Figure 5.9).

N = s e

ABOUT STRIDER

Strider is one of the Senior Desian projecis
at Department of Computer Engineering,
in Metu.

This project is supported by ASEL SAN for
easening the preparation Tor an activity.

Strider is developed by Sirius Software,
which is found by 4 senior students:

Duygu Yapa

Ayse Turan

Duyagu Altmok

Elif Kamer Karatag

Figure 5.9. About Strider Window

Remove Equipment: If this option is chosen, the selected equipment will be removed

from the system after doing necessary error checks and confirmations. After

Update Equipment: If this option is chosen, a window for user to update the selected

Close: Choosing this option will close “Equipment Operations” window and redirect

Help Topics: If Help Topics option is chosen, then the user manual file will be open

About Strider: If this option is chosen, then a short description and information

18

5.7. Member Information Panel

In Member Information Panel, there is a list of members (their ids and names) that will go

climbing.

e |f user presses “Choose New” button to include member(s) in the activity then a
window containing the list of all unchosen members with their whole informations
will appear (Figure 5.10). User can select more than one member, and pressing
“OK” button will add all selected members to the project’s chosen member list.
Pressing “OK” or “Cancel” button will redirect to main window, reflecting the

changes in the chosen member list to the chosen member panel, if any.

4| Unchasen Members L]
Unchosen Members
Member ID Mame Surname Walking Speed (km/h} | Climbing Speed (m/h) | Carriage Capacity (kg) | Experience Level
22 ali geng 5 3 4 LEVEL1
23 veli yash B 2.4 LEVELZ
25 deli intiyar r 37 5 LEVEL3
27 ayse yorgun 2 4.3 LEVEL1
33 fatma hanm 6.5 4 2.6 LEVELZ
45 hayriye cogar Z 5.4 LEVELZ
| Choose Selected Member(s) ‘ ‘ Close |

Figure 5.10. Choose Member for Activity Window

e |f user chooses one of them and presses

o “Remove Button”, then that member is removed from chosen members list.

o “Update Button”, then a window (given in Figure 5.13) that will contain the
information of the selected member is shown. Updating the necessary field

and pressing “OK” will updates the information of the selected member.

There is a button, User Operations Button, to see the information of all existing members
(both chosen for climbing and not). If user presses this button, the window given in

Figure 5.11 will appear.

19

|| User Operations. — : ‘. i

All Members

Member 1D Name Surname Walking Speed (kmih) | Climbing Speed (mih Carriage Capacity (ka) Experience Level
32 ali genc B 55 6 LEVELS
33 weli yash 7 4 5.5 LEVELS
24 deli ihtivar 6 42 4 LEVEL4
23 aysE coluk 5 35 4.4 LEVEL4
25 fatma cocuk 4 33 3z LEVEL3
26 hayriye biyik 3 22 2.1 LEVEL2
29 hasan kiciik 2 1.2 24 LEVEL1
41 hilseyin orta 1 0.5 09 LEVEL1

| Add New Member ‘ ‘ Remove | | Update | | Close

Figure 5.11. User Operations Window

From User Operations Window, user can perform the following actions:

e Add New Member: If user presses “Add New Member Button”, then the window
given in Figure 5.12 will appear. Filling the informations, and pressing “OK” gives the
member a unique id and adds member to the database and “User Operations”

window is updated accordingly.

e Remove an Existing Member: If user selects a member and presses “Remove
Button”, then the selected member is removed from the database permanently and
“User Operations” window is updated accordingly. If the removed user is in chosen

members for climbing list, he will also be removed from that list.

e Update Member Information: If user selects a member and presses “Update
Button”, then the information of the selected member will appear. (Figure 5.13)
Changing the necessary fields and pressing “OK”, updates the information of the

selected member.

20

] Add New Member 11 s =0al P S | 2] Update Member biemeli(=) PSS

-Mew Member Information- Selected Member Information
Mame : || | MName : bsdcah
Surname | | | Surname | efedsd

Walking Speed (kmih): |1.0 |

T
Walking Speed (kmh) ;|

Climbing Speed (mi) | | Climbing Speed (mh) |2.EI |

Carriage Capacity (kg | | Carrizge Capacity (ko) |3.EI
Experince Level : Level 1 Tl Experince Level ; Leveld |w

| | Ok | | Cancel oK Cancel

Figure 5.12. Add New Member Window Figure 5.13. Update Member Window

e Close Window: If “Close” is pressed, User Operations Window will be closed

returning back to the main window. (Figure 5.1)

5.8. Constraints Panel

In Constraints Panel, there are constraints that are taken into account when preparing the
activity plan. User can choose more than one constraint. He also specifies the start date and
time of the activity, country and city of the terrain that mountain is located. In addition he
will specify the weather setting information. By choosing “Set Manually” option and pressing
“Set Weather Info” a window showing the current weather information will appear
(Figure5.5). Filling the necessary fields and pressing “OK” will update the weather
information of the current project. If “Get from internet option” is chosen and “Set Weather
Info” is pressed then after checking the internet connection and availability of the
information, if everything seems okay, weather information will be taken from the internet.
If any problem occurs, the software will give a warning to the user and use the current

weather information not taken from internet.

21

5.9. 3D Visualization of the Mountain Panel

In this panel the 3D visualization of the mountain using all of the given maps will be

shown.

e As user moves the mouse on the terrain, the longitude, latitude and elevation of the

terrain will be shown in given boxes.

e If user clicks left mouse button then a popup menu will appear. In the popup menu

the following options exist:

o Start coordinate: If this option is chosen, then the clicked position will be the
start coordinate. If there is a start point given before, that point will be

removed since there can be only one start point.

o End coordinate: If this option is chosen, then the clicked position will be the
end coordinate. If there is an end point given before, that point will be

removed since there can be only one end point.

o Checkpoint: If this option is chosen, the clicked position will be added to the
checkpoints list. During the preparation of the activity plan, passing through

the given checkpoints will be taken into account as a constraint.

o Risk of avalanche: By choosing this option, user can point the risk of

avalanche.

o Risk of falling rocks: By choosing this option, user can point the risk of falling

rocks.

e If user clicks right mouse button, if there exists any points defined on that position, it

will be removed.

o If user clicks the save image button, a file chooser will appear and pressing save,

saves the image to a desired location.

e User can view the other sides of the mountain by pressing “Rotate Left” and “Rotate

Right” buttons or keyboard’s left and right arrow keys.

22

e User can zoom in and out the terrain by pressing “Zoom In” and “Zoom Out” buttons

or keyboard’s up and down arrow keys.

5.10. Get Activity Plan Window

When user presses “Get Activity Plan” button, after doing the error checks, the window

shown in Figure 5.14 will appear.

ion of the Clmbing - Activity Plan
Estimated Duration: |10 h 10 min
Camping Time : 10 = (10
Camping Duration ; |10 h 10 min
Food Amount ; ‘I_U kg pasta
Water Amount : 10 liter
Emergency List: Eguipment List
Save Report | | Close ‘
Save
=

Figure 5.14. Activity Plan Window

From the Activity Plan Window, user can simulate the climbing by pressing “Play Button”. If
he presses “Save Button”, a file chooser appears and pressing “Save”, saves the simulation

to the desired location.

In the Activity Plan Panel, there exists the generated output about the climbing. In case of
more than one camping, all of the campings will be listed. If there is no camping, nothing will

be displayed for camping.

23

If user presses “Save Report”, a file chooser for saving the activity plan will appear. Pressing
“Save”, saves the report. If user presses “Close”, the Activity Plan will be closed without

saving the activity plan report.

6. ARCHITECTURAL DESIGN

In this section, the architectural design of the project will be described. In the first part,
package and class descriptions and class diagrams will be given. In the second part, the

method and class interfaces of the packages will be described.
6.1. Package and Class Design

6.1.1. strider package

“strider” package is the main package of the project (Figure 6.1). It consists of two classes

namely “Main” and “DatabaseConnection” and 4 main packages namely “definedTypes”,

o __s.n

gis”, “planner” and “gui”.

e Main Class is the class that has the main method (Figure 6.2).

e DatabaseConnection Class is the class that is responsible for database connection

(Figure 6.3).

24

Figure 6.1. strider package

Figure 6.2. Main Class Figure 6.3. DatabaseConnection

6.1.2. strider.definedTypes package

This package contains the definition classes that will used by other packages and classes
namely Season, Constraint, WindDirection, ExperienceLevel and Coordinate classes (Figure

6.4).

25

Season Experiencelevel Constraint
HMMNTER it =1 +LEVELT @ int =1 +SHORTESTPATH :int =1
+ALTLUMM ;- int = 2 +LEVELZ int =2 +HMIMIMIZETIME : it = 2
+SPRING : int = 3 +LEVELS int=3 +SAFESTPATH : int =3
+SUMMER : it = 4 +LEVELY :int = 4 +L TWALKED : int = 4
+Season() +LEVELS int =5 +LTCLIMEED ; int = 5

+Experiencelevel() +LDWALKED : int = 6
+ DCLIMBED : it = 7
+Constraint()
Coordinate

-longitude : float WindDirection

-latitude : float CMNORTH - int = 1

-elevation : float “SOUTH int=2

+Coordinate) +EAST [int=23

+getlongitude() : float +HNEST - int = 4

+zsetl ongitude{parameter : float) : void
+getlatitude() : float
+setlatitudelparameter : float) : void
+getElevation() : float

+MORTHEAST : int =5

+MORTHWEST @ int = 6

+SOUTHEAST :int=7

+SOUTHWEST :int = 8

+setElevation{parameter : float) : void +AindDirection()

Figure 6.4. strider.definedTypes Package

Season Class contains the season information. Season can be WINTER, AUTUMN,

SPRING, SUMMER.

Constraint Class contains the project constraint definitions. There are seven types of

constraints defined.
WindDirection Class contains the definition of wind direction.
ExperienceLevel Class defines the experience level of a member.

Coordinate Class defines a new type that is consist of longitude, latitude and

elevation informations.

26

6.1.3. strider.gis Package

This is the package that extracts data from the map file paths specified by the user. This
package is capable of getting features of both raster and vector maps. Below you can find

the class diagram of this package. This package contains the class named “GIS” (Figure 6.5).

Gis

+Fi(])

+createDataStorel) . void

+findDataStore(ur] - URL) ; DataStore
+getFeaturelstore | DataStore) . FeatureCollection

Figure 6.5. strider.gis package

e GIS Class is the class that is responsible for geographic information system side
operations. The descriptions about methods will be given in the “Methods and Class

Interfaces” section.

6.1.4. strider.planner Package

This is the package that the plan of the activity is prepared (Figure 6.6). There are three

classes in this package: Camping class, Plan Class and Planner class.

The method makePlan() in the Planner class prepares the activity plan. Our algorithm will
work in makePlan() function. Since we do not have a well-defined algorithm to prepare plan
at this step, we will only give some information about the working principals of our planner

algorithm.

Activity plan consists of a route, a camping plan including camping regions and camping
duration, the optimized list of equipments that are required for the climbing and an
optimized food list. Among these members of the plan, route is the one that dominates the
others. So the algorithm should first find an optimized route for the activity meeting the

constraints specified by the user.

The algorithm will make decision on paths considering the least experienced, slowest

and weakest members of the group as a basis. The paths that require more experience than

27

the least experienced member of the group will not be chosen. Duration of the activity will

be decided according to the speed of slowest member in climbing or walking.

Walking speed of the members will be reduced at nights, at snowy and rainy weathers.

At rainy and snowy weathers walking will be preferred climbing, actually climbing will not be

an option.

Safest route is the route that there is less or no avalanche and falling rocks risks. Also
walking will be taken as safer than climbing. When minimizing time of the activity is a
constraint, safest route will be considered as shortest route in duration, because the risky
activities like climbing, passing rivers, are time consuming activities even if they are on the

shortest path. This is one of the mountaineering knowledge obtained from reliable sources.

Camping is not mandatory. However, if necessary, the duration of the camping will
always be minimized. Equipment list will be prepared according to the requirements of the
path and will be optimized. Food list will be prepared according to the duration of the

activity. The load of the group should be minimized.

Plan Camping
-route : Yector ~cluration : int
-campings : Vector -startTime : Date
-equipments : Vector -place : Coordinate
-foodAmourt : int +Camping()

-waterAmount : int +getDuration() : int

-duration : int +setDuration(parameter : int) : void
+Plani) +getStart Timel) : Date

+getRoute() : Vector +setStart Time(parameter : Date) © void
+setRoute({parameter : Vector) : void +getPlace() | Coordinate
+getCampings() . Vector +setPlace(parameter | Coordinate) : void

+setCampings(parameter | Wector) : void
+getEquipments() © Vector
+setEguipments(parameter | Wector) : void
+getFood Amount() : int

+setFood Amount{parameter : int) : void
+getWWater Amount() : int

+setWater Amount(parameter ; int) ; void
+getDuration() : int
+setDuration({parameter : int) : void

Planner

+Planner()

-makePriarity(parameter : Weather, parameter2 | Season, parameterd | WindDirection, parameterd : Experiencelevel, parameters : DataStore, parameters | Constraint) : Priority
-makeRoute(parameter : DataStore, parameter? : Vector, parameter3 : Priority) : “ector

-makeCampPlan{parameter | Vector, parameter2 | Weather) : Vector

-calculateVWater(parameter : VWeather) : float

-calculateFood(parameter : int, parameter2 : int) : float

-calculateEquipment{parameter : Yector, parameter? : int, parameter3 | Season, parameterd | Weather) . Vector

+makePlan() : Plan

Figure 6.6. strider.planner package

28

e Camping Class includes the definition of a camp.

e Plan Class includes the definition of a plan.

e Planner Class is the class that makes the activity plan.

6.1.5. strider.gui Package

This is the package that handles the user interaction and commands. Inputs are obtained
from the user to be used in other packages for planning. Some important features it

provides to user can be listed as follows:

e User can manage the member database of the club

e User can see the 3D visualization of the terrain and can mark coordinates on the
image for different purposes: start and end point specification, checkpoint
specification, avalanche risk specification, falling rock risk specification.

e User can see the simulation of the prepared plan.

This is the largest package in the system. It consists of two packages namely “helpers” and

“windows”.

6.1.6. strider.gui.helpers Package

This is the package that contains helper packages for gui windows. It contains “MapFilter
Class” (Figure 6.7) and 6 helper packages namely “Member”, “Equipment”, “Visualization”,

“Project”, “Simulation” and “Weather”.

MapFilter

+MapFiter()

+getExtension{parameter : File) : String
+accept{parameter : Filg) : boolean
+getDescription() ;. String

Figure 6.7. MapfFilter Class

e MapfFilter Class is extended from java’s FileFilter class and overrides its “accept” and
“getDescription” methods. This class is used for browsing maps in the following

formats : “dted”, “dem”, “geotiff”, “shp”.

29

6.1.7. strider.gui.helpers.member Package

This is the package that apply the changes and operations to the database of members.
It contains member related information and opereations. It consists of two classes namely

“Member” and “MemberManager” (Figure 6.8).

Figure 6.8. strider.gui.helpers.member Package

e Member Class is the class containing the attributes of a member and getter, setter

methods for those attributes.

e MemberManager Class is the class responsible for handling member operations.
Since it is the manager class, MemberManager Class has no constructor and all
methods within this class are static. This class is the bridge class between the

database and the software.

30

6.1.8. strider.gui.helpers.equipment Package

This package contains equipment related information and operations. It consists of two

classes namely “Equipment” and “EquipmentManager” (Figure 6.9).

Figure 6.9. strider.gui.helpers.equipment Package

e Equipment Class is the class containing the attributes of an equipment and getter,

setter methods for those attributes.

31

e EquipmentManager Class is the class responsible for handling equipment operations.
Since it is the manager class, EquipmentManager Class has no constructor and all
methods within this class are static. This class is the bridge class between the

database and the software.

6.1.9. strider.gui.helpers.project Package

This package contains project related information and operations. It consists of two

classes namely “Project” and “Project Manager” (Figure 6.10).

Project
-projectiame ;. String
-projectPath ; String
-choseniMembers : Wector
-elevationMapPaths . Vector
-shapeFilePaths : “ector
-satallitePaths : Vectaor
-city . String

ProjectManager -constraints | VWector
+ProjectManager) _startDate - Date
-parsePath(parameter | String) © int _wesather - Weather
+addPath{parameter . String) ;. void _startCoordingte | Coordingte
-removePathiparameter ;. String) : void I Ci e EEA R T e e
+removePaths(parameter . Vector) . void _checkPoints - Vector

-avalanchePoints : Vector
-falingRockPaoirts : Vector

-parseSTRFile{parameter : File) : void

+Project()

+Projectiparameter : String)

+getProjectMamel) . String
+setProjectMamelparameter | String) ;. void
+getProjectPath() . String
+setProjectPath{parameter | String} ; void
+getEndCoordinate() : Coordinate
+zetEndCoordinatelparamester : Coordinate) : void
+getCheckPoints() . Vector
+setCheckPoints(parameter | YYector) . void
+getAvalanchePoints() . Vector
+setAvalanchePoints{parameter | Vector) © void
+getFalingRockPoints() . Yector
+setFalingRockPoints(parameter : Yector) : void
+addCheckPoints{parameter : Coordinate) : void
+addAvalanchel{parameter | Coordinate) : void
+addFallingiparameter ;. Coordinate) : void
+removeCheckPoint{parameter : Coordinate) © void
+removedvalanchelparameter ;. Coordinate) © void
+removeF alling(parameter ;. Coordinate) © void

Figure 6.10. strider.qui.helpers.project Package

32

e Project Class is the class containing the attributes of a project and getter, setter
methods for those attributes. In addition, it has methods to remove or add various
coordinates and a method to parse “srs” file. Some of the getter/setter methods

couldn’t be shown in the figure because of lacking space.

e ProjectManager Class is the class responsible for handling project operations. Since it
is the manager class, ProjectManager Class has no constructor and all methods
within this class are static. This class holds methods for adding or removing a map

from the peoject and parsing path according to its extension.

6.1.10. strider.gui.helpers.weather Package

This package contains weather related information and operations. It consists of two

classes namely “Weather” and “WeatherManager”.

Weather

HowestTemp : float

-pressure : float

~windSpeed : float

-windDirection : int

-season : int

-rainy : boolean

-highestTemp ; float

+\Weather()

+Heather(parameter : float, parameter2 : float, parameter3 : float, parameterd : int, parameters : int, parameters : boolean, p...

+oetlowestTemp() : float

WeatherManager +setlowestTemp(parameter : float) : voic
+WVeatherManager() +getPressure() : float
-HTMLParser() ; void +setPressure(parameter : float) : void
+oetWeatherFromiMet() : Weather +getWindSpeed() : float
+setWindSpeed(parameter ; float) ; void

+getWindDirection() : int
+setWindDirection(parameter ; int) ; void
+getSeason() | int
+setSeason(parameter : int) : void
+getHighestTemp() : float
+setHighestTemp(parameter : float) : void
+isRainy() ; boolean
+setRainy(parameter : boolean) : void

Figure 6.11. strider.qgui.helpers.weather Package

e Weather Class is the class containing the attributes of weather information and

getter, setter methods for those attributes.

e WeatherManager Class is the class responsible for handling weather operations.

Since it is the manager class, WeatherManager Class has no constructor and all

33

methods within this class are static. This class is basically responsiple for getting

weather from internet and HTML parsing.

6.1.11. strider.gui.helpers.visualization Package

This package contains only “Visualization” class (Figure 6.12).

Visualization

-styleFactory . StyleFactory
-mapContext | MapCortext

+Wigualization()

+createPolygonStylel) | Style

+ereatePointStylel) . Style

+oreatelineStylel) . Style

HoSLDFile(parameter ; File) ; File
+ereateFromSLD{parameter : File) : Style
+savelmagelAsJPEG{parameter : JMapPane) : void
+addMap(parameter : URLY : vaoid

Figure 6.12. strider.gui.helpers.visualization Package

e Visualization Class is the class responsible for visualizing the terrain. It basically

makes use of Geotools for this purpose.

6.1.12. strider.gui.helpers.simulation Package

This package contains “Simulation” and “SimulationHelper” class.

Simulation

SimulationHelper
+SimulationHelper()
+makeQTFiIe(p$rﬂmeter : vemm:)_: File

+Simulation)
+play{parameter ; File) : vaid
+savelparameter : URL, parameter2 : File) : void

Figure 6.13. strider.gui.helpers.simulation Package

e Simulation Class is the class for making simulation of the planned route.

34

6.1.13. strider.gui.windows Package

This package is responsible for presenting the gui. The classes correspond the figures of

“User Interface Design” part. Details about the methods in the classes will be given in “Class

and Method Interfaces” section.

It contains the following classes:

e MainWindow Class is the class responsible for showing the “Main Window of
Strider”. The class diagram of MainWindow is shown in Figure 6.14. Of course,

there are much more attributes in this class, but because of space reasons we

show some of them here.

35

Figure 6.14. strider.gui.windows.MainWindow Class

e AboutWindow Class is the class responsible for showing the “About Strider

Window”. The class diagram of AboutWindow is shown in Figure 6.15.

36

Figure 6.15. strider.gui.windows.AboutWindow Class

AddNewEquipWindow Class is the class responsible for showing the “Add
Equipment Window”. The class diagram of AddNewEquipWindow is shown in

Figure 6.16.

Figure 6.16. strider.gui.windows.AddNewEquipWindow Class

AddNewMemberWindow Class is the class responsible for showing the “Add
New Member Window”. The class diagram of AddNewMemberWindow is shown

in Figure 6.17.

37

Figure 6.17. strider.gui.windows.AddNewMemberWindow Class

e EquipOperationsWindow Class is the class responsible for showing the
“Equipment Operations Window”. The class diagram of EquipOperationsWindow

is shown in Figure 6.18.

Figure 6.18. strider.gui.windows.EquipOperationsWindow Class

38

e GetActivityPlanWindow Class is the class responsible for showing the “Activity
Plan Window”. The class diagram of GetActivityPlanWindow is shown in Figure

6.19.

Figure 6.19. strider.gui.windows.GetActivityPlanWindow Class

e RemoveMapWindow Class is the class responsible for showing the “Remove
Map(s) Window”. The class diagram of RemoveMapWindow is shown in Figure

6.20.

39

Figure 6.20. strider.gui.windows.RemoveMapWindow Class

e UnchosenMembersWindow Class is the class responsible for showing the
“Choose Member for Activity Window”. The class diagram of

UnchosenMembersWindow is shown in Figure 6.21.

Figure 6.21. strider.gui.windows.UnchosenMembersWindow Class

e UpdateEquipWindow Class is the class responsible for showing the “Update
Equipment Window”. The class diagram of UpdateEquipWindow is shown in
Figure 6.22.

40

Figure 6.22. strider.gui.windows.UpdateEquipWindow Class

e UpdateMemberWindow Class is the class responsible for showing the “Update
Member Window”. The class diagram of UpdateMemberWindow is shown in

Figure 6.23.

41

Figure 6.23. strider.gui.windows.UpdateMemberWindow Class

e UpdateWeatherWindow Class is the class responsible for showing the “Update
Weather Window”. The class diagram of UpdateWeatherWindow is shown in
Figure 6.24.

42

Figure 6.24. strider.gui.windows.UpdateWeatherWindow Class

e UserOperationsWindow Class is the class responsible for showing the “User
Operations Window”. The class diagram of UserOperationsWindow is shown in

Figure 6.25.

43

Figure 6.25. strider.gui.windows.UserOperationsWindow Class

e WeatherInfoWindow Class is the class responsible for showing the “Weather
Information Window”. The class diagram of WeatherInfoWindow is shown in

Figure 6.26.

Figure 6.26. strider.gui.windows.WeatherinfoWindow Class

6.2. Method and Class Interfaces

6.2.1. strider package

DatabaseConnection Class:

private static void loadDriver(): This method loads the driver. It is a private and static

method and called within the “establishConnection” method to establish the connection.

public_static void establishConnection(): This method first loads the driver by calling

loadDriver() method, then establishes the database connection. This method is called in the

constructor of Main Class to establish the database connection at the beginning.

6.2.2. strider.gis package

Gis Class:

public static void createDataStore(): This method creates DataStore for different map

formats. DataStore is a defined type in Geotools holding the information about the maps.

(Something like a database) Adding a map to the project causes this methods to be invoked.

public static DataStore findDataStore(URL url): This method finds the data store for a map

format. Adding a map to the project causes this methods to be invoked.

public static FeatureCollection getFeature(DataStore store): This method is used for

getting the features for a specified data store. FeatureCollection is a defined type in

Geotools holding features about datastores.

6.2.3. strider.planner package

Planner Class:

private static Priority makePriority(Weather weather , Season season , WindDirection

windDirection, Experiencelevel experiencelevel, DataStore dataStore, Constraint

constraints): This method determines the priorities up to the weather, terrain, season and

team's stamina conditions. It is invoked within the makePlan().

45

private static Vector<Coordinate> makeRoute(DataStore datastore, Vector<Coordinate>

referencePoints, Priority priorities): This method calculates the route between start & end

coordinates with respect to the priorities and user given constraints. This method is invoked

within the makePlan().

private static Vector<Camping> makeCampPlan(Vector<Coordinate> route, Weather

weather): This method is used for making the camp plan. While preparing the activity plan,

this method is invoked.

private static float calculateWater(Weather weather): This method calculates the

necessary water amount. It is invoked within the makePlan().

private static float calculateFood(int duration, int teamMembers): This method calculates

the necessary food amount. It is invoked within the makePlan().

private static Vector<Equipment> calculateEquipment (Vector<Coordinate> route, int

members, Season seasn, Weather weathr): This method determines the necessary

equipments. It is invoked within the makePlan().

public _static _Plan makePlan(): This method calls makePriority, makeRoute,

makeCampPlan, calculateWater, calculateFood and calculateEquipment methods to make
the activity plan. When the user hits “ Get Activity Plan” button from GUI, this method is

invoked.

6.2.4. strider.gui.helpers.member package

MemberManager Class:

public static void addNewMember(Member newMember) : This method will add the

newMember to the Member table of the database.

public static void removeMember(int memberld): This method will remove the member

with memberld from the database.

public static void updateMember(Member member): This method will update the given

member in the database.

46

public static Vector getAllMembers(): This method will retrieve all the members in the

database and puts them in a Member vector and returns.

public static Member getSelectedMember(int memberld): This method will retrieve the

member with given memberld from the database and returns it.

6.2.5. strider.gui.helpers.equipment package

EquipmentManager Class:

public static void addNewEquip(Equipment newEquip) : This method will add the

newEquip to the Equipment table of the database.

public static void removeEquipment(int equipld): This method will remove the equipment

with equipld from the database.

public static void updateEquipment(Equipment equip): This method will update the given

equipment in the database.

public static Vector getAllEquipments(): This method will retrieve all the equipments in

the database and puts them in an Equipment vector and returns.

public static Equipment getSelectedEquipment(int equipld): This method will retrieve the

equipment with given equipld from the database and returns it.

6.2.6. strider.gui.helpers.project package

Project Class:

private void parseSRSFile(File file): This method will be used to parse the srs file and sets

the necessary fields accordingly. It will be called within the constructor of Project, so it is

private.

ProjectManager Class:

private static_int _parsePath(String path): This method will parse the path by path’s

”

extension and returns its type. If it has a “dted” or “dem” extension it will return 1, “shp

47

extension it will return 2, “geotiff” extension it will return 3. This method will be called from

addPath(path) or removePath(path) methods in the ProjectManager class, so it is private.

public_static void addPath(String path) : This method will add the given path to the

current project. It will first invoke parsePath(path) method, if the returned value is 1, the
path will be added to elevationMapPaths list, if it is 2 it will be added to shapeFilePaths list, if
it is 3 it will be added to satellitelmagePaths list. This process is necessary since geotools has

different procedures to read different map formats.

private static void removePath(String path): This method will remove the specified path

from the current project. It will first invoke parsePath(path) method, if the returned value is
1, the path will be removed from elevationMapPaths list, if it is 2 it will be removed from

shapeFilePaths list, if it is 3 it will be removed from satellitelmagePaths list.

public static void removePaths(Vector<String> paths): This method will remove all given

paths from the project by calling removePath method for each element. This method is

public since more than one path can be removed from the project at the same time.

6.2.7. strider.gui.helpers.weather package

WeatherManager Class:

private static void HTMLParser(): This method will parse the website for weather and

retrieve necessary information from it.

public static Weather getWeatherFromNet() : This method will first parse the html for

weather and creates a weather object with taken information and returns that object.

6.2.8. strider.gui.helpers.visualization package

Visualization Class:

public static Style createPolygonStyle(): This method will create polygon style and adds

that style to styleFactory (public static attribute of Visualization class).

public static Style createPointStyle(): This method will create point style and adds that

style to styleFactory.

48

public static Style createlineStyle(): This method will create line style and adds that style

to styleFactory.

public static File toSLDFile(File file): This method will convert the file to geoTool’s styled

layer descriptor format and returns it.

public _static _Style createFromSLD(File _sld): This method will call geoTools’

SLDParser.readXML() method to parse the file. That method returns Style[], and

createFromSLD method returns the first element of that array.

public static Style createStyle(File file, FeatureType schema): This method will first call

toSLDFile(file) and creates a Style from the returned SLD file using createFromSLD(sld)

method and returns that style.

public static void savelmageAsJPEG(JMapPane mapPane): This method takes a mapPane

(one of the GeoTool types) and save that pane as “jpeg” format.

public static void addMap(URL url): This method will add the map information taken from

url to the mapContext (static attribute of Visualization class) using geoTools’ addLayer

method.

6.2.9. strider.gui.helpers.simulation package

Simulation Class:

public void play(File file): This method will get the qt file of the simulation of planned

route and play on the graphical user interface.

public void save(File file, URL path): This method will called when user clicks the save

button on the graphical user interface and it saves the simulation video as a qt file to the

specified destination.

SimulationHelper Class:

49

public File makeQTFile(vector<GridCoverage> grids) : This method gets terrain data as

GridCoverage which is a feature of Geotools . It collects the grids and converts to image

format, than uses the Java QuickTime libraries to make a qt file.

6.2.10. strider.gui.windows package

MainWindow Class:

private void ShowMaps(): This method will get the mapContext (public static attribute of

Visualization class). Using mapContext, mapPane(static attribute of MainWindow class) will

be initialized and the map will be rendered in the visualization panel of the main window.

private void showMouseEvents(): This method will retrieve the existing start, end,

checkpoints, avalanche and falling rocks points from the current project (currentProject is
the public static attribute of MainWindow. It is instantiated in the constructor of

MainWindow), and shows different points with different icons on the map.

private void createPopup(GeneralDirectPosition g): This method will creates a popup

menu containing startCoordinate, endCoordinate, checkpoint, avalanche, falling rock as
menu items at position p. Using geoTools’ getMapCoordinate(g) method, the screen
coordinates are transformed into real coordinates. Then that coordinate will be added to the
project as the chosen items position. And to reflect the change on visualization

showMouseEvents() method is called.

private void fillTable(): This method is called within the constructor. It fills the chosen

member table. Chosen members are not related to database. This method first retrieves the
chosen members from current Project then constructs a table with member id, name and

surname columns and fills the table accordingly.

private void deleteRow(int row): This method is called within the removeChosenButton’s

actionPerformed method. It basically deletes the row from the chosen list table. Changes are

immediately seen on main window.

public MainWindow(String path): This is the constructor method. It takes a project path

as parameter. Within constructor, a database connection is established, currentProject is

50

initialized with path. Necessary DataStores are created for the specified project and

fillTable() is called.

private void getActivityButtonActionPerformed(ActionEvent evt) : This is the method

called when “Get Activitiy” button is pressed. In this method, the necessary error checks will
be done, if any field is not specified by user, the default values will be used for preparing the
plan and a confirmation message will shown to the user. If everything is okay, Planner’s
makePlan method will be called. makePlan will return the activity plan and,

GetActivityPlanWindow is created and returned plan is set in that window.

private void rotateleftButtonActionPerformed(ActionEvent evt) : This method is called

when “Rotate Left” button is pressed. It will set the state of mapPane to

mapPane.Rotateleft.

private void rotateRightButtonActionPerformed(ActionEvent evt) : This method is called

when “Rotate Right” button is pressed. It will set the state of mapPane to

mapPane.RotateRight.

private void zoomInButtonActionPerformed(ActionEvent evt) : This method is called when

“Zoom In” button is pressed. It will set the state of mapPane to mapPane.Zoomlin.

private void zoomOQOutButtonActionPerformed(ActionEvent evt) : This method is called

when “Zoom OQut” button is pressed. It will set the state of mapPane to mapPane.ZoomOut.

private void openProjectMenultemActionPerformed(ActionEvent evt) : This method is

called when “Open Project” menu item is pressed. Within this method, first whether to save
the existing project will be asked to the user, after behaving accordingly, a browser will be
opened with “srs” files filtered. If a project is selected to open, this method will call

MainWindow constructor with the newly specified path.

private void newProjectMenultemActionPerformed(ActionEvent evt) : This method is

called when “New Project” menu item is pressed. Within this method, first whether to save
the existing project will be asked to the user, after behaving accordingly, MainWindow

constructor will be called with “default.srs”.

51

private void saveProject(Project project, String path): This method saves the project in

specified path.

private void saveProjectMenultemActionPerformed(ActionEvent evt): This method is

called when “Save Project” menu item is pressed. Within this method a browser will be

opened and saveProject method will be called with the currentProject and selected path.

private void removeChosenButtonActionPerformed(ActionEvent evt) : This method is called

when “Remove” button is pressed. After confirmation, the method removes the selected
chosen member from the current project by calling project’s removeChose(member)

method. To reflect those changes on the window, the method calls deleteRow method also.

private void updateButtonActionPerformed(ActionEvent evt) : This method is called when

“Update” button is pressed. After doing the necessary error checks UpdateMemberWindow

will be created and shown to the user.

private void memberOpActionPerformed(ActionEvent evt): This method is called when

“User Operations” button is pressed. The UserOperationsWindow will be created and shown

to the user within this method.

private void choseButtonActionPerformed(ActionEvent evt): This method is called when

“Choose New” button is pressed. The UnchosenMembersWindow will be created within this

method.

private void setWeatherButtonActionPerformed(ActionEvent evt):. This method is called

when user presses “Set Weather Info” button. Within this method, if “Set Manually” option
was chosen then UpdateWeatherWindow will be created and shown. If “Get from Internet”
option was chosen then first internet connection is checked, then the availability of the
information is checked. If everything is okay, the weather information is taken from the
internet using WeatherManager class’ methods. If there is any problem, the old information
will be used for the weather and warning will shown to the user. Finally, project’s weather

information will be set accordingly.

52

private void exitButtonActionPerformed(ActionEvent evt): This method is called when

“Exit” button is pressed. After asking for saving and takingthe necessary action the software

will be closed.

private void exitMenultemActionPerformed(ActionEvent evt): This method is called when

“Exit” menu item is pressed. The method will be same as the previous one.

private void addMapMenultemActionPerformed(ActionEvent evt): This method is called

when “Add Map” menu item is pressed. Within this method a browser will be opened with
filtered map formats (MapFilter class will be used here). Selecting a map and pressing “Ok”
will add the specified path to one of the currentProject paths. ProjectManager’s addPath
method will be used here. Gis’ createDataStore method will be called to create a datastore

for newly added map and showMaps() method will be invoked to update the visualization.

private void removeMapMenultemActionPerformed(ActionEvent evt): This method is

called when “Remove Map (s)” method is pressed. Within this method, RemoveMapWindow

will be created and shown to the user.

private void helpTopicsMenultemActionPerformed(ActionEvent evt): This method is called

when “Help Topics” menu item is pressed. It will open the UserManual file for the gui.

private void aboutMenultemActionPerformed(ActionEvent evt) : This method is called

when “About Strider” menu item is pressed. Within this method, AboutWindow will be

created and shown to the user.

private void seeWeatherMenultemActionPerformed(ActionEvent evt) : This method is

called when “See Weather” Menu item is pressed. Within this method,

WheatherinfoWindow will be created and shown to the user.

private void equipOpMenultemActionPerformed(ActionEvent evt): This method is called

when “Equipment Operations” menu item is pressed. Within this method,

EquipOperationsWindow is created and shown to the user.

53

private void savelmageButtonActionPerformed(ActionEvent evt): This method is called

when “Save Image” button is pressed. savelmageAsJPEG method will be called.

private void mouseClickedActionPerformed.MouseEvent evt): This method is called when

mouse is clicked. Within this method, if left button was clicked then createPopup method
will be called and a popup menu will be created. If right button was clicked then if the
pressed location contains any defined coordinate, that coordinate will be removed from the

project.

private void mouseMoveActionPerformed(MouseEvent evt) : This method is called as the

mouse moves. Within this method the longitude, latitude and elevation of the coordinate on

the terrain is set.

AddNewEquipWindow Class:

private void okButtonActionPerformed(ActionEvent evt): This method is called when “Ok”

button is pressed in “New Equipment” window. Within this method, first necessary checks
will be done, if everything is okay, then newly defined equipment is added to the database
using EquipManager’s addNewEquipment method. Then this window is closed, returning to
the “Equipment Operations” window. The newly added equipment should be seen in that

window.

private void cancelButtonActionPerformed(ActionEvent evt): If cancel button is pressed in

“New Equipment” window, then the window will be closed returning to the “Equipments

Operations” window.

AddNewMemberWindow Class:

private void okButtonActionPerformed(ActionEvent evt): This method is called when “Ok”

button is pressed in “New Member” window. Within this method, first necessary checks will
be done, if everything is okay, then newly defined member is added to the database using
MemberManager’s addNewMember method. Then this window is closed, returning to the

“User Operations” window. The newly added member should be seen in that window.

54

private void cancelButtonActionPerformed(ActionEvent evt): If cancel button is pressed in

“New Member” window, then the window will be closed returning to the “User Operations”

window.

EquipOperationsWindow Class:

private void fillTable(): This method is called within the constructor. It fills the equipments

table. This method first retrieves the equipments from database using EquipmentManager’s

getAllEquipments method, then constructs and fills the table.

private void deleteRow(int row): This method is called within the removeEquipButton’s

actionPerformed method. It basically removes the row from equipments list table.

private void updateButtonActionPerformed(ActionEvent evt): This method is called when

“update” button is pressed. Within this method UpdateEquipWindow is created and shown

to the user.

private void addEquipButtonActionPerformed(ActionEvent evt): This method is called when

“Add New Equipment” is pressed. Within this method AddNewEquipWindow is created and

shown to the user.

private void removeEquipButtonActionPerformed(ActionEvent evt): This method is called

when “Remove” button is pressed. Within this method after confirmation, the selected
equipment will be removed using EquipManager’s removeEquipment method and

deleteRow methods.

private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed in “Equipment Operations” window. It will just close the window,

returning to the main window.

UserOperationsWindow Class:

private void fillTable(): This method is called within the constructor. It fills the members

table. This method first retrieves the members from database using MemberManager’s

getAllIMembers method, then constructs and fills the table.

55

private void deleteRow(int row): This method is called within removeMemberButton’s

actionPerformed method. It basically removes the row from members list table.

private void updateButtonActionPerformed(ActionEvent evt): This method is called when

“update” button is pressed. Within this method UpdateMemberWindow is created and

shown to the user.

private void addMemberButtonActionPerformed(ActionEvent evt): This method is called

when “Add New Member” is pressed. Within this method AddNewMemberWindow is

created and shown to the user.

private void removeMemberButtonActionPerformed(ActionEvent evt): This method is

called when “Remove” button is pressed. Within this method after confirmation, the
selected equipment will be removed using MemberManager’s removeMember method and

deleteRow methods.

private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed in “User Operations” window. It will just close the window,

returning to the main window.
GetActivityWindow Class:

private void playButtonActionPerformed(ActionEvent evt): This method is called when

“Play” button is pressed in the “Get Activity Plan” window. Within this method, Simulation’s

play method will be called.

private void saveSimButtonActionPerformed(ActionEvent evt): This method is called when

“Save” button is pressed in the “Get Activity Plan” window. Within this method, Simulation’s

save method will be called.

private void saveReportButtonActionPerformed(ActionEvent evt): This method is called

when “Save Report” button is pressed. Within the method, the activity plan report will be

saved in a defined location.

56

private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed. It closes the project.

6.3. Design of Expedition Plan

6.3.1. Considerations on maps

The maps which are given from user are considered with respect to some rules. Here is
some information on how maps are commented with respect to data which are got from

map formats.

Basic topographic features on map.

57

&' L L) ICASCADE PASS)

1T | NE
SCALE 124000
o
= = Ei'_l = Pa— = -
1006 0 {5 e] frrs Lt 000
[0 —— e — == —F —
| &

1 :
[T — e ——— e ———

CONTOUR INTERVAL 40 FEET
DOTTED LINES REFPRESENT20F0O0T CONTOURS
DATUM I8 MEAN SEL LEVEL

58

Key of map;

Basin: moderate slope, camp spots

Snow or ice line: dashed line ends on cliffs, rock

Buttress: change in features of wall may provide approach to ridge
Twin summits

Gendarmes, aiguilles, or pinnacles

Gully or couloir

Saddl, pass, or col

S@ o o0 T

Rock face

Summit: highest point on map
Ridge or arete

~

East slope: note shadows and ice accumulation
Moat
. Crevasses: indicated by irregular contours, not smooth as near buttress, c, above

Bergschrund: not seen on map but possibility inferred when rock and snow are steep

© =2 3

Photo taken from above this spot, looking in direction of arrow

6.3.2. Considerations on route planning

Meanings of Levels for climbing;
Level 1; Hiking.
Level 2; Scrambling, with possible occasional use of the hands. A rope might be carried.

Level 3; Climbing, often with exposure. A rope is often used. Typically, natural protection can
be easily found.

Level 4; Where rock climbing begins in earnest. A fall on Level-4 climbing could be fatal.
Climbing involves the use of a rope, belaying, and protection (natural or artificial) to protect
the leaderfrom a long fall.

Level 5; The realm of true experts; demands much training and natural ability and, often,
repeated working of a route.

Risk Factor of a climbing

Risk = emphasis X probability X time X weather conditions (r)

59

Emphasis; indicates the level of emphasis when an accident occurs. Emphasis is computed by
direct proportion with level of climbing.

Probability; indicates the level of probability of accident. As the level of climbing is higher,
the probability of accident will increase. So, probability is computed by direct proportion

with level of climbing.

Time; indicates “the distance of climbing stage” / “the minimum speed of group (means the

speed of slowest person in the group)”.

Weather conditions; indicates “high temperature” + “low temperature” + “snow” + “wind

speed”
The risk count of temperature is;

e |f temperature is higher than 25 C or lower than 5 C, it is considered as a risk
factor.

e The risk count increases as the temperature increases. 1 C increase in
temperature from 25 C increments the risk count by one.

e The risk count increases as the temperature increases. 1 C decrease in
temperature from 5 C increments the risk count by one.

The risk count of wind speed is;

e If wind speed is higher than 40 km/h, it is considered as a risk factor.
e The risk count increases as the wind speed increases. 1 km/h decrease in wind
speed from 40 km/h increments the risk count by one.

Note: If there is rain, the climbing can’t be done.
The affect of risk factor on climbing of a stage.

The climbing of a stage can’t be done, when risk factor is higher than below numbers with
respect to level of group (means minimum level climber’s level in group)

e Level2;500r

e Level3;1,500r
e level 4;10,000r
e Level 5;50,000r

Note: For level 1, there can’t be any climbing activity.

60

6.3.3. Algorithmic design for route

Ant Colony Optimization [8]

We decided to take Ant Colony Optimization (ACO) as our starting point for our path-
finding algorithm. There are lots of deterministic path-finding graph algorithms, but nature
of our problem tends to NP-hardness because of the size of maps & images we have to
process, we have to do optimization. There are lots of optimization algorithms, we decided
to try ACO first since path-finding in a terrain is strongly connected to the “natural life” of

ants.

Ant colony optimization (ACO) is a population-based meta-heuristic that can be used to

find approximate solutions to difficult optimization problems.

In ACO, a set of software agents called artificial ants search for good solutions to a given
optimization problem. To apply ACO, the optimization problem is transformed into the
problem of finding the best path on a weighted graph. The artificial ants (hereafter ants)
incrementally build solutions by moving on the graph. The solution construction process is
stochastic and is biased by a pheromone model, that is, a set of parameters associated with

graph components (either nodes or edges) whose values are modified at runtime by the ants.
Overview

In the real world, ants (initially) wander randomly, and upon finding food return to their
colony while laying down pheromone trails. If other ants find such a path, they are likely not
to keep travelling at random, but to instead follow the trail, returning and reinforcing it if

they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive
strength. The more time it takes for an ant to travel down the path and back again, the more
time the pheromones have to evaporate. A short path, by comparison, gets marched over
faster, and thus the pheromone density remains high as it is laid on the path as fast as it can
evaporate. Pheromone evaporation has also the advantage of avoiding the convergence to a
locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants

would tend to be excessively attractive to the following ones. In that case, the exploration of

61

the solution space would be constrained.

Thus, when one ant finds a good (i.e., short) path from the colony to a food source,
other ants are more likely to follow that path, and positive feedback eventually leads all the
ants following a single path. The idea of the ant colony algorithm is to mimic this behavior

with "simulated ants" walking around the graph representing the problem to solve.

The original idea comes from observing the exploitation of food resources among ants,

in which ants’ individually limited cognitive abilities have collectively been able to find the

shortest path between a food source and the nest.

1. The first ant finds the food source (F), via any way (a), then returns to the nest (N),

leaving behind a trail pheromone (b)

2. Ants indiscriminately follow four possible ways, but the strengthening of the runway

makes it more attractive the shortest route.

3. Ants take the shortest route, long portions of other ways lose their trail pheromones.

In a series of experiments on a colony of ants with a choice between two unequal length
paths leading to a source of food, biologists have observed that ants tended to use the

shortest route. A model explaining this behavior is as follows:

1. An ant (called "blitz") runs more or less at random around the colony;

62

2. If it discovers a food source, it returns more or less directly to the nest, leaving in its
path a trail of pheromone;

3. These pheromones are attractive, nearby ants will be inclined to follow, more or less
directly, the track;

4. Returning to the colony, these ants will strengthen the route;

5. If two routes are possible to reach the same food source, the shorter one will be, in
the same time, traveled by more ants than the long route will strengthen the route;

6. The short route will be increasingly enhanced, and therefore become more attractive;

7. The long route will eventually disappear, pheromones are volatile;

8. Eventually, all the ants have determined and therefore "chosen" the shortest route.

Ants use the environment as a medium of communication. They exchange information
indirectly by depositing pheromones, all detailing the status of their "work". The information
exchanged has a local scope, only an ant located where the pheromones were left has a
notion of them. This system is called "Stigmergy" and occurs in many social animal societies
(it has been studied in the case of the construction of pillars in the nests of termites). The
mechanism to solve a problem too complex to be addressed by single ants is a good example
of a self-organized system. This system is based on positive feedback (the deposit of
pheromone attracts other ants that will strengthen it themselves) and negative (dissipation
of the route by evaporation prevents the system from thrashing). Theoretically, if the
guantity of pheromone remained the same over time on all edges, no route would be
chosen. However, because of feedback, a slight variation on an edge will be amplified and
thus allow the choice of an edge. The algorithm will move from an unstable state in which no
edge is stronger than another, to a stable state where the route is composed of the

strongest edges.

Formal Definition of a Combinatorial Optimization Problem [9]

The first step for the application of ACO to a combinatorial optimization problem (COP)

506

consists in defining a model of the COP as a triplet , Where:

« 2 isasearch space defined over a finite set of discrete decision variables;

63

« “Zis a set of constraints among the variables; and

f:S— R}, o _ f
. is an objective function to be minimized (as maximizing over is the

same as minimizing over _f, every COP can be described as a minimization problem).

The search space is defined as follows. A set of discrete variables l'i ,I - l,...,ﬂ , With

d€D= fi ol

values , is given. Elements of I'Ii‘::'lare full assignments, that is,

¥]

. N . ¢ v : D,
assignments in which each variable “‘f has a value * assigned from its domain ~!. The

set of feasible solutions S-Q is given by the elements of S that satisfy all the constraints in

the set E.

€5 fi8)< fl9 ts€ Sy

A solution 3 R is called a global optimum if and only if:

]
set of all globally optimal solutions is denoted by SQ E S-Q . Solving a COP requires finding

S*ESE_

at least one

The Ant Colony Optimization Metaheuristic [8]

In ACO, artificial ants build a solution to a combinatorial optimization problem by

traversing a fully connected construction graph, defined as follows. First, each instantiated

=1,

X Cig
decision variable " is called a solution component and denoted by ™. The set of all

possible solution components is denoted byC.Then the construction graph G (V, E) is

defined by associating the components C either with the set of vertices V or with the set of

edges E.

: Tiq . : . Cis
A pheromone trail value % is associated with each component . (Note that

b T‘i'}' = T'Um)

pheromone values are in general a function of the algorithm's iteration

Pheromone values allow the probability distribution of different components of the solution

64

to be modeled. Pheromone values are used and updated by the ACO algorithm during the

search.

The ants move from vertex to vertex along the edges of the construction graph
exploiting information provided by the pheromone values and in this way incrementally
building a solution. Additionally, the ants deposit a certain amount of pheromone on the
components, that is, either on the vertices or on the edges that they traverse. The amount
AT of pheromone deposited may depend on the quality of the solution found. Subsequent
ants utilize the pheromone information as a guide towards more promising regions of the

search space.
The ACO meta-heuristic is:

Set parameters, initialize pheromone trails
SCHEDULE_ACTIVITIES
ConstructAntSolutions

DaemonActions {optional}
UpdatePheromones

END_SCHEDULE_ACTIVITIES

The meta-heuristic consists of an initialization step and of three algorithmic components
whose activation is regulated by the Schedule_Activities construct. This construct is repeated
until a termination criterion is met. Typical criteria are a maximum number of iterations or a

maximum CPU time.

The Schedule_Activities construct does not specify how the three algorithmic components
are scheduled and synchronized. In most applications of ACO to NP-hard problems however,
the three algorithmic components undergo a loop that consists in (i) the construction of
solutions by all ants, (ii) the (optional) improvement of these solution via the use of a local
search algorithm, and (iii) the update of the pheromones. These three components are now

explained in more details.

65

ConstructAntSolutions

A set of m artificial ants construct solutions from elements of a finite set of available
Cz{f{j]'é :11"'1iilj:1ﬁ"'a‘D-ﬁ‘
=1
solution is extended by adding a feasible solution component from the set of feasible

V() CC

neighbors ~ ! = 7 . The process of constructing solutions can be regarded as a path on

solution components . A solution construction starts

with an empty partial solution . Then, at each construction step, the current partial

the construction graph G (V, E). The allowed paths in G are implicitly defined by the
solution construction mechanism that defines the set with respect to a partial
e

solution =

V()

construction step. The exact rules for the probabilistic choice of solution components vary

The choice of a solution component from is done probabilistically at each

across different ACO variants. The best known rule is the one of ant system (AS)

plei|s°) = 5, e € N(s7),
Ef—‘u eN(sF) 1T

'Il'.-

l'l' .-
where ™4 and '-Ilf-;' are respectively the pheromone value and the heuristic value

-

. . I:"E_;I (| 3 -
associated with the component . Furthermore, and are positive real
parameters whose values determine the relative importance of pheromone versus heuristic

information.

Daemon Actions
Once solutions have been constructed, and before updating the pheromone values, often
some problem specific actions may be required. These are often called daemon actions, and

can be used to implement problem specific and/or centralized actions, which cannot be

66

performed by single ants. The most used daemon action consists in the application of local
search to the constructed solutions: the locally optimized solutions are then used to decide

which pheromone values to update.

Update Pheromones

The aim of the pheromone update is to increase the pheromone values associated with good
solutions, and to decrease those that are associated with bad ones. Usually, this is achieved

(i) by decreasing all the pheromone values through pheromone evaporation, and (ii) by

increasing the pheromone levels associated with a chosen set of good solutions S“‘Pd :

i —(1—p) mjt+p Z F(s),

EIES;._,Pd|-:'”ES

o€ (0,1,

S
Where “UPd s the set of solutions that are used for the update, is a parameter

F:5— R}

called evaporation rate, and is a function such that

fls) < f(s) = Fls) 2 F(s), ¥s# 5 € §

F()

is commonly called the fitness function.

Pheromone evaporation implements a useful form of forgetting, favoring the exploration of
new areas in the search space. Different ACO algorithms, for example ant colony system

(ACS) or MAX-MIN ant system (MMAS), differ in the way they update the pheromone.

-

Instantiations of the update rule given above are obtained by different specification of Supd ,

U4 S

which in many cases is a subset of Siter Sa) , Where =7 is the set of solutions that
were constructed in the current iteration, and is the best-so-far solution, that is, the best
solution found since the first algorithm iteration. A well-known example is the AS-update
Sﬂpd T S-z'te-r"

rule, that is, the update rule of ant system:

67

An example of a pheromone update rule that is more often used in practice is the IB-update

rule (where IB stands for iteration-best):

Sypa = arg max F(s).
3 5iter

The IB-update rule introduces a much stronger bias towards the good solutions found than
the AS-update rule. Although this increases the speed with which good solutions are found, it

also increases the probability of premature convergence. An even stronger bias is introduced

5
by the BS-update rule, where BS refers to the use of the best-so-far solution *E'E'. In this

case, U s set to {Ssb] . In practice, ACO algorithms that use variations of the IB-update or
the BS-update rules and that additionally include mechanisms to avoid premature

convergence, achieve better results than those that use the AS-update rule.

Pseudo codes
Finding the Route

Here's the overall idea of application of ACO to our problem: We divide our map into
squares (number of squares are calculated according to the map's size & scale), this squares

II'

represent the “general” properties of their nearby land. Since we cannot make nodes from
points (which are infinitely many) , we decided to make a weighted graph from the map
where the midpoints of the squares are the nodes , edges represent two half squares
between two nodes and the weights are determined according to the user input (i.e.
priorities) . If the user states reference points, then we also take these points into account.

We also calculate the number of ants to be released considering the map's size & scale

based upon the ACO's performance statistics.
Here's the pseudocode for finding the route between two nodes:
FindRoute(Graph,start , end, Nturns , MAX_TURNS, ants)

1. Initialize

68

2.turn =0, turnsRemaining = Nturns + 1

3. Loop

4. Release a new set of ants from the starting point

5 Loop

6 turn=turn+1

7 turnsRemaining = turnsRemaining -1

8 For each ant ‘@’ in the current set

9 If ant ‘a’ does not reach to target point

10 Move to the next grid point using random propositional rule
11 Else

12 Ant ‘a’ stops exploring

13 Until (turnsRemaining = 0)

14 Apply the global pheromone update rule using ants that reached to the target point
15 Update optimal path best so far

16 Remove the current set of ants from the civilization.

17. turnsRemaining = Nturns + 1

18. Until (turn <= MAX_TURNS)

Ants perform a complete tour (in our case tour is defined as travelling from start
point to the target point) by choosing the nodes according to a probabilistic state transition
rule (random-proportional rule) which selects neighboring nodes that are closest to the
target node and have a high amount pheromone. Once all ants have completed certain

number of turns (Nturns) a global pheromone updating rule (global updating rule, for short)

69

is applied; a fraction of the pheromone evaporates on all edges (edges that are not
refreshed become less desirable); each ant who were able to finish a complete tour, deposits
an amount of pheromone on edges which belong to its tour in proportion to how short its
tour was (in other words, edges which belong to many short tours are the edges which
receive the greater amount of pheromone). After the global updating, current set of ants
removed from the civilization, and another set of ants starts from the start point to explore
the target point. The process is iterated until the number of turns reach to the maximum

number of turns (MAX_TURNS).

Note that, we set the parameter Nturns such that, most of the ants in the initial set

were able to reach the target point.

Here's our random-proportional rule (probabilistic state transition rule) : (gives the

probability with which ant k in node (r) chooses to the node (s))

p.r.s) = [ta.9)lme.s)” 7 Y. wln.u)] 5 if s €1 ,(r)
0 otherwise

where t is the pheromone, n = 1/6 is the inverse of the distance (6) from the point s to
the target point, Ji(r) is the set of neighbor points of r that remain to be visited by ant k
positioned on the point r (to make the solution feasible), and B is a parameter which

determines the relative importance of pheromones versus distance (B > 0).

In ant system, the global updating rule is implemented as follows: Ants that were
able to complete their tour within the number of allocated turns (Nturns) allow to update

pheromone levels of their visited edges according to
t(r,s)<(1-p)u(r,s)+3Atk(r,s)

where

70

| 1/L L ,if (r, s) € tour done by ant k calculated. |
Atki(r,s)={ { |

| 0, otherwise I

| |

0 < p <1isapheromone decay parameter, Ly is the length of the tour performed by ant k,
and m is the number of ants that were able to complete tour within the stipulated turns

Nturns.

Since we may have reference points, we calculate the shortest paths between adjacent

I”

reference points and then we put together this “small” route to make our route. Here we

take start & end point as reference points as well.
FindRoute (MapGraph, referencePoints):

1. smallRoute = null , route = null, points = # of reference points, referencePoint = start

2. Loop

3. smallRoute = findRoute(MapGraph, referencePoint , next (referencePoint), Nturns,
NMAX)

4. route += smallRoute

5. points -=1;

6. referencePoint = next(referencePoint in referencePoints)

7. end if points ==

Now we have to construct a weighted graph from the map, namely we have to form
vertices and assign weights to the edges; we first divide our map into squares. We decided
to make 1 km x 1 km = 1 kilometer squares to be represented by one square. Then we scale
this value with map's scale & size to calculate how many squares there will be. The middle
points of the squares will be nodes and the area, namely adjacent two half squares between

two nodes will be the edges. Also we take user's reference points into account; while

71

dividing the map, the user reference points must represent a node. Now we use weather,
terrain, climbing team's performance and other issues to assign priorities, then combine
these priorities and risk factors with the “edge area” to assign weights to the edges. Here is

how we form a weighted graph from a map:

dividedMap = DivideMaplIntoSquares(graph , referencePoints, mapScale, mapSize)
unweightedGraph = makeEdges(dividedMap)
weightedGraph = assignWeightsToEdges(unweightedGraph , priorities , risks)

el S

return weightedGraph

6.3.4. Design of camping plan

The camping planning is up to the conditions such as duration of the activity, weather &
terrain conditions. We plan the camping points after making the route and estimating the
duration of the climbing & walking without camping. Here's the algorithm assuming we have

the route and the expected duration:

1. numberOfCampPoints = expectedDuration ; dayLight = terrain's duration of daylight
2. if numberOfCampPoints< 1 ; return

referencePt = startPt; newCampLoc = null, campLocs = null , campDuration =0
4. Loop
5. numberOfCampPoints -=1
6. referencePt = newCamploc

7. newCamploc = referencePt + the distance travelled in (numberOfCampPoints * 24 +

dayLight) hours
8. campDuration = (24 - daylight) + (if it rains , snows or “hard” windy: 24)
9. Add (newCampLoc, campDuration) to campLocs return if numberOfCampPoints ==

Camp planning rules:

72

e Camping is planned with respect to duration of expedition.

e Camping duration is planned with respect to user constraints, day or night durations
of season, weather conditions and terrain conditions.

e Camping places should be land or rock.

e Camping places shouldn’t be meadowy places. If it is mandatory, there isn’t be stayed

more than one or two nights. [10]

6.3.5. Design of food&water planning [11]

Water is considered as an important parameter. It's amount is recommended for only
first a few days of expedition, because of difficulty of carrying. For other days, climbers

should find their waters in nature.

Food should be carbonhydrate based because of easy cooking and getting enery with
using less oxygen. There is less oxygen at higher places. Food should also be solid food

because of easy carrying.

Here we use the general conventions:

Amount of Food needed: 1.5 kg s of carbohydrate per day x # of days per person

Amount of Water needed:

if the temperature > 35 centigrade, 5 liters x 2 days per person

else 2.5 liters x 2 days per person

6.3.6. Design of time planning

e The walking speed of group is considered as the climber who has the slowest walking
in the group.

e The climbing speed of group is considered as the climber who has the slowest
climbing in the group.

e Atthe end, timeis calculated as “total distance” / “speed of group”.

73

e At rainy days, the walking speed of climbers decreases in proportion of 20%.
e At nights, the walking speed of climbers decreases to half of it.
e At the undulating lands, the walking speed of climbers decreases to approximately

half of it. [11]
Typical speeds for an average party;

e On a gentle trail, with a day pack: 3 to 5 km per hour.

e Up a steep trail, with a full overnight pack: 2 or 3 km per hour.

e Traveling cross-country up a moderate slope, with a day pack: 300 meters of
elevation gain per hour.

e Traveling cross-country up a moderate slope, with a full overnight pack: 150 meters

of elevation gain per hour. [10]

Typical estimated duration of a trip; [10]

Trip Segment Estimated Time
Hike up the trail 2 hours
Cross-country approach 1 hour

The climb itself 4 hours
Time on the summit 1 hour

Descent time 2 hours

Return to the trail 1 hour
Hike out 1.5 hours
Total time estimated 12.5 hours
Contingencies 2 hours
Total time allowance 14.5 hours

74

6.3.7. Design of equipment planning

Equipment is considered with respect to season, climbing conditions of climbers, camping,

duration of expedition, terrain conditions and number of climbers in the group.

Sample Expedition Equipment List [10]

Group Gear

vV V V V V

A\

YV V V V V V V V

Expedition-quality tent(s)

Ground cloths

Snow stakes and/or tent flukes

Sponge and whisk broom

Snow shelter construction tools: large snow shovel (for moving a lot of snow), small
snow shovel (for delicate trimming), snow saw (for cutting blocks)

Ropes

Hardware: snow and ice gear (pickets, flukes, ice screws), rock gear (pitons, spring-
loaded camping devices, chocks), carabiners, runners, daisy chains, fixed line, extra
climbing equipment (spare ice ax or tool, spare crampons, spare rescue pulleys)
Stove gear: stove, windscreen and stove platform, fuel containers and fuel filter,
matches and/or butane lighters, firestarter

Cooking gear: pots, pot cozy, pot gripper, sponge/scrubber, dip cup, cooking spoon,
snow sack (for collecting clean snow to melt for water)

Food

Water treatment: filter, chemicals

Tent repair kit: pole splices, spare pole

Stove repair kit

Crampon repair kit: extra screws, connecting bars, straps

Tape (duct, filament, fabric repair)

Adhesive-backed repair cloth

Seam repair compound

75

V V V V V

Tools: slotted and Phillips screwdrivers; Allen wrenches; small pliers; small wire
cutter/shears: file
Sewing kit: assorted needles and thread; awl; assorted buttons, snaps, buckles, and
D-rings; Velcro (hook and pile), fabric (Cordura, ripstop nylon), flat webbing
Other: wire, accessory cord, pack buckle, extra ski-pole basket, patch kit for inflatable
foam pads
Firs Aid Kit*

v In addition to normal first aid items, the kit should include the following

drugs, plus others recommended by a physician.

Prescription drugs vary with the destination, but should include: antibiotics, strong
analgesics, anti-diarrhetics, laxatives, and altitude medications (acetazolamide,
dexamethasone).
Nonprescription drugs vary with the destination, but should include: cough
suppressants, decongestants, mild analgesics (aspirin, ibuprofen).
Wands
Altimeter, map, compass
Radio transceiver and extra batteries
Mobile phone

Latrine equipment

Personal Gear

YV V V V V

YV VY

Synthetic-fabric underwear

Insulating layers

Down clothing

Wind-protection and rain-protection garments (top and bottom)

Extremities: hands (liner gloves, insulating gloves, mittens), feet (liner socks,
insulating socks, vapor-barrier socks), head (balaclava, sun hat, face mask, wool hat)
Other: bandannas, sun shirt, synthetic fill/down booties

Sleeping bag

Bivouac sack

76

Vapor-barrier liner

Inflatable foam pad or closed-cell foam pad
Ice ax

Second ice tool

Seat harness

Crampons

Personal carabiners and slings
Chock pick

Belay device

Rescue pulley
Ascenders/prosiks

Helmet

Large-volume pack

Pack cover

Snowshoes

Sled with associated hardware for pulling
Duffel bag

Avalanche transceiver
Sunglasses and goggles

Spare prescription glasses
Pocketknife

Headlamp

Wide-mouth water bottles

V VYV VYV VY

Personal hygiene: toilet paper, pee bottle, toothbrush, comb, chemical wash/wipes,
sunscreen, lib balm, foot powder, earplugs
» Personal recreation: camera and film, books, journal, pen or pencil, personal stereo,

playing cards
*It is in the table of basic personal first aid kit. [10]

Basic Personal First Aid Kit

77

Item

Use

Adhesive bandages

To cover small minor wounds

Butterfly bandages or Steristrips

To close minor lacerations

Sterile gauze pads

To cover larger wounds

Carlisle dressing or sanitary napkin

To absorb and control severe bleeding

Nonadherent dressings

To cover abrasions and burns

Self-adhering roller bandages

To hold dressings in place

SAM splint

To splint

Athletic tape

Multiple uses

Triangular bandages

To use as a sling or cravat (for splinting)

Moleskin or Molefoam

To cushion blister areas

Tincture of benzoin

To adi in adherence of adhesive tape; to protect
skin

Providine iodine swabs

Antiseptic for surface wounds

Alcohol or soap pads

To cleanse skin

Thermometer To measure body temperature
Sugar packets To treat diabetes; for hypoglycemia intervention
Aspirin To treat headache, pain; if the group includes

children, bring acetaminophen tablets instead
aspirin.

Anaphylaxis (epinephrine) kit (EpiPen)

To treat severe allergic reaction. Climbers should
carry if known to have severe allergy.

Elastic bandage

To wrap sprains; for compression of injured area

Latex gloves

To serve as an infection barrier

Safety pins Multiple uses
Tweezers To remove splinters, ticks, wound debris
Plastic bag To hold contaminated materials

Breathing barrier

To administer CPR, rescue breathing

6.3.8. Design of carriage planning

The average carriage weight per person should be 18-20 kg. The maximum carriage

weight for a person is 40-45 kg. However, the weight for a person shouldn’t be higher than

25 kg. [11]

78

6.4. Functional Modeling

6.4.1. Data Flow Diagrams

e Context Level Data Flow Diagram

__usar commands and data

_—

roject

chosen member ist

afl membears info

weather info

Activity plan

yisualization

Ccurrent coordinat

imulaton

Figure 6.27. Context Level DFD

-

79

e Level 1 Data Flow Diagram

chosen members

map paths

current coordinate data

members info

member commands and data

coordinates

—usercommands and data-

< project
<4—chosen member list

visualization data

+—all members info

imulation data

+—weather info

4+—activity plan
<—isualization
<4——current coordinate—

+——=simulation

project commands and data

weather data _ Equipment

country and city info

project data

Figure 6.28. Level 1 DFD

80

e Level 2 Data Flow Diagram : Visualize

zoom in command

data after zoom in

Zoom out command
——visudization command

data after zoom out

4+—visualzation data—— |
otate left command

data after |eft rotatio

4—current coordinate data rotate right command

il

moLse move svent /

coordinate

data after right rotation

save terrain command

maouse riaht click

maouse feft click

Figure 6.29. Level 2 DFD: Visualize

81

Level 2 DataFlowDiagram : Manage Project

new project data

—prggect commands and data
sae project command

currant project dats
4———project data

apen project command

opened project dat

Figure 6.30. Level 2 Data Flow Diagram: Manage Project

82

Level 2 Data Flow Diagram : Manage Member

new meambeér info

-member commands and data

A—members info

mamber id

Figure 6.31. Level 2 DFD: Manage Member

83

6.4.2. Data Dictionary

Name: user commands and data

From: USER

To: Graphical User Interface

Description: Contains all commands and data taken from user

Name: member commands and data

From: Graphical User Interface

To: Member-User Interaction

Description: Contains all commands and data related to
member

Name: add command

From: Member-User Interaction

To: Add New Member

Description: The command for adding a new member to the
system

Name: new member info

From: Member-User Interaction

To: Add New Member

Description: Holds the information about the member that
will be added to the system

Name: remove command

From: Member-User Interaction

To: Remove Member

Description: The command for removing a member from the
system

Name: remove member id

From: Member-User Interaction

To: Remove Member

Description: The id of the member who will be removed from
the system permanently

Name: update command

From: Member-User Interaction

To: Update Member

Description: The command for updating an existing member

84

in the system

Name: member info

From: Member-User Interaction

To: Update Member

Description: The member whose information will be updated

Name: remove from chosens command

From: Member-User Interaction

To: Remove Member from Chosen Members List

Description: The command for removing a member from the
list that contains the members who are going to
participate in the activity (chosen member list)

Name: member id

From: Member-User Interaction

To: Remove Member from Chosen Members List

Description: The member id of the person who will be
removed from the chosen members list (not
from the system)

Name: choose command

From: Member-User Interaction

To: Choose Member for Climbing

Description: The command for choosing a member to
participate in the activity

Name: chosen member

From: Choose Member for Climbing

To: Member-User Interaction

Description: Holds information about the recently chosen
member for climbing

Name: see members command

From: Member-User Interaction

To: See All Members

Description: The command for showing information about all
members registered in the system

Name: | existing members info

85

From: See All Members

To: Member-User Interaction

Description: Holds information about all members registered
in the system

Name: members info

From: Member-User Interaction

To: Graphical User Interface

Description: Holds information about all members to show
them to the user

Name: chosen members

From: Member-User Interaction

To: Graphical User Interface, Prepare Plan

Description: Holds the information about the members
chosen for climbing to show those members to
the user and to help preparing activity plan

Name: chosen member list

From: Graphical User Interface

To: USER

Description: Holds the members chosen for the climbing to
show those members to the user

Name: all members info

From: Graphical User Interface

To: USER

Description: Holds the information of all members existing in
the system to show those members information
to the user

Name: map paths

From: Graphical User Interface

To: GIS

Description: Contains all given map locations given by the
user (it includes “dted”, “dem”, “geotiff” and
“shp” file paths)

Name: map data

From: GIS

To: Visualize, Prepare Plan

86

Description:

The map data gathered after reading the map
files by GIS.

Name: visualization commands
From: Graphical User Interface
To: Visualize-User Interaction

Description:

commands to change the settings of visualization

Name: coordinates

From: Visualize-User Interaction

To: Graphical User Interface

Description: Holds the start and end coordinates, checkpoints
and the points that has avalanche or falling rock
risks to mark those point in the visualization of
the terrain

Name: current coordinate data

From: Visualize-User Interaction

To: Graphical User Interface

Description: As mouse moves on the terrain, the
corresponding coordinate is shown. Current
coordinate data holds longitude, latitude and
elevation of the corresponding coordinate

Name: current coordinate

From: Graphical User Interface

To: USER

Description:

Current coordinate shown to the user

Name: zoom in command

From: Visualize-User Interaction

To: Zoom In

Description: The command for zooming in the terrain

Name: visualization data

From: Visualize-User Interaction

To: Graphical User Interface, Simulation

Description: Holds the necessary information to visualize the

terrain

87

Name: data after zoom in

From: Zoom In

To: Visualize-User Interaction

Description: Holds the visualization data after zooming in the
terrain to show the effect of zooming in to the
user

Name: zoom out command

From: Visualize-User Interaction

To: Zoom Out

Description: The command for zooming out from the terrain

Name: data after zoom out

From: Zoom Out

To: Visualize-User Interaction

Description:

Holds the visualization data after zooming out
from the terrain to show the terrain with
zoomed out to the user

Name: rotate left command
From: Visualize-User Interaction
To: Rotate Left

Description:

The command for rotating left in the terrain

Name: data after rotate left
From: Rotate Left
To: Visualize-User Interaction

Description:

Holds the visualization data after rotating left in
the terrain

Name: rotate right command

From: Visualize-User Interaction

To: Rotate Right

Description: The command for rotating right in the terrain
Name: data after rotate right

From: Rotate Right

To: Visualize-User Interaction

Description:

Holds the visualization data after rotating right
in the terrain

88

Name: save terrain command
From: Visualize-User Interaction
To: Save Terrain

Description:

The command for saving the terrain in a user
defined location

Name: mouse move event

From: Visualize-User Interaction

To: Get Coordinate

Description: Action of mouse movement in the terrain to get
the corresponding coordinate

Name: coordinate

From: Get Coordinate

To: Visualize-User Interaction

Description: Contains the coordinate of the corresponding
point in the terrain

Name: mouse left click

From: Visualize-User Interaction

To: Set Coordinate

Description: If user clicks the left button of the mouse on the
terrain, the corresponding coordinate is set as
one of the followings : start, end, checkpoint,
avalanche risk, falling rock risk

Name: mouse right click

From: Visualize-User Interaction

To: Remove Coordinate

Description:

If user clicks the right button of the mouse on
the terrain, if there exists a predefined
coordinate (start, end, etc.), that coordinate will
be removed.

Name: project commands and data

From: Graphical User Interface

To: Project-User Interaction

Description: Contains all commands and data related to

project

89

Name: project data

From: Project-User Interaction

To: Graphical User Interface

Description: Holds the current project data that are
necessary when loading a project

Name: create project command

From: Project-User Interaction

To: Create New Project

Description: The command for creating a new project

Name: new project data

From: Create New Project

To: Project-User Interaction

Description: Holds the data of the newly created project

Name: save project command

From: Project-User Interaction

To: Save Project

Description:

The command for saving the project

Name: current project data
From: Project-User Interaction
To: Save Project

Description:

Holds the current project data to be saved

Name: open project command
From: Project-User Interaction
To: Open Existing Project

Description:

The command for opening an existing project

Name: opened project data

From: Open Existing Project

To: Project-User Interaction

Description: Holds the data of the opened project
Name: project

From: Graphical User Interface

To: USER

90

Description: The data to show the current settings of the
project to the user

Name: simulation data

From: Graphical User Interface

To: Simulate

Description: The data combined with route and terrain

Name: simulate commands

From: Graphical User Interface

To: Simulate

Description: Contains playing and saving simulation
commands

Name: country and city info

From: Graphical User Interface

To: Get Weather From Website

Description: Country and city of the mountain to get the
weather conditions from a website

Name: weather data

From: Get Weather From Website

To: Graphical User Interface, Prepare Plan

Description: Weather data taken from the website to show
the user and to use in preparing plan

Name: weather info

From: Graphical User Interface

To: USER

Description: Weather information shown to the user

Name: constraints

From: Graphical User Interface

To: Prepare Plan

Description: Holds all given constraints by user

Name: route

From: Prepare Plan

To: Simulate

91

Description: The route of the climbing that is shown to the
user in simulation

Name: activity plan data

From: Prepare Plan

To: Graphical User Interface

Description: Generated activity plan data to show the user
and save the activity plan report

Name: activity plan

From: Graphical User Interface

To: USER

Description: The activity plan shown to the user including the
duration of the climbing, camping location and
times, food, equipment and emergency
equipment list

Name: visualization

From: Graphical User Interface

To: USER

Description: Visualization of the terrain shown to the user

Name: simulation

From: Graphical User Interface

To: USER

Description: Simulation of the climbing shown to the user

6.5. Data Design

6.5.1. Database Design

Since the GIS tool that we are going to use (GeoTools) is capable of storing the map

information in its own data store, we don’t need to create any table for storing maps. So, the

data that we will store is not complex. We have two basic tables for storing member

information and equipment information.

92

6.5.1.1. Tables

Member Table

Member Table holds the basic information about a member. As user adds, removes or
updates a member, his information is saved to database by using this table. In the next steps

of the project, new fields can be added to this table when needed.

Field Name Data Type
T wteeeR
Name T VARCHAR(S) T
Sumame VaRcHARGO)
Gimbingspesd T Hoar
“Waikingspeed T T
Carmgecapadty oar
Experiencelevel NTEeER T

Table 6.32. Member Table

e [dis the unique id of the member.

e Name is the name of the member.

e Surname is the surname of the member.

e ClimbingSpeed is the climbing speed of the member in m/h.

e WalkingSpeed is the walking speed of the member in km/h.

e CarriageCapacity is the carriage capacity of the member in kg

e Experiencelevel is the experience level of the member.

93

Equipment Table

Equipment Table holds the basic information about an equipment. It also includes the
equipments that are needed in case of emergency. This table is needed for preparing the
activity plan. User will not be able to access Equipment Table. In the next steps of the

project, new fields can be added to this table as needed.

' Field Name Data Type |
I e S :
Name T VARCHARGO)
g T Hoar
epersonal T BooleaN
Nesdedtorwaiing sooteAN
“Neededorcimbing BoolEAN
Newdediorcamping Twooiean T
Semson T wteseR
etmergeny T BooteaN T |

Table 6.33. Equipment Table

e /dis the unique id of the equipment.

e Name is the name of the equipment.

e Weight is the weight of the equipment.

e [sPersonal is true if the equipment is a personal one, false otherwise.

o NeededforWalking is true if the equipment is needed for a walking activity, false
otherwise.

e NeededforClimbing is true if the equipment is needed for a climbing activity, false
otherwise.

e NeededforCamping is true if the equipment is needed for camping, false otherwise.

94

e Season is the season in which the equipment is used, it can take three different
values for winter, summer or both.

e [sEmergency is true if the equipment is an emergency equipment, false otherwise.

6.5.1.2. ER Diagrams

Since we don’t store any complex data and the data that we store are not related to each other,

the ER diagrams are not complex, also. We have ER diagrams of only our database tables.

Name Surname

Experiencel evel MEMBER

| CarriageCapacity

WalkingSpeed

Figure 6.34. ER Diagram of Member

95

-‘.‘,.-'—'—

’

Season Id Q

|sPersonal

EQUIPMENT

NeededforCamping '

MNeedediorClimbing

' NeededforWalking

Figure 6.35. ER Diagram of Equipment

6.5.2. File and Folder Formats and Syntax

In this project, we use some kind of file formats and folder arrangement. We will mention
about these formats under map files, image and video files and system files and folders

headings.

6.5.2.1. Map Files

We will use map files for getting terrain information in a format from user. We have
thought the consistency of the file formats with our GIS tool, when searching map files. The
“dted” and “dem” raster map formats are suggested to us for elevation information of the
terrain by Aselsan. We have searched on them and we saw that they are usable and
readable for our GIS tool. As satellite image we also think about the easy access from
internet. Hence we have found the “geotiff” format. On the other hand, as vector file, we
have decided to use “shp” shape file format because it is able to contain the necessary

information about especially water wells, rivers and lakes.

96

6.5.2.2. System Files and Folders

The software will use some file and folder format specifications. We have designed a file
format which contains all existing information of a project when it is saved. We will save the
project file with a “srs” format because we want to use an original file format and this file
will have the project’s information in XML format. Because XML is a useful format and Java

has ready functions for reading, writing or parsing etc. for this file format.

The Strider’s sample workspace view is below.

& Aladaglar1

Dosya Dizen Gordndm Sk Kullanlanlar — Araclar Yardim

@ Gei = g ? 7 " Ara IIL_ Klasdrler v I_I:I‘:_\ Falder Sync
adres :._‘.' Cih\ClimbPlanner\aladaglarl
Klastr x adi o~ Bowut | Tir Dedigtirilre Tarihi
= W Bigsayanm ~ | [= aladaglart srs 2KB SRS Dosyas 14.12.2008 20:03
= e Verel Disk (C:) ~ B aladaglar. doc 56 KB Microsoft Office Wo.., 14.12,2008 12:47
[Addon &l Aladaglar. PG BEKE JPG Dosvas 14.12,2008 12:49
E [aTI {0 pladadlar. gt 2.343KE QT Dosyas) 14.12,2008 15:44
= 1) ClimbPlanner
| nladaglarl
I Aladaglarz
|3 Demirkazik

Figure 6.36. Strider’s workspace

As we mention above, the “srs” file contains the projects current state information. It is
in XML format. The syntax of an “srs” file can be seen from the example of “Aladaglarl.srs”.

“Aladaglarl.srs” file’s content is like that;

<?xml version="1.0" encoding="utf-8" ?>
<projectDescription>

<projectName>Aladaglarl</projectName>
<projectPath>C:\ClimbPlanner\Aladaglarl </projectPath>

<climbers>
<id>1449222</id>
<id>1449164</id>
<id>1502095</id>
<id>1448836</id>

97

</climbers>

<projectMaps>
<elevationMaps>
<elevationMap>C:\ClimbPlanner\aladag.dem</elevationMap>

</elevationMaps>

<shapeFiles>
<shapeFile>C:\ClimbPlanner\aladagl.shp</shapeFile>

<shapeFile>C:\ClimbPlanner\aladag2.shp</shapeFile>
</shapeFiles>
<satelliteImages>
<satalliteImage>C:\ClimbPlanner\aladag.geotiff</satalliteImage>
<satalliteImage>C:\ClimbPlanner\aladag2.geotiff</satallitelmage>
</satelliteImages>
</projectMaps>

<time>
<day>20</day>
<month>6</month>
<year>2009</year>
<hour>8</hour>
<minute>0</minute>
</time>

<place>
<country>Turkey</country>
<city>Ankara</city>
</place>

<weather>
<lowestTemp>2.3</lowestTemp>

<highestTemp>15.4</highestTemp>
<pressure>102.3</pressure>
<windDirection>NORTH</windDirection>
<windSpeed>2.5</windSpeed>
<season>WINTER</season>
<rainy>true</rainy>

</weather>

<constraints>
<constraint>SHORTESTPATH</constraint>

<constraint>MINIMIZINGTIME</constraint>
</constraints>

<l-- Start Coordinate -->
<startCoord>
<longitude />
<latitude />
<elevation />

98

</startCoord>

<!-- End Coordinate =-->

<endCoord>
<longitude />
<latitude />
<elevation />

</endCoord>

<l-- Check Points (if exist) =->

<checkPoints />

<avalanche>
<longtitude />

<latitude />
<elevation />
</avalanche>

<fallingRock>
<longtitude />
<latitude />
<elevation />

</fallingRock>

</projectDescription>

6.5.2.3. Image and Video Files

We will use the image and video files for saving the visualization and simulation of the

terrain. For image file we will use a generic file format “.jpeg”. We think that this file format

will be consistent with the systems of users. The user can save the visualization of terrain as

an image, which is a screenshot of the visualization, anytime.

The “.jpeg” file of this image is like that;

929

Microsoft Office Picture Manager

 Fle Edt Wew Piture Tooks Help Type & question for help 1w
i igllshoreeuts.,, |G @21 4 Ga @ X |9 ™ s2% - % DA% Sh LS EdiPictures.,. | ¢l Auto Correct el
El=]

Aladadlar, PG i b Zoom: Q - :J ®)

Figure 6.37. Visualization of the terrain

In the simulation part, user can save the simulation as a “qt” file that can be opened with
QuikTime multimedia framework. A screenshot of this video is below. In this video, camera
will follow the red colored route which is planned by Strider from the start coordinate to the

end coordinate.

Figure 6.38. Simulation of the route

100

6.6. Behavioral Design

6.6.1. Strider General Behavior

IThe Strider. gatActivityFlan J

Liger

!
|
|
|
A

P VWinckre

memberdperatons]

F———

1

dhosanhemberOperations])

mepOperationsi]

prajciOperations()

Boupmenioperalians])

wisakharOperaion s(

'

visualzabionCperations{

getActvityPlan()

[eeroresinie]

101

6.6.2. Member Operations

6.6.2.1. Add New Member

Marmber Cperations: Add Mew Mvambar)

Addiewtdambanyindow I

Liser T anvind ow Userfiperationsyindow
T '* 4 1]
| | I I
| | | |
| | I I
. | |
I |
memberOpsrations() I |
| I
UserCpearationsyindows) ! I
T
addhewarmbe) :
I
AddNawtdemberyindow) !
setMameinama)

setSurname(sumame)

selalkSpeed(s_wak)

setClimbSpeedis_climb)

setCarniageCapacitg cary|

setExparisncelavalihi)

ok(}
arronCheck])
*
[errar==trug]
__.DH}J J’[—ahm}ErraMa‘ssagB(]

insert o newemamber)

V-

102

6.6.2.2. Update Member

o mier Cpsrsans Lpdate Merber |

Uzsp I o i L 0 peeation sind o UipristehdermiDaiiing ow ummmmr'
1I] |
i i i
i i i
i i
membsCperEons) | ! :
L8 e s Al i l
Pt chackifSeloctad)) i i
i i
1 I
i shamE morhledsa peirnoSsecied] | Ir
m,'nl; n-md=hlin]! : I
i L
__ et
L2 ctedidl] 1 |
i |
Lipsd e bt i okl salectachd) |
i
oV alkSpaedive_spaed)
et QimeSpeadic_speadd I
wot Car niag e apacy camy) :
I
satEaperiencel sl (] I
|
akil -— !
I
|
[emrar==toug] sharE morfdessags] :
o |
__ | S—
slue |
updsteMerbuupdatecherte) |
--------------- !
|
updaa :
el ol o e e aw Pl ed i) ! !
| I
] I
i I
1 |
i !
]
I]
| i
|
I
i

103

6.6.2.3. Remove Member

Member Cperations: Remaove: Memher)

Iser Mainiincow UsarOperationsyindow MernberMmagerI Frogect
T T T T]
1 | | | |
| | | | |
] | | | |
n | I [|

| | | |
rrem barOparations]) | | |
| | |
—i UserOparations\Window) ! : I
| § [|
pemmenet] checkifSdected) : }
| |
I I |
showEmari Salected) ! 1
[selacted==false] wEmorMassageine Selacted) [:
|
ki) [I
————————————————————— [askifsu T e e P e
else s er | |
| |
angvear) [|
| |
| |
[sosciaceanue] etSalectadRow() } }
getiember() l }
remaveMembar|memberld) :
|
- S —— i
|—delteRowisslectedRon] | |
——— | |
deleteR ov findR ow(member d) | |
| |
_______________ L I |
remiweChosan(seectediember) |
I
| “
S — | I S———
| |
| |
™ | |
I I |
L | | |
I I I |
1 ™ | [|
i i ' [24

104

6.6.3. Chosen Member Operations

6.6.3.1. Chose New Member

Chosen Member Operations: Choose Mew Member‘(l

5

Llger I Manwindaw Unchosanbembanyvindo Project
1 | |
I I I I
| | | |
| | | |
L L | |
| |
chaooseblewt) | |
| |
Unchaseniemberwindow]) ! :
i |
ch DGIEQSQIBEIQUMEH bersi) checkiSdected) I
| I |
- |
|
- |
[sebected==fass] J ” hewErmes Messaaen ns?l ectad)
I [0
| R | e s - R R |
|
el SalactedRows
elze g il !
————— galChosanh embers|salectedRow
P — [
addChosen|chosenMembers) LI
T P
|
I
| | close() |
:Iflll'l'atll'&ﬂ:] : :
| |
| |
| |
| |
| |
| |
| |
I I
I I
| |
i I I
| |

105

6.6.3.2. Update Member

[ohosen Member Operations: Update Manl:-er}

Liser . Fan'Windce '
| I
| |

| Updateddembsaritindow I

i |
I I
i I
I I
updital) : I
cheskISelacted() : :
I I
Bl et showErroriiessapsinoSelaciad) I !
| |
I I
] I I
I I
——————— B R = i L ey ettty S|
olse UpdatsMamberiindov meeriar d) :
I
sefalliSpesd{w_spesd) I
sefdlimbSpead|c_spesd) :
setCgrageCapacity|camy) l
|
= iencalaval (i) :
I
Q
H e ceCheck() i
I
|
[errar==lue showEmoriieszage(] |
kel |
______ e 1 ————— %
else }
I
updaatamben gallpdatadierrbanl} |

J

106

6.6.3.3. Remove Chosen Member

Chosen Member Operations. Remove Chosen hMember)

J] remaoyel)

checkifSelected()

|
|
|
I
|
|
|
|
|
I
o

[selected==false] showErmorMEssageln | Selectad)

akd) I
|

_______ | S - -1~ L) A, S —————
else |
answe I

N

[answer==true] etSelectedRaw() i

removeChosen(memberld)

deleteR o (row] D

107

6.6.4. Project Operations

6.6.4.1. Create New Project

ProjectOperations: Create MNew Project

hiain Window .
Iser Project

newProject) |
1
askSaveCument()

an swer

1

[answer==save] showBrovwser()

savell

108

6.6.4.2. Open Project

Froject Opemanons Open Progect]

askSaveCarmend]

i
i
i
I
i
i
i
i
]
I
[}
i
[}
i
1

[t == § ires] BN BT Comger|

MHHMMMHW'{'&

o e o i

|

109

6.6.4.3. Save Project

Projact Operations: Save ijact)

1

1

1
o

saveFrojact])

flain Window

sanve]

ShiwErowsar)

saveFroject{priDestination]

Olyact

refum message

S L S

110

6.6.4.4. Exit Project

Froject Operations: Ext |

Lisar

=

answer

shoavaiumrant{)

sanved]

Fl

answisr==gave] ShD‘NBmWIiEﬂ].:'

saveProjectipriDestinabon)]

111

6.6.5. Equipment Operations

6.6.5.1. Add New Equipment

Equipment Operations: Add Mew Eq.lipmentJ

i n ian I 1 il 3 i
User Man¥indov ‘EC!.I Wxﬂ?ﬂiﬂ g Add mfgvﬁﬂ& E . Equipment Eqmpmanth'lanaga-l
I I I I
¥ i				
EquipmentOpsaatonsl) : : : :				
EquipmentO perationsivindom) I I I I				
addhewEquipmant()				
A ewEquipmantiindaw()	I I			
sethame{nams) I I				
selWaight{weaght) : :				
setSeason{sesson) I I				
i I I				
specifyllsel) : :				
oh)				
emorCheck])				
- [eror==tn=] showErmorhessage(] |
| |
| |
I I
I I I A -
Equinmam[nam.walg—: —I
alse ht season use) i
T |
equipment i |
| e |
adcMewEquipmentisquipment) |
|
|
e Te——————
insertRowlequipment) : :
| |
| |
™ | |
| | |
- L L | | |
| | | | | |
| | | | | |
| | | | | |
1 1 1 1

112

6.6.5.2. Update Equipment

[Equipment Operations: Lipdate Emipmarrt)

Usar ManWindow Equnpmv::]tg.e:mﬁms U pdateE quipiindonw Equipment Equipmenthtanager
v
i i i | i i
| I I | I |
[I | | I |
o A I I [|
‘aq.upmumparannnsi I : I I
I |
EquipmentOperationswindow() ! : I I
|
update() : I I
checkif Selected]) : I :
— | | |
[selected==Tara] | showEmomessaosinoseteced) | | i
okf) 1— : : I
: | |
getSelectedEqgldl) |
----------------------------- i m
alse dateE quiphindow! egid) ! !
setWWeightiweight] : I
L [l
specifylise(h emorCheck]] : I
| |
| |
okt showEmorhlessage(] |
| |
I |
| |
[emor==trua) | 1 i
[e—— T R) . : :
r]l:qulpmanﬂld_na'na_wel H 8
——————————— I giusage) N
else ipement !
e -]'ThmdateEuLumenNe?anenﬂ
. 1T - I
I .
i - i ! !
I 1 i I |
i 1 ——updateRow(row aquipment) | H H
H L3 —— | | |
I [| | |
.. I | | 1 |
1 T f 1 1
I [| I 1
I . ! + +
5 ! ! .

113

6.6.5.3. Remove Equipment

[Equigmenl Cparaons. Remoss Equipment |

=

EquiprmenoCp eralonshviados Equipreaiianager
i I I
i i i
I I |
i I |
i i
e L e U] : |
EquipmeniCpsaionswincon] ! :
wmiove| l |
f2 BT e B] :
i
|
e L P shomE i atected)
ol} i
| i
________________ ——— ———— —— ——— I_—_—_—_—_—_—_—_—_—_
shiTTe] 7
I
G e I
I
|
] Fanl] i
|
211 b I
mreEQipmannamipky |
R . __[Il
et e ey |
I
i
]
I
i
|
I
i

114

6.6.6. Map Operations
6.6.6.1. Add Map

[Msp Operations: Add Map |

Uisgr Iz 1 Yinciow Project Manager Visualzation
I I I I
I I I I
I I I I
i i I i
- e I I

addMewhdap) | l
showBrowisar() I I
i i
I I
| |
ok} I I
I I
addeath{mapPan) _ | :
I
I
createDataStore(mapPath) .
| '|_j
showhaps{) } :
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
N, L, I I
1 1

115

6.6.6.2. Remove Map

Wap Operations: Remove Map)

(o Remove Map Froject
Llger I Main Window i Window I Manager
T

I I I I I
I I I [I
I I I [I
1 I I | I
] I I I
remaoveMap() : } I

|
Removetd apindow) I | :
I |
removeSelectehaps() : :
getSeIectefPams I :
I I
I I
emwepalhs[paths} :
|
|
|
_________ 1] .
remaveFromDataStarepaths) N

|

|

| I il

| I
it : I
| |
1 showhdapsi) | : i
| |
I | I
£ | | I
I | I
I : I
! i !

-=

“Wisualization

116

6.6.7. Weather Operations

6.6.7.1. See Weather quormatjon

Weather Operations: See Weather Info)

User MainWindow Weather nfo\Window
I I I
I | I
I | |
] i ¥ | I
I
seelVeathernfol) |
I
Weatherlnfowindow() |
ok} N
_____________ |
I
I
|
I
I
I
I
|
I
I
I
|
e T |

117

6.6.7.2. Set Weather Irgformatjon

WWeather Operations w'n"\v\ee!lharjI

Llsar I bl anindiow I |Lbdata“\aulharlnfo' Froject Weatharhdanager
L T T T T
1 | | | [
1 | | | [
] | | | [
1 M I | i

I
' safaatherinfo | | I
| checkSattings(] | | I
=1 | | I
1 ! I i
[setting==manis] Updatsiweatharnfal) | I I
- | [
. | I
| 1
i | I
| [
7] | I
| [
| [
| I
upda
pdeta) aTeeChick() : :
[[
1 [
o [emor==trug] showEmorMessags() I 1
I
i I
_____________________ T i
alie satWaathesjwaather) =5 i
1 relurm messags u I
_________________ . -
“““ AT T T T T T T T T T T T T T T getWestherFromiNey)” T T T T T T T T T T T T T T T T T T T
else | | [errar==true] showErrarMeassage()
| |
| |
| ok |
T T
| |
| |
| |
| weathar |
i - e), sy ey e o e e e
[weather=null] setWeatheriweaher) =l :
|) |
T " " [
| i I
| | I
T T | ! !

118

6.6.8. Visualization Operations

Visualization Operations |

| |
| |

zoaming)

Zoomout)

rotataleft)

rotateRight]

markPoint{Coordinate point)

~get PointType()

setFoint{pntType, pointy

oveharkedFoint| Coordinate pn

savelmagsi]

119

/.CONCLUSION

This document is a detailed summary of the design approach taken by the Sirius Software
team for the Strider project. In this document, the revision of the project specifications and
the changes to the architecture is stated. The details of the specifications and the algorithms
are explained throughly with figures and pseudocodes. Moreover, this document provides
quite large amount of elaboration on the technical design of the project. The architecture of
the system is analyzed pointing out most of the details that concerns the programmers and
system designers. The structure and the behavior of the system modules are discussed with
detailed class and sequence diagrams. Other aspects of the project are also reviewed such

as library and tool research.

With the high level of detail shown in the document, the design of the system can be
considered as almost finished. The next step will be starting the development phase of the
project based on the design presented in this report. The report is expected to have only

necessary changes during the development.

This report helped us to become familiar with software engineering and software design
concepts and made us face the difficulties that a development team may have to overcome
to make a sound and deep design of a large scale software project. Moreover, it serves as a
starting point for the development phase since it provides an understanding of what we have

to code and implement.

In conclusion, Sirius Software has designed the whole Project in detail in order to be ready
for the implementation phase. In the following duration of five months our team will

concentrate on the coding and testing process.

120

suogssinyg O wseL]

AU aupEsd sl [—]
conco7a] | o0 T rr—
_ _ _ BOOE G0EZ BODEL0'DE U eI it
‘& n3Anp _ | EO0T SOE BODT S0°GD Bufifingag g Bunsay .
dnoas m_n:._.‘....m _ “ : EOOE GO W BOOE $0'0F ik s [S g 5z
dnoad m_n__._.._....m " " BOOE FO L2 EOOE F0 P Guaysa | usiEruas &2
H1= AnSAng] _ _ _ B0 PO EL BOCE E0°0E voqumus Buamsidyy o
“& nzAnp | _ “ | EBMTED LS BO0Z B0 V2 Busal waipoly oo
dnous =joym | _ _ EMEETEE BOOTENGd wiguoliy vonesundl) Buiiewnduy .
dnous sjoym | _ _ | BOITTO DL BO0E Z0°ED Buuss wonEzmmnE, -
-k ngAnp | M | | EOOZEOZA BODE WOGE NERREN AL BRIt o
dnoud m_n__.t..,m GO0 BO'ET 4 “ _ _ EODE VWES LT R AT i
‘e ngAnp A nSAnp | L} | ! BOOTIOET BODTLOED musuodwon Sy Buswady o,
dnoad m__n._._.._..,.m BO0T LOOL & m " EOCE L0°GE woday ulmeg pewRd |,
dnoad ajous . _ EOOT 0SB BO0E 2L 'B0 ulisa] SRR IEURS oL
sike m 7 BOOE Z0'E0 BOGE 1020 uBie) o e SEr .
dnoud m__n._._;m i BOOE EOGL BOCE 1 'e0 SINMBEPA Ny pR|IEWD e
dnoad w_n__._....._.m | BOGE ZL B wdayy wiesagg (e e
dnoud m__u_.t.....m _ FOOEZL 0 BODZE 1L 4r SRSUSELOT Jo UG s
dno=s m__n:._._..;m | ! : i BOOZ EL G0 BO0E b Lb BINDAULS RIS L
dnoad m__u_._b;m “EH_N.“._ w”_. & { BOLE | L'FL Wod iy essfpuny BlusaRInbeLy -
B ihE _ " L _ BT LLFI EOOT DL Bulapopy a5E0-a5M u
dnods soym] _ | - eD0Zil'vl EODZDLEE Bupspopy mucauny
MEl .ww}mm ; _ — | BOOE &L ¥l BODE DL 8L FRUDTIUNLON e Euoioung Buusseeg
A nEAnp " ; m EOITED 2T BOCE OLGE LSRRI) YR M AU g
‘e nEAnp m _ BT Z0 A2 EQ0E DL oL Agrang wa iy LonRzeE o g
dnoas sjoym] EMTIOSL BODEOLED yuEESEH ROL 4
dnoad m__u—__...pm BOCZ 0L 98 HoCsy [esodolg £
dnoid w_n:._w.rm GO0E 80 B2 EODE0L ER Ry Lk By r
_ BOKE 3L 'Ed BOOE B ER uoiEEDs Sao | pue dn Gunwes | L
[o] A | s = ECEED wd | e | o s | o
BONZ RUENE P SO02 SeUEng 6 | BODE JsuEnT EE a0z id bicgite e i b

XIAN3ddV '8

9. REFERENCES

[1]. Java Programming Language,

http://en.wikipedia.org/wiki/Java (programming language)

[2]. Eclipse Platform, http://en.wikipedia.org/wiki/Eclipse (software)

[3]. Netbeans IDE, http://www.netheans.org/features/4

[4]. GeoTools, Open Source Java GIS Tool, http://geotools.codehaus.org/

[5]Extensible Markup Language, http://www.xml.com/

[6] MySQL, http://www.mysgl.com/

[7] User Interfacer Desing Tips, Techniques, and

Principles: http://www.ambysoft.com/essays/userinterfaceDesign.html

[8] Ant colony optimization , Cambridge, Mass. : MIT Press, 2004 , Marco Dorigo, Thomas

Steutzle

[9] Evolutionary Algorithms in Engineering Applications, Springer New York 2006, Dasputa,

Michalewicz

[10] “Zirvelerin Ozgiirliigli” by Don Graydon, Kurt Hanson

[11] Tung FINDIK

122

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.netbeans.org/features/4
http://geotools.codehaus.org/
http://www.xml.com/
http://www.mysql.com/
http://www.ambysoft.com/essays/userInterfaceDesign.html

	Duygu Yapa 1449222
	Ayşe Turan 1449164
	Duygu Altınok 1502095
	Elif Kamer Karataş 1448836
	1.1. Purpose of the Document
	1.2. Project Topic
	1.3. Project Definition
	1.4. Project Scope
	2.1. Constraints and Limitations
	2.1.1. Time
	2.1.2. Performance

	2.2. Design Goals and Objectives
	2.2.1. Portability
	2.2.2. Usability
	2.2.3. Reliability
	2.2.4. Approach and Modeling

	3.1. Current State
	3.2. Prototype Implementation
	4.1. Languages and Platforms
	4.1.1. Java
	4.1.2. Eclipse
	4.1.3. NetBeans

	4.2. Geographical Information Systems
	4.2.1. GeoTools

	4.3. Graphics Libraries
	4.4. Other Tools and Libraries
	4.4.1. XML
	4.4.2. MySql
	6.1.1. strider package
	6.1.2. strider.definedTypes package
	6.1.3. strider.gis Package
	6.1.4. strider.planner Package
	6.1.5. strider.gui Package
	6.1.6. strider.gui.helpers Package
	6.1.7. strider.gui.helpers.member Package
	6.1.8. strider.gui.helpers.equipment Package
	6.1.9. strider.gui.helpers.project Package
	6.2.1. strider package
	6.2.2. strider.gis package
	6.2.3. strider.planner package
	6.2.4. strider.gui.helpers.member package
	6.2.5. strider.gui.helpers.equipment package
	6.2.6. strider.gui.helpers.project package
	6.2.7. strider.gui.helpers.weather package
	6.2.8. strider.gui.helpers.visualization package
	6.2.9. strider.gui.helpers.simulation package
	6.2.10. strider.gui.windows package
	6.3.1. Considerations on maps
	6.3.2. Considerations on route planning
	6.3.3. Algorithmic design for route
	Formal Definition of a Combinatorial Optimization Problem [9]
	The Ant Colony Optimization Metaheuristic [8]
	ConstructAntSolutions
	Daemon Actions

	6.3.4. Design of camping plan
	6.3.5. Design of food&water planning [11]
	6.3.6. Design of time planning
	6.3.7. Design of equipment planning
	6.3.8. Design of carriage planning
	6.4.1. Data Flow Diagrams
	6.4.2. Data Dictionary
	6.5.1. Database Design
	6.5.2. File and Folder Formats and Syntax
	6.6.1. Strider General Behavior
	6.6.2. Member Operations
	6.6.3. Chosen Member Operations
	6.6.4. Project Operations
	6.6.5. Equipment Operations
	6.6.6. Map Operations
	6.6.7. Weather Operations
	6.6.8. Visualization Operations

