

 THE STRIDER

Sirius Software
Duygu Yapa 1449222

Ayşe Turan 1449164

Duygu Altınok 1502095

Elif Kamer Karataş 1448836

[Final Design Report]

19.1.2009

 2

ContentsContentsContentsContents

1. INTRODUCTION ... 5

 1.1. Purpose of the Document ... 5

 1.2. Project Topic .. 5

 1.3. Project Definition ... 5

 1.4. Project Scope .. 5

2. DESIGN CONSIDERATIONS ... 6

 2.1. Constraints and Limitations ... 6

 2.1.1. Time .. 6

 2.1.2. Performance ... 6

 2.2. Design Goals and Objectives .. 7

 2.2.1. Portability ... 7

 2.2.2. Usability .. 7

 2.2.3. Reliability .. 7

 2.2.4. Approach and Modeling ... 7

3. CURRENT STATUS ... 8

 3.1. Current State .. 8

 3.2. Prototype Implementation .. 8

4. LIBRARIES AND TOOLS .. 8

 4.1. Languages and Platforms ... 8

 4.1.1. Java .. 8

 4.1.2. Eclipse ... 9

 4.1.3. NetBeans ... 10

 4.2. Geographical Information Systems .. 10

 4.2.1. GeoTools ... 10

 4.3. Graphics Libraries .. 10

 4.4. Other Tools and Libraries .. 10

 4.4.1. XML ... 10

 4.4.2. MySql .. 11

 3

5. USER INTERFACE DESIGN .. 11

5.1. Main Window.. 13

5.2. File Menu ... 13

5.3. Terrain Menu .. 14

5.4. Weather Menu ... 16

5.5. Equipment Menu .. 16

5.6. Help Menu ... 18

5.7. Member Information Panel .. 19

5.8. Constraints Panel .. 21

5.9. 3D Visualization of the Mountain Panel ... 22

5.10. Get Activity Plan Window ... 23

6. ARCHITECTURAL DESIGN ... 24

 6.1. Package and Class Design ... 24

 6.1.1. strider package .. 24

 6.1.2. strider.definedTypes package ... 25

 6.1.3. strider.gis Package .. 27

 6.1.4. strider.planner Package .. 27

 6.1.5. strider.gui Package .. 29

 6.1.6. strider.gui.helpers Package .. 29

 6.1.7. strider.gui.helpers.member Package .. 30

 6.1.8. strider.gui.helpers.equipment Package .. 31

 6.1.9. strider.gui.helpers.project Package .. 32

 6.1.10. strider.gui.helpers.weather Package ... 33

 6.1.11. strider.gui.helpers.visualization Package .. 34

 6.1.12. strider.gui.helpers.simulation Package .. 34

 6.1.13. strider.gui.windows Package .. 35

 6.2. Method and Class Interfaces .. 45

 6.2.1. strider package .. 45

 6.2.2. strider.gis package .. 45

 6.2.3. strider.planner package .. 45

 6.2.4. strider.gui.helpers.member package ... 46

 6.2.5. strider.gui.helpers.equipment package .. 47

 6.2.6. strider.gui.helpers.project package .. 47

 4

 6.2.7. strider.gui.helpers.weather package ... 48

 6.2.8. strider.gui.helpers.visualization package .. 48

 6.2.9. strider.gui.helpers.simulation package ... 49

 6.2.10. strider.gui.windows package ... 50

 6.3. Design of Expedition Plan ... 57

 6.3.1. Considerations on maps .. 57

 6.3.2. Considerations on route planning ... 59

 6.3.3. Algorithmic design for route ... 61

 6.3.4. Design of camping plan ... 72

 6.3.5. Design of food&water planning ... 73

 6.3.6. Design of time planning .. 73

 6.3.7. Design of equipment planning ... 75

 6.3.8. Design of carriage planning .. 78

 6.4. Functional Modeling ... 79

 6.4.1. Data Flow Diagrams ... 79

 6.4.2. Data Dictionary .. 84

 6.5. Data Design .. 92

 6.5.1. Database Design .. 92

 6.5.2. File and Folder Formats and Syntax .. 96

 6.6. Behavioral Design ... 101

 6.6.1. Strider General Behavior .. 101

 6.6.2. Member Operations .. 102

 6.6.3. Chosen Member Operations .. 105

 6.6.4. Project Operations ... 108

 6.6.5. Equipment Operations .. 112

 6.6.6. Map Operations .. 115

 6.6.7. Weather Operations ... 117

 6.6.8. Visualization Operations .. 119

7. CONCLUSION .. 120

8. APPENDIX ... 121

9. REFERENCES.. 122

 5

1. INTRODUCTION

1.1.1.1.1.1.1.1. Purpose of the DocumentPurpose of the DocumentPurpose of the DocumentPurpose of the Document

This report is written to show final design of Strider software by Strider project team. The

headings and parts of this document are divided appropriately by grouping relevant subjects

of whole system. Project group has tried to give the definition and design of the software

system by dividing subsystems and showing the relations with each other. Also, the initial

design report is detailed and the future work of that report has done in this report. In

addition, the other necessary issues like implementation details and specifications are

handled.

1.2.1.2.1.2.1.2. Project TopicProject TopicProject TopicProject Topic

The topic of this project is planning a climb for mountaineering clubs. Project name is

Strider. Strider is being developed by a team of Sirius Software.

1.3.1.3.1.3.1.3. Project DefinitionProject DefinitionProject DefinitionProject Definition

The software basically finds a route on a terrain for mountaineers. It will provide the best

activity plan for reaching a selected mountain peak by taking into account the specified constraints.

In addition, it makes a visualization of the terrain and a simulation of the route. Software

uses some kind of information from mountaineers, database and website to make all of

these facilities.

1.4.1.4.1.4.1.4. Project ScopeProject ScopeProject ScopeProject Scope

The scope of the project has been described in the Requirement Analysis Report. Here, a

brief of the scope will be given.

The software should be used by instructor mountaineer, because only instructor can

know about the capabilities of the mountaineers in a club or decide to the date of an activity

 6

This guy has some responsibilities and abilities on the software;

• He should give the climbers’ information in the club to the system any time and

this information will be kept in system until an instructor delete or update them.

• Before running system for getting an activity plan, he should give terrain

information to the system by giving a “.dted” or “.dem” format map, the region

(ex; Ankara, Turkey) and optionally vector map and satellite image.

• He can give some constraints like safest route, time and distance constraints and

checkpoints.

• He can mark the avalanche or rock falling risk places on the visualization of the

terrain at our user-friendly graphical user interface.

• He can make a walk-through on terrain by useful buttons.

 After giving a map, program will show a visualization of the terrain. Then he can run the

program. The program gives an activity plan (optionally in a report) which includes climbing

route, estimated duration of climbing, food and equipment list, emergency equipment list

and camping plan. He can see a simulation of the route on the terrain, if he wants. The

additional features will be described in the rest of this document.

2. DESIGN CONSIDERATIONS

2.1.2.1.2.1.2.1. Constraints and LimitationsConstraints and LimitationsConstraints and LimitationsConstraints and Limitations

2.1.1. Time

The project should be completed until July 2009. In addition a demo of this project

should be prepared until the end of January 2009. The detailed project schedule is given as a

Gantt chart in Appendix.

2.1.2. Performance

Performance is an important issue and makes us anxious, because finding an optimum

way in a terrain with lots of constraints which have different priorities is a hard problem.

 7

Hence we will try different solutions for this problem to reach the best performance. In

addition, the visualization and simulation part we will use efficient ways.

2.2.2.2.2.2.2.2. Design Goals and ObjectivesDesign Goals and ObjectivesDesign Goals and ObjectivesDesign Goals and Objectives

2.2.1. Portability

We have thought about this issue and decided to use portable languages and tools. In

other words, this was a constraint to choose libraries and toolkits. So, we will try to make

software portable on Windows and Linux platforms.

2.2.2. Usability

We have tried to design user friendly software and correspond to mountaineers needs. In

this context, we have made interviews with professional mountaineers and obtained their

ideas about planning a climb. We have examined how much we make this software useful

for mountaineers. At the end, we canceled some unnecessary and absurd parts from the

project. For example, we canceled rafting or skiing experience of climbers because a climber

never carries rafting or skiing equipments when he goes to climbing even if he has these

kinds of experiences. We also added some extra features that make software better for

users like visualization of the terrain.

2.2.3. Reliability

As we mentioned before, we have made our studies in wide range. So, we have thought

almost all aspects of the climbing issue. We have taken up references from the

mountaineers Hasan Hüseyin BOĞAZ and Tunç FINDIK and the book of “Zirvelerin

Özgürlüğü”. Besides we have searched lots of libraries, tools and algorithms for the

implementation part and selected the most appropriate ones for our project.

2.2.4. Approach and Modeling

Because of the complexity of our project, we have decided to use Object Oriented

Approach. This approach models our system so makes the design more understandable and

the Object Oriented Design elaborates the models to produce implementation

 8

specifications. For representing these models, we use Unified Modeling Language (UML) that

has a number of different notations for representing models.

3. CURRENT STATUS

3.1.3.1.3.1.3.1. Current StateCurrent StateCurrent StateCurrent State

We have started to use tools and libraries. We have used Geotools libraries and

implement some features. We have read vector maps and visualize them. We have added

some features to visualization part like zooming and moving. We have designed graphical

user interface and database. On the other hand, when we designed the packages and classes

of the project in Architectural Design part, we have determined the methods of classes and

defined them.

3.2.3.2.3.2.3.2. Prototype ImplementationPrototype ImplementationPrototype ImplementationPrototype Implementation

The prototype of Strider will contain an understandable graphical user interface with its

main features. In addition to these, gui will be able to get map formats and show a 3D

visualization of the terrain. For the visualization part the Geotools libraries will be used and

this part will have futures. We considered that these features will be zooming in, zooming

out on map and moving on it. There may be mouse events on map for showing coordinate

information of any point of map, and geting start, end coordinates, chechkpoint, avalanche/

rock falling risky places.

4. LIBRARIES AND TOOLS

4.1.4.1.4.1.4.1. Languages and PlatformsLanguages and PlatformsLanguages and PlatformsLanguages and Platforms

4.1.1. Java

Java is a programming language originally developed by Sun Microsystems and released

in 1995 as a core component of Sun Microsystems' Java platform. The language derives

 9

much of its syntax from C and C++ but has a simpler object model and fewer low-level

facilities. Java applications are typically compiled to bytecode that can run on any Java

virtual machine (JVM) regardless of computer architecture. The syntax of Java is largely

derived from C++. Unlike C++, which combines the syntax for structured, generic, and object-

oriented programming, Java was built almost exclusively as an object oriented language. All

code is written inside a class and everything is an object, with the exception of the intrinsic

data types (ordinal and real numbers, boolean values, and characters), which are not classes

for performance reasons. [1] We preferred Java for its high-level object orientation, its rich

IDEs, wide developer support and documentation, wide library choices; but the our main

reason was that we wanted to use GeoTools which is a Java library. Also for our project's

visualization & simulation parts, Java was the best choice for its available libraries.

4.1.2. Eclipse

Eclipse is a software platform comprising extensible application frameworks, tools and a

runtime library for software development and management. It is written primarily in Java to

provide software developers and administrators an integrated development environment

(IDE). In its default form it is meant for Java developers, consisting of the Java Development

Tools (JDT). Users can extend its capabilities by installing plugins written for the Eclipse

software framework, such as development toolkits for other programming languages, and

can write and contribute their own plug-in modules. Language packs provide translations

into over a dozen natural languages. It was easy for us to decide to use Eclipse as it's the

most powerful Java IDE; it has dozens of plugins to support our work, it has automatic code

generation as well as easy usage such as showing and explaining runtime, compile-time and

code mistakes. Also Eclipse is easy to use with “svn” as well as it provides the Eclipse

Workbench - views, editors, perspectives, wizards; Equinox OSGi - a standard bundling

framework, Core platform - boot Eclipse, run plug-ins, the Standard Widget Toolkit (SWT) - a

portable widget toolkit, JFace - viewer classes to bring model view controller programming

to SWT, file buffers, text handling, text editors etc.[2]

 10

4.1.3. NetBeans

A free, open-source Integrated Development Environment for software developers. The

NetBeans IDE provides several new features and enhancements, such as rich PHP, JavaScript

and Ajax editing features, improved support for using the Hibernate web framework and the

Java Persistence API, and tighter GlassFish v3 and MySQL integration. [3] We used NetBeans

for designing our GUI interfaces; as we use Java by far NetBeans is the best choice for

interface design for its easy usage and developer-friendly.

4.2.4.2.4.2.4.2. Geographical Information SystemGeographical Information SystemGeographical Information SystemGeographical Information Systemssss

4.2.1. GeoTools

GeoTools is an open source (LGPL) Java code library which provides standards compliant

methods for the manipulation of geospatial data, for example to implement Geographic

Information Systems (GIS). [4] We decided to use GeoTools as we needed a GIS library and

GeoTools provides all GIS capabilites. Moreover , as we use Java ; GeoTools & Java

combination would be powerful enough.

4.3.4.3.4.3.4.3. Graphics LibrariesGraphics LibrariesGraphics LibrariesGraphics Libraries

We decided to use GeoTools' graphic capabilities for our project's visualization and

simulation parts, since we mostly use GeoTools for the other parts of our project. However,

we may use NasaWorld Wind libraries for visualization parts because of its useful features.

4.4.4.4.4.4.4.4. Other Tools and LibrariesOther Tools and LibrariesOther Tools and LibrariesOther Tools and Libraries

4.4.1. XML

Extensible Markup Language (XML) provides a foundation for creating documents and

document systems. XML operates on two main levels: first, it provides syntax for document

markup; and second, it provides syntax for declaring the structures of documents. XML's

simplicity is its key selling point, perhaps even its strongest feature. Our team have plenty of

 11

reasons to use XML : simplicty , extensibility ,interopability.For the simplicity , XML's rigid set

of rules helps make documents more readable to both humans and machines. XML

document syntax contains a fairly small set of rules, making it possible for our team to get

started right away. For the extensibility; XML is extensible in two senses. First, it allows

developers to create their own DTDs, effectively creating 'extensible' tag sets that can be

used for multiple applications. Second, XML itself is being extended with several additional

standards that add styles, linking, and referencing ability to the core XML set of capabilities.

XML complements Java, a force for interoperability, very well, and a considerable amount of

early XML development has been in Java. A generic application programming interface (API)

for parsers, the Simple API in XML (SAX), is freely available. [5]

4.4.2. MySql

MySQL database is the world's most popular open source database because of its fast

performance, high reliability, ease of use, and dramatic cost savings. Our team preferred

MySQL for its easy usage and mostly for its Java compability. [6] Since MySQL is also a Sun

Microsystems product ; not only Java has JDBC support for SQL , also the combination of

Java & MySQL is a very powerful combination due to its high performance.

5. USER INTERFACE DESIGN
We have made some changes and additions to our user interface. Here is a list of those

changes and additions:

• Since we are assuming that the users of our software will be instructor

mountaineers who has the enough information about equipments, we have

thought that they should be able to access the equipments in the system before

making the plan. Here, accessing the equipments means, listing the equipments in

the system, defining new equipments or removing out-dated or unused

equipments from the system permanently. For this purpose, we have added an

“Equipment Menu”.

 12

• We have changed “Terrain Menu” a little bit. Instead of pressing “Add Shape File”

to add a shape file and “Add Satellite Image” to add a satellite image etc, user will

just press “Add Map” and he/she will be able to specify all map types. We have

removed “Browse Data” menu item for this reason. Since specifying country and

city information was in “Browse Data” window, we have moved them to

“Constraints” panel in main window. During our research on GIS we have learned

that the elevation data file or shape file should not be necessarily unique. There

can be more than one elevation maps or shape files for the same terrain. Before

learning this, we were assuming that there will be exactly one elevation map and

at most shape file or satellite image for a terrain. Seeing the assumption we made

was wrong, we changed this part also. Now, user can specify as many maps as

he/she wants and he/she can remove any map (including elevation maps) from

the project. However, if user tries to get activity without specifying any elevation

map the software will not generate any an activity plan.

• We have moved choosing member for an activity option from “See all Members”

window to main window as we thought this would be more convenient. If user

presses “Choose Member” button in the Main Window, a new window listing the

unchosen members in the system will appear instead of “See all Members”

window. Here, user will be able to choose more than one member by selecting all

and pressing “Ok” button.

• We have made changes in taking weather information part. At the beginning we

were taking weather information from the internet only. We have added an

option for user to specify the necessary information manually in case of lack of

internet connection or lack of information. If user does not specify any

information, we will use default values and warn the user for this situation.

Again, there may be some changes in the design of user interface at the next steps of the

project. User screens may be designed to be more user-friendly as the need arises. However,

the functionalities the screens serve will remain more or less stable.

 13

In the following sections, we will explain the main points of our graphical user interface.

5.1. Main Window5.1. Main Window5.1. Main Window5.1. Main Window

Figure 5.1. Main Window of Strider

In Figure 5.1, you see the main window of our software. It consists of a menubar including

File, Terrain, Weather, Equipment and Help menus, Member Information, Constraints and

3D Visualization of the Mountain Panels and Get Activity Plan and Exit buttons.

5.2. File Menu5.2. File Menu5.2. File Menu5.2. File Menu

From File Menu, the following options can be chosen:

• New Project: If “New Project” is clicked; after closing the old one, a new project will

be open with default values.

 14

• Open Project: If “Open Project” is clicked after closing the current one, a file chooser

for opening a “.srs” file will appear. Clicking the desired project with “.srs” extension,

and “Open”, the project will be open.

• Save Project: If “Save Project” is clicked, a file chooser for saving the current project

will appear and writing the name and clicking “Save” will save the project to the

desired location.

• Exit: When “Exit” is clicked, if the current project has not saved recently, first an

option pane that asks whether to save the project before exiting or not, will appear.

According to chosen option, Strider will exit either with saving the project or without

saving it.

5.3. 5.3. 5.3. 5.3. Terrain MenuTerrain MenuTerrain MenuTerrain Menu

From Terrain Menu, the following options can be chosen:

• Add Map : If this option is chosen, a filechooser which shows files with extensions

“dted”, ”dem”, ”shp” and ”geotiff” will appear as shown in Figure 5.2. Selecting a

map and pressing “Add Map” will add the selected file to project. The effect of

adding a map to the project will also be seen in visualization.

 15

Figure 5.2.Add Map Window

• Remove Map(s) : If this option is chosen, a window including the list of project maps

will appear (Figure 5.3). Selecting one or more maps from the list and pressing

“Remove Selected Map(s)” will remove the specifed maps from the project. The

effect of removing map(s) from the project will also be seen in visualization.

Figure 5.3.Remove Map(s) Window

 16

5.5.5.5.4. Weather Menu4. Weather Menu4. Weather Menu4. Weather Menu

In Weather Menu there is only one option : “See Weather Information”. If this option is

chosen, then the current weather data of the project will be shown to the user (Figure 5.4).

Pressing “OK” will redirect to the main window. (Figure 5.1)

 Figure 5.4. See Weather Window Figure 5.5. Update Weather Window

5.5. Equipment Menu5.5. Equipment Menu5.5. Equipment Menu5.5. Equipment Menu

In this menu, there is only one option : “Equipment Operations”. Choosing that option

triggers a window, containing the list of equipments in the system, opening (Figure 5.6).

 17

Figure 5.6. Equipment Operations Window

From “Equipment Operations” window user can choose the following options:

• Add New Equipment: If this option is chosen, a window to define a new equipment

will appear (Figure 5.7). Filling the fields and pressing “OK” will add the newly defined

equipment to the system after doing necessary error checks, and redirect to

“Equipment Operations” window.

 Figure 5.7. Add Equipment Window Figure 5.8. Update Equipment Window

 18

• Remove Equipment: If this option is chosen, the selected equipment will be removed

from the system after doing necessary error checks and confirmations. After

removing an equipment, user will stay in “Equipment Operations” window.

• Update Equipment: If this option is chosen, a window for user to update the selected

equipment will appear (Figure 5.8).

• Close: Choosing this option will close “Equipment Operations” window and redirect

to main window (Figure 5.1).

5.6. Help Menu5.6. Help Menu5.6. Help Menu5.6. Help Menu

 From Help Menu, the following Options can be chosen:

• Help Topics: If Help Topics option is chosen, then the user manual file will be open

without closing the main window.

• About Strider: If this option is chosen, then a short description and information

about the developers of Strider will appear (Figure 5.9).

Figure 5.9. About Strider Window

 19

5.7. Member Information Panel5.7. Member Information Panel5.7. Member Information Panel5.7. Member Information Panel

In Member Information Panel, there is a list of members (their ids and names) that will go

climbing.

• If user presses “Choose New” button to include member(s) in the activity then a

window containing the list of all unchosen members with their whole informations

will appear (Figure 5.10). User can select more than one member, and pressing

“OK” button will add all selected members to the project’s chosen member list.

Pressing “OK” or “Cancel” button will redirect to main window, reflecting the

changes in the chosen member list to the chosen member panel, if any.

Figure 5.10. Choose Member for Activity Window

• If user chooses one of them and presses

o “Remove Button”, then that member is removed from chosen members list.

o “Update Button”, then a window (given in Figure 5.13) that will contain the

information of the selected member is shown. Updating the necessary field

and pressing “OK” will updates the information of the selected member.

There is a button, User Operations Button, to see the information of all existing members

(both chosen for climbing and not). If user presses this button, the window given in

Figure 5.11 will appear.

 20

Figure 5.11. User Operations Window

From User Operations Window, user can perform the following actions:

• Add New Member: If user presses “Add New Member Button”, then the window

given in Figure 5.12 will appear. Filling the informations, and pressing “OK” gives the

member a unique id and adds member to the database and “User Operations”

window is updated accordingly.

• Remove an Existing Member: If user selects a member and presses “Remove

Button”, then the selected member is removed from the database permanently and

“User Operations” window is updated accordingly. If the removed user is in chosen

members for climbing list, he will also be removed from that list.

• Update Member Information: If user selects a member and presses “Update

Button”, then the information of the selected member will appear. (Figure 5.13)

Changing the necessary fields and pressing “OK”, updates the information of the

selected member.

 21

 Figure 5.12. Add New Member Window Figure 5.13. Update Member Window

• Close Window: If “Close” is pressed, User Operations Window will be closed

returning back to the main window. (Figure 5.1)

5.8. Constraints Panel5.8. Constraints Panel5.8. Constraints Panel5.8. Constraints Panel

In Constraints Panel, there are constraints that are taken into account when preparing the

activity plan. User can choose more than one constraint. He also specifies the start date and

time of the activity, country and city of the terrain that mountain is located. In addition he

will specify the weather setting information. By choosing “Set Manually” option and pressing

“Set Weather Info” a window showing the current weather information will appear

(Figure5.5). Filling the necessary fields and pressing “OK” will update the weather

information of the current project. If “Get from internet option” is chosen and “Set Weather

Info” is pressed then after checking the internet connection and availability of the

information, if everything seems okay, weather information will be taken from the internet.

If any problem occurs, the software will give a warning to the user and use the current

weather information not taken from internet.

 22

5.9. 5.9. 5.9. 5.9. 3D Visualization of the Mountain Panel3D Visualization of the Mountain Panel3D Visualization of the Mountain Panel3D Visualization of the Mountain Panel

In this panel the 3D visualization of the mountain using all of the given maps will be

shown.

• As user moves the mouse on the terrain, the longitude, latitude and elevation of the

terrain will be shown in given boxes.

• If user clicks left mouse button then a popup menu will appear. In the popup menu

the following options exist:

o Start coordinate: If this option is chosen, then the clicked position will be the

start coordinate. If there is a start point given before, that point will be

removed since there can be only one start point.

o End coordinate: If this option is chosen, then the clicked position will be the

end coordinate. If there is an end point given before, that point will be

removed since there can be only one end point.

o Checkpoint: If this option is chosen, the clicked position will be added to the

checkpoints list. During the preparation of the activity plan, passing through

the given checkpoints will be taken into account as a constraint.

o Risk of avalanche: By choosing this option, user can point the risk of

avalanche.

o Risk of falling rocks: By choosing this option, user can point the risk of falling

rocks.

• If user clicks right mouse button, if there exists any points defined on that position, it

will be removed.

• If user clicks the save image button, a file chooser will appear and pressing save,

saves the image to a desired location.

• User can view the other sides of the mountain by pressing “Rotate Left” and “Rotate

Right” buttons or keyboard’s left and right arrow keys.

 23

• User can zoom in and out the terrain by pressing “Zoom In” and “Zoom Out” buttons

or keyboard’s up and down arrow keys.

5.105.105.105.10. . . . Get Activity PlanGet Activity PlanGet Activity PlanGet Activity Plan WindowWindowWindowWindow

When user presses “Get Activity Plan” button, after doing the error checks, the window

shown in Figure 5.14 will appear.

Figure 5.14. Activity Plan Window

From the Activity Plan Window, user can simulate the climbing by pressing “Play Button”. If

he presses “Save Button”, a file chooser appears and pressing “Save”, saves the simulation

to the desired location.

In the Activity Plan Panel, there exists the generated output about the climbing. In case of

more than one camping, all of the campings will be listed. If there is no camping, nothing will

be displayed for camping.

 24

If user presses “Save Report”, a file chooser for saving the activity plan will appear. Pressing

“Save”, saves the report. If user presses “Close”, the Activity Plan will be closed without

saving the activity plan report.

 6. ARCHITECTURAL DESIGN
In this section, the architectural design of the project will be described. In the first part,

package and class descriptions and class diagrams will be given. In the second part, the

method and class interfaces of the packages will be described.

6.1. Package and Class Design6.1. Package and Class Design6.1. Package and Class Design6.1. Package and Class Design

6.1.1. strider package

“strider” package is the main package of the project (Figure 6.1). It consists of two classes

namely “Main” and “DatabaseConnection” and 4 main packages namely “definedTypes”,

“gis”, “planner” and “gui”.

• Main Class is the class that has the main method (Figure 6.2).

• DatabaseConnection Class is the class that is responsible for database connection

(Figure 6.3).

 25

 Figure 6.1. strider package

 Figure 6.2. Main Class Figure 6.3. DatabaseConnection

6.1.2. strider.definedTypes package

This package contains the definition classes that will used by other packages and classes

namely Season, Constraint, WindDirection, ExperienceLevel and Coordinate classes (Figure

6.4).

 26

Figure 6.4. strider.definedTypes Package

• Season Class contains the season information. Season can be WINTER, AUTUMN,

SPRING, SUMMER.

• Constraint Class contains the project constraint definitions. There are seven types of

constraints defined.

• WindDirection Class contains the definition of wind direction.

• ExperienceLevel Class defines the experience level of a member.

• Coordinate Class defines a new type that is consist of longitude, latitude and

elevation informations.

 27

 6.1.3. strider.gis Package

 This is the package that extracts data from the map file paths specified by the user. This

package is capable of getting features of both raster and vector maps. Below you can find

the class diagram of this package. This package contains the class named “GIS” (Figure 6.5).

Figure 6.5. strider.gis package

• GIS Class is the class that is responsible for geographic information system side

operations. The descriptions about methods will be given in the “Methods and Class

Interfaces” section.

 6.1.4. strider.planner Package

 This is the package that the plan of the activity is prepared (Figure 6.6). There are three

classes in this package: Camping class, Plan Class and Planner class.

 The method makePlan() in the Planner class prepares the activity plan. Our algorithm will

work in makePlan() function. Since we do not have a well-defined algorithm to prepare plan

at this step, we will only give some information about the working principals of our planner

algorithm.

 Activity plan consists of a route, a camping plan including camping regions and camping

duration, the optimized list of equipments that are required for the climbing and an

optimized food list. Among these members of the plan, route is the one that dominates the

others. So the algorithm should first find an optimized route for the activity meeting the

constraints specified by the user.

The algorithm will make decision on paths considering the least experienced, slowest

and weakest members of the group as a basis. The paths that require more experience than

 28

the least experienced member of the group will not be chosen. Duration of the activity will

be decided according to the speed of slowest member in climbing or walking.

Walking speed of the members will be reduced at nights, at snowy and rainy weathers.

At rainy and snowy weathers walking will be preferred climbing, actually climbing will not be

an option.

Safest route is the route that there is less or no avalanche and falling rocks risks. Also

walking will be taken as safer than climbing. When minimizing time of the activity is a

constraint, safest route will be considered as shortest route in duration, because the risky

activities like climbing, passing rivers, are time consuming activities even if they are on the

shortest path. This is one of the mountaineering knowledge obtained from reliable sources.

Camping is not mandatory. However, if necessary, the duration of the camping will

always be minimized. Equipment list will be prepared according to the requirements of the

path and will be optimized. Food list will be prepared according to the duration of the

activity. The load of the group should be minimized.

Figure 6.6. strider.planner package

 29

• Camping Class includes the definition of a camp.

• Plan Class includes the definition of a plan.

• Planner Class is the class that makes the activity plan.

6.1.5. strider.gui Package

This is the package that handles the user interaction and commands. Inputs are obtained

from the user to be used in other packages for planning. Some important features it

provides to user can be listed as follows:

• User can manage the member database of the club

• User can see the 3D visualization of the terrain and can mark coordinates on the

image for different purposes: start and end point specification, checkpoint

specification, avalanche risk specification, falling rock risk specification.

• User can see the simulation of the prepared plan.

 This is the largest package in the system. It consists of two packages namely “helpers” and

“windows”.

 6.1.6. strider.gui.helpers Package

 This is the package that contains helper packages for gui windows. It contains “MapFilter

Class” (Figure 6.7) and 6 helper packages namely “Member”, “Equipment”, “Visualization”,

“Project”, “Simulation” and “Weather”.

Figure 6.7. MapFilter Class

• MapFilter Class is extended from java’s FileFilter class and overrides its “accept” and

“getDescription” methods. This class is used for browsing maps in the following

formats : “dted”, “dem”, “geotiff”, “shp”.

 30

6.1.7. strider.gui.helpers.member Package

This is the package that apply the changes and operations to the database of members.

It contains member related information and opereations. It consists of two classes namely

“Member” and “MemberManager” (Figure 6.8).

Figure 6.8. strider.gui.helpers.member Package

• Member Class is the class containing the attributes of a member and getter, setter

methods for those attributes.

• MemberManager Class is the class responsible for handling member operations.

Since it is the manager class, MemberManager Class has no constructor and all

methods within this class are static. This class is the bridge class between the

database and the software.

 31

6.1.8. strider.gui.helpers.equipment Package

This package contains equipment related information and operations. It consists of two

classes namely “Equipment” and “EquipmentManager” (Figure 6.9).

Figure 6.9. strider.gui.helpers.equipment Package

• Equipment Class is the class containing the attributes of an equipment and getter,

setter methods for those attributes.

 32

• EquipmentManager Class is the class responsible for handling equipment operations.

Since it is the manager class, EquipmentManager Class has no constructor and all

methods within this class are static. This class is the bridge class between the

database and the software.

6.1.9. strider.gui.helpers.project Package

This package contains project related information and operations. It consists of two

classes namely “Project” and “Project Manager” (Figure 6.10).

Figure 6.10. strider.gui.helpers.project Package

 33

• Project Class is the class containing the attributes of a project and getter, setter

methods for those attributes. In addition, it has methods to remove or add various

coordinates and a method to parse “srs” file. Some of the getter/setter methods

couldn’t be shown in the figure because of lacking space.

• ProjectManager Class is the class responsible for handling project operations. Since it

is the manager class, ProjectManager Class has no constructor and all methods

within this class are static. This class holds methods for adding or removing a map

from the peoject and parsing path according to its extension.

6.1.10. strider.gui.helpers.weather Package

This package contains weather related information and operations. It consists of two

classes namely “Weather” and “WeatherManager”.

Figure 6.11. strider.gui.helpers.weather Package

• Weather Class is the class containing the attributes of weather information and

getter, setter methods for those attributes.

• WeatherManager Class is the class responsible for handling weather operations.

Since it is the manager class, WeatherManager Class has no constructor and all

 34

methods within this class are static. This class is basically responsiple for getting

weather from internet and HTML parsing.

6.1.11. strider.gui.helpers.visualization Package

This package contains only “Visualization” class (Figure 6.12).

Figure 6.12. strider.gui.helpers.visualization Package

• Visualization Class is the class responsible for visualizing the terrain. It basically

makes use of Geotools for this purpose.

6.1.12. strider.gui.helpers.simulation Package

 This package contains “Simulation” and “SimulationHelper” class.

Figure 6.13. strider.gui.helpers.simulation Package

• Simulation Class is the class for making simulation of the planned route.

 35

6.1.13. strider.gui.windows Package

 This package is responsible for presenting the gui. The classes correspond the figures of

“User Interface Design” part. Details about the methods in the classes will be given in “Class

and Method Interfaces” section.

 It contains the following classes:

• MainWindow Class is the class responsible for showing the “Main Window of

Strider”. The class diagram of MainWindow is shown in Figure 6.14. Of course,

there are much more attributes in this class, but because of space reasons we

show some of them here.

 36

 Figure 6.14. strider.gui.windows.MainWindow Class

• AboutWindow Class is the class responsible for showing the “About Strider

Window”. The class diagram of AboutWindow is shown in Figure 6.15.

 37

 Figure 6.15. strider.gui.windows.AboutWindow Class

• AddNewEquipWindow Class is the class responsible for showing the “Add

Equipment Window”. The class diagram of AddNewEquipWindow is shown in

Figure 6.16.

Figure 6.16. strider.gui.windows.AddNewEquipWindow Class

• AddNewMemberWindow Class is the class responsible for showing the “Add

New Member Window”. The class diagram of AddNewMemberWindow is shown

in Figure 6.17.

 38

Figure 6.17. strider.gui.windows.AddNewMemberWindow Class

• EquipOperationsWindow Class is the class responsible for showing the

“Equipment Operations Window”. The class diagram of EquipOperationsWindow

is shown in Figure 6.18.

Figure 6.18. strider.gui.windows.EquipOperationsWindow Class

 39

• GetActivityPlanWindow Class is the class responsible for showing the “Activity

Plan Window”. The class diagram of GetActivityPlanWindow is shown in Figure

6.19.

Figure 6.19. strider.gui.windows.GetActivityPlanWindow Class

• RemoveMapWindow Class is the class responsible for showing the “Remove

Map(s) Window”. The class diagram of RemoveMapWindow is shown in Figure

6.20.

 40

Figure 6.20. strider.gui.windows.RemoveMapWindow Class

• UnchosenMembersWindow Class is the class responsible for showing the

“Choose Member for Activity Window”. The class diagram of

UnchosenMembersWindow is shown in Figure 6.21.

Figure 6.21. strider.gui.windows.UnchosenMembersWindow Class

• UpdateEquipWindow Class is the class responsible for showing the “Update

Equipment Window”. The class diagram of UpdateEquipWindow is shown in

Figure 6.22.

 41

Figure 6.22. strider.gui.windows.UpdateEquipWindow Class

• UpdateMemberWindow Class is the class responsible for showing the “Update

Member Window”. The class diagram of UpdateMemberWindow is shown in

Figure 6.23.

 42

Figure 6.23. strider.gui.windows.UpdateMemberWindow Class

• UpdateWeatherWindow Class is the class responsible for showing the “Update

Weather Window”. The class diagram of UpdateWeatherWindow is shown in

Figure 6.24.

 43

Figure 6.24. strider.gui.windows.UpdateWeatherWindow Class

• UserOperationsWindow Class is the class responsible for showing the “User

Operations Window”. The class diagram of UserOperationsWindow is shown in

Figure 6.25.

 44

Figure 6.25. strider.gui.windows.UserOperationsWindow Class

• WeatherInfoWindow Class is the class responsible for showing the “Weather

Information Window”. The class diagram of WeatherInfoWindow is shown in

Figure 6.26.

Figure 6.26. strider.gui.windows.WeatherInfoWindow Class

 45

6.2. Method6.2. Method6.2. Method6.2. Method and Class Interfacesand Class Interfacesand Class Interfacesand Class Interfaces

6.2.1. strider package

DatabaseConnection Class:

private static void loadDriver(): This method loads the driver. It is a private and static

method and called within the “establishConnection” method to establish the connection.

public static void establishConnection(): This method first loads the driver by calling

loadDriver() method, then establishes the database connection. This method is called in the

constructor of Main Class to establish the database connection at the beginning.

 6.2.2. strider.gis package

Gis Class:

public static void createDataStore(): This method creates DataStore for different map

formats. DataStore is a defined type in Geotools holding the information about the maps.

(Something like a database) Adding a map to the project causes this methods to be invoked.

public static DataStore findDataStore(URL url): This method finds the data store for a map

format. Adding a map to the project causes this methods to be invoked.

public static FeatureCollection getFeature(DataStore store): This method is used for

getting the features for a specified data store. FeatureCollection is a defined type in

Geotools holding features about datastores.

6.2.3. strider.planner package

Planner Class:

private static Priority makePriority(Weather weather , Season season , WindDirection

windDirection, ExperienceLevel experienceLevel, DataStore dataStore, Constraint

constraints): This method determines the priorities up to the weather , terrain , season and

team's stamina conditions. It is invoked within the makePlan().

 46

 private static Vector<Coordinate> makeRoute(DataStore datastore, Vector<Coordinate>

referencePoints, Priority priorities): This method calculates the route between start & end

coordinates with respect to the priorities and user given constraints. This method is invoked

within the makePlan().

 private static Vector<Camping> makeCampPlan(Vector<Coordinate> route, Weather

weather): This method is used for making the camp plan. While preparing the activity plan,

this method is invoked.

private static float calculateWater(Weather weather): This method calculates the

necessary water amount. It is invoked within the makePlan().

private static float calculateFood(int duration, int teamMembers): This method calculates

the necessary food amount. It is invoked within the makePlan().

private static Vector<Equipment> calculateEquipment (Vector<Coordinate> route, int

members, Season seasn, Weather weathr): This method determines the necessary

equipments. It is invoked within the makePlan().

 public static Plan makePlan(): This method calls makePriority, makeRoute,

makeCampPlan, calculateWater, calculateFood and calculateEquipment methods to make

the activity plan. When the user hits “ Get Activity Plan” button from GUI , this method is

invoked.

6.2.4. strider.gui.helpers.member package

 MemberManager Class:

public static void addNewMember(Member newMember) : This method will add the

newMember to the Member table of the database.

public static void removeMember(int memberId): This method will remove the member

with memberId from the database.

public static void updateMember(Member member): This method will update the given

member in the database.

 47

public static Vector getAllMembers(): This method will retrieve all the members in the

database and puts them in a Member vector and returns.

public static Member getSelectedMember(int memberId): This method will retrieve the

member with given memberId from the database and returns it.

6.2.5. strider.gui.helpers.equipment package

 EquipmentManager Class:

public static void addNewEquip(Equipment newEquip) : This method will add the

newEquip to the Equipment table of the database.

public static void removeEquipment(int equipId): This method will remove the equipment

with equipId from the database.

public static void updateEquipment(Equipment equip): This method will update the given

equipment in the database.

public static Vector getAllEquipments(): This method will retrieve all the equipments in

the database and puts them in an Equipment vector and returns.

public static Equipment getSelectedEquipment(int equipId): This method will retrieve the

equipment with given equipId from the database and returns it.

 6.2.6. strider.gui.helpers.project package

Project Class:

private void parseSRSFile(File file): This method will be used to parse the srs file and sets

the necessary fields accordingly. It will be called within the constructor of Project, so it is

private.

ProjectManager Class:

private static int parsePath(String path): This method will parse the path by path’s

extension and returns its type. If it has a “dted” or “dem” extension it will return 1, “shp”

 48

extension it will return 2, “geotiff” extension it will return 3. This method will be called from

addPath(path) or removePath(path) methods in the ProjectManager class, so it is private.

public static void addPath(String path) : This method will add the given path to the

current project. It will first invoke parsePath(path) method, if the returned value is 1, the

path will be added to elevationMapPaths list, if it is 2 it will be added to shapeFilePaths list, if

it is 3 it will be added to satelliteImagePaths list. This process is necessary since geotools has

different procedures to read different map formats.

private static void removePath(String path): This method will remove the specified path

from the current project. It will first invoke parsePath(path) method, if the returned value is

1, the path will be removed from elevationMapPaths list, if it is 2 it will be removed from

shapeFilePaths list, if it is 3 it will be removed from satelliteImagePaths list.

public static void removePaths(Vector<String> paths): This method will remove all given

paths from the project by calling removePath method for each element. This method is

public since more than one path can be removed from the project at the same time.

 6.2.7. strider.gui.helpers.weather package

WeatherManager Class:

private static void HTMLParser(): This method will parse the website for weather and

retrieve necessary information from it.

public static Weather getWeatherFromNet() : This method will first parse the html for

weather and creates a weather object with taken information and returns that object.

 6.2.8. strider.gui.helpers.visualization package

Visualization Class:

public static Style createPolygonStyle(): This method will create polygon style and adds

that style to styleFactory (public static attribute of Visualization class).

public static Style createPointStyle(): This method will create point style and adds that

style to styleFactory.

 49

 public static Style createLineStyle(): This method will create line style and adds that style

to styleFactory.

 public static File toSLDFile(File file): This method will convert the file to geoTool’s styled

layer descriptor format and returns it.

 public static Style createFromSLD(File sld): This method will call geoTools’

SLDParser.readXML() method to parse the file. That method returns Style[], and

createFromSLD method returns the first element of that array.

 public static Style createStyle(File file, FeatureType schema): This method will first call

toSLDFile(file) and creates a Style from the returned SLD file using createFromSLD(sld)

method and returns that style.

 public static void saveImageAsJPEG(JMapPane mapPane): This method takes a mapPane

(one of the GeoTool types) and save that pane as “jpeg” format.

 public static void addMap(URL url): This method will add the map information taken from

url to the mapContext (static attribute of Visualization class) using geoTools’ addLayer

method.

 6.2.9. strider.gui.helpers.simulation package

Simulation Class:

public void play(File file): This method will get the qt file of the simulation of planned

route and play on the graphical user interface.

public void save(File file, URL path): This method will called when user clicks the save

button on the graphical user interface and it saves the simulation video as a qt file to the

specified destination.

SimulationHelper Class:

 50

 public File makeQTFile(vector<GridCoverage> grids) : This method gets terrain data as

GridCoverage which is a feature of Geotools . It collects the grids and converts to image

format, than uses the Java QuickTime libraries to make a qt file.

 6.2.10. strider.gui.windows package

MainWindow Class:

private void ShowMaps(): This method will get the mapContext (public static attribute of

Visualization class). Using mapContext, mapPane(static attribute of MainWindow class) will

be initialized and the map will be rendered in the visualization panel of the main window.

 private void showMouseEvents(): This method will retrieve the existing start, end,

checkpoints, avalanche and falling rocks points from the current project (currentProject is

the public static attribute of MainWindow. It is instantiated in the constructor of

MainWindow), and shows different points with different icons on the map.

private void createPopup(GeneralDirectPosition g): This method will creates a popup

menu containing startCoordinate, endCoordinate, checkpoint, avalanche, falling rock as

menu items at position p. Using geoTools’ getMapCoordinate(g) method, the screen

coordinates are transformed into real coordinates. Then that coordinate will be added to the

project as the chosen items position. And to reflect the change on visualization

showMouseEvents() method is called.

 private void fillTable(): This method is called within the constructor. It fills the chosen

member table. Chosen members are not related to database. This method first retrieves the

chosen members from current Project then constructs a table with member id, name and

surname columns and fills the table accordingly.

private void deleteRow(int row): This method is called within the removeChosenButton’s

actionPerformed method. It basically deletes the row from the chosen list table. Changes are

immediately seen on main window.

public MainWindow(String path): This is the constructor method. It takes a project path

as parameter. Within constructor, a database connection is established, currentProject is

 51

initialized with path. Necessary DataStores are created for the specified project and

fillTable() is called.

private void getActivityButtonActionPerformed(ActionEvent evt) : This is the method

called when “Get Activitiy” button is pressed. In this method, the necessary error checks will

be done, if any field is not specified by user, the default values will be used for preparing the

plan and a confirmation message will shown to the user. If everything is okay, Planner’s

makePlan method will be called. makePlan will return the activity plan and,

GetActivityPlanWindow is created and returned plan is set in that window.

 private void rotateLeftButtonActionPerformed(ActionEvent evt) : This method is called

when “Rotate Left” button is pressed. It will set the state of mapPane to

mapPane.RotateLeft.

 private void rotateRightButtonActionPerformed(ActionEvent evt) : This method is called

when “Rotate Right” button is pressed. It will set the state of mapPane to

mapPane.RotateRight.

 private void zoomInButtonActionPerformed(ActionEvent evt) : This method is called when

“Zoom In” button is pressed. It will set the state of mapPane to mapPane.ZoomIn.

 private void zoomOutButtonActionPerformed(ActionEvent evt) : This method is called

when “Zoom Out” button is pressed. It will set the state of mapPane to mapPane.ZoomOut.

 private void openProjectMenuItemActionPerformed(ActionEvent evt) : This method is

called when “Open Project” menu item is pressed. Within this method, first whether to save

the existing project will be asked to the user, after behaving accordingly, a browser will be

opened with “srs” files filtered. If a project is selected to open, this method will call

MainWindow constructor with the newly specified path.

 private void newProjectMenuItemActionPerformed(ActionEvent evt) : This method is

called when “New Project” menu item is pressed. Within this method, first whether to save

the existing project will be asked to the user, after behaving accordingly, MainWindow

constructor will be called with “default.srs”.

 52

 private void saveProject(Project project, String path): This method saves the project in

specified path.

 private void saveProjectMenuItemActionPerformed(ActionEvent evt): This method is

called when “Save Project” menu item is pressed. Within this method a browser will be

opened and saveProject method will be called with the currentProject and selected path.

 private void removeChosenButtonActionPerformed(ActionEvent evt) : This method is called

when “Remove” button is pressed. After confirmation, the method removes the selected

chosen member from the current project by calling project’s removeChose(member)

method. To reflect those changes on the window, the method calls deleteRow method also.

 private void updateButtonActionPerformed(ActionEvent evt) : This method is called when

“Update” button is pressed. After doing the necessary error checks UpdateMemberWindow

will be created and shown to the user.

 private void memberOpActionPerformed(ActionEvent evt): This method is called when

“User Operations” button is pressed. The UserOperationsWindow will be created and shown

to the user within this method.

 private void choseButtonActionPerformed(ActionEvent evt): This method is called when

“Choose New” button is pressed. The UnchosenMembersWindow will be created within this

method.

 private void setWeatherButtonActionPerformed(ActionEvent evt): This method is called

when user presses “Set Weather Info” button. Within this method, if “Set Manually” option

was chosen then UpdateWeatherWindow will be created and shown. If “Get from Internet”

option was chosen then first internet connection is checked, then the availability of the

information is checked. If everything is okay, the weather information is taken from the

internet using WeatherManager class’ methods. If there is any problem, the old information

will be used for the weather and warning will shown to the user. Finally, project’s weather

information will be set accordingly.

 53

 private void exitButtonActionPerformed(ActionEvent evt): This method is called when

“Exit” button is pressed. After asking for saving and takingthe necessary action the software

will be closed.

 private void exitMenuItemActionPerformed(ActionEvent evt): This method is called when

“Exit” menu item is pressed. The method will be same as the previous one.

 private void addMapMenuItemActionPerformed(ActionEvent evt): This method is called

when “Add Map” menu item is pressed. Within this method a browser will be opened with

filtered map formats (MapFilter class will be used here). Selecting a map and pressing “Ok”

will add the specified path to one of the currentProject paths. ProjectManager’s addPath

method will be used here. Gis’ createDataStore method will be called to create a datastore

for newly added map and showMaps() method will be invoked to update the visualization.

 private void removeMapMenuItemActionPerformed(ActionEvent evt): This method is

called when “Remove Map (s)” method is pressed. Within this method, RemoveMapWindow

will be created and shown to the user.

 private void helpTopicsMenuItemActionPerformed(ActionEvent evt): This method is called

when “Help Topics” menu item is pressed. It will open the UserManual file for the gui.

 private void aboutMenuItemActionPerformed(ActionEvent evt) : This method is called

when “About Strider” menu item is pressed. Within this method, AboutWindow will be

created and shown to the user.

 private void seeWeatherMenuItemActionPerformed(ActionEvent evt) : This method is

called when “See Weather” Menu item is pressed. Within this method,

WheatherInfoWindow will be created and shown to the user.

 private void equipOpMenuItemActionPerformed(ActionEvent evt): This method is called

when “Equipment Operations” menu item is pressed. Within this method,

EquipOperationsWindow is created and shown to the user.

 54

 private void saveImageButtonActionPerformed(ActionEvent evt): This method is called

when “Save Image” button is pressed. saveImageAsJPEG method will be called.

 private void mouseClickedActionPerformed.MouseEvent evt): This method is called when

mouse is clicked. Within this method, if left button was clicked then createPopup method

will be called and a popup menu will be created. If right button was clicked then if the

pressed location contains any defined coordinate, that coordinate will be removed from the

project.

 private void mouseMoveActionPerformed(MouseEvent evt) : This method is called as the

mouse moves. Within this method the longitude, latitude and elevation of the coordinate on

the terrain is set.

AddNewEquipWindow Class:

private void okButtonActionPerformed(ActionEvent evt): This method is called when “Ok”

button is pressed in “New Equipment” window. Within this method, first necessary checks

will be done, if everything is okay, then newly defined equipment is added to the database

using EquipManager’s addNewEquipment method. Then this window is closed, returning to

the “Equipment Operations” window. The newly added equipment should be seen in that

window.

 private void cancelButtonActionPerformed(ActionEvent evt): If cancel button is pressed in

“New Equipment” window, then the window will be closed returning to the “Equipments

Operations” window.

AddNewMemberWindow Class:

private void okButtonActionPerformed(ActionEvent evt): This method is called when “Ok”

button is pressed in “New Member” window. Within this method, first necessary checks will

be done, if everything is okay, then newly defined member is added to the database using

MemberManager’s addNewMember method. Then this window is closed, returning to the

“User Operations” window. The newly added member should be seen in that window.

 55

 private void cancelButtonActionPerformed(ActionEvent evt): If cancel button is pressed in

“New Member” window, then the window will be closed returning to the “User Operations”

window.

 EquipOperationsWindow Class:

 private void fillTable(): This method is called within the constructor. It fills the equipments

table. This method first retrieves the equipments from database using EquipmentManager’s

getAllEquipments method, then constructs and fills the table.

 private void deleteRow(int row): This method is called within the removeEquipButton’s

actionPerformed method. It basically removes the row from equipments list table.

 private void updateButtonActionPerformed(ActionEvent evt): This method is called when

“update” button is pressed. Within this method UpdateEquipWindow is created and shown

to the user.

 private void addEquipButtonActionPerformed(ActionEvent evt): This method is called when

“Add New Equipment” is pressed. Within this method AddNewEquipWindow is created and

shown to the user.

 private void removeEquipButtonActionPerformed(ActionEvent evt): This method is called

when “Remove” button is pressed. Within this method after confirmation, the selected

equipment will be removed using EquipManager’s removeEquipment method and

deleteRow methods.

 private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed in “Equipment Operations” window. It will just close the window,

returning to the main window.

 UserOperationsWindow Class:

 private void fillTable(): This method is called within the constructor. It fills the members

table. This method first retrieves the members from database using MemberManager’s

getAllMembers method, then constructs and fills the table.

 56

 private void deleteRow(int row): This method is called within removeMemberButton’s

actionPerformed method. It basically removes the row from members list table.

 private void updateButtonActionPerformed(ActionEvent evt): This method is called when

“update” button is pressed. Within this method UpdateMemberWindow is created and

shown to the user.

 private void addMemberButtonActionPerformed(ActionEvent evt): This method is called

when “Add New Member” is pressed. Within this method AddNewMemberWindow is

created and shown to the user.

 private void removeMemberButtonActionPerformed(ActionEvent evt): This method is

called when “Remove” button is pressed. Within this method after confirmation, the

selected equipment will be removed using MemberManager’s removeMember method and

deleteRow methods.

 private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed in “User Operations” window. It will just close the window,

returning to the main window.

 GetActivityWindow Class:

 private void playButtonActionPerformed(ActionEvent evt): This method is called when

“Play” button is pressed in the “Get Activity Plan” window. Within this method, Simulation’s

play method will be called.

 private void saveSimButtonActionPerformed(ActionEvent evt): This method is called when

“Save” button is pressed in the “Get Activity Plan” window. Within this method, Simulation’s

save method will be called.

 private void saveReportButtonActionPerformed(ActionEvent evt): This method is called

when “Save Report” button is pressed. Within the method, the activity plan report will be

saved in a defined location.

 57

 private void closeButtonActionPerformed(ActionEvent evt): This method is called when

“Close” button is pressed. It closes the project.

6.36.36.36.3. . . . Design of Expedition PlanDesign of Expedition PlanDesign of Expedition PlanDesign of Expedition Plan

6.3.1. Considerations on maps

 The maps which are given from user are considered with respect to some rules. Here is

some information on how maps are commented with respect to data which are got from

map formats.

Basic topographic features on map.

 58

 59

Key of map;

a. Basin: moderate slope, camp spots
b. Snow or ice line: dashed line ends on cliffs, rock
c. Buttress: change in features of wall may provide approach to ridge
d. Twin summits
e. Gendarmes, aiguilles, or pinnacles
f. Gully or couloir
g. Saddl, pass, or col
h. Rock face
i. Summit: highest point on map
j. Ridge or arete
k. East slope: note shadows and ice accumulation
l. Moat
m. Crevasses: indicated by irregular contours, not smooth as near buttress, c, above
n. Bergschrund: not seen on map but possibility inferred when rock and snow are steep
o. Photo taken from above this spot, looking in direction of arrow

6.3.2. Considerations on route planning

Meanings of Levels for climbing;

Level 1; Hiking.

Level 2; Scrambling, with possible occasional use of the hands. A rope might be carried.

Level 3; Climbing, often with exposure. A rope is often used. Typically, natural protection can
be easily found.

Level 4; Where rock climbing begins in earnest. A fall on Level-4 climbing could be fatal.
Climbing involves the use of a rope, belaying, and protection (natural or artificial) to protect
the leaderfrom a long fall.

Level 5; The realm of true experts; demands much training and natural ability and, often,
repeated working of a route.

Risk Factor of a climbing

Risk = emphasis X probability X time X weather conditions (r)

 60

Emphasis; indicates the level of emphasis when an accident occurs. Emphasis is computed by
direct proportion with level of climbing.

Probability; indicates the level of probability of accident. As the level of climbing is higher,
the probability of accident will increase. So, probability is computed by direct proportion
with level of climbing.

Time; indicates “the distance of climbing stage” / “the minimum speed of group (means the
speed of slowest person in the group)”.

Weather conditions; indicates “high temperature” + “low temperature” + “snow” + “wind
speed”

The risk count of temperature is;

• If temperature is higher than 25 C or lower than 5 C , it is considered as a risk
factor.

• The risk count increases as the temperature increases. 1 C increase in
temperature from 25 C increments the risk count by one.

• The risk count increases as the temperature increases. 1 C decrease in
temperature from 5 C increments the risk count by one.

The risk count of wind speed is;

• If wind speed is higher than 40 km/h, it is considered as a risk factor.

• The risk count increases as the wind speed increases. 1 km/h decrease in wind
speed from 40 km/h increments the risk count by one.

Note: If there is rain, the climbing can’t be done.

The affect of risk factor on climbing of a stage.

The climbing of a stage can’t be done, when risk factor is higher than below numbers with
respect to level of group (means minimum level climber’s level in group)

• Level 2 ; 500 r

• Level 3; 1,500 r

• Level 4; 10,000 r

• Level 5; 50,000 r

Note: For level 1, there can’t be any climbing activity.

 61

6.3.3. Algorithmic design for route

Ant Colony Optimization [8]

We decided to take Ant Colony Optimization (ACO) as our starting point for our path-

finding algorithm. There are lots of deterministic path-finding graph algorithms, but nature

of our problem tends to NP-hardness because of the size of maps & images we have to

process, we have to do optimization. There are lots of optimization algorithms, we decided

to try ACO first since path-finding in a terrain is strongly connected to the “natural life” of

ants.

 Ant colony optimization (ACO) is a population-based meta-heuristic that can be used to

find approximate solutions to difficult optimization problems.

 In ACO, a set of software agents called artificial ants search for good solutions to a given

optimization problem. To apply ACO, the optimization problem is transformed into the

problem of finding the best path on a weighted graph. The artificial ants (hereafter ants)

incrementally build solutions by moving on the graph. The solution construction process is

stochastic and is biased by a pheromone model, that is, a set of parameters associated with

graph components (either nodes or edges) whose values are modified at runtime by the ants.

Overview

In the real world, ants (initially) wander randomly, and upon finding food return to their

colony while laying down pheromone trails. If other ants find such a path, they are likely not

to keep travelling at random, but to instead follow the trail, returning and reinforcing it if

they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive

strength. The more time it takes for an ant to travel down the path and back again, the more

time the pheromones have to evaporate. A short path, by comparison, gets marched over

faster, and thus the pheromone density remains high as it is laid on the path as fast as it can

evaporate. Pheromone evaporation has also the advantage of avoiding the convergence to a

locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants

would tend to be excessively attractive to the following ones. In that case, the exploration of

 62

the solution space would be constrained.

Thus, when one ant finds a good (i.e., short) path from the colony to a food source,

other ants are more likely to follow that path, and positive feedback eventually leads all the

ants following a single path. The idea of the ant colony algorithm is to mimic this behavior

with "simulated ants" walking around the graph representing the problem to solve.

The original idea comes from observing the exploitation of food resources among ants,

in which ants’ individually limited cognitive abilities have collectively been able to find the

shortest path between a food source and the nest.

1. The first ant finds the food source (F), via any way (a), then returns to the nest (N),

leaving behind a trail pheromone (b)

2. Ants indiscriminately follow four possible ways, but the strengthening of the runway

makes it more attractive the shortest route.

3. Ants take the shortest route, long portions of other ways lose their trail pheromones.

In a series of experiments on a colony of ants with a choice between two unequal length

paths leading to a source of food, biologists have observed that ants tended to use the

shortest route. A model explaining this behavior is as follows:

1. An ant (called "blitz") runs more or less at random around the colony;

 63

2. If it discovers a food source, it returns more or less directly to the nest, leaving in its

path a trail of pheromone;

3. These pheromones are attractive, nearby ants will be inclined to follow, more or less

directly, the track;

4. Returning to the colony, these ants will strengthen the route;

5. If two routes are possible to reach the same food source, the shorter one will be, in

the same time, traveled by more ants than the long route will strengthen the route;

6. The short route will be increasingly enhanced, and therefore become more attractive;

7. The long route will eventually disappear, pheromones are volatile;

8. Eventually, all the ants have determined and therefore "chosen" the shortest route.

Ants use the environment as a medium of communication. They exchange information

indirectly by depositing pheromones, all detailing the status of their "work". The information

exchanged has a local scope, only an ant located where the pheromones were left has a

notion of them. This system is called "Stigmergy" and occurs in many social animal societies

(it has been studied in the case of the construction of pillars in the nests of termites). The

mechanism to solve a problem too complex to be addressed by single ants is a good example

of a self-organized system. This system is based on positive feedback (the deposit of

pheromone attracts other ants that will strengthen it themselves) and negative (dissipation

of the route by evaporation prevents the system from thrashing). Theoretically, if the

quantity of pheromone remained the same over time on all edges, no route would be

chosen. However, because of feedback, a slight variation on an edge will be amplified and

thus allow the choice of an edge. The algorithm will move from an unstable state in which no

edge is stronger than another, to a stable state where the route is composed of the

strongest edges.

Formal Definition of a Combinatorial Optimization Problem [9]

The first step for the application of ACO to a combinatorial optimization problem (COP)

consists in defining a model of the COP as a triplet , where:

• is a search space defined over a finite set of discrete decision variables;

 64

• is a set of constraints among the variables; and

• is an objective function to be minimized (as maximizing over is the

same as minimizing over , every COP can be described as a minimization problem).

The search space is defined as follows. A set of discrete variables , , with

values , is given. Elements of are full assignments, that is,

assignments in which each variable has a value assigned from its domain . The

set of feasible solutions is given by the elements of that satisfy all the constraints in

the set .

A solution is called a global optimum if and only if: . The

set of all globally optimal solutions is denoted by . Solving a COP requires finding

at least one .

The Ant Colony Optimization Metaheuristic [8]

In ACO, artificial ants build a solution to a combinatorial optimization problem by

traversing a fully connected construction graph, defined as follows. First, each instantiated

decision variable is called a solution component and denoted by . The set of all

possible solution components is denoted by .Then the construction graph GC (V, E) is

defined by associating the components C either with the set of vertices V or with the set of

edges E.

A pheromone trail value is associated with each component . (Note that

pheromone values are in general a function of the algorithm's iteration .)

Pheromone values allow the probability distribution of different components of the solution

 65

to be modeled. Pheromone values are used and updated by the ACO algorithm during the

search.

The ants move from vertex to vertex along the edges of the construction graph

exploiting information provided by the pheromone values and in this way incrementally

building a solution. Additionally, the ants deposit a certain amount of pheromone on the

components, that is, either on the vertices or on the edges that they traverse. The amount

 of pheromone deposited may depend on the quality of the solution found. Subsequent

ants utilize the pheromone information as a guide towards more promising regions of the

search space.

The ACO meta-heuristic is:

Set parameters, initialize pheromone trails

SCHEDULE_ACTIVITIES

 ConstructAntSolutions

 DaemonActions {optional}

 UpdatePheromones

END_SCHEDULE_ACTIVITIES

The meta-heuristic consists of an initialization step and of three algorithmic components

whose activation is regulated by the Schedule_Activities construct. This construct is repeated

until a termination criterion is met. Typical criteria are a maximum number of iterations or a

maximum CPU time.

The Schedule_Activities construct does not specify how the three algorithmic components

are scheduled and synchronized. In most applications of ACO to NP-hard problems however,

the three algorithmic components undergo a loop that consists in (i) the construction of

solutions by all ants, (ii) the (optional) improvement of these solution via the use of a local

search algorithm, and (iii) the update of the pheromones. These three components are now

explained in more details.

 66

ConstructAntSolutions

A set of artificial ants construct solutions from elements of a finite set of available

solution components , , . A solution construction starts

with an empty partial solution . Then, at each construction step, the current partial

solution is extended by adding a feasible solution component from the set of feasible

neighbors . The process of constructing solutions can be regarded as a path on

the construction graph GC (V, E). The allowed paths in GC are implicitly defined by the

solution construction mechanism that defines the set with respect to a partial

solution .

The choice of a solution component from is done probabilistically at each

construction step. The exact rules for the probabilistic choice of solution components vary

across different ACO variants. The best known rule is the one of ant system (AS)

where and are respectively the pheromone value and the heuristic value

associated with the component . Furthermore, and are positive real

parameters whose values determine the relative importance of pheromone versus heuristic

information.

Daemon Actions

Once solutions have been constructed, and before updating the pheromone values, often

some problem specific actions may be required. These are often called daemon actions, and

can be used to implement problem specific and/or centralized actions, which cannot be

 67

performed by single ants. The most used daemon action consists in the application of local

search to the constructed solutions: the locally optimized solutions are then used to decide

which pheromone values to update.

Update Pheromones

The aim of the pheromone update is to increase the pheromone values associated with good

solutions, and to decrease those that are associated with bad ones. Usually, this is achieved

(i) by decreasing all the pheromone values through pheromone evaporation, and (ii) by

increasing the pheromone levels associated with a chosen set of good solutions :

Where is the set of solutions that are used for the update, is a parameter

called evaporation rate, and is a function such that

.

 is commonly called the fitness function.

Pheromone evaporation implements a useful form of forgetting, favoring the exploration of

new areas in the search space. Different ACO algorithms, for example ant colony system

(ACS) or MAX-MIN ant system (MMAS), differ in the way they update the pheromone.

Instantiations of the update rule given above are obtained by different specification of ,

which in many cases is a subset of , where is the set of solutions that

were constructed in the current iteration, and is the best-so-far solution, that is, the best

solution found since the first algorithm iteration. A well-known example is the AS-update

rule, that is, the update rule of ant system:

 68

An example of a pheromone update rule that is more often used in practice is the IB-update

rule (where IB stands for iteration-best):

The IB-update rule introduces a much stronger bias towards the good solutions found than

the AS-update rule. Although this increases the speed with which good solutions are found, it

also increases the probability of premature convergence. An even stronger bias is introduced

by the BS-update rule, where BS refers to the use of the best-so-far solution . In this

case, is set to . In practice, ACO algorithms that use variations of the IB-update or

the BS-update rules and that additionally include mechanisms to avoid premature

convergence, achieve better results than those that use the AS-update rule.

Pseudo codes

Finding the Route

Here's the overall idea of application of ACO to our problem: We divide our map into

squares (number of squares are calculated according to the map's size & scale) , this squares

represent the “general” properties of their nearby land. Since we cannot make nodes from

points (which are infinitely many) , we decided to make a weighted graph from the map

where the midpoints of the squares are the nodes , edges represent two half squares

between two nodes and the weights are determined according to the user input (i.e.

priorities) . If the user states reference points, then we also take these points into account.

We also calculate the number of ants to be released considering the map's size & scale

based upon the ACO's performance statistics.

Here's the pseudocode for finding the route between two nodes:

FindRoute(Graph,start , end , Nturns , MAX_TURNS , ants)

1. Initialize

 69

2. turn = 0, turnsRemaining = Nturns + 1

3. Loop

4. Release a new set of ants from the starting point

5 Loop

6 turn = turn + 1

7 turnsRemaining = turnsRemaining -1

8 For each ant ‘a’ in the current set

9 If ant ‘a’ does not reach to target point

10 Move to the next grid point using random propositional rule

11 Else

12 Ant ‘a’ stops exploring

13 Until (turnsRemaining = 0)

14 Apply the global pheromone update rule using ants that reached to the target point

15 Update optimal path best so far

16 Remove the current set of ants from the civilization.

17. turnsRemaining = Nturns + 1

18. Until (turn <= MAX_TURNS)

 Ants perform a complete tour (in our case tour is defined as travelling from start

point to the target point) by choosing the nodes according to a probabilistic state transition

rule (random-proportional rule) which selects neighboring nodes that are closest to the

target node and have a high amount pheromone. Once all ants have completed certain

number of turns (Nturns) a global pheromone updating rule (global updating rule, for short)

 70

is applied; a fraction of the pheromone evaporates on all edges (edges that are not

refreshed become less desirable); each ant who were able to finish a complete tour, deposits

an amount of pheromone on edges which belong to its tour in proportion to how short its

tour was (in other words, edges which belong to many short tours are the edges which

receive the greater amount of pheromone). After the global updating, current set of ants

removed from the civilization, and another set of ants starts from the start point to explore

the target point. The process is iterated until the number of turns reach to the maximum

number of turns (MAX_TURNS).

Note that, we set the parameter Nturns such that, most of the ants in the initial set

were able to reach the target point.

Here's our random-proportional rule (probabilistic state transition rule) : (gives the

probability with which ant k in node (r) chooses to the node (s))

where τ is the pheromone, η = 1/δ is the inverse of the distance (δ) from the point s to

the target point, Jk(r) is the set of neighbor points of r that remain to be visited by ant k

positioned on the point r (to make the solution feasible), and β is a parameter which

determines the relative importance of pheromones versus distance (β > 0).

In ant system, the global updating rule is implemented as follows: Ants that were

able to complete their tour within the number of allocated turns (Nturns) allow to update

pheromone levels of their visited edges according to

 τ (r , s) ← (1 − ρ).τ (r , s) + ∑ ∆τ k (r , s)

where

 71

0 < ρ < 1 is a pheromone decay parameter, Lk is the length of the tour performed by ant k,

and m is the number of ants that were able to complete tour within the stipulated turns

Nturns.

Since we may have reference points, we calculate the shortest paths between adjacent

reference points and then we put together this “small” route to make our route. Here we

take start & end point as reference points as well.

FindRoute (MapGraph, referencePoints):

1. smallRoute = null , route = null , points = # of reference points , referencePoint = start

2. Loop

3. smallRoute = findRoute(MapGraph, referencePoint , next (referencePoint) , Nturns ,

NMAX)

4. route += smallRoute

5. points -= 1;

6. referencePoint = next(referencePoint in referencePoints)

7. end if points == 1

Now we have to construct a weighted graph from the map, namely we have to form

vertices and assign weights to the edges; we first divide our map into squares. We decided

to make 1 km x 1 km = 1 kilometer squares to be represented by one square. Then we scale

this value with map's scale & size to calculate how many squares there will be. The middle

points of the squares will be nodes and the area, namely adjacent two half squares between

two nodes will be the edges. Also we take user's reference points into account; while

 72

dividing the map, the user reference points must represent a node. Now we use weather,

terrain, climbing team's performance and other issues to assign priorities, then combine

these priorities and risk factors with the “edge area” to assign weights to the edges. Here is

how we form a weighted graph from a map:

1. dividedMap = DivideMapIntoSquares(graph , referencePoints, mapScale, mapSize)

2. unweightedGraph = makeEdges(dividedMap)

3. weightedGraph = assignWeightsToEdges(unweightedGraph , priorities , risks)

4. return weightedGraph

6.3.4. Design of camping plan

The camping planning is up to the conditions such as duration of the activity, weather &

terrain conditions. We plan the camping points after making the route and estimating the

duration of the climbing & walking without camping. Here's the algorithm assuming we have

the route and the expected duration:

1. numberOfCampPoints = expectedDuration ; dayLight = terrain's duration of daylight

2. if numberOfCampPoints < 1 ; return

referencePt = startPt; newCampLoc = null , campLocs = null , campDuration = 0

 4. Loop

 5. numberOfCampPoints -= 1

 6. referencePt = newCampLoc

 7. newCampLoc = referencePt + the distance travelled in (numberOfCampPoints * 24 +

dayLight) hours

 8. campDuration = (24 - daylight) + (if it rains , snows or “hard” windy : 24)

 9. Add (newCampLoc , campDuration) to campLocs return if numberOfCampPoints == 0

Camp planning rules:

 73

• Camping is planned with respect to duration of expedition.

• Camping duration is planned with respect to user constraints, day or night durations

of season, weather conditions and terrain conditions.

• Camping places should be land or rock.

• Camping places shouldn’t be meadowy places. If it is mandatory, there isn’t be stayed

more than one or two nights. [10]

6.3.5. Design of food&water planning [11]

Water is considered as an important parameter. It’s amount is recommended for only

first a few days of expedition, because of difficulty of carrying. For other days, climbers

should find their waters in nature.

Food should be carbonhydrate based because of easy cooking and getting enery with

using less oxygen. There is less oxygen at higher places. Food should also be solid food

because of easy carrying.

Here we use the general conventions:

Amount of Food needed: 1.5 kg s of carbohydrate per day x # of days per person

Amount of Water needed:

if the temperature > 35 centigrade, 5 liters x 2 days per person

 else 2.5 liters x 2 days per person

6.3.6. Design of time planning

• The walking speed of group is considered as the climber who has the slowest walking

in the group.

• The climbing speed of group is considered as the climber who has the slowest

climbing in the group.

• At the end, time is calculated as “total distance” / “speed of group”.

 74

• At rainy days, the walking speed of climbers decreases in proportion of 20%.

• At nights, the walking speed of climbers decreases to half of it.

• At the undulating lands, the walking speed of climbers decreases to approximately

half of it. [11]

Typical speeds for an average party;

• On a gentle trail, with a day pack: 3 to 5 km per hour.

• Up a steep trail, with a full overnight pack: 2 or 3 km per hour.

• Traveling cross-country up a moderate slope, with a day pack: 300 meters of

elevation gain per hour.

• Traveling cross-country up a moderate slope, with a full overnight pack: 150 meters

of elevation gain per hour. [10]

Typical estimated duration of a trip; [10]

Trip Segment Estimated Time

Hike up the trail 2 hours

Cross-country approach 1 hour

The climb itself 4 hours

Time on the summit 1 hour

Descent time 2 hours

Return to the trail 1 hour

Hike out 1.5 hours

Total time estimated 12.5 hours

Contingencies 2 hours

Total time allowance 14.5 hours

 75

6.3.7. Design of equipment planning

Equipment is considered with respect to season, climbing conditions of climbers, camping,

duration of expedition, terrain conditions and number of climbers in the group.

Sample Expedition Equipment List [10]

Group Gear

Ø Expedition-quality tent(s)

Ø Ground cloths

Ø Snow stakes and/or tent flukes

Ø Sponge and whisk broom

Ø Snow shelter construction tools: large snow shovel (for moving a lot of snow), small

snow shovel (for delicate trimming), snow saw (for cutting blocks)

Ø Ropes

Ø Hardware: snow and ice gear (pickets, flukes, ice screws), rock gear (pitons, spring-

loaded camping devices, chocks), carabiners, runners, daisy chains, fixed line, extra

climbing equipment (spare ice ax or tool, spare crampons, spare rescue pulleys)

Ø Stove gear: stove, windscreen and stove platform, fuel containers and fuel filter,

matches and/or butane lighters, firestarter

Ø Cooking gear: pots, pot cozy, pot gripper, sponge/scrubber, dip cup, cooking spoon,

snow sack (for collecting clean snow to melt for water)

Ø Food

Ø Water treatment: filter, chemicals

Ø Tent repair kit: pole splices, spare pole

Ø Stove repair kit

Ø Crampon repair kit: extra screws, connecting bars, straps

Ø Tape (duct, filament, fabric repair)

Ø Adhesive-backed repair cloth

Ø Seam repair compound

 76

Ø Tools: slotted and Phillips screwdrivers; Allen wrenches; small pliers; small wire

cutter/shears: file

Ø Sewing kit: assorted needles and thread; awl; assorted buttons, snaps, buckles, and

D-rings; Velcro (hook and pile), fabric (Cordura, ripstop nylon), flat webbing

Ø Other: wire, accessory cord, pack buckle, extra ski-pole basket, patch kit for inflatable

foam pads

Ø Firs Aid Kit*

ü In addition to normal first aid items, the kit should include the following

drugs, plus others recommended by a physician.

Ø Prescription drugs vary with the destination, but should include: antibiotics, strong

analgesics, anti-diarrhetics, laxatives, and altitude medications (acetazolamide,

dexamethasone).

Ø Nonprescription drugs vary with the destination, but should include: cough

suppressants, decongestants, mild analgesics (aspirin, ibuprofen).

Ø Wands

Ø Altimeter, map, compass

Ø Radio transceiver and extra batteries

Ø Mobile phone

Ø Latrine equipment

Personal Gear

Ø Synthetic-fabric underwear

Ø Insulating layers

Ø Down clothing

Ø Wind-protection and rain-protection garments (top and bottom)

Ø Extremities: hands (liner gloves, insulating gloves, mittens), feet (liner socks,

insulating socks, vapor-barrier socks), head (balaclava, sun hat, face mask, wool hat)

Ø Other: bandannas, sun shirt, synthetic fill/down booties

Ø Sleeping bag

Ø Bivouac sack

 77

Ø Vapor-barrier liner

Ø Inflatable foam pad or closed-cell foam pad

Ø Ice ax

Ø Second ice tool

Ø Seat harness

Ø Crampons

Ø Personal carabiners and slings

Ø Chock pick

Ø Belay device

Ø Rescue pulley

Ø Ascenders/prosiks

Ø Helmet

Ø Large-volume pack

Ø Pack cover

Ø Snowshoes

Ø Sled with associated hardware for pulling

Ø Duffel bag

Ø Avalanche transceiver

Ø Sunglasses and goggles

Ø Spare prescription glasses

Ø Pocketknife

Ø Headlamp

Ø Wide-mouth water bottles

Ø Personal hygiene: toilet paper, pee bottle, toothbrush, comb, chemical wash/wipes,

sunscreen, lib balm, foot powder, earplugs

Ø Personal recreation: camera and film, books, journal, pen or pencil, personal stereo,

playing cards

*It is in the table of basic personal first aid kit. [10]

Basic Personal First Aid Kit

 78

Item Use
Adhesive bandages To cover small minor wounds
Butterfly bandages or Steristrips To close minor lacerations
Sterile gauze pads To cover larger wounds
Carlisle dressing or sanitary napkin To absorb and control severe bleeding
Nonadherent dressings To cover abrasions and burns
Self-adhering roller bandages To hold dressings in place
SAM splint To splint
Athletic tape Multiple uses
Triangular bandages To use as a sling or cravat (for splinting)
Moleskin or Molefoam To cushion blister areas
Tincture of benzoin To adi in adherence of adhesive tape; to protect

skin
Providine iodine swabs Antiseptic for surface wounds
Alcohol or soap pads To cleanse skin
Thermometer To measure body temperature
Sugar packets To treat diabetes; for hypoglycemia intervention
Aspirin To treat headache, pain; if the group includes

children, bring acetaminophen tablets instead
aspirin.

Anaphylaxis (epinephrine) kit (EpiPen) To treat severe allergic reaction. Climbers should
carry if known to have severe allergy.

Elastic bandage To wrap sprains; for compression of injured area
Latex gloves To serve as an infection barrier
Safety pins Multiple uses
Tweezers To remove splinters, ticks, wound debris
Plastic bag To hold contaminated materials
Breathing barrier To administer CPR, rescue breathing

6.3.8. Design of carriage planning

The average carriage weight per person should be 18-20 kg. The maximum carriage

weight for a person is 40-45 kg. However, the weight for a person shouldn’t be higher than

25 kg. [11]

 79

6.6.6.6.4444. . . . Functional ModelingFunctional ModelingFunctional ModelingFunctional Modeling

6.4.1. Data Flow Diagrams

• Context Level Data Flow Diagram

 Figure 6.27. Context Level DFD

 80

• Level 1 Data Flow Diagram

 Figure 6.28. Level 1 DFD

 81

• Level 2 Data Flow Diagram : Visualize

 Figure 6.29. Level 2 DFD: Visualize

 82

• Level 2 DataFlowDiagram : Manage Project

 Figure 6.30. Level 2 Data Flow Diagram: Manage Project

 83

• Level 2 Data Flow Diagram : Manage Member

Figure 6.31. Level 2 DFD: Manage Member

 84

6.4.2. Data Dictionary

Name: user commands and data
From: USER
To: Graphical User Interface
Description: Contains all commands and data taken from user

Name: member commands and data
From: Graphical User Interface
To: Member-User Interaction
Description: Contains all commands and data related to

member

Name: add command
From: Member-User Interaction
To: Add New Member
Description: The command for adding a new member to the

system

Name: new member info
From: Member-User Interaction
To: Add New Member
Description: Holds the information about the member that

will be added to the system

Name: remove command
From: Member-User Interaction
To: Remove Member
Description: The command for removing a member from the

system

Name: remove member id
From: Member-User Interaction
To: Remove Member
Description: The id of the member who will be removed from

the system permanently

Name: update command
From: Member-User Interaction
To: Update Member
Description: The command for updating an existing member

 85

in the system

Name: member info
From: Member-User Interaction
To: Update Member
Description: The member whose information will be updated

Name: remove from chosens command
From: Member-User Interaction
To: Remove Member from Chosen Members List
Description: The command for removing a member from the

list that contains the members who are going to
participate in the activity (chosen member list)

Name: member id
From: Member-User Interaction
To: Remove Member from Chosen Members List
Description: The member id of the person who will be

removed from the chosen members list (not
from the system)

Name: choose command
From: Member-User Interaction
To: Choose Member for Climbing
Description: The command for choosing a member to

participate in the activity

Name: chosen member
From: Choose Member for Climbing
To: Member-User Interaction
Description: Holds information about the recently chosen

member for climbing

Name: see members command
From: Member-User Interaction
To: See All Members
Description: The command for showing information about all

members registered in the system

Name: existing members info

 86

From: See All Members
To: Member-User Interaction
Description: Holds information about all members registered

in the system

Name: members info
From: Member-User Interaction
To: Graphical User Interface
Description: Holds information about all members to show

them to the user

Name: chosen members
From: Member-User Interaction
To: Graphical User Interface, Prepare Plan
Description: Holds the information about the members

chosen for climbing to show those members to
the user and to help preparing activity plan

Name: chosen member list
From: Graphical User Interface
To: USER
Description: Holds the members chosen for the climbing to

show those members to the user

Name: all members info
From: Graphical User Interface
To: USER
Description: Holds the information of all members existing in

the system to show those members information
to the user

Name: map paths
From: Graphical User Interface
To: GIS
Description: Contains all given map locations given by the

user (it includes “dted”, “dem”, “geotiff” and
“shp” file paths)

Name: map data
From: GIS
To: Visualize, Prepare Plan

 87

Description: The map data gathered after reading the map
files by GIS.

Name: visualization commands
From: Graphical User Interface
To: Visualize-User Interaction
Description: commands to change the settings of visualization

Name: coordinates
From: Visualize-User Interaction
To: Graphical User Interface
Description: Holds the start and end coordinates, checkpoints

and the points that has avalanche or falling rock
risks to mark those point in the visualization of
the terrain

Name: current coordinate data
From: Visualize-User Interaction
To: Graphical User Interface
Description: As mouse moves on the terrain, the

corresponding coordinate is shown. Current
coordinate data holds longitude, latitude and
elevation of the corresponding coordinate

Name: current coordinate
From: Graphical User Interface
To: USER
Description: Current coordinate shown to the user

Name: zoom in command
From: Visualize-User Interaction
To: Zoom In
Description: The command for zooming in the terrain

Name: visualization data
From: Visualize-User Interaction
To: Graphical User Interface, Simulation
Description: Holds the necessary information to visualize the

terrain

 88

Name: data after zoom in
From: Zoom In
To: Visualize-User Interaction
Description: Holds the visualization data after zooming in the

terrain to show the effect of zooming in to the
user

Name: zoom out command
From: Visualize-User Interaction
To: Zoom Out
Description: The command for zooming out from the terrain

Name: data after zoom out
From: Zoom Out
To: Visualize-User Interaction
Description: Holds the visualization data after zooming out

from the terrain to show the terrain with
zoomed out to the user

Name: rotate left command
From: Visualize-User Interaction
To: Rotate Left
Description: The command for rotating left in the terrain

Name: data after rotate left
From: Rotate Left
To: Visualize-User Interaction
Description: Holds the visualization data after rotating left in

the terrain

Name: rotate right command
From: Visualize-User Interaction
To: Rotate Right
Description: The command for rotating right in the terrain

Name: data after rotate right
From: Rotate Right
To: Visualize-User Interaction
Description: Holds the visualization data after rotating right

in the terrain

 89

Name: save terrain command
From: Visualize-User Interaction
To: Save Terrain
Description: The command for saving the terrain in a user

defined location

Name: mouse move event
From: Visualize-User Interaction
To: Get Coordinate
Description: Action of mouse movement in the terrain to get

the corresponding coordinate

Name: coordinate
From: Get Coordinate
To: Visualize-User Interaction
Description: Contains the coordinate of the corresponding

point in the terrain

Name: mouse left click
From: Visualize-User Interaction
To: Set Coordinate
Description: If user clicks the left button of the mouse on the

terrain, the corresponding coordinate is set as
one of the followings : start, end, checkpoint,
avalanche risk, falling rock risk

Name: mouse right click
From: Visualize-User Interaction
To: Remove Coordinate
Description: If user clicks the right button of the mouse on

the terrain, if there exists a predefined
coordinate (start, end, etc.), that coordinate will
be removed.

Name: project commands and data
From: Graphical User Interface
To: Project-User Interaction
Description: Contains all commands and data related to

project

 90

Name: project data
From: Project-User Interaction
To: Graphical User Interface
Description: Holds the current project data that are

necessary when loading a project

Name: create project command
From: Project-User Interaction
To: Create New Project
Description: The command for creating a new project

Name: new project data
From: Create New Project
To: Project-User Interaction
Description: Holds the data of the newly created project

Name: save project command
From: Project-User Interaction
To: Save Project
Description: The command for saving the project

Name: current project data
From: Project-User Interaction
To: Save Project
Description: Holds the current project data to be saved

Name: open project command
From: Project-User Interaction
To: Open Existing Project
Description: The command for opening an existing project

Name: opened project data
From: Open Existing Project
To: Project-User Interaction
Description: Holds the data of the opened project

Name: project
From: Graphical User Interface
To: USER

 91

Description: The data to show the current settings of the
project to the user

Name: simulation data
From: Graphical User Interface
To: Simulate
Description: The data combined with route and terrain

Name: simulate commands
From: Graphical User Interface
To: Simulate
Description: Contains playing and saving simulation

commands

Name: country and city info
From: Graphical User Interface
To: Get Weather From Website
Description: Country and city of the mountain to get the

weather conditions from a website

Name: weather data
From: Get Weather From Website
To: Graphical User Interface, Prepare Plan
Description: Weather data taken from the website to show

the user and to use in preparing plan

Name: weather info
From: Graphical User Interface
To: USER
Description: Weather information shown to the user

Name: constraints
From: Graphical User Interface
To: Prepare Plan
Description: Holds all given constraints by user

Name: route
From: Prepare Plan
To: Simulate

 92

Description: The route of the climbing that is shown to the
user in simulation

Name: activity plan data
From: Prepare Plan
To: Graphical User Interface
Description: Generated activity plan data to show the user

and save the activity plan report

Name: activity plan
From: Graphical User Interface
To: USER
Description: The activity plan shown to the user including the

duration of the climbing, camping location and
times, food, equipment and emergency
equipment list

Name: visualization
From: Graphical User Interface
To: USER
Description: Visualization of the terrain shown to the user

Name: simulation
From: Graphical User Interface
To: USER
Description: Simulation of the climbing shown to the user

 6.5. 6.5. 6.5. 6.5. DataDataDataData DesignDesignDesignDesign

6.5.1. Database Design

Since the GIS tool that we are going to use (GeoTools) is capable of storing the map

information in its own data store, we don’t need to create any table for storing maps. So, the

data that we will store is not complex. We have two basic tables for storing member

information and equipment information.

 93

6.5.1.1. Tables

Member Table

Member Table holds the basic information about a member. As user adds, removes or

updates a member, his information is saved to database by using this table. In the next steps

of the project, new fields can be added to this table when needed.

Field Name Data Type

Id INTEGER

Name VARCHAR(15)

Surname VARCHAR(20)

ClimbingSpeed FLOAT

WalkingSpeed FLOAT

CarriageCapacity FLOAT

ExperienceLevel INTEGER

Table 6.32. Member Table

• Id is the unique id of the member.

• Name is the name of the member.

• Surname is the surname of the member.

• ClimbingSpeed is the climbing speed of the member in m/h.

• WalkingSpeed is the walking speed of the member in km/h.

• CarriageCapacity is the carriage capacity of the member in kg

• ExperienceLevel is the experience level of the member.

 94

Equipment Table

Equipment Table holds the basic information about an equipment. It also includes the

equipments that are needed in case of emergency. This table is needed for preparing the

activity plan. User will not be able to access Equipment Table. In the next steps of the

project, new fields can be added to this table as needed.

Field Name Data Type

Id INTEGER

Name VARCHAR(30)

Weight FLOAT

IsPersonal BOOLEAN

NeededforWalking BOOLEAN

NeededforClimbing BOOLEAN

NeededforCamping BOOLEAN

Season INTEGER

IsEmergency BOOLEAN

Table 6.33. Equipment Table

• Id is the unique id of the equipment.

• Name is the name of the equipment.

• Weight is the weight of the equipment.

• IsPersonal is true if the equipment is a personal one, false otherwise.

• NeededforWalking is true if the equipment is needed for a walking activity, false

otherwise.

• NeededforClimbing is true if the equipment is needed for a climbing activity, false

otherwise.

• NeededforCamping is true if the equipment is needed for camping, false otherwise.

 95

• Season is the season in which the equipment is used, it can take three different

values for winter, summer or both.

• IsEmergency is true if the equipment is an emergency equipment, false otherwise.

6.5.1.2. ER Diagrams

Since we don’t store any complex data and the data that we store are not related to each other,

the ER diagrams are not complex, also. We have ER diagrams of only our database tables.

Figure 6.34. ER Diagram of Member

 96

Figure 6.35. ER Diagram of Equipment

6.5.2. File and Folder Formats and Syntax

In this project, we use some kind of file formats and folder arrangement. We will mention

about these formats under map files, image and video files and system files and folders

headings.

6.5.2.1. Map Files

We will use map files for getting terrain information in a format from user. We have

thought the consistency of the file formats with our GIS tool, when searching map files. The

“dted” and “dem” raster map formats are suggested to us for elevation information of the

terrain by Aselsan. We have searched on them and we saw that they are usable and

readable for our GIS tool. As satellite image we also think about the easy access from

internet. Hence we have found the “geotiff” format. On the other hand, as vector file, we

have decided to use “shp” shape file format because it is able to contain the necessary

information about especially water wells, rivers and lakes.

 97

6.5.2.2. System Files and Folders

The software will use some file and folder format specifications. We have designed a file

format which contains all existing information of a project when it is saved. We will save the

project file with a “srs” format because we want to use an original file format and this file

will have the project’s information in XML format. Because XML is a useful format and Java

has ready functions for reading, writing or parsing etc. for this file format.

The Strider’s sample workspace view is below.

 Figure 6.36. Strider’s workspace

 As we mention above, the “srs” file contains the projects current state information. It is

in XML format. The syntax of an “srs” file can be seen from the example of “Aladaglar1.srs”.

“Aladaglar1.srs” file’s content is like that;

 <?xml version="1.0" encoding="utf-8" ?>

 <projectDescription>

 <projectName>Aladaglar1</projectName>
 <projectPath>C:\ClimbPlanner\Aladaglar1</projectPath>

 <climbers>
 <id>1449222</id>
 <id>1449164</id>
 <id>1502095</id>

 <id>1448836</id>

 98

 </climbers>

 <projectMaps>
 <elevationMaps>
 <elevationMap>C:\ClimbPlanner\aladag.dem</elevationMap>

 </elevationMaps>
 <shapeFiles>
 <shapeFile>C:\ClimbPlanner\aladag1.shp</shapeFile>
 <shapeFile>C:\ClimbPlanner\aladag2.shp</shapeFile>

 </shapeFiles>
 <satelliteImages>

 <satalliteImage>C:\ClimbPlanner\aladag.geotiff</satalliteImage>
 <satalliteImage>C:\ClimbPlanner\aladag2.geotiff</satalliteImage>

 </satelliteImages>
 </projectMaps>

 <time>

 <day>20</day>
 <month>6</month>
 <year>2009</year>
 <hour>8</hour>
 <minute>0</minute>

 </time>

 <place>
 <country>Turkey</country>
 <city>Ankara</city>

 </place>

 <weather>
 <lowestTemp>2.3</lowestTemp>
 <highestTemp>15.4</highestTemp>
 <pressure>102.3</pressure>
 <windDirection>NORTH</windDirection>
 <windSpeed>2.5</windSpeed>

 <season>WINTER</season>
 <rainy>true</rainy>

 </weather>

 <constraints>
 <constraint>SHORTESTPATH</constraint>
 <constraint>MINIMIZINGTIME</constraint>
 </constraints>

 <!-- Start Coordinate -->
 <startCoord>
 <longitude />
 <latitude />

 <elevation />

 99

 </startCoord>

 <!-- End Coordinate -->

 <endCoord>
 <longitude />
 <latitude />
 <elevation />

 </endCoord>

 <!-- Check Points (if exist) -->

 <checkPoints />

 <avalanche>
 <longtitude />
 <latitude />
 <elevation />

 </avalanche>

 <fallingRock>
 <longtitude />
 <latitude />
 <elevation />

 </fallingRock>

 </projectDescription>

6.5.2.3. Image and Video Files

We will use the image and video files for saving the visualization and simulation of the

terrain. For image file we will use a generic file format “.jpeg”. We think that this file format

will be consistent with the systems of users. The user can save the visualization of terrain as

an image, which is a screenshot of the visualization, anytime.

The “.jpeg” file of this image is like that;

 100

Figure 6.37. Visualization of the terrain

 In the simulation part, user can save the simulation as a “qt” file that can be opened with

QuikTime multimedia framework. A screenshot of this video is below. In this video, camera

will follow the red colored route which is planned by Strider from the start coordinate to the

end coordinate.

Figure 6.38. Simulation of the route

 101

6.6. Behav6.6. Behav6.6. Behav6.6. Behavioral Designioral Designioral Designioral Design

 6.6.1. Strider General Behavior

 102

 6.6.2. Member Operations

 6.6.2.1. Add New Member

 103

 6.6.2.2. Update Member

 104

 6.6.2.3. Remove Member

 105

 6.6.3. Chosen Member Operations

 6.6.3.1. Chose New Member

 106

 6.6.3.2. Update Member

 107

 6.6.3.3. Remove Chosen Member

 108

 6.6.4. Project Operations

 6.6.4.1. Create New Project

 109

 6.6.4.2. Open Project

 110

 6.6.4.3. Save Project

 111

 6.6.4.4. Exit Project

 112

 6.6.5. Equipment Operations

 6.6.5.1. Add New Equipment

 113

 6.6.5.2. Update Equipment

 114

 6.6.5.3. Remove Equipment

 115

 6.6.6. Map Operations

 6.6.6.1. Add Map

 116

 6.6.6.2. Remove Map

 117

 6.6.7. Weather Operations

 6.6.7.1. See Weather Information

 118

 6.6.7.2. Set Weather Information

 119

 6.6.8. Visualization Operations

 120

7.CONCLUSION

This document is a detailed summary of the design approach taken by the Sirius Software

team for the Strider project. In this document, the revision of the project specifications and

the changes to the architecture is stated. The details of the specifications and the algorithms

are explained throughly with figures and pseudocodes. Moreover, this document provides

quite large amount of elaboration on the technical design of the project. The architecture of

the system is analyzed pointing out most of the details that concerns the programmers and

system designers. The structure and the behavior of the system modules are discussed with

detailed class and sequence diagrams. Other aspects of the project are also reviewed such

as library and tool research.

With the high level of detail shown in the document, the design of the system can be

considered as almost finished. The next step will be starting the development phase of the

project based on the design presented in this report. The report is expected to have only

necessary changes during the development.

This report helped us to become familiar with software engineering and software design

concepts and made us face the difficulties that a development team may have to overcome

to make a sound and deep design of a large scale software project. Moreover, it serves as a

starting point for the development phase since it provides an understanding of what we have

to code and implement.

In conclusion, Sirius Software has designed the whole Project in detail in order to be ready

for the implementation phase. In the following duration of five months our team will

concentrate on the coding and testing process.

8.

A
PP

EN
D

IX

 122

9. REFERENCES
[1]. Java Programming Language,

http://en.wikipedia.org/wiki/Java_(programming_language)

[2]. Eclipse Platform, http://en.wikipedia.org/wiki/Eclipse_(software)

[3]. Netbeans IDE, http://www.netbeans.org/features/4

[4]. GeoTools, Open Source Java GIS Tool, http://geotools.codehaus.org/

[5]Extensible Markup Language, http://www.xml.com/

[6] MySQL, http://www.mysql.com/

[7] User Interfacer Desing Tips, Techniques, and

Principles: http://www.ambysoft.com/essays/userInterfaceDesign.html

[8] Ant colony optimization , Cambridge, Mass. : MIT Press, 2004 , Marco Dorigo, Thomas

Stèutzle

[9] Evolutionary Algorithms in Engineering Applications, Springer New York 2006, Dasputa,

Michalewicz

[10] “Zirvelerin Özgürlüğü” by Don Graydon, Kurt Hanson

[11] Tunç FINDIK

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.netbeans.org/features/4
http://geotools.codehaus.org/
http://www.xml.com/
http://www.mysql.com/
http://www.ambysoft.com/essays/userInterfaceDesign.html

	Duygu Yapa 1449222
	Ayşe Turan 1449164
	Duygu Altınok 1502095
	Elif Kamer Karataş 1448836
	1.1. Purpose of the Document
	1.2. Project Topic
	1.3. Project Definition
	1.4. Project Scope
	2.1. Constraints and Limitations
	2.1.1. Time
	2.1.2. Performance

	2.2. Design Goals and Objectives
	2.2.1. Portability
	2.2.2. Usability
	2.2.3. Reliability
	2.2.4. Approach and Modeling

	3.1. Current State
	3.2. Prototype Implementation
	4.1. Languages and Platforms
	4.1.1. Java
	4.1.2. Eclipse
	4.1.3. NetBeans

	4.2. Geographical Information Systems
	4.2.1. GeoTools

	4.3. Graphics Libraries
	4.4. Other Tools and Libraries
	4.4.1. XML
	4.4.2. MySql
	6.1.1. strider package
	6.1.2. strider.definedTypes package
	6.1.3. strider.gis Package
	6.1.4. strider.planner Package
	6.1.5. strider.gui Package
	6.1.6. strider.gui.helpers Package
	6.1.7. strider.gui.helpers.member Package
	6.1.8. strider.gui.helpers.equipment Package
	6.1.9. strider.gui.helpers.project Package
	6.2.1. strider package
	6.2.2. strider.gis package
	6.2.3. strider.planner package
	6.2.4. strider.gui.helpers.member package
	6.2.5. strider.gui.helpers.equipment package
	6.2.6. strider.gui.helpers.project package
	6.2.7. strider.gui.helpers.weather package
	6.2.8. strider.gui.helpers.visualization package
	6.2.9. strider.gui.helpers.simulation package
	6.2.10. strider.gui.windows package
	6.3.1. Considerations on maps
	6.3.2. Considerations on route planning
	6.3.3. Algorithmic design for route
	Formal Definition of a Combinatorial Optimization Problem [9]
	The Ant Colony Optimization Metaheuristic [8]
	ConstructAntSolutions
	Daemon Actions

	6.3.4. Design of camping plan
	6.3.5. Design of food&water planning [11]
	6.3.6. Design of time planning
	6.3.7. Design of equipment planning
	6.3.8. Design of carriage planning
	6.4.1. Data Flow Diagrams
	6.4.2. Data Dictionary
	6.5.1. Database Design
	6.5.2. File and Folder Formats and Syntax
	6.6.1. Strider General Behavior
	6.6.2. Member Operations
	6.6.3. Chosen Member Operations
	6.6.4. Project Operations
	6.6.5. Equipment Operations
	6.6.6. Map Operations
	6.6.7. Weather Operations
	6.6.8. Visualization Operations

